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We study the gravitational field of ultrarelativistic spinning objects (gyratons) in a modified gravity
theory with higher derivatives. In particular, we focus on a special class of such theories with an infinite
number of derivatives known as “ghost-free gravity” that include a nonlocal form factor such as
expð−□l2Þ, where l is the scale of nonlocality. First, we obtain solutions of the linearized ghost-free
equations for stationary spinning objects. To obtain gyraton solutions we boost these metrics and take their
Penrose limit. This approach allows us to perform calculations for any number of spacetime dimensions.
All solutions are regular at the gyraton axis. In four dimensions, when the scale nonlocality l tends to zero,
the obtained gyraton solutions correctly reproduce the Aichelburg–Sexl metric and its generalization to
spinning sources found earlier by Bonnor. We also study the properties of the obtained four-dimensional
and higher-dimensional ghost-free gyraton metrics and briefly discuss their possible applications.
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I. INTRODUCTION

The study of the gravitational field of ultrarelativistic
particles and beams of light is a very old subject. The first
solution describing the gravitational field of beam of light
(“pencil”) was found by Tolman, Ehrenfest and Podolski in
1931 [1]. These authors used a linear approximation of the
Einstein equations. One of their main conclusions was that
the gravitational force acting on a massless particle moving
in the same direction as the beam of light vanishes. Later,
Bonnor [2] presented a solution for the gravitational field
produced by a cylindrical beam of a null fluid. This model
can be interpreted as a description of a high frequency light
beam in the geometric optics approximation when diffrac-
tion effects are neglected.1 The gravitational field of a
spinning pencil of light was obtained by Bonnor in 1970
[4], see also Refs. [5,6]. Higher-dimensional solutions
describing the gravitational field of spinning ultrarelativ-
istic objects and light beams were obtained in [7,8]. The
latter work introduced the name “gyraton” for such spin-
ning ultrarelativistic objects, which is now used in the
literature quite frequently. There exist different generaliza-
tions of standard gyraton solutions, such as solutions for
charged gyratons [9], gyratons in asymptotically AdS
spacetimes [10], in a generalized Melvin universe with
cosmological constant [11], and string gyratons in super-
gravity [12]. Gyraton solutions of the Einstein equations
belong to the wide class of so-called Kundt metrics [13]. A

comprehensive discussion of gyratons in the Robinson–
Trautman and Kundt classes of metrics can be found in
[14–17].
There is another problem that has been widely discussed

in the literature and which is closely related to gyratons. In
1970, Aichelburg and Sexl [18] constructed a metric of a
massive ultrarelativistic particle. In its rest frame, the
gravitational field of such a particle of mass m is described
by the Schwarschild metric. In order to obtain the metric
when this particle moves with a very high velocity they
applied a boost transformation and considered the limit
wherein the velocity of the object tends to the speed of
light, and hence the Lorentz factor γ diverges. They
demonstrated that keeping the value of the energy E ¼
γm fixed yields a limiting metric which is now called the
Aichelburg–Sexl solution. For this solution the gravita-
tional field of a particle is localized at the null plane tangent
to the null vector of the particle’s four-velocity. Later,
Penrose [19] demonstrated that this is a generic property of
any metric that is boosted to the speed of light, provided the
corresponding energy is kept fixed, and this special limiting
case has hence been dubbed “Penrose limit.” Aichelburg–
Sexl-type metrics have been widely used for the study of
the gravitational interaction of two ultrarelativistic particles
as well as black hole production via their collision. The area
of the apparent horizon in this process just before the
moment of collision was calculated in [20] and has been
widely used for estimating black hole formation cross
sections in the collision of ultrarelativistic particles (see,
e.g., [21–25] and references therein).
Since in the Penrose limit the initial mass m of the

particle tends to zero, one can obtain the Aichelburg–Sexl
metric by starting with a linearized, weak-field gravity
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solution for a pointlike particle. By considering a super-
position off such solutions it is easy to construct the
gravitational field of extended objects in linearized gravity.
In particular, one may consider first a line distribution of
mass, and then boost the solution. Due to the Lorentz
contraction in the direction of motion the visible size of the
body in this direction shrinks. This means that in order to
obtain a solution for the ultrarelativistic case featuring a
finite energy distribution profile one needs not only to take
the Penrose limit keeping γm constant, but also simulta-
neously keep the parameter L=γ fixed, where L is the size
of the object in the direction of motion. Such a procedure
can be applied to a spinning object provided the rotation
takes place within the plane orthogonal to the direction of
motion. One can show that in such a procedure one
reconstructs the gravitational field of a gyraton. This
method is described in details in chapter 5 of the book [26].
The goal of this paper is to construct gyratonlike

solutions in so-called “ghost-free” gravity. This is an
important special class of modified gravity theories that
introduces nonlocality by means of nonlocal form factors of
the type exp½ð−□l2ÞN �. This modification becomes rel-
evant only at small scales comparable to l, and hence this
type of theories can be considered an ultraviolet (UV)
modification of gravity. To that end, the main motivation
for this study is that a small scale modification of gravity
might become important for the process of mini black hole
formation in the collision of ultrarelativistic particles. For
example, it was shown that if the Einstein–Hilbert action is
modified by the inclusion of higher-derivative as well as
infinite-derivative terms, there exists a mass gap for black
hole formation [27–30].
While nonlocality has been explored for quite some time

[31–39], the particular class studied here is motivated from
string theory [40–43] as well as noncommutative geometry
[44]. These nonlocal theories of gravity have appealing UV
properties [45,46] and are under active investigation. It has
been demonstrated that in the weak-field regime this class
of theories regularizes the gravitational field of pointlike
sources [47–50] as well as thin branelike extended objects
[51–53]. For results in the strong-field regime in connection
with black holes we refer to [54–58] and references therein;
for cosmological applications see [59,60]. Nonlocal infin-
ite-derivative form factors have also been explored in
quantum theory [61,62] as well as quantum field theory
[63–69].
This paper is organized as follows: we begin by discus-

sing the solutions of the modified gravity equations in the
weak-field approximation. In Sec. II we consider a wide
class of theories for which the linearized action is quadratic
in curvature and contains an arbitrary number of deriva-
tives. General analysis of such theories shows that their
action can be rewritten in a form which contains two scalar
functions of the d’Alembert operator, where an additional
requirement of the absence of scalar modes establishes a

relation between these functions [70]. We obtain a general
solution of the field equations for a stationary distribution
of spinning matter in four and higher dimensions, paying
special attention to extended pencil-type distribution of
spinning matter. In Sec. III we apply the boost trans-
formation to these pencil-like distributions of matter
choosing the velocity being directed along the pencil axis.
After this, we obtain the Penrose limit for the boosted
metrics and find the gravitational field of ultrarelativistic
extended spinning objects (gyratons) in four and higher
dimensions. The explicit form of these metrics and their
properties are discussed in Sec. IV. We summarize our
findings and mention possible future applications of these
solutions in Sec. V.

II. SPINNING OBJECTS IN THE WEAK-FIELD
APPROXIMATION OF INFINITE-DERIVATIVE

GRAVITY

A. Linearized equations

Our goal is to obtain the metric for an ultrarelativistic
spinning object (gyraton) in infinite-derivative gravity. The
method of solving the problem is the following. First one
finds a solution of the gravitational field equations in the
object’s rest frame. Then one transforms this solution to a
new reference frame moving with a constant velocity vwith
respect to the original one. Finally, one takes the limit v →

1 while keeping the energy E ¼ mγ ¼ m=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
fixed.

