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Newtonian gravitational potential sourced by a homogeneous circular ring in arbitrary dimensional
Euclidean space takes a simple form if the spatial dimension is even. In contrast, if the spatial dimension is
odd, it is given in a form that includes complete elliptic integrals. In this paper, we analyze the dynamics of
a freely falling massive particle in its Newtonian potential. Focusing on circular orbits on the symmetric
plane where the ring is placed, we observe that they are unstable in 4D space and above, while they are
stable in 3D space. The sequence of stable circular orbits disappears at 1.6095 � � � times the radius of the
ring, which corresponds to the innermost stable circular orbit (ISCO). On the axis of symmetry of the ring,
there are no circular orbits in 3D space but more than in 4D space. In particular, the circular orbits are stable
between the ISCO and infinity in 4D space and between the ISCO and the outermost stable circular orbit
in 5D space. There exist no stable circular orbits in 6D space and above.
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I. INTRODUCTION

Physics in higher-dimensional spacetimes is a target of
research attracting much attention from various fields. In
high energy physics, higher-dimensional spacetimes inevi-
tably appear in the process of seeking a unified theory of
force. For example, the idea of the AdS=CFT correspon-
dence [1–4] strongly motivates the study of higher-
dimensional classical gravitational theories because we
can calculate various physical quantities in quantum field
theories on the boundary side using classical bulk gravity.
Furthermore, the study of higher-dimensional spacetimes
implies parametrization of the spacetime dimensions [5].
Through this, we can understand the dimensional depend-
ence of classical gravity, e.g., the particularity of physical
phenomena in given dimensions.
In this context, the study of high-dimensional black holes

has made great progress [6,7]. One of the breakthroughs
was the discovery of the black ring solution in 5D
spacetime [8]. The existence of this novel solution is
symbolic of the diversity of high-dimensional classical
gravity. After this discovery, many black ring solutions in
5D have been discovered [9–15]. The analytical solutions
of a black ring are expected to be found even in spacetimes
more than 6D; however, so far they have not been found.
There are some efforts to find them by numerical integra-
tions [16,17]. On the other hand, there also several
analytical approaches to construct higher-dimensional

black rings such as the blackfold method [18,19] or the
large spacetime dimension limit [20,21].
If exact solutions to black rings and other novel high-

dimensional black objects are available, we can understand
these physics, e.g., through geodesic analysis [22–31].
However, even if an exact solution has not yet been found,
we can discuss some fundamental properties of black
objects because the distant gravitational field of a black
object is approximated by the Newtonian gravitational
potential sourced by a corresponding source. In fact, this
property is utilized in the blackfold approach as mentioned
above [32]. From the perspective of geodesic analysis of
black objects, the motion of particles there can be viewed as
timelike geodesics in the weak gravity region. Therefore,
once the gravitational field is obtained, even in an approxi-
mate form, we can read some properties from the motion
of probe particles. Furthermore, if the gravitational field
contains the spacetime dimensions as a parameter, then the
dimensionality of gravity appears in the particle dynamics.
In particular, the dimensionality can be expected to appear
clearly in the existence of stable circular orbits (or stable
bound orbits), which are the most fundamental orbits of
black object spacetimes.
The aim of this paper is to reveal the dimensionality of

the gravitational field of black rings through the dynamics
of a test particle as a probe. However, since the black ring
solution has not yet been parametrized in a spacetime
dimension, we consider the dynamics of particles in the
Newtonian gravitational potential sourced by a homo-
geneous circular ring source, which is parametrized by*igata@post.kek.jp
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the spacetime dimensions. Focusing on the existence of
stable circular orbits of a massive particle around the ring
source, we make sure the dimensionality appears for the
particle motion.
The dynamics in the Newtonian gravitational potential

are also important in the context of the integrability of the
geodesic equations and spacetime hidden symmetry. There
are some examples where the integrable property of a
particle mechanical system is restored in the Newtonian
limit. We can find such an example in the relation between
particle mechanics in a multi-black hole spacetime and
Euler’s three body problem—particle motion around two
fixed center placed on 3D Euclidean space is known as
integrable. We can find another example in massive particle
mechanics in 5D black ring spacetime. In general, a
massive particle behaves chaotic (i.e., nonintegrable)
around the black ring [25]; however, the integrable property
is restored in the Newtonian limit, which is identified with a
particle mechanics in a ring source potential.1

