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Riemann normal coordinates (RNC) at a regular event p0 of a spacetime manifoldM are constructed by
imposing (i) gabjp0

¼ ηab, and (ii) Γa
bcjp0

¼ 0. There is, however, a third, independent, assumption in the
definition of RNC which essentially fixes the density of geodesics emanating from p0 to its value in flat
spacetime, viz.: (iii) the tangent space T p0

ðMÞ is flat. We relax (iii) and obtain the normal coordinates,

along with the metric gab, when T p0
ðMÞ is a maximally symmetric manifold fMΛ with curvature length

jΛj−1=2. In general, the “rest” frame defined by these coordinates is noninertial with an additional
acceleration a ¼ −ðΛ=3Þx depending on the curvature of tangent space. Our geometric setup provides a
convenient probe of local physics in a universe with a cosmological constant Λ, now embedded into the
local structure of spacetime as a fundamental constant associated with a curved tangent space. We discuss
classical and quantum implications of the same.
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I. INTRODUCTION

Given a spacetime manifold with a metric, ðM; gÞ, the
most primitive structure that carries information about
spacetime curvature at a (regular) event p0 is perhaps
the congruence of geodesics emanating from p0. One can
characterize the spacetime geometry in a convex normal
neighborhood of p0 by assigning to points in this neigh-
borhood coordinates based on this congruence. These
coordinates are known as Riemann normal coordinates
(RNC) [1,2], and, besides being a convenient computa-
tional tool, they provide a concrete realization of the
principle of equivalence. This last fact follows from the
conditions characterizing the RNC: (i) gabðp0Þ ¼ ηab, and
(ii) Γa

bcðp0Þ ¼ 0. However, implicit in these conditions is
the assumption that the tangent space T p0

ðMÞ one is using
for the (inverse) exponential map (which eventually defines
the RNC), is itself flat. In fact, the frame feaðp0Þg that
defines the RNC has its tetrad vectors normalized as
ea · eb ¼ ηab. While this might seem like a sufficient
condition to impose local flatness, it does not uniquely
capture all possible information about the background
spacetime. The reason for this is simple to see: RNC by
definition are so constructed as to yield geodesics emanat-
ing from p0 by “straight lines.” This, as we argue in this
paper, is tied to the choice of a flat tangent space T p0

ðMÞ.
While a single geodesic connecting a point p0 to p (lying in
the normal neighborhood of p0) suffices to assign to p its
RNC, a bunch of geodesics emanating from p0—geodesic
spray—carries more information that is lost if the geodesics
are modeled as straight lines as in RNC.Wewill make these

statements more concrete in the rest of the paper, but for
now, let us emphasize that this much at least is true: While
any coordinates imposing conditions (i) and (ii) will ensure
local flatness, one can still impose additional conditions on
our choice of local coordinates such that the density of
geodesics at p0 is fixed not to its Minkowski value, but to a
value set by an arbitrary maximally symmetric manifoldfMΛ with curvature length jΛj−1=2. This makes all the more
sense in the backdrop of cosmology, since local physics in a
universe with a nonzero cosmological constant Λ would be
described better by geodesic sprays modeled on, say, de
Sitter rather that Minkowski spacetime. Figures 1 and 2
give the basic idea.
To summarize: The tangent space provides us with three

basic geometrical objects, fgabðp0Þ;Γa
bcðp0Þ; eΔðp; p0Þg.

Conventional RNC fixes eΔ ¼ 1, which, as we show here,
is mathematically untenable. Since the covariant Taylor
expansion of eΔ near p ¼ p0 starts at quadratic order (see
text), our modification does not alter the metric and
connection at p0, but corrects it at Oðx2Þ.

FIG. 1. Basic idea of this work; see also Fig. 2.
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Organization of the paper.—In Sec. II, we describe some
geometrical aspects of geodesic sprays in arbitrary space
(times), highlight the role of the Van Vleck determinant,
and bring into focus its role in defining local coordinates
based on a maximally symmetric tangent space. In Sec. III,
using the results from Sec. II, we introduce new locally
inertial coordinates, and construct the corresponding metric
tensor gab to fourth order in series expansion. Section IV
then applies the above formalism to a spacetime which is
itself maximally symmetric. When the curvature scalar of
this spacetime and the tangent space are equal, we show
that the series for gab can be summed exactly, and the
resultant metric is precisely that of a maximally symmetric
spacetime expressed in embedding coordinates [3]. We
then proceed to discuss, in Sec. V, implications of our result
for observables in classical and quantum physics, as well
as in describing local physics in a universe wherein the
cosmological constant Λ is treated as a fundamental
constant.
Notation.—We work in D dimensions, and use the

shorthand Dk ¼ D − k. Latin and Greek indices denote
spacetime and space components, respectively. Latin indi-
ces in sans-serif font a; b… denote frame components, and
will also be conveniently used to represent an object as an
element of the tangent space. Further, since we will
encounter many quantities that are bi-tensors depending
on two points p0 and p, we will often identify tensor
indices at p0 by a prime. Therefore,Qabj0 denotes an object
which is a vector at p0 and a (2, 0) tensor at p, while ua

0
are

frame components of a vector ui
0
at p0, and also denotes a

vector in T p0
ðMÞ.

II. GEODESIC SPRAYS, VAN VLECK
DETERMINANT, AND RNC

A. Density of geodesics and the Van Vleck determinant

Our main focus in this section will be to review geo-
metric aspects of geodesic spray emanating from an
arbitrary (but regular) spacetime event p0, in such a manner
as to elucidate the connection with RNC. This later
connection is what we will exploit in the subsequent
sections to improvise on the conventional construction of
RNC, an improvisation that, as we shall see, is best
interpreted in terms of the geometry of the tangent space
T p0

ðMÞ being maximally symmetric.
Let lðxi0 ; xiÞ denote the length of the geodesic between

any two points p0, p with coordinates xi
0
and xi, in an

arbitrary manifold. From standard variational analysis, we
know that ∂l=∂xi0 ¼ −εui0 and ∂l=∂xi ¼ þεui (where
ε ¼ u2 ¼ �1). See Fig. 3 for the geometric setup and
notations. Fixing xi

0
and varying xi, we obtain δl ¼

δxið∂l=∂xiÞ ¼ εuiδxi. We ask if there is a one-to-one
correspondence between δxi and δui

0
, so that one can trade-

off the variables ðxi0 ; xiÞ with ðxi0 ; ui0 Þ. It is easy to see that
such a correspondence can indeed be established provided
we restrict tovariations δxi that are orthogonal toui, since the
component of δxi along ui would simply shift the end point
along the same geodesic, and hence all such variations will
correspond to the sameui

0
. A nontrivialmap between δxi and

δui
0
therefore exists only for variations orthogonal to ui,

which we denote by δ⊥xμ, and hence, for all these variations
(from above), δl ¼ 0. Moreover, assuming the tangent
vectors are all normalized to �1, we have ui

0
δui0 ¼ 0, and

hence the variations δui0 are orthogonal to ui
0
.