In this Penrose limit the original mass m of the object
effectively approaches zero, which implies that in order to
obtain the corresponding gyraton metric one may start with
a solution with very small mass m. One can expect that
higher-order curvature corrections—which are proportional
to second and higher orders in the mass m—are therefore
small. In this section we will discuss the field equations of
linearized infinite-derivative gravity and present their
solutions for an extended, slowly spinning object of
small mass.
We denote by Xμ ¼ ðt; xαÞ Cartesian coordinates in

(dþ 1)-dimensional Minkowski spacetime and use indices
α; β;… ¼ 1; 2;…; d from the beginning of the Greek
alphabet to label spatial coordinates. The Minkowski
metric in the D ¼ dþ 1 dimensional spacetime is

ds20 ¼ ημνdXμdXν ¼ −dt2 þ δαβdxαdxβ; ð1Þ

where δαβ denotes the flat d-dimensional metric. We denote
by hμν a small deviation of the metric from the flat
background,

gμν ¼ ημν þ hμν: ð2Þ

One can show that the most general linearized action in a
Lorentz invariant theory with an arbitrary number of
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derivatives and quadratic in the perturbation hμν can be
written in the form [70]

S ¼ 1

2κ

Z
dDx

�
1

2
hμνað□Þ□hμν − hμνað□Þ∂μ∂αhαν

þ hμνcð□Þ∂μ∂νh −
1

2
hcð□Þ□h

þ 1

2
hμν

að□Þ − cð□Þ
□

∂μ∂ν∂α∂βhαβ
�
; ð3Þ

where □ is the d’Alembert operator of Minkowski space,
□ ¼ ημν∂μ∂ν. The functions að□Þ and cð□Þ can be chosen
freely to parametrize different Lorentz-invariant modifica-
tions of gravity, subject only to the constraint

að0Þ ¼ cð0Þ ¼ 1 ð4Þ

which guarantees the proper Newtonian limit; see also the
related discussions in Refs. [68,70]. In the case of að□Þ ¼
cð□Þ ¼ 1 one recovers the Fierz–Pauli action and linear-
ized General Relativity.
The field equations corresponding to the action (3) are

að□Þ½□hμν − ∂σð∂νhμσ þ ∂μhνσÞ�
þ cð□Þ½ημνð∂ρ∂σhρσ −□hÞ þ ∂μ∂νh�

þ að□Þ − cð□Þ
□

∂μ∂ν∂ρ∂σhρσ ¼ −2κTμν; ð5Þ

where Tμν is the energy-momentum tensor of matter, and
h ¼ ηαβhαβ denotes the trace of hμν. From now on we shall
restrict ourselves to the case of

cð□Þ ¼ að□Þ: ð6Þ

This condition guarantees that no extra scalar modes are
present in the theory [70]. We denote

ĥμν ¼ hμν −
1

2
hημν: ð7Þ

The inverse transformation is

hμν ¼ ĥμν −
1

d − 1
ĥημν: ð8Þ

We also impose the gauge conditions ∂μĥ
μν ¼ 0. Then,

Eq. (5) simplifies greatly and takes the form

að□Þ□ĥμν ¼ −2κTμν: ð9Þ

The conservation law ∂μTμν ¼ 0 implies that the imposed
gauge conditions are consistent.

B. Stationary solutions for extended sources

We assume that Tμν does not depend on time. For a
stationary metric generated by such a stress-energy tensor
the □-operator reduces to the d-dimensional Laplace
operator △ ¼ δαβ∂α∂β. We denote

D ¼ að△Þ△: ð10Þ

Then, we can solve the field equations (9) by using the
static Green function

DGdðx; x0Þ ¼ −δðdÞðx − x0Þ: ð11Þ

The solution then takes the form

ĥμνðxÞ ¼ 2κ

Z
ddyGdðx − yÞTμνðyÞ: ð12Þ

The expression for the perturbation of the metric hμν can be
found from (12) by using relation (8). For the stress-energy
tensor (A1) given in the Appendix one has

Tμν ¼ ρðxÞδtμδtν þ δtðμδ
α
νÞ

∂
∂xβ jα

βðxÞ: ð13Þ

A solution hμν of the field equations (9) for this source can
be written as follows:

h ¼ hμνdXμdXν;

h ¼ ϕ

�
dt2 þ 1

d − 2
δαβdxαdxβ

�
þ 2Aαdxαdt; ð14Þ

ϕðxÞ ¼ 2κ
d − 2

d − 1

Z
ddyρðyÞGdðx − yÞ; ð15Þ

AαðxÞ ¼ κ

Z
ddyjαβðyÞ

∂Gdðx − yÞ
∂xβ : ð16Þ

Due to the translational symmetry of Eq. (11), the Green
function Gdðx; x0Þ is a function of x − x0, while due to the
spherical symmetry it depends on the radius variable
r ¼ jx − x0j alone. Thus one has2

Gdðx − x0Þ ¼ GdðrÞ: ð17Þ

As has been shown previously [51], the Green function in
dþ 2 spatial dimensions is related to the Green function in
d spatial dimensions via the recursion formulas

2In order to keep the notation somewhat manageable we shall
use the same symbol for the Green function with vectorial
arguments GdðxÞ and with the scalar radius argument GdðrÞ.
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GdðrÞ ¼ −2π
Z

dr̃ r̃Gdþ2ðr̃Þ; ð18Þ

Gdþ2ðrÞ ¼ −
1

2πr
∂GdðrÞ
∂r : ð19Þ

Using this relation one can rewrite (16) in the form

AαðxÞ ¼ −2πκ
Z

ddyjαβðyÞðxβ − yβÞGdþ2ðx − yÞ: ð20Þ

For calculations it is convenient to use the following
representation of the static Green function given in [29],

GdðrÞ ¼
1

ð2πÞd2rd−2
Z

∞

0

dζ
ζ
d−4
2

að−ζ2=r2Þ Jd
2
−1ðζÞ;

r2 ¼ jx − x0j2; d ≥ 3: ð21Þ

Last, let us mention that in the limit r → ∞ the above
representation (21) gives

GdðrÞ ∼ GdðrÞ as r → ∞;

GdðrÞ ¼
1

ð2πÞd2rd−2 limϵ→0

Z
∞

0

dζζ
d−4
2 e−ϵζJd

2
−1ðζÞ

¼ Γðd
2
− 1Þ

4π
d
2

1

rd−2
: ð22Þ

In the above we have made use of the constraint (4).3 GdðrÞ
is the static Green function of linearized General Relativity
[71] in d spatial dimensions, which guarantees that for
isolated sources in the far field regime one reproduces the
standard asymptotics of General Relativity.

C. Point particles

The stress-energy of a pointlike spinning particle can be
written in the form

Tμν ¼ δtμδ
t
νmδðdÞðxÞ þ δtðμδ

α
νÞjα

β ∂
∂xβ δ

ðdÞðxÞ; ð23Þ

where m is the mass of the particle and jαβ is a constant
antisymmetric matrix parametrizing its angular momentum.
A solution for the perturbed metric (14)–(16) for such a
source takes the form4

ϕðrÞ ¼ 2κ
d − 2

d − 1
mGdðrÞ;

AαðxÞ ¼ −2πκjαβxβGdþ2ðrÞ: ð24Þ

At large distances one recovers the standard expressions
known from linearized General Relativity [71]:

ϕðrÞ ∼ Γðd
2
Þ

ðd − 1Þπd
2

κm
rd−2

; ð25Þ

AαðxÞ ∼ −
Γðd

2
Þ

2π
d
2

κjαβxβ

rd
: ð26Þ

We choose the sign of Aα such that in the three-dimensional
case d ¼ 3 one obtains the standard Lense–Thirring ex-
pression (jxy ¼ j and κ ¼ 8πG)

AαðxÞdxα ∼
2Gj
r3

ðxdy − ydxÞ ¼ 2Gj
r

sin2θdφ: ð27Þ

D. Extended objects: pencils

In order to simplify our presentation further, let us
consider a special type of spinning objects. That is, we
assume that it has finite extension in one spatial directions,
while its transverse size is zero. We call such an object a
thin spinning pencil or simply “pencil.”