This paper is organized as follows. In the following
section, we derive the Newtonian gravitational potential
sourced by a homogeneous circular ring source in arbitrary
dimensional Euclidean space. Furthermore, we show that
the potential reduces to a simple form in the case that the
spatial dimension is even. In Sec. III, we focus on particle
mechanics in the Newtonian potential and consider the
existence of stable circular orbits and its dependence of
spatial dimensions. Section IV is devoted to a summary and
discussions.

II. NEWTONIAN POTENTIAL SOURCED
BY A HOMOGENEOUS CIRCULAR

RING IN En

We derive the Newtonian gravitational potential sourced
by a homogeneous circular ring in n-dimensional
Euclidean space En. Let ðζ;ψÞ be polar coordinates on a
2D plane in En and ðρ;ϕ1;…;ϕn−3Þ be spherical coor-
dinates on the (n − 2)-dimensional space perpendicular to
it, where n ≥ 3. The Euclidean metric in these coordinates
is given by

dl2 ¼ dζ2 þ ζ2dψ2 þ dρ2 þ ρ2dΩ2
n−3; ð1Þ

where dΩ2
n−3 is the metric on the unit (n − 3) sphere. Let us

focus on a homogeneous ring-shaped gravitational source
with radius R. Without loss of generality, the mass density
function of the ring is given by

σðrÞ ¼ M
2πΩn−3ζρ

n−3 δðζ − RÞδðρÞ; ð2Þ

whereM is the total mass of the ring, andΩn−3 is the area of
unit (n − 3) sphere, and δð·Þ is the delta function. Given the
distribution of sources σ, we can determine Newtonian
potential ΦnðrÞ by solving the field equation of the
n-dimensional Newtonian gravity,

∇2ΦnðrÞ ¼ Ωn−1GσðrÞ; ð3Þ

where ∇2 denotes the Laplacian of En, and G is the
gravitational constant.2

Now, assuming the matter distribution (2), we solve the
field equation (3). Using the Green function, the formal
solution can be expressed as

ΦnðrÞ ¼ −
G

n − 2

Z
En
dnr0

σðr0Þ
jr − r0jn−2 : ð4Þ

Integrating with respect to the coordinates other than ψ 0,
we obtain

ΦnðrÞ ¼ −
GM

2ðn − 2Þπ
×
Z

2π

0

dψ 0

½ζ2 þ ρ2 þ R2 − 2Rζ cosψ 0�ðn−2Þ=2 ð5Þ

¼ −
GM

2ðn − 2Þπrn−2þ

Z
2π

0

dψ 0
�
1 − zcos2

ψ 0

2

�ð2−nÞ=2
;

ð6Þ

where

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζ � RÞ2 þ ρ2

q
; ð7Þ

z ¼ 4Rζ
r2þ

¼ 1 −
r2−
r2þ

: ð8Þ

It is convenient to make the change of variables, u ¼
cos2 ψ 0=2, in terms of which Eq. (6) becomes

ΦnðrÞ¼−
GM

ðn−2Þπrn−2þ

Z
1

0

ua−1ð1−uÞc−a−1ð1− zuÞ−bdu;

ð9Þ

where we have specified constants a, b, and c by

a ¼ 1

2
; b ¼ n − 2

2
; c ¼ 1; ð10Þ

1The integrability of the equation of particle motion in a ring
source potential in 4D Euclidean space is closely related to the
integrability of Euler’s three body problem [30].

