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Continuing our inquiry into the conditions when fluctuation-dissipation relations (FDR) may appear in
the context of nonequilibrium dynamics of open quantum systems (over and beyond the conventional FDR
from linear response theory) we turn to non-Gaussian systems and consider this issue for an anharmonic
quantum oscillator interacting with a scalar quantum field bath. We present the general nonperturbative
expressions for the rate of energy (power) exchange between the anharmonic oscillator and its thermal bath.
For the cases that a stable final equilibrium state exists, and the nonstationary components of the two-point
functions of the anharmonic oscillator have negligible contributions to the power balance, we can show
nonperturbatively that equilibration implies an FDR for the anharmonic oscillator. We then use a weakly
anharmonic oscillator as an example to illustrate the validity of those two assumptions and show that in the
weak anhamonicity limit, they are satisfied according to our first-order perturbative results..
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I. INTRODUCTION

Theopen systemparadigmcaptures physical reality better
than the idealization of a system in total isolation because the
environment it interacts often plays a role. The interlocking
relation between the open system and its environment is
registered in the fluctuation-dissipation relations (FDRs).
While they are rooted in statistical mechanics [1–5] the
implications of FDRs are wide ranging, from condensed
matter [6,7], nuclear/particle (e.g., [6,8]) to black hole
physics (e.g., [9,10]) and cosmology (e.g., [11]). Further
description of its scope can be found in [1,12,13].
In this paper we investigate the FDR for a nonlinear

quantum system interacting linearly with a thermal bath:
the system of interest is a quantum anharmonic oscillator
and the bath is made up of a thermal scalar quantum field.
Two primary aspects in statistical mechanics are involved
here for both classical and quantum systems: A. FDR in the

context of 1) response theory versus 2) nonequilibrium
dynamics, B. FDR for 1) linear vs 2) nonlinear systems.
The case of FDR in linear response theory (LRT)—linear
systems treated in response theory (A1þ B1) is well
known from standard textbooks and discussed most
widely. For nonlinear systems treated by response theory
(A1þ B2) both in the near-equilibrium and nonequilibrium
contexts, there is also a long history of significant theo-
retical development by authors like Kadanoff and Baym
[6], Eremov [14], Golden et al. [15], Zwangzig [16],
Langreth [17], Zhou et al. [18], Bochkov and Kuzovlev
[19] and Stratonovich [20]. In recent work, Wang
and Heniz [21] derive a nonlinear generalization of the
fluctuation-dissipation theorem (for the n-point Green’s
functions and the amputated one-particle irreducible vertex
functions) at finite temperature. (See also Carrington et al.
[22].) The methods used in the work of Miyazaki and
Reichman [23], Maciejko et al. [24], and Motz et al. [25]
are also of interest, so is the more recent out-of-time-order
fluctuation-dissipation relation of Ueda’s group [26].
Before we mention some more recent developments, for

clarification purpose, it is perhaps useful to highlight the
differences (feature A above) in the formulation of FDR
between the nonequilibrium dynamics (NEq) approach
which we follow in our work and the conventional linear
(LRT) or nonlinear response theory.
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A. FDR in LRT vs NEq

The main differences in the setup, the conditions and
the features have been described in Sec. 3 of [27]. We
summarize them as follows:

(i) Setup: FDR under LRT operates under the following
assumptions: the system of interest (i) has been
prepared in a thermal state in thermal equilibrium
with the bath, and then (ii) is taken away by a weak
external disturbance and the corresponding re-
sponses is recorded. By comparison, in the non-
equilibrium (NEq) formalism, the system can start in
any state, which may be very different from the
thermal state at the bath temperature or the equilib-
rium state the system finally settles in. Once the
initial state of the system and the properties of
the bath are given, their interaction determines the
evolution history described by the reduced dynamics
of the system. If the dynamics of the system comes
to equilibration, then an FDR will be determined for
that equilibrium state.

(ii) Conditions: In LRT the equilibrium state of the
system which is assumed to hold for all times. The
FDR in LRT is formulated with respect to this
equilibrium state in terms of perturbation theory—
weak coupling with the bath and small perturbation
from the equilibrium state. In nonlinear response,
nonlinear perturbance is considered, but response
functions are well defined and calculated assuming
that the perturbance does not exceed a certain limit.
In NEq context, the system and its environment can
be strongly coupled while dynamically evolving, but
the existence of an equilibrium state is not a priori
known. One needs to first examine if the system will
relax to an equilibrium state before one attempts to
verify that an FDR exists. Thus FDR in NEq context
is an emergent phenomenon depending on many
factors which enter into determining the dynamics of
the open system.

(iii) Features: In the NEq dynamics approach the equi-
librium state which an open system evolves to in
general is not a Gibbs (thermal) state. The temper-
ature is ill-defined in a dynamical setting only if/
until the system reaches equilibrium, whence it can
be identified from the reduced density matrix or the
physical observables of the equilibrated system.
Even so it is at best an “effective” temperature
because it depends on the details of the system and
the bath parameters. The exceptional situation is
when the coupling strength between the system and
the bath is vanishingly small, which is a preamble of
LRT. Thus in the context of NEq formulation, the
temperature appearing in the proportionality con-
stant of the FDR is in fact the initial temperature of
the bath, not the temperature of the system in the
final equilibrium state, in contrast to LRT.

In essence, the FDR in LRT plays a spectator role,
connecting the response of the system to an external
disturbance. In comparison, in the NEq formulation,
FDR has a dynamical significance since it ensures the
balance of the energy flow between the reduced system and
the environment [27], which in turn signifies dynamical
relaxation of the system into equilibrium.

B. This work: FDR from the nonequilibrium
dynamics of non-Gaussian quantum systems

In our recent work we have explored the nonequilibrium
dynamics and the FDR in two settings: A) A system of
interacting quantum harmonic oscillators sharing a
common thermal bath of quantum scalar field and their
FDR at late times [4,13], B) a chain of harmonic oscillators
with terminals connected to two baths of different temper-
atures in a nonequilibrium steady state [5]. In both cases the
system-bath setup being Gaussian enables us to produce
exact formal solutions for the dynamics. In the preceding
paper [28], we take a baby step toward non-Gaussian
systems,1 in treating nonlinear quantum systems with the
help of perturbative methods. In this work, we consider the
existence of an FDR for an anharmonic quantum oscillator
interacting with a scalar quantum field bath. We use the
functional method originated in [30] and developed for this
problem in [28] to obtain general, nonperturbative expres-
sions for the rate of energy (power) exchange between the
anharmonic oscillator and the thermal bath. Under the
assumptions that a stable unique final equilibrium state
exists, and the nonstationary components of the two-point
functions of the anharmonic oscillator have negligible
contributions to the evaluation of the power balance, we
can demonstrate nonperturbatively that equilibration
implies an FDR for the anharmonic oscillator. This result
establishes a possible connection between equilibration and
the FDR in a more general setting. It also shows that the
nontrivial n-point functions, with n > 2, of this non-
Gaussian system do not play any explicit role in the
derivation of the FDR.
We then use a weakly anharmonic oscillator as an

example to illustrate that these two assumptions indeed
are satisfied according to our first-order perturbative results
in the configuration we chose: that the net energy exchange
vanishes after relaxation in the open system dynamics, and
an equilibrium state exists at late times. We point out
several implications of the perturbative results and call
attention to the roles the environment plays in the dynamics
of the nonlinear system.
This paper is organized as follows. In Sec II, we briefly

summarize the essence of the functional method adopted
here for the problem of a quantum anharmonic oscillator

1Non-Gaussian systems are wide-ranged and their behavior
can be very different, e.g., mixing and ergodicity can be violated
and there is no guarantee of an FDR [29].
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coupled to a thermal field, and highlight the results [28]
regarding the late-time behaviors of the Green’s functions,
in particular, the retarded Green’s function and the
Hadamard function, of the oscillator to the first order in
the anharmonic potential of the form λ

4!
χ4 with λ > 0. In

Sec. III, we formally derive a nonperturbative expression
for the net energy exchange between the anharmonic
oscillator and the bath field, and argue that based on the
prerequisite assumptions, the balance of this energy flow
can imply a nonperturbative FDR for the anharmonic
oscillator after its dynamics is relaxed to the final equilib-
rium state. Finally, in Sec. IV, we apply the functional
perturbative approach to a weakly anharmonic oscillator
and show that to first order in the anharmonicity, the
assumptions adopted in Sec. III hold naturally, and discuss
the pivotal roles the environment plays in the dynamics of
the anharmonic oscillator.