To summarize, for variations that keep constant the
geodesic distance of a point p from a fixed point p0, say
lðp0; pÞ ¼ s0, there is a one-to-one map between δui0
and δxi. The Jacobian matrix corresponding to this map is
given by [4]

Ca0b ¼
∂ua0
∂xb ¼ −ε

∂2l

∂xa0∂xb : ð1Þ

We call the set of events p generated by such variations an
equigeodesic surface; some geometrical aspects of these
surfaces are discussed in Appendix A. While the matrix Cμ0ν
comes with a natural interpretation, for dimensional rea-
sons, it turns to be more convenient and insightful to define
instead the matrix

Da0b ¼ −
1

2
ε

∂2l2

∂xa0∂xb ð2Þ

whose determinant is closely related to the so-called Van
Vleck determinant [5] (see below). The determinants of
the matrices C and D are related in a simple manner. First,
notice that

FIG. 2. Exponential map from T p0
ðMÞ to an open subset U of

M. If T p0
ðMÞ is taken as an arbitrary maximally symmetric

space fMΛ, one must properly account for the density of geo-

desics appropriate to fMΛ.
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Da0b ¼ s0Ca0b þ εua0ub: ð3Þ

Now, from discussion above, we know that ua
0
; ub lie in the

kernel of Cab0 (this can also be established by a quick
computation), and Da0bua

0 ¼ ub;Da0bub ¼ ua0 . A straight-
forward computation then yields

Δðp0; pÞ ≔
det½Da0b�ffiffiffiffiffiffiffiffiffiffiffiffiffiffijgðp0Þj

p ffiffiffiffiffiffiffiffiffiffiffiffijgðpÞjp ¼ sD−1
0 det½Cμ0ν�ffiffiffiffiffiffiffiffiffiffiffiffiffiffijhðp0Þj

p ffiffiffiffiffiffiffiffiffiffiffiffijhðpÞjp ð4Þ

which is the desired relation between the Jacobian of
transformation from final end point to the initial tangent
vector and the so called Van Vleck bi-scalar Δðp0; pÞ
which is defined by the LHS above. A short derivation of
this is sketched in the Appendix B. (Note that the derivation
naturally yields correct factors of metric determinants so as
to give a relation between scalars.)

B. Normal coordinates based on the
Jacobian matrix Cab0

Riemann normal coordinates of a point p in a convex
normal neighborhood of p0 are given by [6]

xa ¼ −ηabei0b∇i0Ω ð5Þ

where ei
0
b is an orthonormal tetrad at p0: eb · eb ¼ ηab, and

Ωðp0; pÞ ¼ σ2ðp0; pÞ=2 is the Synge world function [7].
In terms of frame components of the tangent vector, this is
equivalent to assigning to p the coordinates

xa ¼ sηabub0 ð6Þ

where s ¼
ffiffiffiffiffiffiffiffi
jσ2j

p
is the geodesic length between p0 and p.

To see the connection with the discussion in earlier
subsection, vary ub0, and track the corresponding variations
of xa keeping s constant: s ¼ s0. This gives

δ⊥xμ ¼ s0ημνδuν0 : ð7Þ

Therefore, in RNC, the volume spanned by the variations
δxμ is given by det ½s0δμν� ¼ sD−1

0 . On the other hand, from
the previous subsection, we have

Ca0b ¼
∂ua0
∂xb ⇒ δxμ ¼ ½C−1�ν0μδuν0 ð8Þ

so that the volume spanned by the variations δxμ is given
by det½C−1μν0 �, appropriately scalarized. From the previous
subsection—see Eqs. (4)—this is given by sD−1

0
eΔ−1, and

hence, given a fixed set of initial variations δuν0 at p0, the
above two volumes are clearly different in general, unlesseΔ ¼ 1, that is, for flat spacetime. This is a direct conse-
quence of the fact that the tangent space T p0

ðMÞ is
assumed flat, since the assignment xa ¼ sηabub0 , along
with the identity ηabxaxb ¼ σ2, ensures that geodesics
based on these coordinates will be straight lines. For a
nonflat tangent space, previous discussion immediately
yields the following corrected definition of coordinates

x̂a ¼ fdet½C−1μν0 �g1=ðD−1Þηabub0

¼ s0eΔ−1=D1ηabub0

¼ −ηabei0bð∇i0ΩÞeΔ−1=D1

¼ −eai0Ω
i0 eΔ−1=D1 ð9Þ

that ensures that the volume spanned by the variations δxμ

now correctly takes into account the Jacobian det½C−1μν0 �.
As for the variations δkxi, these satisfy the geodesic
equation, as they should. This is easily verified by an
explicit computation, using the Christoffel symbols for the
metric which we will derive in the next section. (A formal
proof of this is straightforward.)
We now have the appropriate generalization of Riemann

normal coordinates to the case when the tangent space is

FIG. 3. Geodesic spray from a given point p0 is obtained from solution of the standard variational principle for geodesics by fixing the
initial point as p0 and varying the tangent vectors uað0Þ at p0. The transverse variation δ⊥xμðs0Þ provides a measure of (de-)focusing of
the geodesics, and is characterized by the Van Vleck determinant.
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nonflat. The curvature of the tangent space is captured by
its Van Vleck determinant eΔ, and a flat tangent space
(which is the standard case) has eΔ ¼ 1, reproducing the
conventional RNC. Now, given a fixed set of initial
variations δuν0 at p0 equal to the number of degrees of
freedom Ndof of the system, det½Cμν0 � acquires the inter-
pretation of density of geodesics emanating from p0.
Therefore, we have essentially obtained the normal coor-
dinates that carry the correct information about density of
geodesics appropriate to a nonflat tangent space. We next
proceed to derive the metric in these coordinates.

