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We consider the class of higher derivative field equations whose wave operator is a square of another
self-adjoint operator of lower order. At the free level, the models of this class are shown to admit a two-
parameter series of integrals of motion. The series includes the canonical energy. Every conserved quantity
is unbounded in this series. The interactions are included into the equations of motion such that a selected
representative in conserved quantity series is preserved at the nonlinear level. The interactions are not
necessarily Lagrangian, but they admit the Hamiltonian form of dynamics. The theory is stable if the
integral of motion is bounded from below due to the interaction. The motions are finite in the vicinity of the
conserved quantity minimum. The equations of motion for fluctuations have the derived form with no
resonance. The general constructions are exemplified by the models of the Pais-Uhlenbeck (PU) oscillator
with multiple frequency and Podolsky electrodynamics. The example is also considered of stable
non-Abelian Yang-Mills theory with higher derivatives.
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I. INTRODUCTION

In 1950, Pais and Uhlebeck first considered the class of
relativistic higher derivative theories whose wave operator
is a polynomial in the another formally self-adjoint operator
of lower order [1]. Such models can be termed the theories
of derived type. The general derived model is specified
by the constant coefficient polynomial, termed the char-
acteristic polynomial, and the lower order operator, being
the primary operator. As far as the wave equations are
determined modulo multiplication by a nonzero constant,
only the structure of the characteristic polynomial roots is
relevant. Depending on the structure of roots and primary
operator, the setting of a derived model can describe many
long-known higher derivative field theories; see [2] for
review. The example is the Podolsky electrodynamics [3];
the conformal gravity theories in various dimensions [4,5]
also fall in this class. The extended Chern-Simons [6]
usually serves as prototype of a gauge derived model in the
space-time dimension three. The Pais-Uhlenbeck (PU)

oscillator [1] is the best known example of the derived-
type higher derivative mechanical model.
The derived theories are often considered in the context of

studying of various aspects of higher derivative dynamics,
including the problem of stability. There is a vast literature
on the subject; see the reviews in [7–10] and references
therein. The recent studies demonstrate that the higher
derivative theories are not necessary unstable, even though
the canonical energy is unbounded.1 The stability has been
studied from several viewpoints. The non-Hermitian quan-
tum mechanics is used to construct stable quantum theory of
the PU model [11–13]. The same problem is solved by
means of alternative Hamiltonian formulations in [14,15].
The stability of classical paths is studied by numerical
simulations and analytical methods in [16–19]. In the paper
[20], the class of metastable interaction vertices with logo-
graphically small runaway speed is proposed. The metasta-
bility phenomenon has been recently noticed in the R2

gravity in the energy range below the certain threshold [21].
The structure of symmetries and conservation laws of
derived type models is studied in [22,23]. It is shown that
the bounded integrals of motion can exist in these theories
that stabilizes the higher derivative dynamics. This makes
the derived type higher derivative systems stable indeed, not
just having an island of stability.
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1Gauge theories with higher derivatives can have on shell
bounded energy.
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The conclusions about the stability of higher derivative
models are mostly related to the theories with simple
roots of a characteristic polynomial. The models with
multiple characteristic polynomial roots usually demon-
strate instability already at the free level. The simplest
example of this phenomenon is provided by the fourth
order PU oscillator with a multiple frequency. The oscil-
lations resonate, so the motion is unbounded. The theory
with resonance has a bounded from below the integral of
motion, though it does not lead to stability [24]. The
alternative Hamiltonian formulations for PU model with
resonance are canonically equivalent, and all the possible
Hamiltonians are unbounded [14]. The multiple root in the
characteristic polynomial has been previously considered
as a indication of instability unless the corresponding
degree of freedom is a pure gauge. As the example of this
phenomenon we mention the extended Chern-Simons
theory with a multiplicity two zero root which is stable
due to the gauge invariance [23].
In papers [25–27], the problem of inclusion of stable

interactions is studied from the viewpoint of consistent
deformation of equations of motion and conserved quan-
tities. It is demonstrated that the higher derivative theories
admit the class of interactions such that preserve a selected
conserved quantity of the free model. If a bounded from
below quantity is conserved at the interacting level, the
dynamics of the nonlinear theory is stable. The interacting
equations are non-Lagrangian, but the dynamics is explic-
itly covariant, and it still admits the Hamiltonian formu-
lation. For construction of interaction, it is critical that the
free theory is stable. The interaction just preserves the
model stability. In the class of derived theories with
resonance at the free level, the free evolution is unbounded.
This means that the interactions have to stabilize originally
unstable theory. The phenomenon of stabilization of
dynamics by the interaction is well-known in the theories
without higher derivatives. For example, the motions of
mechanical system can bounded in the vicinity of the
unstable equilibrium position once the higher order cor-
rections are accounted for the energy.
In the present paper, we construct the stable interactions

for the class of higher derivative theories of derived type
with a single multiplicity two root of the characteristic
polynomial. The wave operator of the general model is
given by the square of another formally self-adjoint
operator of lower order. The simplest model is the PU
oscillator with a resonance solution at the free level. We
exploit the idea of stabilization of dynamics by means of
interaction. We demonstrate that the interactions can be
introduced such that the unbounded energy of the free
model becomes bounded from below on the account of the
interactions. The dynamics turns out stable in the vicinity of
the energy minimum just by the reasons of energy con-
servation. The equations of motion for fluctuations have
derived type without a resonance. The motions are stable in

the range of energies below a certain level. Above this level,
the dynamics becomes singular. All the proposed stable
interactions are non-Lagrangian, but the equations still
admit a Hamiltonian formulation. The theory of small
fluctuations in the vicinity of stationary solution is
Hamiltonian with a bounded Hamiltonian.
The general construction is illustrated by two examples:

the PU oscillator with a multiple frequency, and Podolsky
electrodynamics. For the PU oscillator, we detail the
structure of the conserved quantities at the free and interact-
ing level. We notice that the free theory admits a two-
parameter series of conserved quantities. The canonical
energy is included in the series. All the conserved quantities
in the series are unbounded. The particular class of inter-
actions that preserves a selected representative in the series
of conserved quantities is proposed. If the interaction makes
the integral of motion bounded, the nonlinear model turns
out stable. The equations of motion for small fluctuations
and the upper bound are identified for the energy such
that the model admits the stable paths. The Podolsky
electrodynamics provides a field-theoretical example of a
similar phenomenon. In this higher derivative theory with
unbounded energy of free model, we find the class of stable
interactions with complex scalar field. The non-Abelian
generalization of the proposed interactions are discussed.
The article is organized as follows. In the next section,

we consider the conservation laws of the free PU model
with multiple frequency. We construct a two parameter
series of integrals of motion which includes the canonical
energy. The general representative in the series can be
interpreted as the energy of a certain model without higher
derivatives. Proceeding from this interpretation, we con-
struct the class of stable interactions that correspond to the
(not necessary Lagrangian) theory with higher derivatives.
In Sec. III, we observe that the theories with bounded
energy are stable in certain sense. We identify all the
equilibrium positions of theory. The equilibrium position at
the origin is unstable, while the additional equilibrium
positions can be stable. The motions are biharmonic
oscillations in the vicinity of the stable equilibrium posi-
tions. The oscillation frequencies are different. The esti-
mate for the upper limit of energy is given such that leads to
bounded trajectories. In Sec. IV, we consider the issue of
stability from the viewpoint of Hamiltonian formalism. It is
shown that the interacting theory admits the Hamiltonian
formulation with a bounded from below Hamiltonian. In
Sec. V, we consider the field theoretical example—the
Podolsky electrodynamics. In Sec. VI, the further gener-
alizations of the proposed constructions are discussed. In
the Conclusion, we summarize the results.