II. NONEQUILIBRIUM EVOLUTION
OF A DRIVEN ANHARMONIC OSCILLATOR

IN A THERMAL BATH

A. In-in generating functional [31]

We consider an anharmonic oscillator driven by an
external current j. It has massm and bare natural frequency
ω0 > 0, and is coupled with arbitrary strength e to a bath of
massless quantum scalar field ϕðxÞ, initially (at t ¼ 0)
prepared in a thermal state. The corresponding action is
given by

SV ½χ;ϕ�¼
Z

t

0

ds

�
m
2
½ _χ2ðsÞ−ω2

0 χ
2ðsÞ�−V½χðsÞ�þjðsÞχðsÞ

�

þ
Z

t

0

d4x eχðsÞδ3ðx−zðsÞÞϕðxÞ

þ
Z

t

0

d4x
1

2
½∂μϕðxÞ�½∂μϕðxÞ�

�
: ð2:1Þ

The anharmonic potentialV will be chosen to be amonomial
in the displacement χ of the oscillator, although the func-
tional formalism we adopt here is not restricted to this
condition. The self-coupling constant λ associated with the
potentialwill be assumed to be sufficientlyweak ifwe treat it
as a perturbation. The parameter z denotes the location of the
oscillator. Thus Eq. (2.1) describes the case of an anhar-
monic oscillator in the dipole approximation, or equiva-
lently, an Unruh-DeWitt detector, whose internal degree of
freedoms are now modeled by an anharmonic oscillator.
In [28], we have shown that given the initial state of the

oscillator at t ¼ 0, the reduced density matrix ρðVÞχ of the
anharmonic oscillator at a later time t is given by

ρðVÞχ ðqb;rb; tÞ ¼ exp

�
−i

Z
t

0

ds

�
V

�
δ

iδjþ

�
−V

�
−

δ

iδj−

���

×ρχðqb;rb; tÞ
���
jq¼0¼jr

; ð2:2Þ

where ρχðqb; rb; tÞ is the reduced density matrix element of
the free oscillator driven by the source j�, and

q ¼ χþ þ χ−
2

;
δ

δjþ
¼ þ δ

δjq
þ 1

2

δ

δjr
; ð2:3Þ

r ¼ χþ − χ−;
δ

δj−
¼ −

δ

δjq
þ 1

2

δ

δjr
: ð2:4Þ

Thus the expectation value of an operatorO consisting only
of the anharmonic oscillator variables is given by

hOðtÞi ¼ 1

ZV
TrfOρðVÞχ ðtÞg

¼ 1

ZV
exp

�
−i

Z
t

0

ds

�
V

�
δ

iδjþ

�
− V

�
−

δ

iδj−

���

× hÔið0ÞZ
���
jq¼0¼jr

; ð2:5Þ

with Z ¼ TrfρχðtÞg, ZV ¼ TrfρðVÞχ ðtÞg being the “in-in”
generating functional of the free oscillator and the anhar-
monic oscillator respectively at the final time t to ensure
proper normalization. The superscript 0 on an expectation
value hÔið0Þ refers to the results without the anharmonic
potential.
The generating functional Z has been shown [28] to take

on the form,

Z½jq;jr�¼ exp

�
−
1

2

Z
t

0

ds
Z

t

0

ds0jqðsÞGðχÞ
H;0ðs;s0Þjqðs0Þ

þ i
Z

t

0

ds
Z

s

0

ds0jqðsÞGðχÞ
R;0ðs−s0Þjrðs0Þ

�
; ð2:6Þ

for any Gaussian initial state, where GðχÞ
H;0ðs; s0Þ and

GðχÞ
R;0ðs − s0Þ are respectively the noise kernel and the

dissipation kernel of the linear oscillator coupled with
the bath field initially at temperature β−1. In the language of
perturbative treatments, the linear or harmonic case is at the
“zeroth-order” of anharmonicity. The full generating func-
tional ZV in the presence of a nonlinear potential V can be
expanded with respect to the small self-coupling in the
nonlinear potential into the form,

ZV ¼ exp

�
−i

Z
t

0

ds

�
V

�
δ

iδjþ

�
− V

�
−

δ

iδj−

���
Z

¼ Z þ Z1 þ � � � ; ð2:7Þ

where Z1 is the leading order correction of Z due to the
nonlinear potential V, assuming the nonlinearity is rela-
tively weak. It has been shown [28] that in the limit j → 0,
there is no first-order correction of ZV due to the nonlinear
potential.

FLUCTUATION-DISSIPATION RELATION FROM THE … PHYS. REV. D 101, 125003 (2020)

125003-3



Equation (2.5) already supplies us the information about
the nonequilibrium evolution of the anharmonic oscillator
when it is coupled to a thermal bath. For the purpose of this
paper the dynamics of the real-time two-point functions of
the anharmonic oscillator is of special interest.

B. Real-time two-point functions

We now give a brief derivation via the functional method
of the first-order correction to the two-point functions of the
anharmonic oscillator. Further details can be found in [28].
For a quartic anharmonic potential,

VðχÞ ¼ λ

4!
χ4; with λ > 0; ð2:8Þ

the first-order correction of the generating functional is
given by

Z1½j� ¼ −iλ
Z

t

0

ds

�
1

2!
JqðsÞGðχÞ

H;0ðs; sÞΞðsÞZ

þ 1

3!
JqðsÞΞ3ðsÞZ þ 1

4!
J3

qðsÞΞðsÞZ
�
; ð2:9Þ

after carrying out the functional derivatives according to
(2.7) and (2.8), where Jq and Ξ are given by

JqðsÞ¼
Z

t

0

ds0GðχÞ
R;0ðs0−sÞjqðs0Þ;

Ξ½j;τÞ¼ i
Z

t

0

ds0GðχÞ
H;0ðτ;s0Þjqðs0Þþ

Z
t

0

ds0GðχÞ
R;0ðτ−s0Þjrðs0Þ:

The real-time Green’s functions of the anharmonic oscil-
lator can be constructed from the path-ordered two-point
functions,

hPχðτÞχðτ0Þi ¼

8>>><
>>>:

hT χðτÞχðτ0Þi; τ ∈ Cþ & τ0 ∈ Cþ;

hχðτ0ÞχðτÞi; τ ∈ Cþ & τ0 ∈ C−;

hχðτÞχðτ0Þi; τ ∈ C− & τ0 ∈ Cþ;

hT �χðτÞχðτ0Þi; τ ∈ C− & τ0 ∈ C−;

ð2:10Þ

where Cþ=− represents the forward/backward time branch
and T , T � denote time-ordering and anti-time-ordering.
Thus, the Feynman propagator of the anharmonic oscillator
can be evaluated as the second derivatives of the generating
functional with respect to jþ at two different times, that is,
with 0 < τ; τ0 < t. Its first-order correction is then

hT χðτÞχðτ0Þið1Þ ¼ −
1

Z½j; tÞ
δ2Z1½j; tÞ

δjþðτÞδjþðτ0Þ
����
j¼0
q¼0

; ð2:11Þ

which, with the help of (2.9), becomes

hT χðτÞχðτ0Þið1Þ

¼ λ

Z
t

0

ds

�
−
1

2
GðχÞ

R;0ðτ − sÞGðχÞ
H;0ðs; sÞGðχÞ

H;0ðs; τ0Þ

−
1

2
GðχÞ

R;0ðτ0 − sÞGðχÞ
H;0ðs; sÞGðχÞ

H;0ðs; τÞ

þ i
4
½GðχÞ

R;0ðτ − sÞGðχÞ
H;0ðs; sÞGðχÞ

R;0ðs − τ0Þ

þ GðχÞ
R;0ðτ0 − sÞGðχÞ

H;0ðs; sÞGðχÞ
R;0ðs − τÞ�

�
: ð2:12Þ

This allows us to read off [28] the first-order corrections
of the Hadamard function and the retarded Green’s function
of the anharmonic oscillator,