2The physical dimension of the gravitational constant G in
ordinary units is ½G� ¼ ðlengthÞnðmassÞ−1ðtimeÞ−2.
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respectively. Using Euler’s integral representation of the
Gaussian hypergeometric function Fða; b; c; zÞ,3 we can
represent the right-hand side of Eq. (9) as

ΦnðrÞ ¼ −
GM

ðn − 2Þrn−2þ
F

�
1

2
;
n − 2

2
; 1; 1 −

r2−
r2þ

�
: ð12Þ

This is the expression of the Newtonian gravitational
potential sourced by a homogeneous circular ring in En.
It is worthwhile to present a more explicit form of

ΦnðrÞ in each dimensions to understand the nature of the
gravitational field and the behavior of test particles.
Moreover, the explicit form may have some implications
for the discovery of higher-dimensional black ring solu-
tions because the weak-gravity limit of a time-time metric
component of a black ring is expected to include ΦnðrÞ. In
what follows, analyzing the dependence of the hyper-
geometric function in Eq. (12) on the parity of n, we
clarify the simple mathematical structure of ΦnðrÞ for even
n (see also Refs. [18,33]).
In the following, we restrict our attention to the case

where n is even, i.e.,

n ¼ 2m; ð13Þ

where m is an integer greater than or equal to 2. For
simplicity, we introduce a new variable,

χ ¼ r−
rþ

: ð14Þ

Then the hypergeometric function appearing in Eq. (12) is
rewritten as

Fða; b; c; 1 − χ2Þ

¼ ΓðcÞΓðc − a − bÞ
Γðc − aÞΓðc − bÞFða; b; aþ bþ 1 − c; χ2Þ

þ ΓðcÞΓðaþ b − cÞ
ΓðaÞΓðbÞ χ2ðc−a−bÞ

× Fðc − a; c − b; 1þ c − a − b; χ2Þ ð15Þ

¼ Γð1ÞΓðm − 3=2Þ
Γð1=2ÞΓðm − 1Þ χ

3−2mF

�
1

2
; 2 −m;

5

2
−m; χ2

�
: ð16Þ

Since the argument 2 −m of F in Eq. (15) is not positive,
the power series is truncated at a finite term. Thus, the
Newtonian potential ΦnðrÞ for even n is given in the
following form:

Φ2mðrÞ¼−
GM

ðm−1Þð2rþr−Þm−1

Xm−2

ν¼0

αν

�
r−
rþ

�
2νþ2−m

; ð17Þ

where

αν ¼
ð2ν − 1Þ!!

ν!

½2ðm − ν − 2Þ − 1�!!
ðm − ν − 2Þ! : ð18Þ

Substituting m ¼ 2, 3, 4, and 5 into Eq. (17), we obtain

Φ4ðrÞ ¼ −
GM
2rþr−

; ð19Þ

Φ6ðrÞ ¼ −
GM

8ðrþr−Þ2
ðχ−1 þ χÞ; ð20Þ

Φ8ðrÞ ¼ −
GM

16ðrþr−Þ3
�
χ−2 þ 2

3
þ χ2

�
; ð21Þ

Φ10ðrÞ ¼ −
5GM

128ðrþr−Þ4
�
χ−3 þ 3

5
χ−1 þ 3

5
χ þ χ3

�
: ð22Þ

The form of Φ4ðrÞ appears in the weak-gravity limit of a
time-time metric component of the Emparan-Reall black
ring solution [30]. Similarly, if there are black ring
solutions with spatial dimensions greater than 5, then the
time-time component of these metrics should also include
ΦnðrÞ of Eq. (12) in the weak-gravity limit. Though ΦnðrÞ
takes the above simple form for even n but is given in terms
of complete elliptic integrals for odd n as