II. THE PU OSCILLATOR WITH A MULTIPLE
FREQUENCY

Consider the mechanical model with two coordinates
xðtÞ, yðtÞ and the action functional,
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S½xðtÞ; yðtÞ� ¼
Z

Ldt;

L ¼ m

�
_x_y− ω2

�
xy−

1

2
y2
�
þ 1

2
kð_y2 −ω2y2Þ

�
:

ð1Þ

The action includes dimensionless parameter k, while m is
a mass, and ω is a frequency. The Lagrange equations read

δS
δx

¼ −mðÿþ ω2yÞ ¼ 0;

δS
δy

¼ −mðẍþ ω2ðx − yÞÞ −mkðÿþ ω2yÞ ¼ 0: ð2Þ

These equations can be equivalently written as

ÿþ ω2y ¼ 0; ẍþ ω2x ¼ ω2y: ð3Þ

Obviously, the parameter k drops out of the equations,
while it cannot be excluded from the action by adding any
total derivative to the Lagrangian. In this sense, the Eq. (3)
admit a one-parameter series of Lagrangians (1). This
simple observation has consequences: given the series of
actions, any symmetry of the equations leads to the series of
the conserved quantities constructed by Noether theorem.
This series is important for the inclusion of stable
interactions.
The linear equations (3) obviously describe the resonat-

ing oscillations: y harmonically oscillates with the fre-
quency ω, while the oscillator equation for x includes the
same frequency as in the solution for y. The latter is
included as the “force” on the rhs of the equation for x. So
the motion in the direction of x is unbounded at free level.
A different interpretation is possible for the same system
(3): y can be considered as an auxiliary variable because it
can be expressed in terms of x and ẍ,

y ¼ xþ ẍ
ω2

þ 1

mω2

�
k
δS
δx

−
δS
δy

�
≈ xþ ẍ

ω2
: ð4Þ

The symbol ≈ means the equality on the mass shell. Once
the auxiliary variable y is excluded by means of (4), the
remaining coordinate x obeys a single fourth order equation
of the derived type,

⃜xþ 2ω2ẍþ ω4x ¼ D2x ¼ 0; D ¼
�
d2

dt2
þ ω2

�
: ð5Þ

It is the PU oscillator [1] with resonance. Equation (5)
in itself comes from the action principle with higher
derivatives,

Sx½xðtÞ� ¼
Z

Lxdt;

Lxðx; _x; ẍÞ ¼ −
1

2ω2
ðẍ2 − 2ω2 _x2 þ ω4x2Þ: ð6Þ

As we see, the model (1) with any k is equivalent to (5) at
the level of equations of motion. The solutions, symmetries
and conserved quantities are in one-to-one correspondence
for the models (1) and (6). With this regard, one can
consider (1) and (6) as two different representations of the
same dynamics. The formula (4) expresses y in terms of the
derivatives of x, ẍ, while _y admits representation in terms of
_x, ⃛x,

y ¼ ω−2ẍþ x; _y ¼ ω−2
⃛xþ _x ⇔

ẍ ¼ ω2ðy − xÞ; ⃛x ¼ ω2ð_y − _xÞ: ð7Þ

The substitution of y in terms of x and ẍ takes Eqs. (2)–(5),
and vice versa.
We shall seek for the stable interactions such that the

equivalence still exists between the higher derivative
representation and the first order form of this dynamics
at the level of equations of motion. We shall not require,
however, the higher derivative equations to remain
Lagrangian upon inclusion of interactions. The key role
for our construction is played by the series of conserved
quantities parametrized by k involved (1). All these con-
servation laws are generated by the same symmetry, as we
have already mentioned.
The action functional (1), being essentially k-dependent,

is invariant with respect to the time translations. The
canonical energy of the model is the conserved quantity,

J ¼ m

�
_x _yþω2

�
xy −

1

2
y2
�
þ 1

2
kð_y2 þ ω2y2Þ

�
: ð8Þ

This expression represents the energy in terms of the co-
ordinates x, y. It explicitly depends on the parameter k.
Given the connection between y and x (4), the conserved
quantity can be represented in terms of a coordinate x and
its higher derivatives,

J ¼ m

�
ω−2 _x ⃛x−

1

2
ω−2ẍ2 þ _x2 þ 1

2
ω2x2

þ 1

2
kððω−2

⃛xþ _xÞ2 þ ω2ðω−2ẍþ xÞ2Þ
�
: ð9Þ

As is seen, the constant k is involved in the integral of
motion, while the equation of motion (5) is independent
of k. This means that k-dependent and k-independent terms
conserve separately, i.e.,
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d
dt

�
ω−2 _x ⃛x−

1

2
ω−2ẍ2 þ _x2 þ 1

2
ω2x2

�
≈ 0;

d
dt

ððω−2
⃛xþ _xÞ2 þ ω2ðω−2ẍþ xÞ2Þ ≈ 0: ð10Þ

Equations (8), (9) determine a two-parameter series of the
conserved quantities of the PU theory with resonance. Each
representative in the series can be considered as the
canonical energy of a certain representative of the action
functional series (1). This interpretation is not generally
true at the higher derivative formalism (5). The canonical
energy of the higher derivative theory (6) corresponds to the
first entry in the series (9).
The integrals of motion (10) do not result in the stability

of the dynamics. The series (8) involves the dynamical
variable x in a linear way. Once x, y and _x, _y admit
independent initial data, the corresponding conserved
quantity is obviously unbounded. As the classical energy
does not have a minimum, one can expect the unbounded
spectrum of Hamiltonian at quantum level, and the
“Ostrogradski ghosts” emerge. Another reason is that the
conservation law (8) does not restrict the motion to the
vicinity of the critical point x ¼ y ¼ 0. The general
solution of the equations (2) read

xðtÞ ¼ ωAt sinðωtþ aÞ þ B sinðωtþ bÞ;
yðtÞ ¼ 2A cosðωtþ aÞ; ð11Þ

where A, B and a, b are the arbitrary integration constants.
The amplitude of the first oscillation (11) is linearly
growing with time. The motion is finite only for the special
solutions with A ¼ 0. The substitution of the general
solution (11) into (8) gives the expression for the conserved
quantity in terms of initial data,

Jjx¼xðtÞ;y¼yðtÞ ¼ 2ω2ðAB sinðb − aÞ þ ðk − 1ÞA2Þ: ð12Þ
For any fixed value of the parameter k, the condition J ¼
const does not restrict the amplitudes of oscillations. The
motion is unbounded for any value of J. The latter fact
explains the instability of model (5) from the viewpoint of
structure of its classical paths. Obviously, the absence of
lower bound of the general representative of the energy
series (8) is a source of the instability. However, the
stabilization of dynamics is possible upon the inclusion
of interaction if the conserved quantity is bounded from
below in a vicinity of the critical point.
At the end of this section, we would like to make a

remark on the role of the parameter k in the series of action
functionals (1) and integrals of motion (8). Obviously, the
different representatives in these series are connected by the
coordinate transformation,

x ↦ x0 ¼ xþ 1

2
sy; y ↦ y0 ¼ y; ð13Þ

where s is the real constant parameter. The transformation
with s ¼ −k brings k to zero in a general representative
in (1), (8). In terms of the higher derivative description,
this transformation does not correspond to any local
change of the coordinate x. Instead, we have a nonlocal
transformation,

x ↦ x0 ¼ xþ 1

2
sðω−2ẍþ xÞ; ð14Þ

which is not invertible in the class of local coordinate
changes of the coordinate x. In particular, the variational
principle (1) with k ≠ 0 does not correspond to any
variational principle with higher derivatives and single
dynamical variable x. This fact has several consequences
at the nonlinear level and in the Hamiltonian formalism,
which are discussed in the next two sections.