GðχÞ
H;1ðτ; τ0Þ ¼ −

λ

2

Z
t

0

ds½GðχÞ
R;0ðτ − sÞGðχÞ

H;0ðs; sÞGðχÞ
H;0ðs; τ0Þ

þ GðχÞ
R;0ðτ0 − sÞGðχÞ

H;0ðs; sÞGðχÞ
H;0ðs; τÞ�; ð2:13Þ

GðχÞ
R;1ðτ; τ0Þ ¼ −

λ

2

Z
t

0

dsGðχÞ
R;0ðτ − sÞGðχÞ

H;0ðs; sÞGðχÞ
R;0ðs − τ0Þ;

ð2:14Þ

with 0<τ0≤τ<t. The Green’s functions [28] GðχÞ
R;0ðτ − τ0Þ

and GðχÞ
H;0ðτ; τ0Þ are the zeroth-order Green’s functions of

the anharmonic oscillator, that is, the Green’s functions
of the harmonic oscillator coupled to the scalar field.
Equations (2.13) and (2.14) imply that these first-order
corrections in general are not stationary.
However, it can be shown [28] that the first-order

corrections of the retarded Green’s function and the
Hadamard function of the anaharmonic oscillator will
become stationary at late times, as their zeroth-order
counterparts do. We then have

GðχÞ
H;1ðτ; τ0Þ ¼ GðχÞ

H;1ðτ − τ0Þ;
GðχÞ

R;1ðτ; τ0Þ ¼ GðχÞ
R;1ðτ − τ0Þ; ð2:15Þ

for γ−1 ≪ τ; τ0, where γ ¼ e2=8πm is the damping con-
stant. This nice property can be partly traced back to the
consequence of the interaction between the oscillator and
the quantum field. In the context of the perturbative
treatment, we observe that the zeroth-order dynamics of
the oscillator is equivalent to a damped harmonic oscillator,
driven by a stochastic force, or noise, representing the
quantum fluctuations of the field, and inherits its statistical
properties, such as spectral density, etc. This noise from the
environment imparts a stochastic component in the motion
of the oscillator which generates radiation whose back-
reaction introduces a dissipative force which dampens the
oscillator’s motion. (See, e.g., [27] for a fuller description.)
So long as the displacement of the oscillator and the noise
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force are sufficiently small, it is plausible that the anhar-
monic oscillator can still relax to a equilibrium state. If the
displacement (caused in particular by the classical driving
force) is not small enough, then the anharmonic potential
may excite the oscillator to a higher energy, counteracting
the energy loss due to dissipation. Under such circum-
stances the dynamics of the nonlinear oscillator can become
rather complicated, and the perturbation expansion to the
first order may cease to be valid.
It is interesting to note that Eq. (2.14) reveals an

interesting non-Markovian behavior. We observe that

GðχÞ
H;0ðs; sÞ is proportional to the zeroth-order displacement

uncertainty of the oscillator. Thus, (2.14) tells us that the
disturbance introduced at time τ0 is supposed to propagate
to the oscillator at time τ, but it receives additional
interference from the oscillator’s own motional “noise”
at time s earlier than time τ. This behavior certainly
depends on the evolutionary history of the oscillator. If
this structure persists in higher-order corrections, then the
process becomes highly non-Markovian because there will
be numerous intermediate history-dependent interferences
between any two events. Therefore, whether the higher-
order anharmonic corrections of the retarded Green’s
function can reach stationarity is a much more complex
story to tell.
The stationary property of the late-time dynamics of the

anharmonic oscillator implies that a fluctuation-dissipation
relation exists at the first-order correction of the anhar-
monic oscillator’s Green’s functions,

G̃ðχÞ
H;1ðκÞ ¼ coth

βκ

2
ImG̃ðχÞ

R;1ðκÞ; ð2:16Þ

at late time, in additional to the zeroth-order (linear or
harmonic oscillator) counterparts,

G̃ðχÞ
H;0ðκÞ ¼ coth

βκ

2
ImG̃ðχÞ

R;0ðκÞ: ð2:17Þ

There is also a corresponding relation for the free scalar
field at the initial time,

G̃ðϕÞ
H;βðκÞ ¼ coth

βκ

2
ImG̃ðϕÞ

R;0ðκÞ: ð2:18Þ

It is interesting to note [27] that they all have the same
proportionality factor coth βκ

2
, which depends on the initial

temperature of the scalar field, not the “temperature” of
the oscillator. This seems to be a generic feature of the
nonequilibrium dynamical descriptions of quantum open
systems. The oscillator can inherit this temperature only if
the coupling between the oscillator and the bath field is
vanishingly weak. Otherwise, the effective temperature of
the oscillator will depend [4,32] on the configuration.
Equations (2.16) and (2.17) seem to light up the hope that
we may still obtain a similar form for the higher-order

corrections of the Green’s function of the anharmonic
oscillator, as long as the perturbative expansion remains
valid for all times. We will show in the next section that
under certain assumptions, we can indeed give a non-
perturbative derivation of the FDR at late times for an
anharmonic oscillator coupled to a quantum field bath.
Moreover, we can provide a derivation of (2.16) from a
more physically transparent perspective.
In fact, the derivation of (2.16) has implied two impor-

tant conditions: 1) The zeroth-order dynamics has a
equilibrium state at late times. This state is approached
at exponential time and behaves like an attractor, indepen-
dent of the initial conditions of the oscillator. 2) The
nonstationary components of the two-point functions of a
weakly nonlinear oscillator vanish exponentially fast at late
times. This condition is related to the first condition
regarding the exponential relaxation of the dynamics.
We will see that these two conditions are essential to
providing the nonperturbative arguments for the anhar-
monic oscillator in next section.

III. ENERGYFLOWBETWEENANANHARMONIC
OSCILLATOR AND ITS QUANTUM FIELD
BATH—NONPERTURBATIVE ARGUMENTS

From the simultaneous set of Heisenberg equations
under consideration,

̈χ̂ðtÞ þ ω2
0χ̂ðtÞ þ λV 0½χ̂ðtÞ� ¼ e

m
ϕ̂ðz; tÞ; ð3:1Þ

ð∂2
t − ∇2

xÞϕ̂ðx; tÞ ¼ eχ̂ðtÞδð3Þðx − zÞ; ð3:2Þ

we have the solution of (3.2) given by

ϕ̂ðx; tÞ¼ ϕ̂hðx; tÞþe
Z

d4x0GðϕÞ
R;0ðx; t;x0;sÞχ̂ðsÞδð3Þðx0−zÞ:

ð3:3Þ

Substituting (3.3) into (3.1) gives the reduced Heisenberg
equation for the nonlinear oscillator,

̈χ̂ðtÞ þ ω2
0χ̂ðtÞ þ λV 0½χ̂ðtÞ� − e2

m

Z
t

0

dsGðϕÞ
R;0ðz; t; z; sÞχ̂ðsÞ

¼ e
m
ϕ̂hðz; tÞ: ð3:4Þ

Here we have placed the self-coupling strength λ outside
the nonlinear potential V. As we have argued before, the
nonlinear potential Vðχ̂Þ must possess certain nice features
to possibly ensure a stable and unique final state of the
oscillator. The term eϕ̂hðx; tÞ on the right-hand side of (3.4)
represents the noise force from the field bath. The second
term on the other hand accounts for the backaction from the
radiation of the scalar field ϕ emitted from the nonlinear
oscillator. These two terms, originating from the interaction
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between the oscillator and the field, will serve as the
conduit for the energy exchange between them [13,27,28].
Let Pξ be the power or energy flow delivered by the

noise force,

PξðτÞ ¼
e
2
hfϕ̂hðz; τÞ; _̂χðτÞgi; ð3:5Þ

and Pγ be the power delivered by the backaction of
radiation,

PγðτÞ¼
e2

2

Z
τ

0

dsGðϕÞ
R;0ðz; t;z;sÞhfχ̂ðsÞ; _̂χðτÞgiþ �� �

¼ e2

2

Z
t

0

dsGðϕÞ
R;0ðz; t;z;sÞ

d
dτ

GðχÞ
H ðs;τÞþ �� � ; ð3:6Þ

where � � � represents contributions associated with fre-
quency renormalization, then the sum of both powers,
the net rate of energy exchange between the anharmonic
oscillator and the bath, is given by