1. Coordinates

Let us consider two frames. The first one is frame S̄
where the matter creating the gravitational field is at rest.
The second frame S moves with a constant velocity β with
respect to S̄. We adapt now the choice of the coordinates
which is convenient for this situation. Let ξ be a coordinate
along the vector of velocity of S and denote by x⊥ the d − 1
coordinates orthogonal to the ξ-direction. To distinguish the
rest frame coordinates from the coordinates in the boosted
frame we use a bar for the rest frame coordinates and write

Xμ ¼ ðt; ξ; xi⊥Þ; X̄μ ¼ ðt̄; ξ̄; xi⊥Þ: ð28Þ

The index i ¼ 1; 2;…; d − 1 enumerates the coordinates
transverse to the direction of motion. We omit the bar for
the coordinates xi⊥ since the Lorentz transformation for the
motion in ξ-direction does not affect their values. The
background Minkowski metric is

ds20 ¼ −dt̄2 þ dξ̄2 þ dx2⊥ ¼ −dt2 þ dξ2 þ dx2⊥: ð29Þ

Here, ðt̄; ξ̄Þ are coordinates in the rest frame S̄ and ðt; ξÞ are
the corresponding coordinates in the moving frame S. In
what follows, we denote all quantities defined with respect
to the rest frame S̄ with a bar. For example, the radial
distance from the origin to a point ðξ̄; xi⊥Þ is r̄2 ¼ ξ̄2 þ x2⊥.

3Note that the ϵ-regularization is only required for d ≥ 5. If one
instead calculates the full expression (21) for a given choice of the
function að□Þ, see a detailed description in Appendix C, this
regularization is not required, and one may simply take the limit
l → 0 to recover (22).

4In four-dimensional spacetime, this solution can be used to
obtain a metric for a spinning ring discussed in [72].
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Let us specify the (d − 1) coordinates xj⊥ orthogonal to the
ξ̄-direction further:

xj⊥ ¼ ðya; ŷa; ϵzÞ; a ¼ 1;…; n;

n ¼
�
d − 1

2

�
; d ¼ 2nþ 1þ ϵ: ð30Þ

One can say that the (d − 1)-dimensional “transverse
space” orthogonal to the ξ-axis is spanned by n mutually
orthogonal two-planes Πa, and ðya; ŷaÞ are right-handed
coordinates in these planes. We shall refer to these planes as
Darboux planes. If the number of spacetime dimensions
dþ 1 is odd one has ϵ ¼ 1 and besides these two-planes
there exists an additional one-dimensional z-axis which is
orthogonal to each of the planes as well as to ξ-axis. In even
spacetime dimensions there is no such additional z coor-
dinate: for example, in four spacetime dimensions there
exists only one two-plane orthogonal to the ξ-direction. We
denote by eðaÞ ¼ ∂ya and êðaÞ ¼ ∂ ŷa unit vectors along the
ya-axis and ŷa-axis, respectively. The 1-forms dual to these
vectors are ωðaÞ ¼ dya and ω̂ðaÞ ¼ dŷa such that the
volume 2-form for each Darboux plane Πa is given
by ϵðaÞ ¼ ωðaÞ ∧ ω̂ðaÞ.

2. Gravitational field

The stress-energy tensor of a thin spinning pencil is

Tμν ¼
�
δt̄μδ

t̄
νλ̄ðξ̄Þ þ

Xn
a¼1

ðj̄aðξ̄Þδt̄ðμϵðaÞjνÞ ∂jÞ
�
δðd−1Þðx⊥Þ: ð31Þ

We assume that this object has a finite length in ξ̄, such that
both λ̄ðξ̄Þ and jaðξ̄Þ vanish when ξ̄ is outside some interval
ð0; L̄Þ. We call L̄ the length of the pencil. The mass and the
angular momentum of such a pencil are

m̄ ¼
Z

dξ̄ λ̄ðξ̄Þ; ð32Þ

J̄ij ¼
Z

dξ̄j̄ijðξ̄Þ; ð33Þ

j̄ijðξ̄Þ ¼
Xn
a¼1

ϵðaÞij j̄aðξ̄Þ; ð34Þ

see also Appendix A. The quantities λ̄ðξ̄Þ and j̄ijðξ̄Þ are the
mass and angular momentum line densities, respectively.
They describe the distribution of the mass and angular
momentum along the pencil. In what follows we chose both
the total angular momentum J̄ij and its density j̄ijðξ̄Þ to be
orthogonal to the ξ̄-direction. Consequently, they have
identical Darboux two-planes Πa such that the antisym-
metric matrix j̄ijðξ̄Þ is of the form

j̄ ¼̂

0
BBBBBBBBBBBBBBB@

0 j̄1 … 0

−j̄1 0

0 j̄2
−j̄2 0

..

. . .
.

0 j̄n
−j̄n 0

0 0

1
CCCCCCCCCCCCCCCA

: ð35Þ

In the above, the j̄a are functions of ξ̄ alone. By con-
struction, the total angular momentum J̄ij has a similar
Darboux form.
The gravitational field hμν of a thin spinning pencil is

h ¼ ϕ̄

�
dt2 þ 1

d − 2
ðdξ̄2 þ dx2⊥Þ

�
þ 2Āidxi⊥dt; ð36Þ

ϕ̄ðξ̄; xi⊥Þ ¼ 2κ
d − 2

d − 1

Z
dξ̄0λ̄ðξ̄0ÞGdðr̄Þ; ð37Þ

Āiðξ̄; xi⊥Þ ¼ −2πκ
Z

dξ̄0j̄ijðξ̄0Þxj⊥Gdþ2ðr̄Þ; ð38Þ

where we defined the auxiliary expression

r̄2 ¼ ðξ̄ − ξ̄0Þ2 þ δijxi⊥x
j
⊥: ð39Þ

For time-independent objects that are extended also in the
transverse direction orthogonal to ξ̄ one may use a similar
method to construct their gravitational field. Then, how-
ever, the energy-momentum (31) no longer factorizes in a
ξ̄-part and a transverse part, but Eq. (12) still applies.

III. ULTRARELATIVISTIC OBJECTS: GYRATONS

Now that we have found the gravitational field of a thin
pencil in the weak-field limit for any number of dimensions
in a wide range of infinite-derivative theories, let us address
the ultrarelativistic case arising from performing a boost in
the ξ̄-direction.
In particular, we shall be interested in the so-called

Penrose limit. This limit consists of (i) boosting a stationary
solution to velocity β, and then (ii) taking the limit β → 1
while keeping the product m̄γ fixed, where

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p ð40Þ

is the Lorentz factor, and the mass m̄ is given by (32).
Moreover, we shall also assume that L̄=γ remains constant
during the boost. In this limit the object becomes
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asymptotically null, and the gravitational fields of these
ultrarelativistic objects are called gyraton fields.

A. Green function representation

Before performing the boost, and, subsequently, the
Penrose limit, let us briefly mention a useful representation
of the static Green function GdðrÞ given by

GdðrÞ ¼
1

2π

Z
∞

−∞

dη
að−ηl2Þη

Z
∞

−∞
dτ KdðrjτÞeiητ; ð41Þ

KdðrjτÞ ¼
1

ð4πiτÞd2 e
ir
2

4τ : ð42Þ

The function KdðrjτÞ is the d-dimensional heat kernel in
imaginary time τ ¼ −it and therefore satisfies

△KdðrjτÞ ¼ −i∂τKdðrjτÞ; ð43Þ

lim
τ→0

KdðrjτÞ ¼ δðdÞðrÞ: ð44Þ

The derivation of the representation (41) for the static
Green function is given in Appendix B. The following
property makes this representation very useful for the study
of the Penrose limit of solutions: Relation (41) expresses
the Green function Gdðr̄Þ as a double Fourier transform,
wherein the radius r̄ enters only quadratically via the
exponential function ∼ exp½ir̄2=ð4τÞ�. Since r̄2 ¼ ξ̄2þ
x2⊥, this exponent can be factorized, which in turn allows
one to separate the dependence of the integrand on ξ̄ as
∼ exp½iξ̄2=ð4τÞ�. Hence, when applying the boost, only this
factor is affected. As we shall demonstrate now, this
observation allows us to perform the Penrose limit pro-
cedure in a very general and convenient form.