III. STABLE INTERACTIONS

In this section, we consider the inclusion of interaction in
the Lagrangian (1) such that the coordinate y can be still
excluded on shell in terms of x, _x, ẍ, though not necessarily
in the same way as it has been done in the free theory (4).
This would mean that the interactions in the first order
theory (1) correspond to the local interactions in the higher
derivative equation (5), though the interaction vertex is not
necessarily Lagrangian in the higher derivative setup.
The simplest option is to consider the class of interactions

in the model (1) where the coordinate y is expressed from the
same combination of the Lagrangian equations as in the free
theory (4). In the slightly different wording, this means that
at the interacting level, the same linear combination of
Lagrangian equations defines y as function of x, _x, ẍ,

y − fðx; _x; ẍÞ ¼ 1

mω2

�
δS
δy

− k
δS
δx

�
; ð15Þ

where fðx; _x; ẍÞ is a function of the coordinate x and its
derivatives. This function can be nonlinear, unlike the free
model (4). The most general Lagrangian that has the
property (15) reads

L ¼ m

�
_x _y−ω2

�
xy −

1

2
y2
�
þ 1

2
kð_y2 − ω2y2Þþ

þ Uðx; _xÞ þ Vðz; _zÞ
�
; ð16Þ

where Uðx; _xÞ, Vðz; _zÞ are the functions of the variables x,
z≡ xþ ky and its first time derivatives _x, _z. The interaction
potentials U, V are assumed at least cubic in the variables. It
terms of the potentials, the coordinate y is defined on shell as
follows:

y ¼ fðx; _x; ẍÞ≡ 1

ω2

�
ẍþ ω2xþ k

�∂U
∂x −

d
dt

∂U
∂ _x

��
: ð17Þ
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The function Vðx; _xÞ does not contribute to this equation.
The higher derivative equation of motion for a single
coordinate x has the following form:

1

ω2

�
d
dt2

þ ω2

�
2

xþ
�
ðk − 1Þ þ k

ω2

d2

dt2

��∂U
∂x −

d
dt

∂U
∂ _x

�

−
�∂V
∂z −

d
dt

∂V
∂ _z

�����
z¼xþkfðx;_x;ẍÞ

¼ 0; ð18Þ

where the function fðx; _x; ẍÞ denotes the right-hand side of
Eq. (17). The obtained equation is the obvious deformation
of the free PU theory equation (5). The class of interacting
theories (5) is not invariant with respect to the transformation
(13). This automatically means that the different represent-
atives of the free action functional series (1) give rise to
different classes of interacting theories, which are uncon-
nected to each other by any change of coordinates.
Only one representative of the integral of motion series

(8) conserves at the interacting level. It is given by the
canonical energy of the action functional (16),

J ¼ m

�
_x _yþω2

�
xy −

1

2
y2
�
þ 1

2
kð_y2 þ ω2y2Þ

þ _x
∂U
∂ _x −U þ _z

∂V
∂ _z − V

�
: ð19Þ

This quantity admits representation in two equivalent
forms. First, the quadratic form of this expression can be
brought to the diagonal form. In so doing, we assume2 that
kðk − 1Þ ≠ 0;

J ¼ m

�
k
2

�
_yþ 1

k
_x

�
2

þ ðk − 1Þω2

2

�
yþ 1

k − 1
x

�
2

−
1

2k
_x2 −

ω2

2ðk − 1Þ x
2 þ _x

∂U
∂ _x − U þ z

∂V
∂ _z − V

�
:

ð20Þ

Second, the coordinate y can be expressed in terms of x and
its derivatives by means of Eq. (17). In this way, we arrive
to the conservation law of the higher derivative theory (18),

J ¼ m

�
k
2

�
kω−2

⃛xþ ðkþ 1Þ_x
k

þ k
ω2

d
dt

�∂U
∂x −

d
dt

∂U
∂ _x

��
2

þ ðk − 1Þω2

2

�ðk − 1Þω−2ẍþ kx
k − 1

þ k
ω2

�∂U
∂x

−
d
dt

∂U
∂ _x

��
2

−
1

2k
_x2 −

ω2

2ðk − 1Þ x
2 þ _x

∂U
∂ _x −U

þ
�
z
∂V
∂ _z − V

�����
z¼xþkfðx;_x;ẍÞ

�
: ð21Þ

As is seen from Eqs. (20) and (21), the unbounded con-
tributions come from the terms with squares of x and _x.
The integral of motion of the interacting theory is
bounded if the contributions from the interaction potentials
U, V compensate the unbounded terms. The simplest
example of interactions that meet the stability condition
reads

Uðx; _xÞ ¼ 1

4ω2
α_x4 þ 1

2
βx2 _x2 −

1

4
γω2x4;

Vðx; _x; ẍÞ ¼ 0; ð22Þ

where the constants α, β, γ represent the interaction
parameters.
In this article, we do not explore the dynamics of

nonlinear model (18) with the most general potentials
U, V such that lead to stability. For the sake of technical
simplicity, we mostly focus on the particular class of
interaction potentials (22). As we observe below, this class
is wide enough to illustrate the general properties of the
dynamics at the nonlinear level. Given the specific poten-
tials, equation of motion (18) reads

ð1 − kð3αω−2 _x2 þ βx2ÞÞ ⃜x − 6kð3αω−2 _x ẍþβx_xÞ⃛x
þ ð2ω2 þ 3αðð1 − kÞ_x2 − 6kω−2ẍ2Þ þ βðð1 − kÞω2x2

− kð4xẍþ 7_x2ÞÞ − 3γkω2x2Þẍþ ðβð1 − kÞ − 6γkÞ
× ω2x_x2 þ ω4ðx − γðk − 1Þx3Þ ¼ 0: ð23Þ

The integral of motion of the nonlinear theory (23) is given
by the expression (21) with the interaction potential (22).
The explicit computation gives

J ¼ m

�
k
2

�
kω−2

⃛xþ ðkþ 1Þ_x
k

−
k
ω2

d
dt

ð3αω−2 _x2ẍ

þ βðx2ẍþ x_x2Þ þ γω2x3Þ
�

2

þ ðk − 1Þω2

2

�ðk − 1Þω−2ẍþ kx
k − 1

−
k
ω2

ð3αω−2 _x2ẍ

þ βðx2ẍþ x_x2Þ þ γω2x3Þ
�

2

−
1

2ðk − 1Þω
2x2

−
1

2k
_x2 þ 3

4ω2
α_x4 þ 1

2
βx2 _x2 þ 1

4
γω2x4

�
: ð24Þ

From the viewpoint of stability, the presence or absence of
lower bound of energy is relevant. The first two lines of
equation (24) involve total squares. These terms give
positive contributions to energy if k > 1 irrespectively to
the specifics of interaction. The third line includes the
interaction energy. At the free level it is unbounded. Once

2The assumption does not restrict generality. As we demon-
strate below, only interactions with k > 1 can be stable.
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the interaction is included, it becomes bounded if the
coupling constants α, β, γ are positive.
Depending on the structure of the interaction term in

the integral of motion, the nonlinear theory can be stable
or unstable. If the level surfaces of constant energy are
bounded in the phase-space, the motions are finite for
all the initial data. It is the case of the globally stable
theory. The globally stable interactions are admitted
by the PU oscillator with a nondegenerate frequency
spectrum [25,28]. For examples of stable interactions in
the field theory we refer to articles [2,26,27]. There is
no analogous way to include the globally stable inter-
action for the PU oscillator with a multiple frequency.
Under the less restrictive assumptions, the energy can be
an unbounded function which admits a local minimum.
Then, the motions are stable in the vicinity of the energy
minimum. This is a case of so-called stability island.
The models with the stability island are stable in the
range of energies below a certain limit. The highest
value of energy with a bounded isoenergetic surface
determines the upper energy limit for the stable paths.
In principle, the existence of a stability island is
sufficient for the construction of quantum theory with
metastable states and a well-defined vacuum state. The
precedents are known of this type for the higher
derivative systems [8,18], though not with a resonance
at free level. We see that the concept of an island of
stability also suits well for the dynamics of interacting
theory (23). The free model (5) is unstable. To get the
stability in the interacting theory, the model should have
a (local) minimum of energy due to interaction. The
motions are bounded in the vicinity of the stable
equilibrium position just by virtue of the energy con-
servation law.
Depending on the value of the interaction parameters α,