PξðτÞ þ PγðτÞ ¼
e
2
hfϕ̂ðz; τÞ; _̂χðτÞgi þ � � � : ð3:7Þ

We now use the functional method to show that

hfϕ̂ðz; τÞ; _̂χðτÞgi ¼ e
Z

τ

0

ds

�
d
dτ

GðχÞ
R ðτ; sÞGðϕÞ

H;βðs; τÞ

þ GðϕÞ
R;0ðτ − sÞ d

dτ
GðχÞ

H ðs; τÞ
�
; ð3:8Þ

such that

PξðτÞ ¼ e2
Z

t

0

ds
d
dτ

GðχÞ
R ðτ; sÞGðϕÞ

H;βðs; τÞ; ð3:9Þ

PγðτÞ¼
e2

2

Z
τ

0

dsGðϕÞ
R;0ðz; t;z;sÞ

d
dτ

GðχÞ
H ðs;τÞþ �� � : ð3:10Þ

This expression holds quite generally without resort to the
perturbative expansion. Here we remind that GðϕÞ denotes
the two-point function of the free field and GðχÞ the two-
point function for the full oscillator dynamics, including
backactions from the field.
We can start from (A6) with Z replaced by the generat-

ing functional ZV of the anharmonic oscillator in (2.7).
In this case it is easier to use the functional derivatives
with respect to j� rather than jq, jr. Thus we have,
for 0 < τ; τ0 < t,

hϕ̂ðz; τÞχ̂ðτ0ÞiZV ¼ e
Z

t

0

ds

�
1

2
GðϕÞ

R;0ðs − τÞ
�

δ2

i2δjþðτ0ÞδjþðsÞ
þ δ2

i2δjþðτ0Þδj−ðsÞ
�
:

þ 1

2
GðϕÞ

R;0ðτ − sÞ
�

δ2

i2δjþðτ0ÞδjþðsÞ
−

δ2

i2δjþðτ0Þδj−ðsÞ
�

þ iGðϕÞ
H;βðτ; sÞ

�
δ2

i2δjþðτ0ÞδjþðsÞ
þ δ2

i2δjþðτ0Þδj−ðsÞ
��

ZV

¼ e
Z

t

0

ds

�
−
i
2
GðϕÞ

R;0ðs − τÞ½GðχÞ
F ðτ0; sÞ −GðχÞ

< ðτ0; sÞ� − i
2
GðϕÞ

R;0ðτ − sÞ½GðχÞ
F ðτ0; sÞ þGðχÞ

< ðτ0; sÞ�

þ GðϕÞ
H;βðτ; sÞ½GðχÞ

F ðτ0; sÞ − GðχÞ
< ðτ0; sÞ�

�
ZV: ð3:11Þ

Now we will use the identities,

GFðt; t0Þ ¼
1

2
GRðt; t0Þ þ

1

2
GRðt0; tÞ þ iGHðt; t0Þ; ð3:12Þ

GFðt; t0Þ þ G<ðt; t0Þ ¼ GRðt0; tÞ þ 2iGHðt; t0Þ; ð3:13Þ
where, for the case of χ̂, we define the various two-point
functions by

GðχÞ
R ðt; t0Þ ¼ iθðt − t0Þh½ χðtÞ; χðt0Þ�i;

GðχÞ
H ðt; t0Þ ¼ 1

2
hf χðtÞ; χðt0Þgi;

GðχÞ
F ðt; t0Þ ¼ iθðt − t0Þh χðtÞχðt0Þi þ iθðt0 − tÞh χðt0ÞχðtÞi:

Equation (3.11) then becomes

hϕ̂ðz; τÞχ̂ðτ0Þi ¼ e
Z

t

0

ds
�
GðχÞ

R ðτ0; sÞGðϕÞ
H;βðs; τÞ

þ GðϕÞ
R;0ðτ − sÞGðχÞ

H ðs; τ0Þ

−
i
2
GðχÞ

R ðτ0; sÞGðϕÞ
R;0ðs − τÞ

−
i
2
GðϕÞ

R;0ðτ − sÞGðχÞ
R ðs; τ0Þ

�
; ð3:14Þ

where GðϕÞ
R;0 represents the retarded Green’s function of the

free linear scalar field, while GðχÞ
R denotes the full retarded
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Green’s function of the nonlinear oscillator, including

the influences from the field. We use GðχÞ
R;0 for the

corresponding retarded Green’s function of the linear

oscillator, or the zeroth-order contribution of the anhar-
monic oscillator.
Thus, in the coincident limit τ0 → τ, we obtain

hϕ̂ðz; τÞ _̂χðτÞi ¼ e
Z

t

0

ds

�
d
dτ

GðχÞ
R ðτ; sÞGðϕÞ

H;βðs; τÞ þ GðϕÞ
R;0ðτ − sÞ d

dτ
GðχÞ

H ðs; τÞ

−
i
2

d
dτ

GðχÞ
R ðτ; sÞGðϕÞ

R;0ðs − τÞ − i
2
GðϕÞ

R;0ðτ − sÞ d
dτ

GðχÞ
R ðs; τÞ

�

¼ e
Z

t

0

ds

�
d
dτ

GðχÞ
R ðτ; sÞGðϕÞ

H;βðs; τÞ þ GðϕÞ
R;0ðτ − sÞ d

dτ
GðχÞ

H ðs; τÞ
�
; ð3:15Þ

because in the last two terms on the right-hand side of
the first equal sign, according to the definition of the
retarded Green’s function, the variable s is both greater
and smaller than τ, implying that τ ¼ s and one of the
retarded functions must be zero because GRðτ; τÞ ¼ 0 by
definition. Therefore we have derived (3.8) and obtained a
general expression for the net rate of energy exchange
between the anharmonic oscillator and the bath field in
terms of the two-point functions of the anharmonic oscil-
lator and those of the free scalar field. It is interesting to
know that in general the anharmonic oscillator is not a
Gaussian system, so two-point functions or the second
moments alone are not sufficient to describe its full
statistics, but the higher-point functions do not manifestly
appear in the derivation. Equations (3.9) or (3.15) will be
used to find the rate of energy exchange between the
anharmonic oscillator and the field bath. We will argue that
under certain conditions, if the motion of the anharmonic
oscillator reaches equilibration, then the vanishing of the
net energy exchange will imply a fluctuation-dissipation
relation. The converse also holds.
In the special case of the nonequilibrium linear oscillator,

its retarded Green’s function is stationary, but its Hadamard
function in general is not. However, we can show that at late
times the nonstationary component of the Hadamard
function will be exponentially suppressed such that the
Hadamard function becomes stationary. This enables us to
show the existence of an FDR for the linear oscillator,
which in turn implies that (3.8) vanishes for the linear
oscillator coupled to the field bath at any oscillator-field
coupling strength. It allows for the power balance and the
existence of a stable equilibrium state. However, we can not
draw such general conclusions for the anharmonic oscil-
lator. Since in general the driven, damped anharmonic
oscillator does not necessarily have a unique stable equi-
librium state and quantum chaos can emerge, it is futile to
pursue the same line of argument valid for the linear
oscillator to seek a general proof of the power balance or
existence of the equilibrium state for the anharmonic
oscillator. We need stronger constraints on the configura-
tions of the anharmonic oscillator for a equilibrium state to

exist. Thus we will use a weaker argument for the vanishing
of (3.8).
Before we proceed, we comment on the construction of

the power operator by the canonical operator approach for
the anharmonic oscillator. For the linear oscillator we use
symmetric ordering to write down the operator for the
power then compute its expectation value. This procedure
may not work for the nonlinear oscillator. Take for example
the quartic potential for the anharmonic oscillator. The
power associated with the first two terms in (3.4), according
to the symmetric ordering, is given by

1

2
hf ̈χ̂ðtÞ þ ω2χ̂ðtÞ; _̂χðtÞgi ¼ d

dt

�
m
2
_̂χ2ðtÞ þmω2

0

2
χ̂2ðtÞ

�
;

ð3:16Þ

but for the power associated with the nonlinear restoring
force, we may naïvely conclude that