III. METRIC IN THE GENERALIZED RNC

Once an orthornormal tetrad is fixed at p0, the differ-
ential of coordinates of a point p in the neighborhood of p0

are related by

dx̂a ¼ ½−eΔ− 1
D1eai0Ω

i0
j −

x̂a

D1

∂j lnðeΔÞ�dxj: ð10Þ

The coincidence limit is easily shown to give�∂x̂a
∂xi

�
p0

¼ eai0 ðp0Þ;
�∂x̂i
∂xa

�
p0

¼ ei
0
aðp0Þ: ð11Þ

The line element can now be expressed as dσ2 ¼
gijdxidxj ¼ ηabeai e

b
jdx

idxj ¼ gabdx̂adx̂b, where gij is the
metric of the background spacetime in arbitrary coordinates
and gab is the metric in normal coordinates, which we now
evaluate. As we will show, gab depends on the curvature
of the background spacetime as well as that of the
tangent space.
Using the series expansions given in Ref. [8], Eq. (10)

can be inverted to obtain eai , and the line element can be
evaluated in terms of xa, from which the metric can finally
be read off. The derivation involves some subtlety since eΔ
also appears explicitly in the definition of coordinates; see
Eq. (9). Relevant details are given in Appendix C.
The final metric, which is our key result, is given by

gab ¼ ηab þ
1

3

�
−Racbd þ

1

D1

ηabeRcd þ
2

D1

ηcðaeRbÞd

�
x̂cx̂d þQabcdex̂cx̂dx̂e þQabcdefx̂cx̂dx̂ex̂f þOðx5Þ;

Qabcde ¼ −
1

6
Racbd;e −

1

6D1

ηabeRcd;e þ
1

2D1

eRcd;ðaηbÞe;

Qabcdef ¼ −
1

20
Racbd;ef þ

2

45
RacmdRm

ebf|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
standard RNC

−
2

9D1

Racbd
eRef −

2

9D1

eRmcRm
deðaηbÞf|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

coupled terms

þ 1

20D1

ηabeRcd;ef þ
1

5D1

eRcd;eðaηbÞf

þ 1

6D2
1

ηabeRcd
eRef þ

2

3D2
1

ηcðaeRbÞdeRef þ
1

9D2
1

ηefeRac
eRbd þ

1

90D1

ηabeRk
cmd

eRm
ekf þ

2

45D1

ηcðaeRk
bÞmd

eRm
ekf ð12Þ

where Racbd and eRacbd are the Riemann tensors of the
background space and the tangent space, respectively and
the brackets in lower indices indicate that they are sym-
metrized. The indices of these tensors are lowered and
raised using ηab and ηab since they are evaluated at the base
point.

IV. FIXING “DENSITY OF GEODESICS” USING
MAXIMALLY SYMMETRIC TANGENT SPACE

Throughout this paper, we will quote all the expressions
keeping the curvature tensors eRacbd associated with the
tangent space arbitrary; in particular, one could simply seteRacbd → Racbd. This is equivalent to setting eΔ ¼ Δ, which
is a perfectly acceptable (and even more general) choice,
and makes no reference to a curved tangent space at all.
We comment further on this point of view in Sec. VI,
2nd paragraph.
However, keeping with the spirit of conventional RNC,

our key interest is in modeling the tangent space by a
maximally symmetric manifold fMΛ of dimension D,

jeΛj−1=2 being the curvature length scale determined by
the parameter eΛ. In fact, since there generically is no
canonical way to identify points between two different
manifolds, it would not make much sense to choose an
arbitrary manifold to model the tangent space, since the
connection between tangent spaces at two different points
is then unclear. For the maximally symmetric case, the
connection is simply an element of the symmetry group of
the manifold.
For the maximally symmetric tangent space, the metric

in Eq. (12) can be reduced by using the definitions

eRabcd ¼ eΛðegacegbd − egadegbcÞ;eRab ¼ D1
eΛegab;eR ¼ DD1
eΛ ð13Þ

where egab is the metric of maximally symmetric space
which we assume that reduces to ηab at the base point.
Using these in Eq. (12), we obtain
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gab ¼ ηab þ
1

3
ð−Racbd þ eΛηabηcd þ 2eΛηacηbdÞx̂cx̂d − 1

6
Racbd;ex̂cx̂dx̂e

þ
�
−

1

20
Racbd;ef þ

2

45
RacldRl

ebf −
2eΛ
9

ηefRacbd þ
8eΛ2

45
ηabηcdηef þ

37eΛ2

45
ηacηbdηef

�
x̂cx̂dx̂ex̂f þOðx5Þ: ð14Þ

We can obtain the above metric via alternate route, by
using the geodesic equation and its higher derivatives along
with the known expression for Van Vleck determinant of
maximally symmetric spacetimes

eΔ− 1
D1 ¼

0B@sin ðs
ffiffiffiffiffiffi
jeΛjq

Þ
s

ffiffiffiffiffiffi
jeΛjq ; 0;

sinh ðs
ffiffiffiffiffiffi
jeΛjq

Þ
s

ffiffiffiffiffiffi
jeΛjq

1CA ð15Þ

of positive, zero and negative curvature, respectively [9].
A particularly interesting case is when the background

spacetime is itself maximally symmetric with its own
constant Λ, in which case the above metric becomes

gab ¼ ηab þ
1

3
ð½eΛ − Λ�ηabηcd þ ½2eΛþ Λ�ηacηbdÞx̂cx̂d

þ 1

45
ð½2Λ2 þ 8eΛ2 − 10eΛΛ�ηabηcdηef

þ ½−2Λ2 þ 37eΛ2 þ 10eΛΛ�ηacηbdηefÞx̂cx̂dx̂ex̂f
þOðx5Þ: ð16Þ

We now point out a remarkable feature of the above metric,
which we justify a posteriori. Define ξ≡ ðeΛ − ΛÞ=2 and
Λeff ≡ ðeΛþ ΛÞ=2. Then, a set of terms in the above metric
expansion can be summed exactly, and we obtain