β, γ, the theory (23) may have one or three stationary
solutions. The case γðk − 1Þ ≥ 0 is not interesting because
the model (23) has a single unstable equilibrium position at
the origin. If γðk − 1Þ > 0, we have two nonzero stationary
solutions,

x ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðk − 1Þp : ð25Þ

They can be stable or unstable depending on the values of
the interaction parameters. Introduce the special notation
for the fluctuation in the vicinity of the equilibrium
position,

u ¼ x ∓ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðk − 1Þp : ð26Þ

The decomposition of the integral of motion (24) in the
vicinity of nonzero stationary solution reads

J ¼ m

�
−

ω2

4γðk − 1Þ2

þ 1

2k

�
1

ω2

�
1 −

βk
γðk − 1Þ

�⃛
u −

2k2 þ 1

k − 1
_u

�
2

þ ω2

2ðk − 1Þ
�

1

ω2

�
1 −

βk
γðk − 1Þ

�
ü −

2k
k − 1

u

�
2

þ 1

2k

�
βk

γðk − 1Þ − 1

�
_u2 þ ω2

k − 1
u2 þ…

�
: ð27Þ

The dots denote cubic and higher terms in u and its
derivatives. The first term defines the value of energy at
the stationary solution. We introduce the special notation
for this value,

Jmin ¼ −
mω2

4γðk − 1Þ2 : ð28Þ

This value is negative for γ > 0, k > 1. The stability
properties of the equilibrium position are determined by
signature of the quadratic form in the decomposition (27).
The energy has a minimum if all the coefficients at squares
are positive,

k − 1 > 0; γ > 0; βk − γðk − 1Þ > 0: ð29Þ

Hereinafter, it is assumed that the stability conditions are
satisfied. In particular, we suppose below that β, γ > 0. The
parameter α is not involved in the stability conditions
because the _x4 term cannot influence the motions in the
vicinity of the equilibrium position. However, this term
influences the stability properties of the model at higher
energies.
The model (23) cannot be globally stable. The stable

interactions imply the positive values of the interaction
parameters β, γ. Once this parameters are positive, the
coefficient at the highest derivative term in the equation of
motion can vanish,

1 − kð3αω−2 _x2 þ βx2Þ ¼ 0: ð30Þ

On this phase-space surface, the conditions of existence
and uniqueness of solution to the Cauchy problem for
equation (23) are violated. Our analysis shows that the
relations (23) and (30) are inconsistent. This means that
neither true trajectory can be transverse to this surface, nor
the classical path can lie on the phase-space submanifold
(30). The only alternative is that true trajectories begin or
end in the vicinity of the surface (30). In the globally stable
theories, the classical path are complete.3 It is not possible
for the system (23) as we see. The complete trajectories can

3The path xðtÞ is complete if it is defined for the real value of
time −∞ < t < þ∞.

KAPARULIN, LYAKHOVICH, and NOSYREV PHYS. REV. D 101, 125004 (2020)

125004-6



exist if the certain level energy surface defined by (24) has
no intersection with the phase-space submanifold (30). The
stationary solutions (25) are examples of complete paths.
They do not lie on the surface (30) because conditions (25)
and (30) are contradictory. The classical paths in the
vicinity of stable equilibrium position have a good chance
to be complete. The level surfaces of integral of motion (24)
are compact and lie in the neighborhood of the equilibrium
position with no intersection with the phase-space sub-
manifold (30) if the energy value is sufficiently small. The
biggest compact isoenergetic surface (24) that has no
intersection with the phase-space submanifold (30) deter-
mines the border of stability island. The brief summary of
the above is the following. The stable paths of the system
(23) are localized in two islands of stability, which lie in the
vicinity of nonzero stationary solutions (25). The existence
of singular surface (30) is the obstruction to the global
stability for the class of interactions (23).
Consider the dynamics of small fluctuations in the vici-

nity of the nonzero stationary solution (25). The lineari-
zation of equation (18) in the vicinity of solution (25) reads�

βk
γðk − 1Þ − 1

�⃜
uþ

�
β

γ
þ kþ 2

k − 1

�
ω2üþ 2ω4u ¼ 0; ð31Þ

where u is the fluctuation. By construction, the equation
of motion has the PU form. The frequencies of oscillations
are determined by the interaction parameters and the
constant k. The stability conditions (29) imply that all
the coefficients of equation are positive, so the roots of
characteristic equations are complex. The frequencies of
oscillations for the model (31) read

ω� ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðk − 1Þ þ γðkþ 2Þ � ffiffiffiffi

D
p

2ðkβ − γðk − 1ÞÞ

s
;

D ¼ ðβðk − 1Þ þ γðkþ 2ÞÞ2 − 8γðk − 1Þðβk − ðk − 1ÞγÞ:

The conditions (29) imply that the frequencies are not
equal, so the system (31) has no resonance at the equilib-
rium position. The simplest way to see the fact follows. The
Eq. (18) admit alternative formulation without higher
derivatives (16). The resonance has the place if both the
oscillators are one and the same frequency. This option is
not possible because the system of two free oscillators with
one and the same frequency does not allow reformulation in
terms of higher derivative PU theory with a single dynami-
cal variable. The solution to the equation of motion is a
biharmonic oscillation,

u ¼ A sinðωþtþ aÞ þ B sinðω−tþ bÞ; ð32Þ

where A, B, a, b are integration constants. The biharmonic
oscillation is a finite path, so the dynamics should be
considered as stable. The account of interaction does not
change conclusion of about the stability of motion. The
argument is that the dynamics is localized on zero energy
surface, which is compact for the energies slightly above
the lower bound. All this means that the dynamics of
nonlinear theory is stable in the vicinity of equilibrium
position.
Let us now specify the stability island. The classical path

is singular if the surfaces (24) and (30) are intersect. For
regular path conditions (24) and (30) are inconsistent. The
regularity condition is met in the range of energies,

Jmin ≤ J < Jmax; ð33Þ

where Jmin is the minimal value of energy (28), and Jmax is
the minimal value of energy on the singular surface (30).
Expressing the coordinate x on the surface (30), we
represent the energy (24) as the function of three variables,

J

�
x ↦ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

β

�
1

k
−
3α

ω2
_x2
�s 	

¼ m

�
k
2

��
kþ 1

k
−
3γ

β

�
_x −

6αk_xẍ2

ω4
∓ 4_x ẍ

ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

�
1

k
−
3α

ω2
_x2
�s
þ k
ω2

�
9γα

β
− β

�
_x3
	
2

þ k3ω2

2βðk − 1Þ
�
1

k
−
3α

ω2
_x2
��

1

k − 1
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

�
1

k
−
3α

ω2
_x2
�s
−
γ

β

�
1

k
−
3α

ω2
_x2
�	

2

þ 3α

4ω2

�
3γα

β2
− 1

�
_x4 þ 3α

2βðk − 1Þ
�
1 −

γðk − 1Þ
βk

�
_x2 −

γω2

4k2β2

�
3βk

γðk − 1Þ − 1

��
: ð34Þ

The domain of a function is j_xj < ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=3kα

p
for α > 0,

and all the phase space for α ≤ 0. Otherwise the condition
(30) is inconsistent. The arguments in squares in two first
lines of (34) are independent initial data, which account the
dependence of the energy on ẍ, ⃛x. The value of these terms

can be set zero irrespectively to the x, _x terms of third line.
The actual minimum of the function is given by the
minimum of the quadratic form in _x2 in the third line of
the expression (34). Three different cases are summarized
in the equation below,
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Jmax ¼