1

2
hfχ̂3ðtÞ; _̂χðtÞgi ≠ 1

4

d
dt

χ̂4ðtÞ; ð3:17Þ

because the right-hand side in fact is

1

4

d
dt

χ̂4ðtÞ ¼ 1

4
½ χ̂3ðtÞ _̂χðtÞ þ χ̂2ðtÞ _̂χðtÞχ̂ðtÞ

þ χ̂ðtÞ _̂χðtÞχ̂2ðtÞ þ _̂χðtÞχ̂3ðtÞ�
¼ ½ χ̂3ðtÞ _̂χðtÞ�W; ð3:18Þ

that is, the Weyl ordering or fully symmetrized ordering. In
general, the Weyl ordering of a product of conjugated
operators is not equivalent to the symmetric ordering;
however, there is an exception, namely, when the product
of the conjugated operators takes on the form χ̂np̂ with
n ∈ N for the conjugated pair ðχ̂; p̂Þ. Thus, in this case,
both orderings are compatible, and we can use either
ordering to construct the power operator and rewrite the
left-hand side of (3.4) as

FLUCTUATION-DISSIPATION RELATION FROM THE … PHYS. REV. D 101, 125003 (2020)

125003-7



d
dt

�
m
2
_̂χ2ðtÞ þmω2

2
χ̂2ðtÞ þ λV½χ̂ðtÞ�

�
¼ PξðτÞ þ PγðτÞ;

ð3:19Þ

where we have introduced the renormalized frequency ω.
Since it is not possible to prove the existence of a stable

equilibrium state for the general configurations of the
anharmonic oscillator, we take a step down; i.e., we consider
only those cases when the dynamics of the anharmonic
oscillator can indeed reach a stable equilibrium state at late
times. Namely, the energy exchange between the oscillator
and the field bath will come into equilibrium. That the rate of
the energy exchange will become zero at late times gives

lim
τ→∞

PξðτÞ þ PγðτÞ ¼ lim
τ→∞

e2
Z

τ

0

ds
�
d
dτ

GðχÞ
R ðτ; sÞGðϕÞ

H;βðs; τÞ

þ GðϕÞ
R;0ðτ − sÞ d

dτ
GðχÞ

H ðs; τÞ
�
þ � � �

¼ 0 ð3:20Þ
after we have subtracted the contribution corresponding to
frequency renormalization. We set forth to show that this
energy balance implies a fluctuation-dissipation relation for
the anharmonic oscillator.
We first deal with the frequency renormalization more

explicitly by introducing a new kernel function ΓðϕÞ
R;0ðtÞ for

the free field,

GðϕÞ
R;0ðz; t; z; sÞ≡ GðϕÞ

R;0ðt − sÞ ¼ d
ds

ΓðϕÞ
R;0ðt − sÞ: ð3:21Þ

After an integration by parts, we find
Z

τ

0

dsGðϕÞ
R;0ðτ − sÞ d

dτ
GðχÞ

H ðs; τÞ

¼
Z

τ

0

ds
d
ds

ΓðϕÞ
R;0ðτ − sÞ d

dτ
GðχÞ

H ðs; τÞ

¼ ΓðϕÞ
R;0ð0Þ

d
dτ

�
χ̂2ðτÞ
2

�
− ΓðϕÞ

R;0ðτÞ
d
dτ

GðχÞ
H ð0; τÞ

−
Z

τ

0

dsΓðϕÞ
R;0ðτ − sÞ d2

dsdτ
GðχÞ

H ðs; τÞ: ð3:22Þ

For a scalar field bath, the kernel ΓðϕÞ
R;0ðtÞ is proportional to

the delta function δðtÞ, so the second term on the right-hand
side vanishes. Now it is clear to see that the first term
corresponds to frequency renormalization, and it will be
fused into the bare frequency ω0. Thus, we arrive at

PξðτÞ þ PγðτÞ ¼ e2
Z

τ

0

ds

�
d
dτ

GðχÞ
R ðτ; sÞGðϕÞ

H;βðs; τÞ

− ΓðϕÞ
R;0ðτ − sÞ d2

dsdτ
GðχÞ

H ðs; τÞ
�
: ð3:23Þ

The assumed existence of the stable equilibrium state
implies that at late times the two-point functions of the
oscillator will become stationary. However, this property
still cannot allow us to write (3.23) as

PξðτÞ þ PγðτÞ ¼? e2
Z

τ

0

ds

�
d
dτ

GðχÞ
R ðτ − sÞGðϕÞ

H;βðτ − sÞ

− ΓðϕÞ
R;0ðτ − sÞ d2

dsdτ
GðχÞ

H ðτ − sÞ
�
; ð3:24Þ

for sufficiently large τ. Although the nonstationary com-
ponent of the oscillator’s two-point functions decay to zero
when both time arguments are large, its contribution to the
integral in (3.23) may remain substantial if it does not
decay fast enough. In the case of the linear oscillator, the
contribution of the nonstationary component diminishes
exponentially fast if the nonstationarity originates from the
bilinear interaction with the field bath, not from the initial
nonstationary state like a squeezed state. We can show that
the equal sign in (3.24) holds for a linear oscillator.
For the nonlinear oscillator, we need to put it as an

assumption: consider the case that the nonstationary
component of the oscillator’s two-point function does
not contribute to the integral in (3.23), thus validating
(3.24). Under this assumption, we can write the integral in
(3.24) as

Z
τ

0

ds

�
d
dτ

GðχÞ
R ðτ−sÞGðϕÞ

H;βðτ−sÞþΓðϕÞ
R;0ðτ−sÞ d

2

dτ2
GðχÞ

H ðτ−sÞ
�

¼
Z

τ

−∞
dy

�
d
dy

GðχÞ
R ðyÞGðϕÞ

H;βðyÞþΓðϕÞ
R;0ðyÞ

d2

dy2
GðχÞ

H ðyÞ
�
;

y¼τ−s; ð3:25Þ

due to the retardation property of the kernel function. In the
large τ limit, we have

lim
τ→∞

Z
τ

−∞
dy

�
d
dy

GðχÞ
R ðyÞGðϕÞ

H;βðyÞ þ ΓðϕÞ
R;0ðyÞ

d2

dy2
GðχÞ

H ðyÞ
�

¼ i
Z

∞

−∞

dκ
2π

κfG̃ðχÞ�
R ðκÞG̃ðϕÞ

H;βðκÞ − G̃ðϕÞ�
R;0 ðκÞG̃ðχÞ

H ðκÞg;

ð3:26Þ

since G̃ðϕÞ
R;0ðκÞ ¼ iκΓ̃ðϕÞ

R;0ðκÞ. The Fourier transform f̃ðκÞ of
the function fðτÞ is defined by

fðτÞ ¼
Z

∞

−∞

dκ
2π

f̃ðκÞe−iκτ: ð3:27Þ

The kernel functions of the free field satisfy the FDR,

G̃ðϕÞ
H;βðκÞ ¼ coth

βκ

2
ImG̃ðϕÞ

R;0ðκÞ; ð3:28Þ
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if the field is initially in the thermal state. This implies that
(3.26) becomes

¼
Z

∞

−∞

dκ
2π

κ

�
coth

βκ

2
ImG̃ðχÞ

R ðκÞ − G̃ðχÞ
H ðκÞ

�
ImG̃ðϕÞ

R;0ðκÞ;

ð3:29Þ

where we have used the properties that G̃HðκÞ, ReG̃RðκÞ are
even with respect to κ but ImG̃RðκÞ is an odd function of κ.
Thus the condition that at late times Pξ þ Pγ vanishes
implies an FDR for the anharmonic oscillator,

G̃ðχÞ
H ðκÞ ¼ coth

βκ

2
ImG̃ðχÞ

R ðκÞ: ð3:30Þ

This is a nonperturbative result but it requires two rather
strong assumptions: 1) a stable equilibrium state exists at
late times, and 2) the nonstationary component of the
anharmonic oscillator’s two-point function has negligible
contribution to the integral in (3.23) at late times. These two
assumptions can be directly shown to be true for the linear
oscillator, but it is not clear yet under what conditions they
also hold for the anharmonic oscillator. Nonetheless, in the
conceptual framework of quantum open systems the FDR
(3.30) derived in the context of nonequilibrium dynamics
(as opposed to linear response) for an anharmonic oscillator
coupled to a field bath registers a deep connection between
equilibration of the system with its environment, balance of
energy flow and stationarity in the late-time dynamics. In
the next section, we shall use perturbative calculations to
assess these two assumptions.
If the assumption that the nonstationary component of

the two-point function of the nonlinear oscillator vanishes
sufficiently fast is lifted, then we do not have (3.24). Thus
the existence of the equilibrium state at late times will
instead imply an integral FDR of the anharmonic oscillator
like

lim
τ→∞

Z
τ

0

ds

�
d
dτ

GðχÞ
R ðτ; sÞGðϕÞ

H;βðs; τÞ

− ΓðϕÞ
R;0ðτ − sÞ d2

dsdτ
GðχÞ

H ðs; τÞ
�

¼ 0; ð3:31Þ

in the time domain, together with (3.28), rather than an
algebraic relation (3.30) in the frequency domain.