gab ¼ ηab þ
Λeff

1 − Λeffηefx̂ex̂f
ηacηbdx̂cx̂d þ Fðξ;ΛeffÞ ð17Þ

where Fðξ;ΛeffÞ is a function that satisfies Fð0;ΛeffÞ ¼ 0,
but cannot otherwise be obtained in a closed form.
The justification of this easily follows from the following

observation: For maximally symmetric spacetimes (with
curvature constantK) expressed in embedding coordinates,
the solutions of geodesic equation (with the starting
point chosen as origin) are of the form sin ðs ffiffiffiffiffiffiffijKjp Þ or
sinh ðs ffiffiffiffiffiffiffijKjp Þ [3]. Comparing this with the form of the
Van Vleck determinant, Eq. (15), we immediately see
that for a maximally symmetric background spacetime
with Λ ¼ K ¼ eΛ, our coordinates reduce precisely to the
embedding coordinates. The corresponding metric must
then also reduce to the form given in Chap. 13 of Ref. [3],
which is precisely given by the first two terms on the
right-hand side of Eq. (17). One must therefore have
Fð0;ΛeffÞ ¼ 0.

The above observation provides a curious interpreta-
tion for the new coordinates that we have defined. As just
shown, for maximally symmetric backgrounds, our coor-
dinates x̂a can be interpreted as the embedding coordinates,
with the embedding space a (Dþ 1) dimensional flat space
(time). We have therefore essentially generalized the con-
ventional D dimensional RNC, based on a flat tangent
space, by another set of “flat” coordinates which are now
inherited from a (Dþ 1) dimensional flat space(time). It is
then no surprise that our new coordinates incorporate the
correct density of geodesics, since the embedding map is
smooth. Of course, the above interpretation in terms
of embedding coordinates is very specific to background
spacetimes which are themselves maximally symmetric,
since embedding of an arbitrary manifold in a flat space-
time (of higher dimensions) will generically be more com-
plicated and not amenable to any such nice interpretation.
Aside:As a bonus, the above observation provides a slick

way to obtain an exact expression for the metric of maxi-
mally symmetric spacetimes in Riemann normal coordi-
nates, which can be derived by more conventional methods;
see, for instance, Ref [10]. We hope to elaborate on this
elsewhere.

V. APPLICATIONS

In this section, we sketch a few immediate implications
and applications of the local metric that we have derived,
making appropriate comments in the respective subsections
below. We will restrict our discussion in this section to
leading order terms in curvature, and hence ignore Oðx2Þ
term. Needless to say, many more applications can be
discussed, and we hope the ones we discuss below will
provide a motivation for future work along these lines.

A. Acceleration of “rest” observers

The best way to understand the significance of any coordi-
nate chart ðt; xμÞ covering a region of spacetime is to study
observers that are at rest with respect to the chart; that is, the
xμ ¼ constant ¼ lμ observers. The frame of reference of
such observers (that is, their rest frame) will then be inertial if
their acceleration vanishes. In RNC coordinates, such
“static” observers are easily shown to have an acceleration

a0 ¼ 0; aμ ¼ 2

3
Rμ
0ν0l

ν: ð18Þ

Thus, at the origin xμ ¼ 0, the frame is inertial, though in
general, it is noninertial. This is not difficult to understand
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since, given an orthonormal tetrad eia at p0, one and only one
tangent vector uðp0Þ will coincide with e0, and for the point
identified with this tangent vector, RNC will assign coor-
dinates lμ ¼ 0.
We can do a similar analysis in our new coordinates.

Consider, then, an observer on the trajectory ẑiðτÞ ¼
ðz0ðτÞ; lμÞ, with lμ ¼ constant. The four velocity associated
with this observer is ûi ¼ ½ð−g00Þ−1=2; 0; 0; 0�, from which
one can compute the acceleration âk ≡ ûi∇iûk to first order
in curvature. The result gives

â0 ¼ 0; âμ ¼ 2

3
Rμ

0ν0lν þ
1

3D1

eR00lμ: ð19Þ

Acceleration in FLRW universe.—It is of interest to
explicitly write down the above acceleration for the back-
ground spacetime describing an expanding universe. In
the FLRW metric, we may use the canonical orthonormal
basis at an arbitrary point p0, and it is easily shown that
Rμ

0ν0 ¼ −ðä=aÞδμν , where aðtÞ is the scale factor and
ä ¼ d2a=dt2. Imposing Einstein equations with energy
density ρ and pressure p gives

ä
a
¼ −4πG

�
ρ

D1

þ p

�
: ð20Þ

We then see that the observers that are “at rest” as dictated
by our coordinates have acceleration

âμ ¼
�
8πG
3

�
ρ

D1

þ p

�
−
1

3
eΛ�lμ

¼ 8πG
3

�
ρm
D1

þ pm

�
lμ −

�
8πG
3

D2

D1

ρDE þ
1

3
eΛ�lμ ð21Þ

where in the second equality we have separated the term
with equation of state: pDE ¼ −ρDE from the other sources
ðρm; pmÞ. Thus, we see that our choice of coordinates based
on a nonflat tangent space yields a natural set of “rest”
observers whose acceleration has a contribution from eΛ.
Classically, none of this seems surprising, but quantum
mechanically, the choice of coordinates does get tied with
the choice of vacuum, and hence, the above result will have
implications for vacuum energy and its interpretation as a
cosmological constant. Needless to say, much more careful
analysis would be needed to elaborate further on this.