Φ3ðrÞ ¼ −
2GM
π

KðzÞ
rþ

; ð23Þ

Φ5ðrÞ ¼ −
2GM
3π

EðzÞ
rþr2−

; ð24Þ

Φ7ðrÞ ¼ −
2GM
15πr5−

½−χ3KðzÞ þ 2χð1þ χ2ÞEðzÞ�; ð25Þ

Φ9ðrÞ ¼ −
2GM
105πr7−

½ð8χ þ 7χ3 þ 8χ5ÞEðzÞ

− 4χ3ð1þ χ2ÞKðzÞ�; ð26Þ

where KðzÞ is the complete elliptic integral of the first
kind, and EðzÞ is the complete elliptic integral of the

3The Gaussian hypergeometric function is defined by

Fða; b; c; zÞ ¼ ΓðcÞ
ΓðaÞΓðc − aÞ

Z
1

0

ua−1ð1 − uÞc−a−1ð1 − zuÞ−bdu;

ð11Þ
where Γð·Þ denotes the gamma function.
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second kind.4 This fact implies that a black ring solution
with even spatial dimensions has a simpler metric form than
that with odd spatial dimensions.

III. DYNAMICS OF A MASSIVE PARTICLE IN
THE RING SOURCE POTENTIAL

We consider the dynamics of a freely falling massive
particle in the Newtonian gravitational potential (12). Letm
be the mass of a particle and pi be canonical momenta
conjugate to coordinates, xi. Then the Hamiltonian of a
massive particle is given by5

Hn ¼
1

2m

�
p2
ζ þ p2

ρ þ
L2

ζ2
þQ2

ρ2

�
þmΦnðrÞ; ð31Þ

where L and Q2 are defined by, respectively,

L ¼ pψ ; ð32Þ

Q2 ¼
�
0 ðn ¼ 3Þ
γabpapa ðn ≥ 4Þ; ð33Þ

where γab is the inverse metric on the unit (n − 3) sphere,
and a and b label ðϕ1;…;ϕn−3Þ. Note that L is a constant
of motion associated with axial symmetry, and also Q is
a constant of motion associated with spherical symmetry
in the (n − 2)-dimensional subspace spanned by
ðρ;ϕ1;…;ϕn−3Þ. Note that Q must vanish for n ¼ 3

because the term proportional to Q2 in H3 does not exist.
Furthermore,Hn itself is also conserved becauseΦn is time
independent. Hence, the energy equation becomes

m
2
ð_ζ2 þ _ρ2Þ þ Vn ¼ E; ð34Þ

Vnðζ; ρÞ ¼
L2

2mζ2
þ Q2

2mρ2
þmΦnðrÞ; ð35Þ

where E is a constant energy of a particle, and the dots are
the derivatives with respect to time. We refer to Vn as the
effective potential. The first two terms in Vn are centrifugal
potentials, which do not depend on n, unlike the third term.
In what follows, we consider the dynamics of a massive
particle moving through particular regions determined by
the symmetry of Φn.

A. Dynamics on the symmetric plane ρ = 0

We focus on the motion of a particle constrained to the
2D plane, where the ring source is located. If we launch a
particle into this plane, the particle inevitably continue to
move over it because the Hamiltonian Hn is Z2 symmetric
with respect to ρ ¼ 0. Therefore, we refer to the plane as
the symmetric plane below. To move on the symmetric
plane, a particle must have Q ¼ 0. Thus, the explicit form
of Eq. (34) on the symmetric plane is given by

VnðζÞ ¼
L2

2mζ2
−

GMm
ðn − 2Þðζ þ RÞn−2 F

�
1

2
;
n − 2

2
; 1; z

�
;

ð36Þ

where we have defined VnðζÞ ¼ Vnðζ; 0ÞjQ¼0 and use the
notation throughout this subsection for an abbreviation, and
z in Eq. (7) reduces to

z ¼ 4Rζ
ðζ þ RÞ2 : ð37Þ

One of the important properties of particles moving on the
symmetric plane is that they remain stably constrained to
the plane even if small perturbations are applied perpen-
dicularly to it. In fact, the expansion of Vnðζ; ρÞjQ¼0 around
ρ ¼ 0,