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

−
mγω2

4β2k2


 2βk
γðk − 1Þ − 1

�
;

α ¼ 0 or α ≥
β2

3γ
or 0 < α <

β2

3γ
;

βðβk − γðk − 1ÞÞ
kðk − 1Þðβ2 − 3γαÞ ≥

1

3αk
;

−mω2
n γ

4β2k2


 2βk
γðk − 1Þ − 1

�
−

1

2βðk − 1Þ


1 −

γðk − 1Þ
βk

�
−
1

4


3γα
β2

− 1
�o

0 < α <
β2

3γ
;

βðβk − γðk − 1ÞÞ
kðk − 1Þðβ2 − 3γαÞ <

1

3αk
;

−
mγω2

4β2k2


 2βk
γðk − 1Þ − 1

�
−

3mjαjω2

4kðk − 1Þ2
kβ − γðk − 1Þ
3γjαj þ β2

;

α < 0:

ð35Þ

The estimates in the right-hand side of this equation give
the upper bound for the energy of the regular path. The
surface J ¼ Jmax is the border of the stability island.
Let us summarize the results of the section. If the para-

meters of the model meet the condition (29), the nonlinear
theory (23) has three equilibrium positions. The equilibrium
position at the origin, being the critical point of the free
theory, is unstable. The other two equilibrium points are
stable. The motions are regular for energies in the range (33),
where Jmin, Jmax are given by relations (28), (35). The
maximal energy of the regular trajectories defines the
boundary of the stability island. The value α ¼ 0 corre-
sponds to the maximal possible size of the stability island
[the first option in Eq. (35)]. The size of the stability island
decreases for negative α, which contributes a negative
correction to the kinetic term, and also for small positive
α. The latter decrease of the energy limit may seem counter-
intuitive. We explain it by almost degeneracy of the energy
quadratic form (27) at the equilibrium position (the coef-
ficient at _u is small). In this case, every small change of the
model parameters can have a negative impact on stability.

IV. HAMILTONIAN FORMALISM

Let us begin with the free PU theory. At first, consider
the canonical Hamiltonian formalism for the theory with
the action functional (1). The action involves the parameter
k, which is not involved in the equivalent higher derivative
theory (6), so we aim at clarifying the consequences of this
ambiguity in Hamilitonian formalism.
Introduce the canonical momenta px, py obeying the

canonical,

px ¼ m_y; py ¼ mð_xþ k_yÞ; ð36Þ
fx; yg ¼ fpx; pyg ¼ fx; pyg ¼ fy; pxg ¼ 0;

fx; pxg ¼ fy; pyg ¼ 1: ð37Þ
The Hamiltonian equations read

_zi ¼ fzi; Hg; zi ¼ ðx; y; px; pyÞ ð38Þ

H ¼ 1

m

�
pxpy þ

1

2
kp2

x

�
þmω2

�
xyþ k − 1

2
y2
�
: ð39Þ

The equivalence between the Hamiltonian equations (38),
(39) and higher derivative PU theory (5) is easy to see: the
momenta px, py and auxiliary variable y can be expressed
in terms of the coordinate x and its derivatives. The
remaining dynamical variable x obeys the higher derivative
PU equation (5).
The Hamiltonians (39) depend on the parameter k. This

dependence is due to the canonical transformation,

x ↦ x0 ¼ xþ 1

2
sy; px ↦ ðpxÞ0 ¼ px −

1

2
spy;

y ↦ y0 ¼ y; py ↦ ðpyÞ0 ¼ py; ð40Þ

where s is the transformation parameter, being a real
number. The Ostrogradski canonical formulation [29]
corresponds the choice k ¼ 0. The transformation (39)
with s ¼ k connects the general Hamiltonian (39) with the
canonical Hamiltonian by Ostrogradski. The subtlety is that
the Hamiltonian formulations with k ≠ 0 cannot be derived
by means of the Legendre transformation of any higher
derivative action functional. The paper [30] tells us that all
the Hamiltonian formulations, being obtained by different
ways of reduction of order in the Lagrangian, are connected
by the canonical transformation, which does not involve the
original coordinates. This is not the case at hands. The
transformation (13) of single dynamical x is not a change of
the coordinate (14). It is some kind of hidden symmetry,
being connected to the resonance. At the interacting level,
the transformation (13) no longer preserves the equations of
motion (23). In this case, the Legendre transformation of
the action (16) allows us to construct the Hamiltonian
formulations, which do not follow from the Ostrogradksi
procedure for the higher derivative action (6). This
Hamiltonian formulations can have bounded Hamiltonian
even if the higher derivatives are involved at the free
and interacting levels. That is why the Hamiltonian

KAPARULIN, LYAKHOVICH, and NOSYREV PHYS. REV. D 101, 125004 (2020)

125004-8



formulations (38), (39) are useful from the viewpoint of
inclusion of interactions.
The Hamiltonian formulations (38), (39) can be rewritten

in terms of the phase-space variables x, _x, ẍ, ⃛x, being
derivatives of x. The transformation law reads

_x ¼ 1

m
ðpy − kpxÞ; ẍ ¼ ω2ðx − yÞ;

⃛x ¼ 1

m
ω2ððkþ 1Þpx − pyÞ. ð41Þ

The Hamiltonian (39) is given by the general representative
of the conserved series (9),

H ¼ m

�
ω−2 _x ⃛x−

1

2
ω−2ẍ2 þ _x2 þ 1

2
ω2x2

þ 1

2
kððω−2

⃛xþ _xÞ2 þ ω2ðω−2ẍþ xÞ2Þ
�
. ð42Þ

The Poisson brackets of the phase-space variables x, _x, ẍ, ⃛x
read

fx; _xg ¼ −
1

m
k; f_x; ẍg ¼ f⃛x; xg ¼ 1

m
ω2ðkþ 1Þ;

fẍ; ⃛xg ¼ 1

m
ω4ðkþ 2Þ; fx; ẍg ¼ f_x; ⃛xg ¼ 0: ð43Þ

The Hamiltonian formulation (42), (43) has been first
proposed in [14] for the PU oscillator. The canonical
equivalence of different Hamiltonian formulations has been
also noticed in this article. The special feature of the
Poisson bracket (43) is that the coordinate x and its velocity
_x are conjugated if k ≠ 0. In the Ostrogradski construction
of the Hamiltonian formalism, the coordinate always
Poisson commute to the velocity. This observation means
the Hamiltonian formulation with k ≠ 0 cannot be derived
by the Legendre transformation of a higher derivative
Lagrangian with a single dynamical variable x.
Let us now focus on the Hamiltonian formulation for the

higher derivative equation with an interaction (22). Even
though the interaction vertices are non-Lagrangian, the
equivalent lower formulation admits the action principle
(16). So, one can proceed from the action (16). Introduce
the canonical momenta,

px ¼ mð_yþ αω−2 _x3 þ βx2 _xÞ; py ¼ mð_xþ k_yÞ: ð44Þ

From these equations the velocity _y can be expressed in
terms of px, py and _x, while _x is determined as a solution of
algebraic equation,