B. The surface term in the Einstein-Hilbert action

We have seen above that the rest frame identified by our
coordinates has a contribution to its acceleration which, to
the leading order, is directly proportional to the Ricci tensor
of the model tangent space. It is then natural to look for
similar effects on other observables of interest, particular
the ones which depend on the choice of observers. The
question one is interested in is the following: Do all such

objects and/or observables acquire correction from tan-
gent space geometry?
To address this question, our next choice is to look at the

structure of the Einstein-Hilbert (EH) Lagrangian, since, as
is well known, the only term in the EH Lagrangian that
cannot be set to zero in a frame in which Γa

bcðp0Þ ¼ 0, is
the surface term. More specifically, the EH action has the
structure R

ffiffiffiffiffiffi−gp ¼ ðbulk partÞ þ ∂cð ffiffiffiffiffiffi−gp
PcÞ [11], where

Pc ¼ ð−gÞ−1∂b½ð−gÞgbc�
¼ ffiffiffiffiffiffi

−g
p ½gikΓc

ik − gikΓm
km�: ð22Þ

Although coordinate dependent, Pc can be written in a
covariant but observer-dependent form. This is the reason
why it is of considerable interest in the study of thermo-
dynamics associated with local causal horizons, as its
structure (for a foliation defined by carefully chosen
observers) turns out to have information about the entropy
associated with such horizons. We will now calculate this
term in the local coordinates we have constructed.
From the expression for the inverse metric and the

Christoffel symbols given in Appendix D, it is straightfor-
ward to obtain

gbcΓa
bc ¼

2

3
ηaiRiex̂e þ

1

3D1

ðδaeηbceRbc þ 3ηaieRieÞx̂e

þOðx2Þ; ð23aÞ

gabΓc
bc ¼ −

1

3
ηabRbex̂e þ

1

3D1

ðDþ 2ÞηabeRbex̂e þOðx2Þ

ð23bÞ

where ηab is used to raise and lower the indices (this is valid
at the leading order). Substituting into Eq. (22), we obtain,
to leading order,

Pa ¼
�
ηakRkm þ 1

3D1

ðδamηijeRij −DηakeRkmÞ
�
x̂m

¼
�
Ra

m −
D
3D1

�eRa
m −

1

D
δameR��x̂m: ð24Þ

Remarkably, the contribution from the tangent space comes
as the traceless part of its Ricci tensor, and hence vanishes
identically for maximally symmetric tangent spaces since
for these, eRa

m ¼ ðeR=DÞδam.
Here, then, is an instructive example of an object which

does not depend on the tangent space geometry as long as it
is maximally symmetric. It is unclear as of now whether Pc

vanishes to the next or higher orders as well. If it does, the
mathematical reason behind it would be worth investigating
in detail, given the role of Pc in the thermodynamic aspects
of gravity.
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VI. DISCUSSION AND IMPLICATIONS

The main motivation of this work is simple: RNC, which
serve as a very powerful local probe of spacetime geometry,
are constructed assuming that, at some chosen point p0

(i) gabðp0Þ ¼ ηab, (ii) Γa
bcðp0Þ ¼ 0, and (iii) the geodesics

emanating from p0 are “straight lines” of the Minkowski
spacetime. This last condition essentially requires the
coordinates to be characterized by the exponential map
from T p0

ðMÞ to an open subset U of M, with T p0
ðMÞ

itself having the geometry of Minkowski spacetime. As we
have highlighted in this work, this last condition (iii) is
unrelated to (i) and (ii). We can have (i) and (ii) while
instead choosing the geodesics to be those corresponding to
one of the homogenous geometries—maximally symmetric
space(time)s—of which Minkowski spacetime is the sim-
plest choice. In the presence of the very strong evidence
that we inhabit a universe with a positive cosmological
constant Λ > 0, it may not, however, be the best choice.
While it is a mathematical theorem that a metric on any
differentiable manifold can be expanded about the
Minkowski spacetime, this does not imply, nor is it implied
by, the fact that coordinates be defined based on a flat
tangent space geometry. Since normal coordinates are
based on geodesics from p0, and curvature affects how
geodesics deviate as they move away from p0, geodesic
normal coordinates based on a curved tangent space would
differ from conventional RNC. As we have shown, the
difference is characterized by the Van Vleck determinanteΔðp0; pÞ of the tangent space.
At this point, it is worth emphasizing an important

conceptual point. The eΔðp0; pÞ that appears in our defi-
nition is something that arises upon correctly incorporating
the density of geodesics emanating from a point p0. We
fixed this density using as tangent space a maximally
symmetric geometry fMΛ, and putting for eΔ the expression

corresponding to fMΛ. This is in the spirit of the original
setup of RNC, where one uses the geodesics of the flat

tangent space—the straight lines—to model geodesics in
M. However, as should be clear from our derivations and
expressions, one could instead simply use the eΔ corre-
sponding toM itself without having to refer to a maximally
symmetric tangent space itself—one then simply setseRabcd → Rabcd etc. in all the results. This, incidentally,
would yield a local metric which depends on the Ricci
tensor of M along with the Riemann tensor, and hence, if
field equations are imposed, would carry some information
about the stress tensor that is generically not present in the
conventional metric in RNC (since stress tensor does not
uniquely fix the Riemann tensor). It is at present unclear to
us whether this would be a better interpretation. From a
purely geometrical point of view, our motivation seems to
be extremely close to the one behind Cartan geometry,
where the basic idea is to use a maximally symmetric
tangent space, and the identification of objects at two
different points is then made by rolling this space on the
base manifold without slipping. In this context, it is worth
pointing out that, in presence of torsion, which is an
additional geometrical object present in Cartan’s formu-
lation, the auto parallels will in general be distinct from
curves of extremal length. Since all our results use
covariant Taylor expansions of derivatives of the world
function, torsion will explicitly appear in the expansions
(see Ref. [12]), and thereby, in the final metric. It will
indeed be very interesting to derive these torsion dependent
terms in the metric. This is an elegant generalization of
conventional Riemannian geometry, and it would be worth
exploring Cartan geometry [13,14] using our formalism. It
is also worth pointing out that there has been work along
similar lines on normal coordinates in the context of Finsler
geometry [15,16]. In this context, let us point out an alter-
nate, illuminating way in which our metric, Eq. (12), can be
reexpressed after some straightforward manipulations,
assuming a maximally symmetric tangent space as in
Cartan formulation:

gab ¼ g
0

ab −
1

3
ðRacbd − eRacbdÞx̂cx̂d −

1

6
∇eRacbdx̂cx̂dx̂e þ

�
−

1

20
∇e∇fRacbd

−
2

9
eRm

ebfðRacmd − eRacmdÞ þ
2

45
ðRacmdRm

ebf − eRacmd
eRm

ebfÞ
	
x̂cx̂dx̂ex̂f þOðx5Þ ð25Þ

where g
0

ab ¼ ηab þ eΛð1 − eΛηefx̂ex̂fÞ−1ηacηbdx̂cx̂d is the
maximally symmetric metric in embedding coordinates;
see the discussion in Sec. (IV), and eRabcd its Riemann
tensor. This form of the metric makes it intuitively very
clear that the spacetime geometry described by our metric
uses a maximally symmetric tangent space for its local
approximation, as in Cartan formulation.
Once the coordinate system based on geodesics of a

maximally symmetry tangent space has been appropriately

defined, computing the metric is straightforward, albeit
lengthy. We have presented here the results of such a
computation, highlighting some of the key steps in the
derivation along the way. Once the metric in its final form is
displayed, one can proceed to analyze physical processes,
both classical and quantum, in its background. Since many
important physical observables are observer dependent,
they will also depend on the curvature of the tangent space.
And indeed, the examples we have given already provide
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illuminating insights. We hope further investigations will
shed more light on aspects of local spacetime geometry as
characterized in this work.
Several physical effects can be analyzed in the back-

ground metric that we have derived in this paper, and as
future outlook, we list below a few that should be of
immediate interest:

(i) Coupled curvature terms.—The quartic terms in the
metric contain coupled terms involving product of
curvatures of the background spacetime and the
tangent space, and it would be interesting to study
what new kind of effects such coupled terms can
lead to, since they vanish when either the back-
ground or the tangent space is flat.

(ii) Implications for quantum dynamics.—It is well
known that the Van Vleck determinant appears as
the prefactor in the expression for propagation kernel
of point particle in the WKB approximation (see, for
example, Ref. [4]). Given this fact, and the manner in
which we have defined our local coordinates, the
metric we have obtained seems better suited as a
background for analyzing quantum dynamics. As is
well known, in quantum field theory, the choice of
coordinates, being tied to the choice of an observer, is
crucial since thevacuumstate of the theory depends on
this choice. The Unruh effect is a famous example of
this;while one can analyze this effect completely in the
Minkowski coordinates, theuse ofRindler coordinates
not only facilitates computations, but also brings out
with much better clarity the role of vacuum fluctua-
tions through the structure of the two-point function
expressed in the Rindler coordinates. In a similar vein,
it will be interesting to ask what kind of vacuum is
associated with the coordinates we have defined here.
Itmust bedifferent from theusualMinkowskivacuum,
since the “rest” frames, as we have shown, are
accelerated. We hope to present a more complete
discussion of these aspects in future work.

(iii) Λ as a fundamental constant.—We have already
alluded to the idea that our method provides a
natural way to weave in the cosmological constant
into the very fabric of spacetime, giving it the status
of a fundamental constant [17]. As mentioned in
para 2 above, this is very close in spirit to Cartan
geometry, specifically as applied to the MacDowell-
Mansouri formulation of general relativity [13]. It
will be worth investigating if or how the condition of
rolling without slipping can be understood in terms
of the setup we have described here.
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APPENDIX A: GEOMETRY OF
EQUIGEODESIC SURFACES

In this appendix, we give the induced metric, extrinsic
curvature, and intrinsic Ricci scalar of the equigeodesic
surfaces, which by definition comprises of the set of points p
at a constant geodesic distance from a given point p0. Such
surfaces turn out to be of key significance in characterising
the small scale structure of spacetime, and their geometry has
been discussed in Ref. [9]. However, the expressions we give
below are new, and evaluated in Riemann normal coordi-
nates, which has the following advantage: In covariant
Taylor expansions of bi-tensors with both indices at p,
the coefficients are also evaluated at p, and hence, care must
be taken while differentiating such series expansions.
However, when expressed in RNC, as we do below, the
coefficients are all evaluated at p0, and hence the series
expansions below are more convenient to use.
Let xa denote the standard RNC and uaðp0Þ the nor-

malized tangent vector at the base point; for brevity, we will
focus on the case ηabuaub ¼ −1. Since s2 ¼ −ηabxaxb, and
ua can be parametrized in terms of a boost χ and direction
cosines θA (A ¼ 3…D) as uaðΘμÞ≡ ðcosh χ; sinh χθAÞ,
with Θμ ≡ ðχ; θAÞ. We therefore change coordinates from
xa → ðs;ΘμÞ, with dxa ¼ uaðΘμÞdsþ sΛa

μdΘμ, where
Λa
μ ≡ ∂ua=∂Θμ. It is now straightforward to substitute this

into the lineelement corresponding toRNC,put s ¼ constant,
and thereby read off the induced metric on the equigeodesic
surface. The final form of the induced metric turns out to be

hμν ¼ h̄μν −
1

3
s4Eμν −

1

6
s5Ωμν þOðs6Þ ðA1Þ

where h̄μν ¼ s2ηabΛa
μΛb

ν is the induced metric on the
equigeodesic surface of Minkowski space, Eμν ¼
RacbdΛa

μΛb
νucud, and Ωμν ¼ Racbd;eΛa

μΛb
νucudue.

Further, it is easy to show that the metric in RNC, when
expressed in ðs;ΘμÞ coordinates, yields a metric in the
ADM form with N ¼ 1; Nμ ¼ 0 [1]. The extrinsic curva-
ture for the equigeodesic is therefore Kμν ¼ ∂hμν=∂s, and
using the above expansion for hμν, yields

Kμν ¼
1

s
h̄μν −

2

3
s3Eμν −

5

12
s4Ωμν þOðs5Þ; ðA2Þ

Kμ
ν ¼

1

s
δμν −

1

3
sEμ

ν −
1

4
s2Ωμ

ν þOðs3Þ: ðA3Þ

Note that the expansions above are slightly different from
the ones in Ref. [9], precisely because the coefficients in
Ref. [9] are evaluated at p, while here we have all the
coefficients evaluated at p0. This distinction is subtle and
important, particularly when one is dealing with expansions
of tensors, and the expansions in RNC might be more
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convenient to use. For the sake of completeness, we also
quote the intrinsic Ricci scalar of the equigeodesic surfaces

RΣ ¼ −
D1D2

s2
þ Rþ 2ðDþ 1Þ

3
Rabuaub þOðsÞ ðA4Þ

with all coefficients on the right evaluated at p0.