IV. PERTURBATIVE ASSESSMENT OF
ASSUMPTIONS MADE IN THE
NONPERTURBATIVE PROOF

In the previous section, we have formulated a non-
perturbative argument to establish the FDR of the anhar-
monic oscillator, coupled to a thermal field based on a few
assumptions. Now we would like to carry out a perturba-
tive calculation for a weakly anharmonic oscillator as an

example to examine the conditions which lead to equili-
bration and the validity of the assumptions invoked.
In particular, we will explicitly show how the contribu-
tions from the nonstationary components of the oscilla-
tor’s two-point functions are suppressed by the damping
mechanism due to the interaction of the system oscillator
with its quantum field environment. This is the second
assumption used in the nonperturbative derivation of
the FDR, and our result indicates that this assumption
seems less essential in the open-system configuration
under study.
An important signature for the presence of a stable

equilibrium state in the motion of the anharmonic oscillator
coupled with a quantum field is that the rate of energy
exchange between the oscillator and the field must be
balanced such that the net energy flow approaches zero at
late times. This condition is not easy to verify for an
anharmonic oscillator due to the lack of complete late-time
analytical expressions of its observables. In general, results
based on the perturbative expansion are not reliable at large
evolution time, especially when the nonlinear system is
driven by a periodic source. The error accumulation, the
secular evolution, and the onset of chaos phenomena
associated with the nonlinear system often limit the
perturbative calculations to the short time regime.
Nonetheless, perturbative treatments may still be applicable
to some configurations, restrictive as they may be. One
such configuration is the small-amplitude oscillation of a
weakly anharmonic oscillator coupled to a low-temperature
quantum-field bath, in which the small-amplitude and the
weak nonlinearity warrant a perturbative treatment, and the
backaction from the field bath induces only a weak
stochastic noise and damping. If the anharmonic potential
is such that χ ¼ 0 remains the unique global minimum of
the potential and the other local minima are located far
away from χ ¼ 0 whereby tunneling is suppressed, the
damping dynamics in the system resulting from its inter-
action with the field would be enough to confine the late-
time motion of such a configuration around the global
minimum at χ ¼ 0.
This may not be the most interesting scenario, but it

shows that even perturbative treatment may provide some
meaningful description of the late-time dynamics. With
the help of the functional method discussed in Appendix,
we find the first-order correction to hϕ̂ðz; τÞ _̂χðτÞi
given by

hϕ̂ðz; τÞ _̂χðτÞið1Þ ¼ e
Z

t

0

ds

�
GðϕÞ

R;0ðτ − sÞ
�
d
dτ

GðχÞ
H;1ðs; τÞ

�

þ
�
d
dτ

GðχÞ
R;1ðτ; sÞ

�
GðϕÞ

H;0ðs; τÞ
�
; ð4:1Þ

so that from (3.8) we have
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Pð1Þ
ξ ðτÞ þ Pð1Þ

γ ðτÞ ¼ e2
Z

τ

0

ds

�
GðϕÞ

R;0ðτ − sÞ
�
d
dτ

GðχÞ
H;1ðs; τÞ

�

þ
�
d
dτ

GðχÞ
R;1ðτ; sÞ

�
GðϕÞ

H;0ðs − τÞ
�
þ � � � :

ð4:2Þ

with

Pð1Þ
ξ ðτÞ ¼ e2

Z
τ

0

ds

�
d
dτ

GðχÞ
R;1ðτ; sÞ

�
GðϕÞ

H;0ðs − τÞ; ð4:3Þ

Pð1Þ
γ ðτÞ¼ e2

Z
τ

0

dsGðϕÞ
R;0ðτ− sÞ

�
d
dτ

GðχÞ
H;1ðs;τÞ

�
þ�� � ; ð4:4Þ

where � � � represents contributions related to the frequency
renormalization, and the superscript (1) denotes the cor-
rection of first order in the self-coupling constant λ in the
anharmonic potential. Note that we have implicitly
assumed that the initial state of the massless scalar field
ϕ is a stationary state.
Although we have shown [28] that the first-order correc-

tion of the kernel functionsGðχÞ
R;1ðτ; τ0Þ andGðχÞ

H;1ðτ; τ0Þ of the
χ4 anharmonic oscillator become stationary when τ and τ0

are sufficiently large, we still cannot replace GðχÞ
R;1ðτ; sÞ and

GðχÞ
H;1ðs; τÞ in the integrals byGðχÞ

R;1ðτ − sÞ andGðχÞ
H;1ðs − τÞ in

the late-time limit τ → ∞ because the other time variable s
still ranges from 0 to τ → ∞. We need to show that the
contributions from their nonstationary components to the
integrals are negligible.
For Pð1Þ

γ , the arguments is rather straightforward. Since in
[28] we have argued that for sufficiently large τ, the

nonstationary component of GðχÞ
H;1ðs; τÞ will contain a factor

like e−γs, and since we observe that for a massless scalar

field ϕ, its retarded function GðϕÞ
R;0ðτ − sÞ drops to zero

rapidly when s deviates from τ, we conclude that the
dominant contribution of the integral (4.4) will come
from the values of s in the vicinity of τ. Thus in the limit

τ → ∞, we can write GðχÞ
H;1ðs; τÞ in (4.4) as approaching

GðχÞ
H;1ðs − τÞ.
As for Pð1Þ

ξ , let us examine the contribution from the

nonstationary component of GðχÞ
R;1ðτ; τ0Þ. We first observe

that by construction in (2.14), GðχÞ
R;1ðτ; τ; Þ is given by

GðχÞ
R;1ðτ; τ0Þ ¼ −

λ

2!

Z
τ

0

dsGðχÞ
R;0ðτ − sÞGðχÞ

H;0ðs; sÞGðχÞ
R;0ðs − τ0Þ

¼ −
λ

4Ω2

Z
τ

0

dse−γðτ−τ0Þ½cosΩðτ þ τ0 − 2sÞ

− cosΩðτ − τ0Þ�GðχÞ
H;0ðs; sÞ; ð4:5Þ

where we have substituted the expressions ofGðχÞ
R;0ðτ − sÞ. It

is useful to write (4.5) as the sum of two integrals I1 and I2,

I1 ¼
λ

4Ω2
e−γðτ−τ0Þ cosΩðτ − τ0Þ

Z
τ

τ0
dsGðχÞ

H;0ðs; sÞ;

I2 ¼ −
λ

4Ω2
e−γðτ−τ0Þ

Z
τ

τ0
ds cosΩðτ þ τ0 − 2sÞGðχÞ

H;0ðs; sÞ:

We note [28] that in general GðχÞ
H;0ðs; sÞ take the form,

GðχÞ
H;0ðs; sÞ ¼ const:þ e−γsð� � �Þ þ e−2γsð� � �Þ; ð4:6Þ

where terms in ð� � �Þ are sinusoidal in s, i.e., e�iϖs with
some constant ϖ ∈ R, and “const” represents terms inde-
pendent of s. In addition, generically we have

Z
τ

τ0
ds ¼ τ − τ0;

Z
τ

τ0
dse−γseiωs ¼ −

e−γτþiωτ

γ − iω
þ e−γτ

0þiωτ0

γ − iω
;

Z
τ

τ0
ds cosΩðτ þ τ0 − 2sÞ ¼ 1

Ω
sinΩðτ − τ0Þ;