B. Penrose limit

We now apply the Penrose limit to our previously
described linearized potentials of a spinning “pencil.”
We parametrize the boost in the ξ̄-direction via

t̄ ¼ γðt − βξÞ; ξ̄ ¼ γðξ − βtÞ: ð45Þ

Let us first make a simple remark concerning the scaling
properties of the pencil characteristics under a boost
transformation (45). We assume that both mass and angular
momentum are uniformly distributed along the pencil and
their densities in the rest S̄ frame, λ̄ ¼ m̄=L̄ and j̄ ¼ J̄=L̄
are constant. Because of the Lorentz contraction, the length
of the same pencil, as measured in the moving frame S is
L ¼ L̄=γ, while its energy ism ¼ γm̄. As a result, the linear
energy density of the pencil in S frame is λ ¼ γ2λ̄. In the
Penrose limit the energy m is taken to be fixed. Thus the
energy density λ grows to infinity as γ → ∞. To keep it
finite, one needs to rescale L̄ → γL̄ in the boost process,

such that the length L remains unchanged. It is easy to
check that under such rescalings the components of the
angular momentum remain the same and finite. Note that
this is a result of our assumption that the angular momen-
tum density is orthogonal to the direction of motion,
because in that case its components are not affected by
the boost.
For fixed ξ, that is, for a fixed point in frame S one has

ξ̄ ¼ −γβtþ const. This means that the frame S moves in
the negative direction of ξ̄ (“left”) with respect to the rest
frame S̄. In other words, a pencil which is at rest with
respect to S̄ moves with a positive velocity in S frame.
We introduce the retarded and advanced null coordinates

in the S frame defined as follows:

u ¼ t − ξffiffiffi
2

p ; v ¼ tþ ξffiffiffi
2

p : ð46Þ

Then (45) implies

t̄ ¼ γffiffiffi
2

p ½ð1þ βÞuþ ð1 − βÞv�; ð47Þ

ξ̄ ¼ γffiffiffi
2

p ½−ð1þ βÞuþ ð1 − βÞv�: ð48Þ

In the ultrarelativistic limit, β → 1, one has

t̄ →
ffiffiffi
2

p
γu; ξ̄ → −

ffiffiffi
2

p
γu; ð49Þ

This implies that the matter distribution of such an ultra-
relativistec pencil is located in the strip between u ¼
−L=

ffiffiffi
2

p
and u ¼ 0 of spacetime; see Fig. 1.

Because we keep the ratio L̄=γconstant during the
Penrose limit, the linear density scales as follows:

λðuÞ ¼ lim
γ→∞

ffiffiffi
2

p
γ2λ̄ð−

ffiffiffi
2

p
γuÞ: ð50Þ

This guarantees that in the Penrose limit the product m̄γ and
the ratio L̄=γ remain constant,

FIG. 1. The pencil of length L moves within the two-
dimensional ðt; ξÞ-section of Minkowski space in the frame S.
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γm̄ ¼ γ

Z
∞

−∞
dξ̄ λ̄ðξ̄Þ ¼

Z
∞

−∞
duλðuÞ ¼ const: ð51Þ

The angular momentum line density j̄ijðξ̄Þ “lives” in
transverse space and its tensorial structure is unaffected
from the boost. Using this property we define the boosted
linear density of the angular momentum in the S frame as
follows:

jijðuÞ ¼ lim
γ→∞

ffiffiffi
2

p
γj̄ijð−

ffiffiffi
2

p
γuÞ; ð52Þ

jaðuÞ ¼ lim
γ→∞

ffiffiffi
2

p
γj̄að−

ffiffiffi
2

p
γuÞ: ð53Þ

The total angular momentum of the boosted pencil there-
fore remains finite and has the form

Jij ¼
Z

∞

−∞
dξ̄j̄ijðξ̄Þ ¼

Z
∞

−∞
dujijðuÞ: ð54Þ

C. Metric

Under this boost and the Penrose limit, as defined above,
the resulting metric takes the form

g ¼ ðημν þ hμνÞdXμdXν

¼ −2dudvþ ϕdu2 þ 2Aidxi⊥duþ dx2⊥; ð55Þ

where we defined

ϕ ¼ lim
γ→∞

2γ2
d − 1

d − 2
ϕ̄; Ai ¼ lim

γ→∞

ffiffiffi
2

p
γĀi: ð56Þ

Here, ϕ̄ and Āi are given by (37) and (38), respectively. The
integrands in their representations contain the Green
function Gdðr̄Þ. In order to understand their behavior under
the Penrose limit we make use of relation (41). In this
representation the only quantity which is “sensitive” to
the boost is the heat kernel Kd. It factorizes such that the
boost-sensitive factor is the exponent of the form
∼ exp½iðξ̄ − ξ̄0Þ2=4τ�, which for large γ factors takes the
form ∼ exp½iγðu − u0Þ2=2τ�. To take the Penrose limit we
use the following relation (see also [73]):

δðuÞ ¼ lim
ϵ→0

1ffiffiffiffiffiffiffiffiffi
2πiϵ

p ei
u2
2ϵ : ð57Þ

Denote ϵ ¼ τ=γ2 and apply this relation to (41) to obtain

lim
γ→∞

γGdðr̄Þ ¼
1ffiffiffi
2

p Gd−1ðr⊥Þδðu − u0Þ; ð58Þ

where r2⊥ ¼ δijxi⊥x
j
⊥. Performing the limit γ → ∞ in the

relations (56) for the potential ϕ and the gravitomagnetic
potential Ai finally yields

ϕ ¼ 2
ffiffiffi
2

p
κλðuÞGd−1ðr⊥Þ; ð59Þ

Ai ¼ −2πκjijðuÞxj⊥Gdþ1ðr⊥Þ: ð60Þ

Introducing polar coordinates fρa;φag in each Darboux
plane Πa such that

ya ¼ ρa cosφa; ŷa ¼ ρa sinφa; ð61Þ

one may use the relation

jijxi⊥dx
j
⊥ ¼

Xn
a¼1

jaρ2adφa ð62Þ

to rewrite the gravitomagnetic potential 1-form as

Aiðx⊥Þdxi⊥ ¼ 2πκGdþ1ðr⊥Þ
Xn
a¼1

jaðuÞρ2adφa; ð63Þ

which makes the rotational symmetry in each Darboux
plane manifest.

IV. GRAVITATIONAL FIELD OF GHOST-FREE
GYRATONS

In this section we present and discuss gyratonlike
solutions in General Relativity and in infinite-derivative
nonlocal gravity. In General Relativity, the form factor
að□Þ is simply

að□Þ ¼ 1 ð64Þ

whereas in infinite-derivative “ghost-free” gravity one may
postulate instead

að□Þ ¼ exp ½ð−□l2ÞN �: ð65Þ

The static Green function (21) can be computed for a wide
range of theories, but in the context of the present paper we
shall consider General Relativity as well as two infinite-
derivative theories corresponding to the choices N ¼ 1 and
N ¼ 2, which we shall hence refer to as GF1 and GF2. It is
also possible to extend these studies to arbitrary number of
spatial dimensions d.

A. Gyratons in d = 3

1. Gyraton metrics in General Relativity

As a warm-up, let us consider the well-known gyraton
solutions of (3þ 1)-dimensional General Relativity
[2,7,8,74]. The relevant two-dimensional and four-
dimensional Green functions are
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G2ðrÞ ¼ −
1

2π
logðrÞ; G4ðrÞ ¼

1

4π2r2
: ð66Þ

Since in d ¼ 3 the transverse space is two-dimensional we
have n ¼ 1 and ϵ ¼ 0. Therefore we may write jx⊥j ¼ ρ,
call the polar angle φ, and denote by jðuÞ the linear
density of the angular momentum in the S frame. Then,
the gravitational potentials ϕ and A ¼ Aidxi are

ϕðu; ρÞ ¼ −
ffiffiffi
2

p
κλðuÞ
2π

logðρÞ; ð67Þ

AðuÞ ¼ κjðuÞ
2π

dφ: ð68Þ

This gravitomagnetic field is locally exact such that

F ¼ dA ¼ 0: ð69Þ

Observe, however, that the gravitomagnetic charge does
not vanish:

Q0 ¼
Z
A
F ¼

I
∂A

A ¼ κjðuÞ: ð70Þ

Here, A denotes a surface in the Darboux plane. For later
convenience we may assume A to be a circle of radius ρ.
However, in a given null plane u ¼ const this charge does
not depend on the choice of the contour ∂A. As we shall
see soon, this property is no longer valid in nonlocal
gravity, and effectively the gravitomagnetic current is
spread out of the ρ ¼ 0 line in the direction transverse to
the motion.