APPENDIX B: DERIVATION OF EQ. (B3)

We essentially need to compute the determinant of thematrix

Da0b ¼ s0Ca0b þ εua0ub ðB1Þ

where Ca0b is noninvertible, since it has a zero eigenvalue. To do
this, we can use thematrix determinant lemma, but we sketch a
derivation which naturally yields a relation between scalarized
determinants, rather than a relation between tensor densities.
The computation goes as follows:
Let ei

0
a0 and e

i
a be tetrads at p0 and p, such that eið0Þ ¼ ui,

u0eiðμÞ ¼ 0, and gabeaðμÞe
b
ðνÞ ¼ hμν, with similar conditions

imposed on tetrads at p0. Therefore, the metric in this frame
looks like

gab ¼
�
ε 0

0 hμν

�
ðB2Þ

from which we immediately obtain det½gij� det½eia�2 ¼
ε det½hμν�. That is,

det½eia� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε det½hμν�
det½gij�

s
:

We therefore have

det½Da0b� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det½h0μν�j
− det½g0ij�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det½hμν�j
− det½gij�

s
det½Di0j�

¼ sD−1
0 det½Cμ0ν�

which, when rearranged, gives a relation between scalar
quantities

det½Da0b�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijg0ðp0Þj
p ffiffiffiffiffiffiffiffiffiffiffiffijgðpÞjp|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Δðp0;pÞ

¼ sD−1
0 det½Cμ0ν�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijh0ðp0Þj

p ffiffiffiffiffiffiffiffiffiffiffiffijhðpÞjp ðB3Þ

where the right-hand side has now been expressed in
arbitrary coordinates on the (D − 1) surfaces orthogonal
to ui, ui

0
. As indicated, the left-hand side defines the so-

called Van Vleck bi-scalar Δðp0; pÞ.

APPENDIX C: DERIVATION OF METRIC
IN EQ. (12)

We give below the series expansion for various bi-
tensors used in the text (see Ref [8]):

σa
0

b ¼ −gb0b
�
δa

0
b0 þ

1

6
Ra0

c0b0d0σ
c0σd

0 −
1

12
Ra0

c0b0d0;e0σ
c0σd

0
σe

0 þ
�
1

40
Ra0

c0b0d0;e0f0 −
7

360
Ra0
c0l0d0R

l0
e0b0f0

�
σc

0
σd

0
σe

0
σf

0 þOðx5Þ
�
;

Δ ¼ 1þ 1

6
Ra0b0σ

a0σb
0 −

1

12
Ra0b0;c0σ

a0σb
0
σc

0 þ
�
1

40
Ra0b0;c0d0 þ

1

180
Rl0

a0m0b0Rm0
c0l0d0 þ

1

72
Ra0bRc0d0

�
σa

0
σb

0
σc

0
σd

0 þOðx5Þ;

Δp ¼ 1þ p
6
Ra0b0σ

a0σb
0 −

p
12

Ra0b0;c0σ
a0σb

0
σc

0 þ
�
p
40

Ra0b0;c0d0 þ
p
180

Rl0
a0m0b0Rm0

c0l0d0 þ
p2

72
Ra0bRc0d0

�
σa

0
σb

0
σc

0
σd

0 þOðx5Þ;

lnΔ ¼ 1

6
Ra0b0σ

a0σb
0 −

1

12
Ra0b0;c0σ

a0σb
0
σc

0 þ
�
1

40
Ra0b0;c0d0 þ

1

180
Rl0

a0m0b0Rm0
c0l0d0

�
σa

0
σb

0
σc

0
σd

0 þOðx5Þ ðC1Þ

where gb
0
b ≡ eb

0
a eab is the parallel propagator and p is an integer.

Using the transformation law given in Eq. (11), the Riemann tensor transforms as Ra0
c0b0d0 ¼ Ra

cbdea
0

a ecc0e
b
b0e

d
d0 .

Substitute this transformation into the expansion and using it to the result of Eq. (10), the variation in the local coordinates
become

dx̂a ¼
��

1 −
eΔ2=D1

6D1

eRcdx̂cx̂d þ
eΔ3=D1

12D1

eRcd;ex̂cx̂dx̂e −
eΔ4=D1

D1

�
1

40
eRcd;ef þ

1

180
eRl

cmd
eRm

elf −
1

72D1

eRcd
eRef

�
x̂cx̂dx̂ex̂f

�
×

�
δar þ

eΔ2=D1

6
Ra

crdx̂cx̂d −
eΔ3=D1

12
Ra

crd;ex̂cx̂dx̂e þ
�
1

40
Ra

crd;ef þ
7

360
Ra

cidRi
erf

�
x̂cx̂dx̂ex̂feΔ4=D1

�
erb

−
x̂a

D1

∂b lnðeΔÞ þOðx5Þ
	
dxb: ðC2Þ
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The last term which contains the derivative of lnðeΔÞ needs to be expanded. The expansion coefficients themselves
depend on eΔ since our definition of coordinates involve eΔ, and hence one must deal with the Taylor expansion
recursively to obtain the result at required order. This is perhaps the only part in the derivation which requires careful
handling.
To the fourth order the variation becomes