Vnðζ; ρÞjQ¼0 ¼ VnðζÞ þ
GMm

2ðζ þ RÞn
�
F

�
1

2
;
n − 2

2
; 1; z

�

þ 2Rζ
ðζ þ RÞ2 F

�
3

2
;
n
2
; 2; z

��
ρ2 þOðρ4Þ;

ð38Þ

shows that the effective potential makes a local minimum at
ρ ¼ 0 because the coefficient of ρ2 is positive.
First, let us consider the dynamics of a particle near the

center of the ring. The expansion of VnðζÞ around ζ ¼ 0 is
given by

4We adopt the following convention of the complete elliptic
integrals:

KðzÞ ¼
Z

π=2

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z sin2 θ

p ; ð27Þ

EðzÞ ¼
Z

π=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z sin2 θ

p
dθ: ð28Þ

5In the spheroidal coordinates,

ζ ¼ Rξη; ρ ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ2 − 1Þð1 − η2Þ

q
; ð29Þ

or equivalently,

r� ¼ Rðξ� ηÞ; ð30Þ
the separation of variables in the Hamilton-Jacobi equation for
Hn occurs for n ¼ 4 [30]. However, it is an open question
whether there exists a coordinate system in which the separation
of variables occurs for n ≥ 5.
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VnðζÞ ¼
L2

2mζ2
−

GMm
ðn − 2ÞRn−2 −

ðn − 2ÞGMm
4Rn ζ2 − � � � :

ð39Þ

The qualitative behavior of particles near the center is
independent on the spatial dimensions because the power
of ζ does not depend on n. If L ≠ 0, the centrifugal barrier
appears near the center. If L ¼ 0, the function VnðζÞ takes a
local maximum at ζ ¼ 0 because the coefficient of ζ2 in the
third term is negative, which shows outward gravitational
force from the ring. Therefore, a particle can stay at the
unstable equilibrium point and then has an energy E ¼
−GMm=½ðn − 2ÞRn−2�, which is consistent with the con-
stant value of the second term of VnðζÞ.
Next, we consider VnðζÞ in the asymptotic region,

where ζ=R ≫ 1. The asymptotic expansion of VnðζÞ is
given by

VnðζÞ ¼
L2

2mζ2
−
GMm
n − 2

1

ζn−2
−
ðn − 2ÞGMm

4

R2

ζn

−
n2ðn − 2ÞGMm

64

R4

ζnþ2
− � � � : ð40Þ

The second term is the monopole term, and the higher-order
terms after the third term include contribution from the ring
shape. Unlike Eq. (39), the power of ζ for all gravitational
term depends on n. In what follows, we analyze the effect
of n-dependent differences in the functional form of VnðζÞ
on the dynamics of particles.
Let us focus on the case where n ¼ 3. Though the black

ring solution is forbidden by the uniqueness theorem of the
black hole in n ¼ 3, some properties must be of great help
to know the dimensionality of the particle dynamics around
a ring source. Furthermore, in the context of astrophysics,
such dynamics would be worth considering. The asymp-
totic expansion of V3ðζÞ takes the form,

V3ðζÞ ¼ −
GMm
ζ

þ L2

2mζ2
−
GMm
4

R2

ζ3
− � � � : ð41Þ

The leading order is the monopole term, and the subleading
order is the centrifugal term. By the same mechanism as in
the case of a point source, these two terms can form a
potential well, so that particles can stably stay near its
bottom. This means that there exist stable circular orbits in
the region far from the ring.
Do the stable circular orbits still exist in the vicinity of

the ring source? To answer this question, we analyze
conditions for the existence of stable circular orbits by
using the complete form of V3ðζÞ. The conditions for a
particle moving on a circular orbit are given by

V 0
3ðζÞ ¼ 0; V3ðζÞ ¼ E; ð42Þ

where the prime denotes the derivative with respect to ζ.
Solving these equations in terms of E and L, we obtain the
energy and angular momentum of a particle moving in a
circular orbit as functions of the orbital radius, respectively,