_y ¼ 1

m
px − αω−2 _x3 − βx2 _x;

kα_x3 þ ðkβx2 − 1Þ_xþ 1

m
ðpy − kpxÞ ¼ 0: ð45Þ

This equation has a third order if α ≠ 0; otherwise it is
linear. The cubic equation can be solved with respect to _x
by several methods, for example, the Cardano formula.
Choosing the appropriate branch of the solution of Eq. (45),
and computing the Hamiltonian, one can construct the
Hamiltonian formulation for the interacting model (23). It
should be outlined that for stable interactions the relative
signs of the cubic and linear in _x terms can be opposite. In
this case, none of the branches of the solutions of the cubic
equation are globally defined. This obstruction prevents the
construction of globally defined Hamiltonian formalism in
the theory (23). The number of solution branches in
changed on the singular surface (30). If α ¼ 0, the velocity
is explicitly expressed from the Eq. (45). The expression for
the Hamiltonian is given below,

H ¼ βx2

2m

�
py − kpx

βkx2 − 1

�
2

þ 1

2m

ðkpx þ ðβkx2 − 2ÞpyÞðβx2py − pxÞ
ðβkx2 − 1Þ2

þmω2

�
xy −

k − 1

2
y2 þ 1

4
γx4

�
: ð46Þ

The Hamiltonian is singular at the surface (30). So, the
Hamiltonian dynamics is not smooth in the vicinity of the
singular surface even in the case α ¼ 0.
Let us consider the Hamiltonian description of the

dynamics of small fluctuations in the vicinity of the stable
equilibrium position. The decomposition of the Lagrangian
(16), (22) in the vicinity of stationary solution (25) reads

S½uðtÞ; vðtÞ� ¼
Z

Ldt;

L ¼ m

�
ω2

4γðk − 1Þ2 þ
β

2γðk − 1Þ _u
2 þ _u_vþ 1

2k
_v2

− ω2

�
3

2ðk − 1Þ u
2 þ uvþ 1

2
ðk − 1Þv2

�
þ…

�
: ð47Þ

The dynamical variables are fluctuations in the vicinity of
nonzero equilibrium position (25),

u ¼ x ∓ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðk − 1Þp ; v ¼ y� 1

ðk − 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðk − 1Þp :

ð48Þ

The dots denote the cubic and higher terms in u, v. The
generalized momenta pu, pv are defined as follows:

pu ¼ m
�

β

γðk − 1Þ _uþ _v
�
; pv ¼ mð _uþ k _vÞ: ð49Þ

The generalized momenta _u; _v are expressed as follows:
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_u ¼ 1

m
γðk − 1Þðpv − kpuÞ

γðk − 1Þ − βk
;

_v ¼ 1

m
γðk − 1Þpu − βpv

γðk − 1Þ − βk
: ð50Þ

The Hamiltonian of the model reads

H ¼ −
mω2

4γðk − 1Þ2

þ 1

m
γðk − 1Þ

γðk − 1Þ − βk

�
1

2
kp2

u − pupv þ
1

2

β

γðk − 1Þp
2
v

�

þmω2

�
3

2ðk − 1Þ u
2 þ uvþ 1

2
ðk − 1Þv2

�
: ð51Þ

The Hamiltonian is bounded from below if the conditions
(29) are met. This means that the theory of small fluctua-
tions is stable at the classical and quantum level.
The canonical coordinates v, pu, pv are expressed in

terms the derivatives of the fluctuation u and its derivatives
up to the third order,

v ¼ 1

ω2

�
1 −

βk
γðk − 1Þ

�
ü −

2kþ 1

k − 1
u;

pu ¼
1

ω2

�
1 −

βk
γðk − 1Þ

�⃛
uþ

�
β

γðk − 1Þ −
2kþ 1

k − 1

�
_u;

pv ¼
k
ω2

�
1 −

βk
γðk − 1Þ

�⃛
u −

2k2 þ 1

k − 1
_u: ð52Þ

The inverse transformation reads [expression for _u see
in (50)]

ü ¼ ω2
γðk − 1Þvþ γð2kþ 1Þu

γðk − 1Þ − βk
;

⃛u ¼
�

γðk − 1Þ
γðk − 1Þ − βk

�
2

×
��

2kþ 1

k − 1
−

β

γðk − 1Þ
�
pv −

2k2 þ 1

k − 1
pu

�
: ð53Þ

In terms of derivatives of u, the Hamiltonian (51) takes the
form of integral of motion (27). The Poisson bracket reads

fu; üg ¼ f _u; ⃛ug ¼ 0; fu; _ug ¼ −
1

m
γkðk − 1Þ

γðk − 1Þ − βk
;

fü; ⃛ug ¼ −
ω4

m

�
γðk − 1Þ

γðk − 1Þ − βk

�
3
�

β

γðk − 1Þ þ
3

k − 1

�
;

fu; ⃛ug ¼ fü; _ug ¼ ω2

m

�
γðk − 1Þ

γðk − 1Þ − βk

�
2 2k2 þ 1

k − 1
: ð54Þ

The coordinate u and velocity _u are inevitably have
nonzero Poisson bracket for stable interactions. This

automatically means that such a Hamiltonian does not
follow from the Ostrogradki procedure. This is not surpris-
ing because the Ostrogradski Hamiltonian of a nonsingular
higher derivative theory is not bounded from below, while
the function (51) is bounded.
The example of the higher derivative PU theory (23) with

the multiple frequency tells us that the stable vertices are
possible, though they are not necessarily Lagrangian. One
more conclusion is that the higher derivative equations with
non-Lagrangian interactions can admit Hamiltonian for-
mulation, though it is inequivalent to any Ostrogradski
formalism. If the quantization of the theory of fluctuations
(31) is constructed by the means Hamiltonian formulation
(49), (51), the classical stability will persist at quantum
level. Being equivalent to the system of two oscillators, this
model has the usual equidistant spectrum of energy, and it
admits the well-defined vacuum state. The nonharmonic
terms can be accounted for by perturbation theory. As the
wave functions of stationary states of harmonic oscillator
exponentially decreasing at infinity, the perturbation theory
is well defined in each order. In principle, this is sufficient
for perturbative construction of the stable quantum theory
of the nonlinear model (23).

V. A HIGHER DERIVATIVE FIELD-THEORY
WITH THE RESONANCE

The Podolsky electrodynamics without a Maxwell term
provides the simplest example of gauge field theory with
resonance. The action reads4

S½AðxÞ� ¼ − 1

4

Z
∂νFνμ∂ρFρμddx; ð55Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength. In the
general Podolsky model, the action also includes the
Maxwell term, so one of the photons is massless, while
another one is massive. The mass spectrum of the model
(55) is degenerate: both the subrepresentations are mass-
less. To our knowledge, this theory has not been studied in
the literature yet. Maybe it does not attract the interest
because the representation with degenerate mass spectrum
is nonunitary. We view (55) as a toy model that exemplifies
the stability issue in a higher derivative field theory with the
resonance at free level, leaving aside the interpretation of
the nonunitary representation.
Similar to the PU model (6), the theory (55) admits an

equivalent formulation without higher derivatives. The
analog of the lower derivative action (1) reads

L ¼ −
1

4
kGμνGμν −

1

2
GμνFμν þ 1

2
m2BμBν; ð56Þ

4We use mostly negative convention for the Minkowski
metrics.
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whereGμν ¼ ∂μBν − ∂νBμ, andm is the constant with mass
dimension. We introduce m for reasons of convenience.
The dynamical variables are the vector fields AμðxÞ, BμðxÞ.
The Lagrange equations read