2. Gyraton metrics in ghost-free gravity

We consider now a similar gyraton solutions in the
nonlocal theories GF1 and GF2. The static Green function
for GF1 theory can be written as

G2ðrÞ ¼ −
1

4π
Ein

�
r2

4l2

�
; ð71Þ

where EinðxÞ denotes the complementary exponential
integral and E1ðxÞ is the exponential integral [75],

EinðxÞ ¼
Z

x

0

dz
1 − e−z

z
¼ E1ðxÞ þ ln xþ γ; ð72Þ

E1ðxÞ ¼ e−x
Z

∞

0

dz
e−z

zþ x
¼ −Eið−xÞ; ð73Þ

and γ ¼ 0.577… is the Euler–Mascheroni constant. Then,
the gravitational potentials ϕ and A take the form

ϕðu; ρÞ ¼ −
ffiffiffi
2

p
κλðuÞ
2π

Ein

�
ρ2

4l2

�
; ð74Þ

Aðu; x⊥Þ ¼
κjðuÞ
2π

�
1 − exp

�
−

r2⊥
4l2

��
dφ: ð75Þ

This gravitomagnetic field is no longer exact and hence the
gravitomagnetic charge depends on the radius,

Q1ðρÞ ¼ κjðuÞ
�
1 − exp

�
−

ρ2

4l2

��
: ð76Þ

At large distances, ρ ≫ l, we recover the gyraton solution
obtained in General Relativity. In GF2 theory one has

G2ðrÞ ¼
y
2π

� ffiffiffi
π

p
1F3

�
1

2
; 1;

3

2
;
3

2
; y2

�

− y2F3

�
1; 1;

3

2
;
3

2
; 2; 2; y2

��
; ð77Þ

where we defined y ¼ ρ2=ð16l2Þ. The gravitomagnetic
charge now takes the form

Q2ðρÞ ¼ −κjðuÞ
�
1 − 0F2

�
1

2
;
1

2
; y2

�

− 2
ffiffiffi
π

p
y0F2

�
1;
3

2
; y2

��
: ð78Þ

See Fig. 2 for a plot of these charges. Interestingly, the GF1
charge is monotonic, whereas the GF2 charge exhibits an
oscillatory behavior.

3. Curvature invariants

One may wonder about the geometric properties of the
four-dimensional gyraton spacetime

FIG. 2. The gravitomagnetic charges on a plane u ¼ const: of
the four-dimensional gyraton in linearized General Relativity as
well as linearized GF1 and GF2 theory plotted as a function of
ρ=l. The charges are normalized to the value Q0 encountered in
General Relativity.
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g ¼ −2dudvþ ϕðu; x; yÞdu2 þ dx2 þ dy2

þ 2½Axðu; x; yÞdxþ Ayðu; x; yÞdy�du: ð79Þ

This spacetime is a pp-wave because it features a cova-
riantly constant null Killing vector k ¼ ∂v [13],

∇νkμ ¼ 0: ð80Þ
This property remains valid for any choice of the functions
ϕ, Ax and Ay, provided their functional dependence remains
the same. Since pp-wave spacetimes have vanishing scalar
curvature invariants one finds

R ¼ RμνRμν ¼ RμνρσRμνρσ ¼ 0: ð81Þ
For this reason they remain unchanged for solutions found
in the context of linearized infinite-derivative gravity as
compared to linearized General Relativity.

B. Gyratons in d ≥ 4 dimensions

1. d = 4 case

In five spacetime dimensions one has d ¼ 4, which—as
per Eq. (30)—implies that n ¼ 1 and ϵ ¼ 1. In this case
there is only one Darboux plane orthogonal to ξ as well as
one additional z-axis. Let us write the transverse distance as
r2⊥ ¼ ρ2 þ z2, where ρ is the radial variable in the Darboux
plane. Then, from Eqs. (59) as well as (63), one readily
obtains

ϕ ¼ 2
ffiffiffi
2

p
κλðuÞG3ðr⊥Þ; ð82Þ

Aidxi⊥ ¼ −
κ

r⊥
d

dr⊥
G3ðr⊥ÞjðuÞρ2dφ; ð83Þ

where φ is the polar angle in the Darboux plane, jðuÞ is the
angular momentum eigenfunction, and λðuÞ describes the
density profile. The explicit expressions for the functions
G3 in linearized General Relativity as well as in GF1
and GF2 theories are given in Appendix C.

2. Higher dimensions

In higher dimensions one can proceed analogously to
find expressions for the gyraton metrics. Instead of repeat-
ing previous steps, we give here an algorithmic procedure
of how to construct such solutions in an arbitrary number of
higher dimensions.
First, given the number of spatial dimensionsd, determine

the number of Darboux planes n using (30). If d is even there
will be an independent z-axis as well. Due to the rotational
symmetry around the preboost ξ̄-direction it makes sense to
introduce polar coordinates in each Darboux plane called

fρa;φag where a labels the Darboux planes. This con-
struction is unique, provided one fixes the direction of the
polar angles φa to be right-handed with respect to the
original ξ̄-direction.
Second, one introduces the perpendicular radius variable

r⊥ according to

r2⊥ ¼
Xn
a¼1

ρ2a þ ϵz2: ð84Þ

Recall that ϵ ¼ 1 if d is even, and ϵ ¼ 0 if d is odd. Now
one can insert this radius variable into (59) and (63). In
order to determine the static Green function Gdðr⊥Þ in
higher dimensions one may utilize the recursion formulas
(18) and (19) as well as Appendix C.
Last, one may want to start with a known line energy

density λ̄ðξ̄Þ as well as angular momentum line densities
j̄aðξ̄Þ in the original rest frame. In that case, Eqs. (50) and
(52) provide prescriptions as to how to retrieve the resulting
functions λðuÞ and jaðuÞ in retarded time.
Realistic gyratons may also have a finite transverse

thickness, but due to the linearity of the problem it is
always possible to supplement a transverse density function
in (31) and construct the gravitational field of a “thick
gyraton” by superposition.

V. DISCUSSION

The main goal of this paper is to study the gravitational
field of ultrarelativistic spinning objects (gyratons) in the
nonlocal ghost-free theory of gravity. Our starting point is a
linearized set of equations for such a theory. In a general
case they contain two entire functions of the d’Alembert
operator of flat spacetime, að□Þ and cð□Þ, called form
factors, subject to the additional constraint that að0Þ ¼
cð0Þ ¼ 1. We focused on a simple case when að□Þ ¼
cð□Þ, which guarantees the absence of unphysical modes.
The set of field equations in Cartesian coordinates takes the
form of uncoupled scalar equations for the components of
the gravitational field. When the source is time-independent
these equations can be solved by using a static Green
function defined as a solution of the equation

DG ¼ −δðxÞ; D ¼ að△Þ△: ð85Þ

In order to obtain a gyraton solution we first found a
stationary solution, and then boosted it to the speed of light
by means of the Penrose limit. The key observation which
allowed us to obtain such a solution is the following: We
demonstrated that the Green function G can be expressed as
a double Fourier transform of the heat kernel of the Laplace
operator △. In such a representation all the dependence on
the coordinates of the Green function is shifted to the
argument of the heat kernel, which has an exponential
form ∼ expðir̄2=4τÞ, where r̄ is the distance between the
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points which enter as arguments in the Green function,
r̄2 ¼ ξ̄2 þ x2⊥. This exponent can be factorized, such that the
dependence on the coordinate ξ̄ is universal and has the
standard form expðiξ̄2=4τÞ. In the Penrose limit this term
produces a delta function of the retarded time u, δðuÞ. The
remaining integral for the Green function Gd in d-
dimensional space up to a constant coefficient coincides
with Gd−1. Thus in the Penrose limit one has schematically