E0 ¼
GMm
2π

�
EðzÞ
ζ − R

−
3KðzÞ
ζ þ R

�
; ð43Þ

L2
0 ¼

GMm2

π
ζ2
�
EðzÞ
ζ − R

þ KðzÞ
ζ þ R

�
: ð44Þ

We observe that there are no circular orbits between the
origin and the ring, 0 < ζ < R, because L2

0 is negative
there. On the other hand, we find circular orbits in
R < ζ < ∞ because L2

0 is positive. Not all of these circular
orbits are stable, and the stability of a circular orbit requires
the additional condition,

V 00
3ðζÞjL¼L0

¼ 2GMm
πζ2ðζ þ RÞ

�
KðzÞ − R2

ðζ − RÞ2 EðzÞ
�
≥ 0:

ð45Þ

This holds in the range,

ζ0 ≤ ζ < ∞; ð46Þ

where we have determined the marginal value ζ0 by solving
Eq. (45) numerically when the equality holds,

ζ0=R ¼ 1.6095 � � � : ð47Þ

After all, the sequence of stable circular orbits exists from
infinity to the innermost radius ζ0, which is slightly outside
the ring.6 The marginal circular orbit at ζ ¼ ζ0 is often
referred to as the innermost stable circular orbit (ISCO),
which appears as a feature of stable circular orbits in
black hole spacetimes. The energy and angular momentum
at the ISCO are E0=ðGMm=RÞ ¼ −0.24641 � � � and L2

0=
ðGMm2RÞ ¼ 2.3463 � � �.
Let us consider the case where n ¼ 4. The motion of

particles in Φ4 reflects the nature of gravity in the
asymptotic region of the Emparan-Reall black ring space-
time. The effective potential (40) for n ¼ 4 takes the form,

V4ðζÞ ¼
�
L2

2m
−
GMm
2

�
1

ζ2
−
GMm
2

R2

ζ4
−
GMm
2

R4

ζ6
− � � � :

ð48Þ

The leading order consists of the sum of the centrifugal and
themonopole terms and is positive forL2=ðGMm2Þ > 1 and
negative forL2=ðGMm2Þ < 1. In the caseL2=ðGMm2Þ ¼ 1,

6This value was obtained in Ref. [34] in the context of geodesic
motion in the Bach-Weyl ring spacetime.
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the first term vanishes, and then the second term becomes
leading. With any parameter set, no potential well is formed
by the balance between the leading and subleading terms,
but rather a potential top is formed. This means that there
only exist unstable circular orbits in the far region.
Does the absence of a stable circular orbit hold in the

near region? As in the case where n ¼ 3, using the
complete form of V4ðζÞ, we can derive the energy E0

and the angular momentum L0 of a particle in a circular
orbit as

E0 ¼ sgnðζ − RÞ GMmR2

2ðζ2 − R2Þ2 ; ð49Þ

L2
0 ¼ sgnðζ − RÞ GMm2ζ4

ðζ2 − R2Þ2 ; ð50Þ

where sgnð·Þ denotes the sign function. In the region
0 < ζ < R, there are no circular orbits because L2

0 < 0.
On the other hand, in the region ζ > R, circular orbits exist
because L2

0 > 0 but are unstable there,

V 00
4ðζÞjL¼L0

¼ −
4GMmR2

ðζ2 − R2Þ3 < 0: ð51Þ

Consequently, we find that there are no stable circular
orbits on the symmetric plane of a homogeneous circular
ring source in n ¼ 4.
Let us consider n ¼ 5, where the effective potential (40)

reduces to

V5ðζÞ ¼
L2

2mζ2
−
GMm
3

1

ζ3
−
3GMm

4

R2

ζ5
− � � � : ð52Þ

The leading order turns to be the centrifugal term only, and
the subleading order contains the monopole term. These
two terms do not make a potential well but a potential top.
This means that circular orbits are not stable but unstable in
the far region. Applying the same procedure as above, we
obtain the energy and the angular momentum of a particle
in a circular orbit as