∂μðFμν þ kGμνÞ þm2Bμ ¼ 0; ∂νGμν ¼ 0: ð57Þ

The first equations defines the vector field Bμ in terms of
derivatives of A, Bμ ≈ −m−2∂νFμν. Then, the second
equation means that A should obey the “double massless”
Podolsky equation □∂νFνμ ¼ 0. Obviously, the mass m is
an accessory parameter that does not contribute to the
equations, much like the parameter k in the first order
equivalent (1) of the PU action (6).
Much like the mechanical analogue (8) of the previous

section, the first-order theory (56) admits a two-parameter
series of conserved tensors. So, the higher derivative
equivalent (55) should also admit the series of conserved
quantities,

Θμν ¼ −Gμ
ρFνρ −Gν

ρFμρ þ 1

2
ημνGρσFρσ

− k

�
Gμ

ρGνρ −
1

4
ημνGρσGρσ

�

þm2

�
BμBν −

1

2
ημνBρBρ

�
: ð58Þ

The parameter of the series is the real number k. The
canonical energy-momentum tensor of the higher derivative
theory (55) is included in the series (58) for k ¼ 0. The
general representative of the series (58) is associated with
canonical energy-momentum tensor of the theory (56). The
energy density is given by the 00-component of the
conserved tensor. The energy density is unbounded because
the field AμðxÞ is involved into (58) in a linear way. Because
of this observation, the theory (56) is unstable at the free
level. To stabilize the dynamics at the interacting level, the
terms with quadratic dependence on the vector field AμðxÞ
are needed. To make it in an explicitly covariant way we
include the complex scalar field. From this perspective, we
slightly deviate from the pattern of the mechanical model
considered in the previous section, where no extra degree of
freedom is needed for the stabilization at the interact-
ing level.
The theory (56) of the vector fields AμðxÞ and BμðxÞ

admits the following interactions with the complex scalar
field φðxÞ:

L¼ 1

2

�
−GμνFμν þm2BμBν − 1

2
kGμνGμν

�

þDμφ
�Dμφþm2ðαjφj2 − 1

2
βjφj4Þ− 1

4
γjφj2FμνFμν;

Dμφ¼ ð∂μ − ieAμÞφ; Dμφ
� ¼ ð∂μ þ ieAμÞφ�; ð59Þ

where α, β, γ are coupling constants, and e is electric
change. The interaction is consistent5 because the
Lagrangian is invariant with respect to the usual Uð1Þ
gauge transformations. The interacting theory (59) corre-
sponds to the pattern of interaction for the mechanical
model (16) with a nonzero function U, which depends on
the original vector field and the complex scalar φðxÞ. The
inclusion of the scalar field is essential. The Born-Infield-
type interactions, which are expressed in terms of the
higher degrees of strength tensor Fμν, are irrelevant to
stability because the energy of the model is unbounded in
the linear approximation. The model (59) describes the
nonminimal couplings of the vector field and complex
scalar field, being tachyon at free level. The jφj4 stabilizes
the dynamics of scalar field, while the term jφj2FμνFμν

dynamically generates the mass of the vector field.
The theory (59) corresponds to the model of the single

higher derivative vector field AμðxÞ and scalar field φðxÞ.
The field equations read

δS
δφ� ¼

�
DμDμ − αþ βjφj2 þ 1

4
γFρσFρσ

�
φ ¼ 0;

δS
δφ

¼
�
DμDμ − αþ βjφj2 þ 1

4
γFρσFρσ

�
φ� ¼ 0;

δS
δAμ ¼ ∂μðGμν þ γjφj2FμνÞ − jνðφ; AÞ ¼ 0;

δS
δBμ ¼ ∂μðFμν þ kGμνÞ þm2Bν ¼ 0; ð60Þ

where jμðφ; AÞ denotes the scalar field charge,

jμðφ; AÞ ¼ −ieðφ�Dμφ − φDμφ
�Þ: ð61Þ

From these equations, the vector BμðxÞ can be expressed
on shell, Bμ ≈m−2½−∂νðFνμ þ kγjφj2FμνÞ − kjμðφ; AÞ�.
Substituting the result into the remaining equations and
accounting for ∂μjμ ≈ 0, we obtain

−□∂μFμν þ ðk□þm2Þð∂μðγjφj2FμνÞ − jνðφ; AÞÞ ¼ 0;�
DμDμ − αþ βjφj2 þ 1

4
γFρσFρσ

�
φ ¼ 0;�

DμDμ − αþ βjφj2 þ 1

4
γFρσFρσ

�
φ� ¼ 0:

ð62Þ

These equations are non-Lagrangian if k ≠ 0. The con-
served tensor of the model (59) is the canonical energy-
momentum tensor, i.e.,

5The concept of consistency of interaction in the variational
formalism is reviewed in [31]. For consistency of interactions for
not necessarily Lagrangian equations, see [32].
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Θμν ¼ −Gμ
ρFνρ −Gν

ρFμρ þ 1

2
ημνGρσFρσ − k

�
Gμ

ρGνρ

−
1

4
ημνGρσGρσ

�
þm2

�
BμBν −

1

2
ημνBρBρ

�

− γjφj2
�
Fμ

ρFνρ −
1

4
ημνFρσFρσ

�
þDμφ�DνφþDνφ�Dμφ

− ημνDρφ�Dρφ − αm2jφj2 þ 1

2
βm2jφj4: ð63Þ

The conserved tensor of the model (62) is deduced from the
expression above by expressing the auxiliary field BμðxÞ in
terms of the derivatives of AμðxÞ on shell.
Consider the issue of stability of the theory (62). The

model has a nonzero stationary solution,

AμðxÞ ¼ 0; φðxÞ ¼ eiθ
ffiffiffi
α

β

r
; ð64Þ

where θ is the angle of the vacuum, and α, β are interaction
parameters. In the vicinity of this solution, the conserved
tensor (63) reads

Θμν ¼ −Gμ
ρFνρ −Gν

ρFμρ þ 1

2
ημνGρσFρσ − k

�
Gμ

ρGνρ

−
1

4
ημνGρσGρσ

�
þm2

�
BμBν −

1

2
ημνBρBρ

�
− γα

β

×

�
Fμ

ρFνρ −
1

4
ημνFρσFρσ

�
þ ∂μϕ�∂νϕþ ∂νϕ�∂μϕ

− ημν∂ϕϕ�∂ρϕþ αm2ðeiθϕþ e−iθϕ�Þ2; ð65Þ

where ϕðxÞ ¼ φðxÞ − eiθ
ffiffiffiffiffiffiffiffi
α=β

p
is the scalar field fluc-

tuation, and Bμ ¼ ∂νFμν. The 00-component of the con-
served tensor (65) reads

Θ00 ¼ GiFi þ GijFij þ γα

2β
ðFiFi þ FijFijÞ þ k

2
ðGiGi

þ GijGijÞ þ 1

2
m2ðB0B0 þ BiBiÞ þ ∂0ϕ�∂0ϕ

þ ∂iϕ�∂iϕþ αm2ðeiθϕþ e−iθϕ�Þ2; ð66Þ

where Fi ¼ F0i, Gi ¼ G0i. The summation over the
repeated index i, j ¼ 1;…; d − 1 is implied. The quadratic
form Θ00 is positive definite if

kγα
β

− 1 > 0: ð67Þ

In this range of the coupling parameters α, β, γ, the
interacting theory of small fluctuations in the vicinity of
stationary solution (64) is stable. We note that for the stable

interactions the parameter k should be strictly positive, so
the higher derivative theory (62) is inevitably non-
Lagrangian at interacting level.
Let us discuss the dynamics of the stable theory (62),

(67). The linearization of equations of motion (62) in the
vicinity of stationary solution (64) takes the following
form:

��
kγα
β

− 1

�
□þm2

α

β

�
∂νFνμ ¼ 0;