Z
τ

τ0
dse−γseiωs cosΩðτ þ τ0 − 2sÞ

¼ Aeγτþiωτgðτ − τ0Þ þ Beγτ
0þiωτ0gðτ − τ0Þ;

where A, B are τ, τ0-independent constants, and gðsÞ is
some bounded sinusoidal function of s. These points show

that the nonstationary terms in GðχÞ
R;1 are always exponen-

tially smaller than the stationary terms. Thus the contri-

bution from the nonstationary terms of GðχÞ
R;1 to the integral

in the definition Pð1Þ
ξ for τ → ∞ will be typically likewise

smaller than the contribution from the stationary terms of

GðχÞ
R;1. This implies that we can drop the nonstationary terms

inGðχÞ
R;1ðτ; τ0Þwith negligible errors. In other words, we now

can write GðχÞ
R;1ðτ; τ0Þ ¼ GðχÞ

R;1ðτ − τ0Þ in (4.3) such that

Pð1Þ
ξ ðτÞ ¼ e2

Z
τ

0

ds

�
d
dτ

GðχÞ
R;1ðτ − sÞ

�
GðϕÞ

H;0ðs − τÞ; ð4:7Þ

for large τ, and in this limit the net power becomes

Pð1Þ
ξ ðτÞþPð1Þ

γ ðτÞ¼ e2
Z

τ

0

ds

�
GðϕÞ

R;0ðτ−sÞ
�
d
dτ

GðχÞ
H;1ðs− τÞ

�

þ
�
d
dτ

GðχÞ
R;1ðτ− sÞ

�
GðϕÞ

H;0ðs− τÞ
�
þ��� :

ð4:8Þ

From the previous arguments, we find that up to the first-
order perturbation of anharmonicity, the second assumption
used for the nonperturbative derivation of the FDR
holds quite naturally. The exponential suppression of the
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contribution from the nonstationary component is related to
the exponential relaxation of the zeroth-order dynamics,
which in turn is a consequence of the finite damping force
in the equation of motion of the reduced anharmonic
system.
Next, following the arguments between (3.21) and (3.30)

adapted for the first-order nonlinear correction, and the
perturbative FDR (2.16) for the nonlinear oscillator, we
conclude that the first-order anharmonic correction of
the net power will vanish at late times τ → ∞. Thus, it
implies that for the configuration we are interested in, the
motion of the anharmonic oscillator will eventually be
relaxed to a equilibrium state in the weak anhamonicity
limit. Moreover, within the validity of this perturbative
treatment, both assumptions used for the nonperturbative
argument are not needed a priori. The backactions from the
bath field naturally enforce these assumptions. Two more
observations worth some comments here. In [28], it has
been shown that the first-order anharmonic correction
of the energy flows at late times are independent of the
bath temperature in the high-temperature limit. The high-
temperature thermal fluctuations of the bath field, although,
linearly enhance with the bath temperature the zeroth-order
energy flows between the oscillator and the bath, they do
not affect the first-order contribution. Thus it does not seem
necessary to restrict the bath to a low-temperature thermal
field. Secondly, since the zeroth order dynamics always
asymptotically relax to a stable equilibrium state indepen-
dent of the initial state, we may not need to confine the
initial displacement of the oscillator to be small, as long as
the (harmonicþ anharmonic) potential has one minimum
and the perturbation theory remains valid. In the weak
anharmonicity limit, the finite damping seems to well herd
the oscillator’s motion to the equilibrium state. This also
bring up the interesting role the environment plays in the
dynamics of the nonlinear system. The reasoning used here
then adds to the plausibility of the assumption used in the
nonperturbative arguments on a broader ground.

V. SUMMARY

In this paper, we use the functional method to derive
nonperturbative expressions for the energy flows between
an anharmonic quantum oscillator and the quantum field
bath under nonequilibrium conditions. There is no guar-
antee that the dynamics of a general nonlinear quantum
oscillator will settle down to an equilibrium state. Thus we
look at specific cases. In our derivation of the nonpertur-
bative FDR for nonlinear open systems we need to make
two assumptions, namely, (1) the nonlinear oscillator
evolves to a unique stable equilibrium state at late times,
and (2) the nonstationary components of the two-point
functions of the nonlinear oscillator has negligible con-
tributions to the energy flows. Under these two assump-
tions, we find that if the energy flows come to a balance,
then a nonperturbative FDR can be derived for the

nonlinear oscillator. Since the balance of energy flows
has been linked to dynamical equilibration for the case of
the linear oscillator, the nonperturbative FDR we derive
here points to such a connection. To show this connection
concretely, we treat a weakly anharmonic oscillator in the
same configuration by the functional perturbative method
and show that the second assumption holds quite naturally.
Together with the result found in [28], the first assumption
can also be lifted for weak anharmonicity. Both can be
attributed to finite damping due to the interaction with the
bath field.
Our quantum model calculation provides a microscopic

perspective to the relation between the dynamical equili-
bration of a nonlinear system and the balance of energy
exchange with its environment. The existence of a non-
perturbative FDR for nonlinear quantum systems seems to
reinforce the notion that FDRs are indeed categorical
relations reflecting the delicate balance between fluctua-
tions in the environment and the induced dissipation in the
open system, quite robust in the nature of the system and
the details of the environment.
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APPENDIX: DERIVATION OF ENERGY FLOW
BETWEEN THE OSCILLATOR AND THE

BATH FIELD

To illustrate the functional method we calculate the
power Pξ delivered by a massless quantum scalar field
ϕ̂ðx; tÞ to the linear (harmonic) oscillator χ̂ðtÞ, which can be
viewed as the internal degree of freedom of an Unruh-
DeWitt detector.
The power delivered by the free field at time τ is

defined by

PξðτÞ ¼
e
2
hfϕ̂hðz; τÞ; χ̂ðτÞgi; ðA1Þ

where the external degree of freedom z of the detector gives
the fixed location of the detector, and ϕ̂hðz; tÞ is the free
field component, that is, the homogeneous solution of the
field equation. Although (A1) is the real part of the
coincident limit,

elim
τ0→τ

d
dτ0

hϕ̂hðz; τÞχ̂ðτ0Þi; ðA2Þ

we will use the functional method to derive the expres-
sions for
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hϕ̂ðz; τÞχ̂ðτ0Þi; ðA3Þ

in terms of two-point functions of the oscillator and the free
field. Note that (A3) involves the full interacting field
ϕ̂ðz; tÞ, instead of the free field ϕ̂hðz; tÞ, so the result will
contain an additional contribution from the radiation field
emitted by the evolving oscillator, that is, PγðτÞ. For a
linear oscillator it is pretty easy to distinguish the con-
tribution of the free field from that of the radiation field.2

Since the expectation value (A3) contains the field
operator, it is not obvious a priori how to apply the

functional method to the generating functional we have
in Sec. II to compute the expectation value. We return to the
starting point, noting that (A3) means

hϕ̂ðz; τÞχ̂ðτ0Þi ¼ Trχϕfρ̂χϕðtÞϕ̂ðz; τÞχ̂ðτ0Þg; ðA4Þ

where ρ̂χϕ is the density operator of the whole system,
0 < τ; τ0 < t and t can be taken to þ∞ for convenience.
Introducing a path integral representation, we have