E0 ¼
GMm

6πðζ − RÞðζ þ RÞ2
�
3ζ2 þ 5R2

ðζ − RÞ2 EðzÞ − KðzÞ
�
; ð53Þ

L2
0 ¼

GMm2ζ2

3πðζ − RÞðζ þ RÞ2
�
7ζ2 þ R2

ðζ − RÞ2 EðzÞ − KðzÞ
�
: ð54Þ

We find circular orbits in R < ζ < ∞ because L2
0 > 0 but

not in 0 < ζ < R because L2
0 < 0. However, such circular

orbits in R < ζ < ∞ are eventually unstable,

V 00
5ðζÞjL¼L0

¼ 2GMmð2ζ2 þ R2Þ
3πζ2ðζ − RÞ2ðζ þ RÞ3

×

�
KðzÞ − 5ζ4 þ 18R2ζ2 þ R4

ðζ − RÞ2ð2ζ2 þ R2ÞEðzÞ
�
< 0:

ð55Þ

Consequently, we find that there are no stable circular
orbits on the symmetric plane of a homogeneous circular
ring source in n ¼ 5. As can be expected from the fact that
the asymptotic form of VnðζÞ exhibits qualitatively similar
structure, the result that stable circular orbits do not exist on
the symmetric plane is the same when considering n ≥ 6
(see the Appendix).

B. Dynamics on the axis of symmetry ζ = 0

We consider the motion of a particle constrained to the
axis of symmetry of the ring, ζ ¼ 0. Such a particle must
have L ¼ 0 and feels the effective potential,

VnðρÞ ¼
Q2

2mρ2
−

GMm

ðn − 2Þðρ2 þ R2Þðn−2Þ=2 ; ð56Þ

where we have used r�jζ¼0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ R2

p
and

Fða; b; c; 0Þ ¼ 1. Throughout this subsection, we use the
notation VnðρÞ ¼ Vnð0; ρÞjL¼0 for an abbreviation. Once
injected onto the axis, a particle continues to move on it,
but its stability to small perturbations perpendicular to the
axis is nontrivial because of the shape of the source. To
clarify the stability, let us see the expansion of Vnðζ; ρÞjL¼0

around ζ ¼ 0,

Vnðζ; ρÞjL¼0 ¼ VnðρÞ þ
GMm

2ðρ2 þ R2Þðnþ2Þ=2

×

�
ρ2 −

n − 2

2
R2

�
ζ2 þOðζ4Þ: ð57Þ

Whether particles remain stably bound on the axis of
symmetry depend on the sign of the coefficient of ζ2 in
the second term. If a particle moving on the axis of ρ ≥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn − 2Þ=2p

R is perturbed perpendicularly to the axis, it
continues to move stably in the vicinity of the axis. If a
particle moving on the axis of ρ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn − 2Þ=2p
R is

perturbed in the same way, it immediately moves away
from the axis.
It should be noted that in the case n ¼ 3, the potential

V3ðρÞ becomes a monotonically increasing function of ρ,
and the centrifugal force against gravity does not work.
Therefore, no extremum point of V3ðρÞ can be formed, and
thus, a particle cannot stay at rest on the axis.
The following discussion will focus on the case of n ≥ 4.