Gd ∼ δðuÞGd−1: ð86Þ

It should be emphasized that this result is quite general. In
fact, in its derivation we do not use any special form of the
operatorD, with the exception thataðzÞ and cðzÞ are nonzero
on the real line.
To obtain explicit gyraton solutions we made additional

assumptions. First of all, we chose a form factor að□Þ of
the form (65) which guarantees that no extra poles are
present in the Green function G. We also assumed the
source of the gravitational field to be in the form of an
infinitely thin spinning pencil. Then, we applied the boost
transformation in the direction of this pencil and chose its
internal rotation such that the resulting Darboux two-planes
are orthogonal to the direction of motion. In four spacetime
dimensions this just means that the pencil is spinning
around the axis of the boost direction. Since the field
equations in our approximation are linear, one can easily
use the found gyraton solutions for infinitely thin pencils to
obtain a similar solutions for “thick” gyratons, which may
have nontrivial structure transverse to the direction of
motion.
An interesting but expected property of the obtained

ghost-free gyraton metrics is that even for infinitely thin δ-
shaped gravitational sources, all solutions are regular at the
gyraton axis. This is to be seen in stark contrast to the
metrics obtained in linearized General Relativity, wherein
the metric functions grow beyond all bounds as r⊥ → 0,
representing a breakdown of the linear approximation
scheme. Alternatively, treating the resulting gyraton met-
rics as geometries beyond the linear approach, the patho-
logical behavior corresponds to a singularity in spacetime.
Within linearized ghost-free gravity this pathology dis-
appears entirely, making the linear approximation self-
consistent at r⊥ ¼ 0.
For this reason nonlocality effectively spreads the

matter and spin distribution of thin gyratons and thereby
regularizes them. Another interesting result is that these
ghost-free gyraton metrics are vanishing scalar invariant
spacetimes: the local curvature invariants vanish. This may
be considered as a consequence of a general observation
made by Penrose that all metrics after ultrarelativistic
boosts take the form of pp-waves [19]. In four spacetime
dimensions it is known that the Aichelburg–Sexl metric
[18] and its spinning generalisation [4] obtained by boost-
ing linearized solutions of Einstein equation are in fact

exact solutions of these nonlinear equations. In higher
dimensions this is not true [8]. However, these higher-
dimensional gyraton solutions belong to an important class
of so-called Kundt metrics [13]. It is interesting to check
whether this is also true in complete (nonlinear) ghost-free
gravity.
Let us finally mention that the ghost-free gyraton

solutions obtained in this paper may be used to study
the collision of ultrarelativistic particles. In particular, they
will allow one to understand the role of nonlocality and
spin in the process of micro-black hole formation [25,27].
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Note added.—It has been brought to our attention that exact
pp-wave solutions in ghost-free infinite-derivative gravity
have been studied in Ref. [76]. Recently, these studies have
been extended to exact wavelike “impulsive” solutions in
anti-de Sitter spacetimes [77], and it would be very
interesting to understand the role of the gyraton metrics
obtained in this paper in that context.

APPENDIX A: MASS AND ANGULAR
MOMENTUM OF EXTENDED OBJECTS IN

HIGHER DIMENSIONS

We denote by Xμ ¼ ðt; xαÞ Cartesian coordinates in dþ
1 dimensional Minkowski spacetime and use indices
α; β;… ¼ 1; 2;…; d from the beginning of the Greek
alphabet to label spatial coordinates. Let us consider
distribution of matter described by the stress-energy of
the form

T00 ¼ ρðxÞ; T0α ¼
1

2

∂
∂xβ jαβðxÞ; Tαβ ¼ 0: ðA1Þ

where jαβðxÞ is an antisymmetric tensor function. It is easy
to check that this stress-energy tensor satisfies the required
conservation law ∂μTμν ¼ 0. Denote by ξðμÞ a generator of
the space-time translations, and by ζðαβÞ the generators of
the rigid spatial rotations, then one has

ξðμÞ ¼ ξνðμÞ∂ν ¼ ∂μ; ðA2Þ

ζðαβÞ ¼ ζνðαβÞ∂ν ¼ xα∂β − xβ∂α: ðA3Þ

The conserved quantities related to these symmetries are
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Pμ ¼
Z

ddxT0νξ
ν
ðμÞ; ðA4Þ

Jαβ ¼
Z

ddxT0γζ
γ
ðαβÞ: ðA5Þ

or in an explicit form

M ¼ P0 ¼
Z

ddxT00; ðA6Þ

Pα ¼
Z

ddxT0α; ðA7Þ

Jαβ ¼
Z

ddxðxαT0β − xβT0αÞ: ðA8Þ

We assume that the stress-energy tensor (A1) either
vanishes outside some compact region, or it is sufficiently
fast decreasing at far spatial distance, so that the surface
terms arising as a result of integration by parts in (A8)
vanish. Simple calculations give

M ¼
Z

ddxT00; Pα ¼ 0; Jαβ ¼
Z

ddxjαβ: ðA9Þ

The relation Pα ¼ 0 implies that the stress-energy tensor
(A1) is written in the center of mass frame.

APPENDIX B: HEAT KERNEL
REPRESENTATION OF GHOST-FREE

STATIC GREEN FUNCTIONS

The static Green function Gd considered in this paper
satisfies the relation

að△Þ△Gdðx; x0Þ ¼ −δðx − x0Þ ðB1Þ

Here △ is a Laplace operator in d-dimensional space. We
denote by KdðxjτÞ the d-dimensional heat kernel of△. It is
defined as a solution of the equation

△KdðxjτÞ ¼ −i∂τKdðxjτÞ; ðB2Þ

obeying the boundary conditions

lim
τ→0

KdðxjτÞ ¼ δðxÞ; lim
τ→�∞

KdðxjτÞ ¼ 0: ðB3Þ

It has the following explicit form:

KdðxjτÞ ¼
1

ð4πiτÞd=2 exp
�
ix2

4τ

�
: ðB4Þ

Let us define the object KdðxjτÞ as a solution of the
equation

að△ÞKdðxjτÞ ¼ iKdðxjτÞ: ðB5Þ

Then it is easy to check the required Green function Gd can
be written in the form

Gdðx; x0Þ ¼
Z

∞

0

dτKdðx − x0jτÞ: ðB6Þ

We introduce now the Fourier transform of Kd and its
inverse by means of the relations

K̃dðxjωÞ ¼
Z

∞

−∞
dτeiωτKdðxjτÞ;

KdðxjτÞ ¼
Z

∞

−∞

dω
2π

e−iωτK̃dðxjωÞ: ðB7Þ

Then we may write

Gdðx; x0Þ

¼
Z

∞

0

dτ
Z

∞

−∞

dω
2π

Z
∞

−∞
dτ0e−iωðτ−τ0ÞKdðx − x0jτ0Þ ðB8Þ

¼
Z

∞

0

dτ
Z

∞

−∞

dω
2π

Z
∞

−∞
dτ0e−iωðτ−τ0Þ

i
að△ÞKdðx−x0jτ0Þ

ðB9Þ

¼
Z

∞

0

dτ
Z

∞

−∞

dω
2π

Z
∞

−∞
dτ0e−iωðτ−τ0Þ

i
að−i∂τÞ

Kdðx−x0jτ0Þ

ðB10Þ

¼
Z

∞

0

dτ
Z

∞

−∞

dω
2π

Z
∞

−∞
dτ0e−iωðτ−τ0Þ

i
að−ωÞKdðx − x0jτ0Þ:

ðB11Þ

In the first equality we have used (B5), then used the
properties of the heat kernel via Eq. (B4), and finally
integrated by parts where the boundary terms vanish due to
(B3). The integral over τ can be easily calculated assuming
that one takes care about its asymptotic behavior and uses
the standard regularization. By using the relation