hϕ̂ðz; τÞχ̂ðτ0ÞijZV ½j; tÞ ¼
Z

∞

−∞
dχbdχ0bδðχb − χ0bÞ

Z
∞

−∞
dχadχ0aρχðχa; χ0a; 0Þ

×
Z

χb

χa

Dχþ

Z
χ0b

χ0a
Dχ−χþðτ0Þ expðiSχ ½χþ; jþ� − iSχ ½χ−; j−�Þ

×
Z

∞

−∞
dϕbdϕ0

bδðϕb − ϕ0
bÞ
Z

∞

−∞
dϕadϕ0

aρϕðϕa;ϕ0
a; 0Þ

×
Z

ϕb

ϕa

Dϕþ

Z
ϕ0
b

ϕ0
a

Dϕ−ϕþðz; τÞ expðiSI½χþ;ϕþ� − iSI½χ−;ϕ−� þ iSϕ½ϕþ� − iSϕ½ϕ−�Þ ðA5Þ

¼ δ

iδjþðτ0Þ
Z

∞

−∞
dχbdχ0bδðχb − χ0bÞ

Z
∞

−∞
dχadχ0aρχðχa; χ0a; 0Þ

×
Z

χb

χa

Dχþ

Z
χ0b

χ0a
Dχ− expðiSχ ½χþ; jþ� − iSχ ½χ−; j−�Þ

×
1

e
δ

iδχþðτÞ
Z

∞

−∞
dϕbdϕ0

bδðϕb − ϕ0
bÞ
Z

∞

−∞
dϕadϕ0

aρϕðϕa;ϕ0
a; 0Þ

×
Z

ϕb

ϕa

Dϕþ

Z
ϕ0
b

ϕ0
a

Dϕ− expðiSI½χþ;ϕþ� − iSI½χ−;ϕ−� þ iSϕ½ϕþ� − iSϕ½ϕ−�Þ

¼ δ

iδjþðτ0Þ
Z

∞

−∞
dχbdχ0bδðχb − χ0bÞ

Z
∞

−∞
dχadχ0aρχðχa; χ0a; 0Þ

×
Z

χb

χa

Dχþ

Z
χ0b

χ0a
Dχ− expðiSχ ½χþ; jþ� − iSχ ½χ−; j−�Þ

×

�
e
Z

t

0

ds

�
1

2
GðϕÞ

R;0ðs − τÞqðsÞ þGðϕÞ
R;0ðτ − sÞrðsÞ þ iGðϕÞ

H;βðτ; sÞqðsÞ
��

× exp

�
ie2

Z
t

0

dsds0
�
qðsÞGðϕÞ

R;0ðs; s0Þrðs0Þ þ
i
2
qðsÞGðϕÞ

H;βðs; s0Þqðs0Þ
��

¼ −e
Z

t

0

ds

��
1

4
GðϕÞ

R;0ðs − τÞ δ2

δjrðτ0ÞδjrðsÞ
þ i
2
GðϕÞ

H;βðτ; sÞ
δ2

δjrðτ0ÞδjrðsÞ
�

þ
�
1

2
GðϕÞ

R;0ðτ − sÞ δ2

δjrðτ0ÞδjqðsÞ
þ 1

2
GðϕÞ

R;0ðs − τÞ δ2

δjqðτ0ÞδjrðsÞ

þ iGðϕÞ
H;βðτ; sÞ

δ2

δjqðτ0ÞδjrðsÞ
�
þ GðϕÞ

R;0ðτ − sÞ δ2

δjqðτ0ÞδjqðsÞ
�
× ZV ½jr; jq; tÞ; ðA6Þ

2From Eq. (3.3), we observe that the first term on its right-hand side, the homogeneous solution of the field equation (3.2), describes
the free quantum field, while the second term, the inhomogeneous solution, is a radiation field, i.e., Liénard Wiechert potential [33]
emitted by the oscillator at z. More discussions can be found in [27].
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where the oscillator action Sχ ½ χ; j� contains the contribu-
tions from the external sources,

Sχ ½χ;j�¼
Z

t

0

ds

�
m
2
½ _χ2ðsÞ−ω2

0 χ
2ðsÞ�−V½χðsÞ�þjðsÞχðsÞ

�
;

ðA7Þ
and V½χ� accounts for the nonlinear potential. Here, be

reminded that GðϕÞ
R;0 and GðϕÞ

H;β individually denotes the
retarded Green’s function and the Hadamard function of

the free field, while GðχÞ
R and GðχÞ

H are respectively the
retarded Green’s function and the Hadamard function of the
anharmonic oscillator interacting with the scalar field.
Here Eq. (A6) indicates that the insertion of ϕðz; τÞ is

equivalent to taking an additional functional derivative of
the combination,

e
Z

t

0

ds

�
1

2
GðϕÞ

R;0ðs − τÞ δ

iδjrðsÞ
þGðϕÞ

R;0ðτ − sÞ δ

iδjqðsÞ

þ iGðϕÞ
H;βðτ; sÞ

δ

iδjrðsÞ
�
;

of the generating functional ZV ½j; tÞ. Since it originates
from the influence action, we can infer that the terms

involving the retarded Green’s function of the free fieldGðϕÞ
R;0

are related to the radiation field, caused by the nontrivial
motion of the internal degree of freedom of the detector,
while that associated with the Hadamard function of the free

field GðϕÞ
H;β pertains to the free field fluctuations. The latter

will bewhat we search for in calculating (A3) and the power
delivered by the free field ϕ̂hðz; tÞ.
Let us for the moment consider the simpler case that the

nonlinear potential V½χ� is absent. To evaluate (A6), we
need the following identities from previous calculations:

δ2Z½j; tÞ
δjqðτÞδjqðτ0Þ

¼ i
δΞ½j; τ0Þ
δjqðτÞ

Z½j; tÞ − Ξ½j; τÞΞ½j; τ0ÞZ½j; tÞ;

ðA8Þ

δ2Z½j; tÞ
δjqðτ0ÞδjrðτÞ

¼ i
δJqðτÞ
δjqðτ0Þ

Z½j; tÞ −JqðτÞΞ½j; τ0ÞZ½j; tÞ;

ðA9Þ

δ2Z½j; tÞ
δjqðτÞδjrðτ0Þ

¼ i
δJqðτ0Þ
δjqðτÞ

Z½j; tÞ −Jqðτ0ÞΞ½j; τÞZ½j; tÞ;

ðA10Þ

δ2Z½j; tÞ
δjrðτÞδjrðτ0Þ

¼ −JqðτÞJqðτ0ÞZ½j; tÞ; ðA11Þ

and

−i
δΞ½j;τ0Þ
δjqðτÞ

¼GðχÞ
H;0ðτ;τ0Þ;

δJqðτ0Þ
δjqðτÞ

¼GðχÞ
R;0ðτ−τ0Þ; ðA12Þ

with JqðsÞ, Ξ½j; τÞ defined by

JqðsÞ ¼
Z

t

0

ds00GðχÞ
R;0ðs00 − sÞjqðs00Þ;

Ξ½j; τÞ ¼ i
Z

t

0

ds0GðχÞ
H;0ðτ; s0Þjqðs0Þ

þ
Z

t

0

ds0GðχÞ
R;0ðτ − s0Þjrðs0Þ:

Thus in the limits jr, jq → 0, we find that

hϕ̂ðz;τÞχ̂ðτ0Þi¼e
Z

τ0

0

dsGðχÞ
R;0ðτ0−sÞGðϕÞ

H;βðs;τÞ

þe
Z

τ

0

dsGðϕÞ
R;0ðτ−sÞGðχÞ

H;0ðs;τ0Þ

− i
e
2

Z
τ

0

dsGðϕÞ
R;0ðτ−sÞGðχÞ

R;0ðs−τ0Þ

− i
e
2

Z
τ0

0

dsGðχÞ
R;0ðτ0−sÞGðϕÞ

R;0ðs−τÞ: ðA13Þ

Note that we pick ϕþ and χþ in (A5), so Eq. (A13) is a form
of time-ordered two-point function, instead of the
Schwinger type of two-point function. Thus its real part
gives the corresponding expectation value of (one half of)
the anticommutator, or the Hadamard-like function,

1

2
hfϕ̂ðz; τÞ; χ̂ðτ0Þgi ¼ e

Z
τ0

0

dsGðχÞ
R;0ðτ0 − sÞGðϕÞ

H;βðs; τÞ

þ e
Z

τ

0

dsGðϕÞ
R;0ðτ − sÞGðχÞ

H;0ðs; τ0Þ;

in which we use the superscripts to distinguish the
Green’s functions of different subsystems. According to
the previous discussions, we in fact need the component
hfϕ̂hðz; τÞ; χ̂ðτ0Þgi, which is then given by

1

2
hfϕ̂hðz; τÞ; χ̂ðτ0Þgi ¼ e

Z
τ0

0

dsGðχÞ
R ðτ0 − sÞGðϕÞ

H;βðs; τÞ:

ðA14Þ
Taking the coincident limit of its τ0 derivative gives the
power delivered by the free field,

PξðτÞ ¼ e2
Z

τ

0

ds _GðχÞ
R ðτ − sÞGðϕÞ

H;βðs; τÞ: ðA15Þ

The Pξ associated with the interaction between the non-
linear oscillator and the bath field, discussed in Sec. III can
then be obtained in a similar manner by putting back the
nonlinear potential V and replacing the in-in generating
functional Z with ZV in the earlier derivations.
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