dx̂a ¼
�
δar þ

�
1

6
Ra

crd −
δad
3D1

eRrc −
δar
6D1

eRcd

�
x̂cx̂d þ

�
1

12
Ra

crd;e þ
δar

12D1

eRcd;e −
δae
4D1

eRcd;r

�
x̂cx̂dx̂e

þ
�
1

40
Ra

crd;ef þ
7

360
Ra

cldRl
erf þ

1

36D1

Ra
crd

eRef −
δaf
6D1

Rl
crd

eRle −
δar

40D1

eRcd;ef −
δaf

10D1

eRcd;er

−
δar

24D2
1

eRcd
eRef −

δaf
18D2

1

eRcr
eRed −

δar
180D1

eRl
cmd

eRm
elf −

δaf
45D1

eRl
cmd

eRm
elr

�
x̂cx̂dx̂ex̂f þOðx5Þ

	
eradxa: ðC3Þ

This expansion is inverted to find the line element in the local coordinates as

eaadxa ¼
�
δar þ

�
−
1

6
Ra

crd þ
δad
3D1

eRrc þ
δar
6D1

eRcd

�
x̂cx̂d þ

�
−

1

12
Ra

crd;e −
δar

12D1

eRcd;e þ
δae
4D1

eRcd;r

�
x̂cx̂dx̂e

þ
�
−

1

40
Ra

crd;ef −
7

360
Ra

cldRl
erf −

1

36D1

Ra
crd

eRef þ
δaf
6D1

Rl
crd

eRle þ
δar

40D1

eRcd;ef þ
δaf

10D1

eRcd;er

þ δar
24D2

1

eRcd
eRef þ

δaf
18D2

1

eRcr
eRed þ

δar
180D1

eRl
cmd

eRm
elf þ

δaf
45D1

eRl
cmd

eRm
elr þ

1

36
Ra

cldRl
erf −

1

18D1

Ra
cfd

eRer

−
1

36D1

Ra
crd

eRef −
δad

18D1

Rl
erf
eRcl þ

δad
9D2

1

eRcf
eRer þ

δad
18D2

1

eRcr
eRef −

1

36D1

Ra
erf
eRcd þ

δaf
18D2

1

eRcd
eRer

þ δar
36D2

1

eRcd
eRef

�
x̂cx̂dx̂ex̂f þOðx5Þ

	
dx̂a: ðC4Þ

The line element is evaluated using the definition, ds2 ¼ ηabeaaebbdx
adxb and we have

dσ2 ¼
�
ηrs þ

�
−
ηas
3

Ra
crd þ

ηrs
3D1

eRcd þ
ηds
3D1

eRcr þ
ηrd
3D1

eRcs

�
x̂cx̂d þ

�
−
ηas
6

Ra
crd;e −

ηrs
6D1

eRcd;e þ
ηes
4D1

eRcd;r

þ ηre
4D1

eRcd;s

�
x̂cx̂dx̂e þ

�
−
ηas
20

Ra
crd;ef þ

2ηas
45

Ra
cldRl

erf −
2ηas
9D1

Ra
crd

eRef þ
ηfs
9D1

Rl
crd

eRle þ
ηrf
9D1

Rl
csd

eRle

þ ηrs
20D1

eRcd;ef þ
ηfs

10D1

eRcd;er þ
ηrf

10D1

eRcd;es þ
ηrs
6D2

1

eRcd
eRef þ

ηfs
3D2

1

eRcd
eRer þ

ηrf
3D2

1

eRcd
eRes þ

ηdf
9D2

1

eRcr
eRes

þ ηrs
90D1

eRl
cmd

eRm
elf þ

ηfs
45D1

eRl
cmd

eRm
elr þ

ηrf
45D1

eRl
cmd

eRm
els

�
x̂cx̂dx̂ex̂f þOðx5Þ

	
dx̂rdx̂s: ðC5Þ

Finally we arrive at the metric to quartic order for an arbitrary tangent space as given in Eq. (12).

APPENDIX D: INVERSE METRIC, DETERMINANT, AND CHRISTOFFEL SYMBOLS

Let the form of the inverse metric be,

gab ¼ ηab þ Fabcdx̂cx̂d þ Gab
cdex̂cx̂dx̂e þ Hab

cdefx̂cx̂dx̂ex̂f þOðx5Þ; ðD1Þ

where the tensor coefficients Fabcd, Gab
cde, and Hab

cdef need to be found. These coefficients can be calculated by using the
identity gabgcb ¼ δca and demanding that all the higher order terms in the expansion of this contraction will be zero in every
order so that only the η part will contribute to Kronecker delta. The inverse metric is given by
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gab ¼ ηab þ 1

3

�
ηalRb

cld −
1

D1

ηabeRcd −
1

D1

δbdη
aleRlc −

1

D1

δadη
bleRlc

�
x̂cx̂d þ

�
1

6
ηalRb

cld;e þ
1

6D1

ηabeRcd;e

−
1

4D1

δbeη
aleRcd;l −

1

4D1

δaeη
bleRcd;l

�
x̂cx̂dx̂e þ

�
1

20
ηaiRb

cid;ef þ
1

15
ηaiRb

cldRl
eif −

2

9D1

δbf η
aiRl

cid
eRle

−
1

9D1

δaf η
lmRb

cld
eRem −

1

9D1

δaf η
bmRl

cmd
eRle −

1

20D1

ηabeRcd;ef −
1

10D1

δbf η
aleRcd;el −

1

10D1

δaf η
bleRcd;el

−
1

18D2
1

ηabeRcd
eRef −

1

9D2
1

δbf δ
a
cη

lmeRdm
eRel −

1

90D1

ηabeRl
cmd

eRm
elf −

1

45D1

δbf η
aieRl

cmd
eRm

eli

−
1

45D1

δaf η
bieRl

cmd
eRm

eli

�
x̂cx̂dx̂ex̂f þOðx5Þ: ðD2Þ

The determinant of the metric can be evaluated by considering the metric in the form gab ¼ ηaiðδib þ ξηijAjbÞ, where I is
δib and Ajb is the expansion terms. The determinant of the metric detðgabÞ ¼ detðηaiÞ det ðδib þ ξηijAjbÞ, and determinant of
the second term can be related to the trace of ηijAjb by

detðI þ ξAÞ ¼ 1þ ξTrAþ ξ2

2
ððTrAÞ2 − TrA2Þ þOðξ3Þ: ðD3Þ

Trace of the expansion terms of the metric is found by contracting with δbi . The determinant is then given by

−g ¼ 1 −
1

3

�
Rcd −

Dþ 2

D − 1
eRcd

�
x̂cx̂d −

1

6

�
Rcd;e þ

D − 3

D − 1
eRcd;e

�
x̂cx̂dx̂e þOðx4Þ: ðD4Þ

The Christoffel symbols, to leading order, are given by

Γa
bc ¼

1

3

�
ðRa

bec þ Ra
cebÞ þ

1

D1

ðδabeRce þ δaceRbe þ δaeeRbcÞ
	
x̂e þOðx4Þ: ðD5Þ
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