Z
∞

0

dτe−iωτ ≡ lim
ϵ→0

Z
∞

0

dτe−iðω−iϵÞτ ¼ −i
ω

: ðB12Þ

one obtains

Gdðx; x0Þ ¼
Z

∞

−∞

dω
2π

Z
∞

−∞
dτ0eiωτ0

1

ωað−ωÞKdðx − x0jτ0Þ;

ðB13Þ

which is the double Fourier representation for the Green
function Gd used in the main body of the paper.
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APPENDIX C: STATIC INFINITE-DERIVATIVE
GHOST-FREE GREEN FUNCTIONS

Let us consider theories with the form factor að△Þ of the
following form:

aNð△Þ ¼ exp ½ð−△l2ÞN �; ðC1Þ

where N is a positive integer number. We refer to such a
theory as ghost-free gravity and use the abbreviation GFN
for such a theory. For N ¼ 0, a0ð△Þ ¼ 1 and the corre-
sponding theory is nothing but linearized General
Relativity. Let us write DN ¼ aNð△Þ△ and denote by
GN
d a static Green function for GFN theory in a space with d

dimensions. Such a Green function obeys the equation

DNGN
d ðrÞ ¼ −δðdÞðrÞ: ðC2Þ

For N ¼ 0, that is, in General Relativity, we also use the
notation GdðrÞ ¼ G0

dðrÞ. The static Green functions can be
found by using Eqs. (19)–(21). In this Appendix we collect
exact expressions for these Green functions for General
Relativity as well as GF1 and GF2 theory for the number of
spatial dimensions d ¼ 1, 2, 3, 4. Using the recursive
relations (19) one can obtain their expression for d ≥ 5. In
what follows we will use the abbreviation y ¼ ðr=4lÞ2.

G1ðrÞ ¼ −
r
2
; ðC3Þ

G1
1ðrÞ ¼ −

r
2
erf

�
r
2l

�
− l

exp ½−r2=ð4l2Þ� − 1ffiffiffi
π

p ; ðC4Þ

G2
1ðrÞ ¼ −

l
π

	
2Γ

�
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3

4
;
5

4
;
3

2
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�

þ Γ
�
3

4

��
1F3

�
−
1

4
;
1

4
;
1

2
;
3

4
; y2

�
− 1

�

ðC5Þ

G2ðrÞ ¼ −
1

2π
log

�
r
r0

�
; ðC6Þ

G1
2ðrÞ ¼ −

1

4π
Ein

�
r2

4l2

�
; ðC7Þ

G2
2ðrÞ ¼ −

y
2π
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π

p
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2
; 1;

3

2
;
3

2
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�

− y2F4

�
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3

2
;
3

2
; 2; 2; y2

��
; ðC8Þ

G3ðrÞ ¼
1

4πr
; ðC9Þ

G1
3ðrÞ ¼

erf½r=ð2lÞ�
4πr

; ðC10Þ

G2
3ðrÞ ¼

1

6π2l

�
3Γ

�
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�
1F3

�
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4
;
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2
;
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4
;
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4
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− 2yΓ
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�
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4
;
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;
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2
;
7

4
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��
; ðC11Þ

G4ðrÞ ¼
1

4π2r2
; ðC12Þ

G1
4ðrÞ ¼

1 − exp ½−r2=ð4l2Þ�
4π2r2

; ðC13Þ

G2
4ðrÞ ¼

1

64π2yl2

�
1 − 0F2

�
1

2
;
1

2
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�

þ 2
ffiffiffi
π

p
y0F2

�
1;
3

2
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��
: ðC14Þ

Here we use the standard notation aFb for the hyper-
geometric function [75].
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of André Lichnerowicz on His 60th Birthday, edited by M.
Cahen and M. Flato (Springer, Netherlands, Dordrecht,
1976), pp. 271–275.

[20] D. M. Eardley and S. B. Giddings, Phys. Rev. D 66, 044011
(2002).

[21] H. Yoshino and Y. Nambu, Phys. Rev. D 67, 024009 (2003).
[22] S. B. Giddings and V. S. Rychkov, Phys. Rev. D 70, 104026

(2004).
[23] H. Yoshino and V. S. Rychkov, Phys. Rev. D 71, 104028

(2005); 77, 089905(E) (2008).
[24] H. Yoshino and R. B. Mann, Phys. Rev. D 74, 044003

(2006).
[25] H. Yoshino, A. Zelnikov, and V. P. Frolov, Phys. Rev. D 75,

124005 (2007).
[26] V. P. Frolov and A. Zelnikov, Introduction to Black Hole

Physics (Oxford University Press, Oxford, 2011).
[27] V. P. Frolov, Phys. Rev. Lett. 115, 051102 (2015).
[28] V. P. Frolov, A. Zelnikov, and T. de Paula Netto, J. High

Energy Phys. 06 (2015) 107.
[29] V. P. Frolov and A. Zelnikov, Phys. Rev. D 93, 064048

(2016).
[30] B. L. Giacchini and T. de Paula Netto, Eur. Phys. J. C 79,

217 (2019).
[31] H. Yukawa, Phys. Rev. 76, 300 (1949).
[32] H. Yukawa, Phys. Rev. 76, 1731 (1949).
[33] H. Yukawa, Phys. Rev. 77, 219 (1950).
[34] H. Yukawa, Phys. Rev. 80, 1047 (1950).
[35] G. V. Efimov, Commun. Math. Phys. 5, 42 (1967).
[36] G. V. Efimov, Ann. Phys. (N.Y.) 71, 466 (1972).
[37] G. V. Efimov, M. A. Ivanov, and O. Mogilevsky, Ann. Phys.

(N.Y.) 103, 169 (1977).
[38] G. V. Efimov, Int. J. Theor. Phys. 10, 19 (1974).
[39] G. V. Efimov, Commun. Math. Phys. 7, 138 (1968).
[40] P. H. Frampton and Y. Okada, Phys. Rev. D 37, 3077 (1988).
[41] A. A. Tseytlin, Phys. Lett. B 363, 223 (1995).
[42] E. Tomboulis, arXiv:hep-th/9702146.
[43] T. Biswas, A. Mazumdar, and W. Siegel, J. Cosmol.

Astropart. Phys. 03 (2006) 009.
[44] E. Spallucci, A. Smailagic, and P. Nicolini, Phys. Rev. D 73,

084004 (2006).
[45] T. Biswas, J. A. R. Cembranos, and J. I. Kapusta, Phys. Rev.

D 82, 085028 (2010).
[46] L. Modesto, Phys. Rev. D 86, 044005 (2012).
[47] J. Edholm, A. S. Koshelev, and A. Mazumdar, Phys. Rev. D

94, 104033 (2016).

[48] L. Buoninfante, A. S. Koshelev, G. Lambiase, J. Marto, and
A. Mazumdar, J. Cosmol. Astropart. Phys. 06 (2018) 014.

[49] L. Buoninfante, G. Harmsen, S. Maheshwari, and A.
Mazumdar, Phys. Rev. D 98, 084009 (2018).

[50] B. L. Giacchini and T. de Paula Netto, J. Cosmol. Astropart.
Phys. 07 (2019) 013.

[51] J. Boos, V. P. Frolov, and A. Zelnikov, Phys. Rev. D 97,
084021 (2018).

[52] J. Boos, arXiv:2003.13847.
[53] I. Kolar and A. Mazumdar, Phys. Rev. D 101, 124005

(2020).
[54] A. Conroy, A. Mazumdar, and A. Teimouri, Phys. Rev. Lett.

114, 201101 (2015).
[55] Y.-D. Li, L. Modesto, and L. Rachwał, J. High Energy Phys.

12 (2015) 173.
[56] G. Calcagni and L. Modesto, Phys. Lett. B 773, 596 (2017).
[57] A. S. Koshelev, J. Marto, and A. Mazumdar, Phys. Rev. D

98, 064023 (2018).
[58] J. Boos, V. P. Frolov, and A. Zelnikov, Phys. Rev. D 100,

104008 (2019).
[59] T. Biswas, T. Koivisto, and A. Mazumdar, J. Cosmol.