□ϕþ αm2ðϕþ e2iθϕ�Þ ¼ 0: ð68Þ

In the sector of vector fields, we have the usual Podolsky
theory without a resonance. The spectrum of the mass
of the vector field theory includes the massless state,
and the massive state with the mass m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α=ðkαγ − βÞp

.
This theory is stable and unitary at free level; see
in [22]. The complex scalar field is decomposed into
two real components ϕþ ¼ e−iθϕþ eiθϕ� and ϕ− ¼
iðe−iθϕ − eiθϕ�Þ. The scalars enjoy the Klein-Gordon
and d’Alembert equations, respectively,

ð□þ 2αm2Þϕþ ¼ 0;

□ϕ− ¼ 0: ð69Þ

The mass of the first field is
ffiffiffiffiffiffi
2α

p
m, while the second one is

massless. Summarizing all the above, we conclude that the
solutions of the Eq. (68) transform under the unitary
representation of the Poincaré group. The set of subrepre-
sentations includes the massive vector and scalar, and
massless vector and scalar. The role of the scalar field is
seen from comparison of Eqs. (62) and (68). The nonzero
value of the scalar field φ generates the mass term for the
vector field. The similar mechanism is served by the Higgs
field in the standard model. With this regard, the above
method of construction of stable interactions in the higher
derivative field theories with resonance can be viewed as
the Higgs-like mechanism.
Let us comment on the “Higgs mechanism” of stabiliz-

ing the higher derivative dynamics from slightly different
point of view, being unrelated to the existence of the
resonant solutions. It is a common wisdom that the PU
oscillator with nondegenerate frequency spectrum is equiv-
alent to the system of free harmonic oscillators. The
canonical Ostrogradski’s energy of the PU action includes
the energies of these oscillators with the opposite signs.
This corresponds to the canonical energy of the first order
action, being a combination of harmonic oscillators with
the alternating signs. A corresponding Lagrangian admits
the interaction vertices such that the corresponding energy
has a local minimum, so the dynamics is stable in the
vicinity of this shifted equilibrium point. The Lagrangian
reads
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L ¼ m

�
1

2
ð_x2 − ω2

xx2Þ −
1

2
ð_y2 − ω2

yy2Þ þ
1

2
ð_z2 þ ω2

zz2Þ

−
1

4
αω2

zz4 þ
1

2
βz2ð_y2 − ω2

yy2Þ
�
; ð70Þ

where ωx, ωy, ωz are the frequencies, ωx ≠ ωy, and α,
β > 0 are the coupling constants. The variables x, y can be
thought of as the degrees of freedom of the original PU
oscillator, while z can be viewed as the “Higgs mode.”
Upon inclusion of the interaction, the equilibrium position
shifts to the point x, y ¼ 0, z ¼ ffiffiffiffiffiffiffiffi

1=α
p

. If β=α > 1, the
energy is positive in the vicinity of the equilibrium position.
This indicates the stability in the vicinity of the equilibrium.
Once the frequency spectrum is nondegenerate, the PU
equations admit globally stable interactions [22] unlike the
degenerate case, while the Higgs-like mechanism results in
the local stability in both cases.

VI. HIGHER DERIVATIVE
YANG-MILLS THEORY

In the previous section we considered a mechanism for
including the stable interaction in the Abelian higher
derivative gauge theory. The key tool for doing that is
the series of equivalent actions (56) without higher deriv-
atives involving the parameter k which does not contribute
to the equations at free level. The action (56) admits
inclusion of k-dependent stable interaction (59) such that
the auxiliary fields B can be still excluded on shell. This
leads to the field equations with stable interactions, though
the vertices are not Lagrangian in the higher derivative
picture. This mechanism admits, to some extent, a non-
Abelian extension. At the level of the first order action (59),
the non-Abelian generalization is obvious,

L ¼ 1

2

�
−Ga

μνFaμν þm2Ba
μBaμ − 1

2
kGa

μνGaμν

�

þ 1

2

�
Dμφ

aDμφa þm2

�
αφaφa −

1

2
βjφaφaj2

��

− 1

4
γφaφaFb

μνFbμν: ð71Þ

Here, all the scalars and vectors take values in Lie algebra
of a certain semisimple Lie group of dimension r,
a ¼ 1;…; r. The tensor F denotes the Yang-Mills strength
tensor of the field A. The tensors G is the field strength of
the vector field B, Gμν ¼ DμBν −DνBμ. The Yang-Mills
covariant derivative is D ¼ ∂ þ A. The Lagrangian is
invariant with respect to the Yang-Mills gauge symmetry
transformation. The vector multiplet A transforms as
connection. The vector B and scalar φ transform as tensors.
The canonical energy is bounded for the model (71) admits
a local minimum. The decomposition of Lagrangian in the
vicinity of the energy minimum has the same structure as in

the Abelian case (62). This theory has same stability
conditions (67). The only subtlety is that the auxiliary
field B cannot be explicitly expressed from the equations of
motion unlike the Abelian case. This can be done only by
perturbation theory with respect to the Yang-Mills coupling
constant. Once the auxiliary field B is expressed from the
equations of motion, the non-Lagrangian non-Abelian
higher derivative gauge theory, which is stable and unitary.

VII. CONCLUSION

In this article, we consider the issue of stability in the
class of the higher derivative theories of derived type with a
resonance. The wave operator of the theory is the square of
another lower-order operator. We see that this class of
models admits a two-parameter series of conserved quan-
tities. One of the entries of the series is the canonical
energy, and another one is a different integral of motion. All
the conserved quantities are unbounded. This structure of
conserved quantities is consistent with the instability of free
model. To stabilize the dynamics of theory at the nonlinear
level, the class of interactions is considered such that
preserves the selected conserved quantity of the free model.
The conserved quantity of the nonlinear theory is bounded
from below in the vicinity of the equilibrium due to the
interaction. Therefore, the fluctuations are stable in vicinity
of the equilibrium. The stable interactions are non-
Lagrangian in the higher derivative equations, but the dyna-
mics admit the Hamiltonian formulation. The Hamiltonian
is defined by the conserved quantity of the interacting
theory. Being bounded from below, the Hamiltonian is
not canonically equivalent to any (deformation of the)
Ostrogradski one.
The general scheme is illustrated by the PU oscillator

of fourth order with coinciding frequencies and by
Podolsky electrodynamics with zero mass. Both models
are unstable at the free level, but they can be stabilized by
an appropriate interaction. Explicit examples are provided
of the stable interactions. The Hamiltonian form of
dynamics and size of the stability island are found in
the case of the PU oscillator model. The Hamiltonian and
Poisson bracket are explicitly derived for the model with
interaction, and the Hamiltonian is locally bounded. The
PU oscillator dynamics with stabile interactions are also
described in the original set of variables. In the Podolsky
theory, the Higgs field, being the charged scalar, is
introduced to explicitly preserve gauge invariance. The
interacting model is a theory of higher derivative vector
field nonminimally coupled to the charged scalar. The
Higgs field has nonzero value at the minimum of energy.
The theory of small fluctuations in the vicinity of the
energy minimum has a nondegenerate spectrum of mass.
The model with nondegenerate mass spectrum is shown to
be stable and unitary.
The proposed procedure of inclusion of stable inter-

actions seems admitting further applications. It is consistent
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with the non-Abelian gauge symmetry, and it can be used
in the theories of PU type without resonance. Among the
possible applications, we can mention various higher
derivative models of interest, including gravity. The
common feature is that these theories are unstable at free
and interacting level (except the class of fðRÞ-gravity
models). The introduction of appropriate set of Higgs-type
fields, can, in principle, stabilize the dynamics of the theory
as we have seen in this article.
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