Astropart. Phys. 11 (2010) 008.
[60] G. Calcagni, L. Modesto, and P. Nicolini, Eur. Phys. J. C 74,

2999 (2014).
[61] J. Boos, V. P. Frolov, and A. Zelnikov, Phys. Lett. B 782,

688 (2018).
[62] L. Buoninfante, A. Mazumdar, and J. Peng, Phys. Rev. D

100, 104059 (2019).
[63] I. L. Shapiro, Phys. Lett. B 744, 67 (2015).
[64] V. P. Frolov and A. Zelnikov, Phys. Rev. D 93, 105048

(2016).
[65] L. Modesto, L. a. Rachwał, and I. L. Shapiro, Eur. Phys. J. C

78, 555 (2018).
[66] M. Asorey, L. Rachwal, and I. L. Shapiro, Galaxies 6, 23

(2018).
[67] G. Calcagni, L. Modesto, and G. Nardelli, Phys. Lett. B 795,

391 (2019).
[68] L. Buoninfante, G. Lambiase, and A. Mazumdar, Nucl.

Phys. B944, 114646 (2019).
[69] J. Boos, V. P. Frolov, and A. Zelnikov, Phys. Rev. D 99,

076014 (2019).
[70] T. Biswas, E. Gerwick, T. Koivisto, and A. Mazumdar,

Phys. Rev. Lett. 108, 031101 (2012).
[71] R. C. Myers and M. J. Perry, Ann. Phys. (N.Y.) 172, 304

(1986).
[72] L. Buoninfante, A. S. Cornell, G. Harmsen, A. S. Koshelev,

G. Lambiase, J. Marto, and A. Mazumdar, Phys. Rev. D 98,
084041 (2018).

[73] R. Shankar, Principles of Quantum Mechanics, 2nd ed.
(Plenum Press, New York, 1994).

[74] W. B. Bonnor, Int. J. Theor. Phys. 2, 373 (1969).
[75] F. W. Olver, D.W. Lozier, R. F. Boisvert, and C.W. Clark,

NIST Handbook of Mathematical Functions, 1st ed. (Cam-
bridge University Press, New York, 2010).

[76] E. Kilicarslan, Phys. Rev. D 99, 124048 (2019).
[77] S. Dengiz, E. Kilicarslan, I. Kolar, and A. Mazumdar,

arXiv:2006.07650.

ULTRARELATIVISTIC SPINNING OBJECTS IN NONLOCAL … PHYS. REV. D 101, 124065 (2020)

124065-13

https://doi.org/10.1103/PhysRevD.80.024004
https://doi.org/10.1103/PhysRevD.86.044039
https://doi.org/10.1103/PhysRevD.90.044050
https://doi.org/10.1103/PhysRevD.90.044050
https://doi.org/10.1103/PhysRevD.99.044004
https://doi.org/10.1007/BF00758149
https://doi.org/10.1103/PhysRevD.66.044011
https://doi.org/10.1103/PhysRevD.66.044011
https://doi.org/10.1103/PhysRevD.67.024009
https://doi.org/10.1103/PhysRevD.70.104026
https://doi.org/10.1103/PhysRevD.70.104026
https://doi.org/10.1103/PhysRevD.71.104028
https://doi.org/10.1103/PhysRevD.71.104028
https://doi.org/10.1103/PhysRevD.77.089905
https://doi.org/10.1103/PhysRevD.74.044003
https://doi.org/10.1103/PhysRevD.74.044003
https://doi.org/10.1103/PhysRevD.75.124005
https://doi.org/10.1103/PhysRevD.75.124005
https://doi.org/10.1103/PhysRevLett.115.051102
https://doi.org/10.1007/JHEP06(2015)107
https://doi.org/10.1007/JHEP06(2015)107
https://doi.org/10.1103/PhysRevD.93.064048
https://doi.org/10.1103/PhysRevD.93.064048
https://doi.org/10.1140/epjc/s10052-019-6727-2
https://doi.org/10.1140/epjc/s10052-019-6727-2
https://doi.org/10.1103/PhysRev.76.300.2
https://doi.org/10.1103/PhysRev.76.1731
https://doi.org/10.1103/PhysRev.77.219
https://doi.org/10.1103/PhysRev.80.1047
https://doi.org/10.1007/BF01646357
https://doi.org/10.1016/0003-4916(72)90127-3
https://doi.org/10.1016/0003-4916(77)90267-6
https://doi.org/10.1016/0003-4916(77)90267-6
https://doi.org/10.1007/BF01808314
https://doi.org/10.1007/BF01648331
https://doi.org/10.1103/PhysRevD.37.3077
https://doi.org/10.1016/0370-2693(95)01228-7
https://arXiv.org/abs/hep-th/9702146
https://doi.org/10.1088/1475-7516/2006/03/009
https://doi.org/10.1088/1475-7516/2006/03/009
https://doi.org/10.1103/PhysRevD.73.084004
https://doi.org/10.1103/PhysRevD.73.084004
https://doi.org/10.1103/PhysRevD.82.085028
https://doi.org/10.1103/PhysRevD.82.085028
https://doi.org/10.1103/PhysRevD.86.044005
https://doi.org/10.1103/PhysRevD.94.104033
https://doi.org/10.1103/PhysRevD.94.104033
https://doi.org/10.1088/1475-7516/2018/06/014
https://doi.org/10.1103/PhysRevD.98.084009
https://doi.org/10.1088/1475-7516/2019/07/013
https://doi.org/10.1088/1475-7516/2019/07/013
https://doi.org/10.1103/PhysRevD.97.084021
https://doi.org/10.1103/PhysRevD.97.084021
https://arXiv.org/abs/2003.13847
https://doi.org/10.1103/PhysRevD.101.124005
https://doi.org/10.1103/PhysRevD.101.124005
https://doi.org/10.1103/PhysRevLett.114.201101
https://doi.org/10.1103/PhysRevLett.114.201101
https://doi.org/10.1007/JHEP12(2015)173
https://doi.org/10.1007/JHEP12(2015)173
https://doi.org/10.1016/j.physletb.2017.09.018
https://doi.org/10.1103/PhysRevD.98.064023
https://doi.org/10.1103/PhysRevD.98.064023
https://doi.org/10.1103/PhysRevD.100.104008
https://doi.org/10.1103/PhysRevD.100.104008
https://doi.org/10.1088/1475-7516/2010/11/008
https://doi.org/10.1088/1475-7516/2010/11/008
https://doi.org/10.1140/epjc/s10052-014-2999-8
https://doi.org/10.1140/epjc/s10052-014-2999-8
https://doi.org/10.1016/j.physletb.2018.06.018
https://doi.org/10.1016/j.physletb.2018.06.018
https://doi.org/10.1103/PhysRevD.100.104059
https://doi.org/10.1103/PhysRevD.100.104059
https://doi.org/10.1016/j.physletb.2015.03.037
https://doi.org/10.1103/PhysRevD.93.105048
https://doi.org/10.1103/PhysRevD.93.105048
https://doi.org/10.1140/epjc/s10052-018-6035-2
https://doi.org/10.1140/epjc/s10052-018-6035-2
https://doi.org/10.3390/galaxies6010023
https://doi.org/10.3390/galaxies6010023
https://doi.org/10.1016/j.physletb.2019.06.043
https://doi.org/10.1016/j.physletb.2019.06.043
https://doi.org/10.1016/j.nuclphysb.2019.114646
https://doi.org/10.1016/j.nuclphysb.2019.114646
https://doi.org/10.1103/PhysRevD.99.076014
https://doi.org/10.1103/PhysRevD.99.076014
https://doi.org/10.1103/PhysRevLett.108.031101
https://doi.org/10.1016/0003-4916(86)90186-7
https://doi.org/10.1016/0003-4916(86)90186-7
https://doi.org/10.1103/PhysRevD.98.084041
https://doi.org/10.1103/PhysRevD.98.084041
https://doi.org/10.1007/BF00670703
https://doi.org/10.1103/PhysRevD.99.124048
https://arXiv.org/abs/2006.07650