To consider particle dynamics in the region where ρ=R ≪ 1
(i.e., near the center), we derive the expansion of VnðρÞ
around ρ ¼ 0,
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VnðρÞ ¼
Q2

2mρ2
−

GMm
ðn − 2ÞRn−2 þ

GMm
2Rn ρ2 þ � � � : ð58Þ

The balance between the centrifugal and gravitational terms
can make a potential well, and therefore, a particle can
stably bound in the direction along the axis near the center.
However, as discussed above, since stationary orbits are
unstable with respect to perturbations in the ζ direction for
small ρ, we can finally conclude that the circular orbits near
the center on the axis of symmetry is unstable. Note that
these properties are common for n ≥ 4.
Next, we consider VnðρÞ in the asymptotic region, where

ρ=R ≫ 1. The asymptotic expansion of VnðρÞ becomes

VnðρÞ ¼
Q2

2mρ2
−

GMm
ðn − 2Þρn−2 þ

GMmR2

2ρn
−
nGMmR4

8ρnþ2

þ � � � : ð59Þ

The second term is the monopole term, and the terms after
the third are contribution of the ring shape.
For n ¼ 4, the expansion (59) takes the form,

V4ðρÞ ¼
�
Q2

m
− GMm

�
1

2ρ2
þ GMmR2

2ρ4
−
GMmR4

2ρ6
þ � � � :

ð60Þ

The leading term consists of the centrifugal and monopole
terms, and its sign depends on the choice of parameters.
The leading term is positive for Q2=ðGMm2Þ > 1, and
the subleading term is also positive. This implies that
V4ðρÞ makes no potential well in the far region. For
Q2=ðGMm2Þ ¼ 1, since the first term vanishes, the second
term becomes leading. The positivity of the leading term
implies the nonexistence of a potential well in the far region.
On the other hand, for Q2=ðGMm2Þ < 1, the leading is
negative while the subleading is positive. Therefore, these
terms can make a potential well in the far region. In fact, we
can observe that a local minimum is formed in the far region
in the casewhere 0 < 1 −Q2=ðGMm2Þ ≪ 1. Consequently,
we conclude that circular orbits in the far region are stable not
only for the ζ direction but for the ρ direction in n ¼ 4. Note
that the ring shape of the source contributes to the formation
of such a potential well explicitly.
For n ¼ 5, the expansion (59) takes the form,

V5ðρÞ ¼
Q2

2mρ2
−
GMm
3ρ3

þGMmR2

2ρ5
þ � � � : ð61Þ

The leading term is the centrifugal potential and is positive.
Hence, V5ðρÞ makes no potential well in the far region.
Needless to say, V5ðρÞ with Q ¼ 0 also makes no
extremum point because of the monotonicity of the
Newtonian potential. The qualitative nature of the effective
potential VnðρÞ for n ≥ 6 is the same as that for n ¼ 5.

In fact, there exist no stable circular orbits in the far region
on the symmetric axis of the ring in n ≥ 5.
We clarify the whole picture of circular orbits on the axis

of symmetry using the complete form of VnðρÞ. The
conditions for a particle moving on a circular orbit are
given by

V 0
nðρÞ ¼ 0; VnðρÞ ¼ E; ð62Þ

where the prime denotes the derivative with respect to ρ.
Solving these equations in terms of E and Q, we obtain
the energy and angular momentum of a particle on a
circular orbit,

E0 ¼
GMm

2ðn − 2Þ
ðn − 4Þρ2 − 2R2

ðρ2 þ R2Þn=2 ; ð63Þ

Q2
0 ¼

GMm2ρ4

ðρ2 þ R2Þn=2 ; ð64Þ

respectively. The fact that Q2
0 > 0 for all range of ρ means

that we can find circular orbits at any point on the axis. The
energy E0 for n ¼ 4 is always negative. For n > 5,
however, E0 is negative for ρ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðn − 4Þp

R, zero for
ρ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ðn − 4Þp
R, and positive for ρ >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðn − 4Þp

R. We
should recall that the reference value for the energy of a
particle is zero, which is consistent with the rest energy of
a particle at infinity. The stability to small perturbations in
the ρ direction for a particle taking a circular orbit on the
axis of symmetry requires

V 00
nðρÞjQ¼Q0

¼ GMm
4R2 − ðn − 4Þρ2
ðρ2 þ R2Þðnþ2Þ=2 ≥ 0: ð65Þ

For n ¼ 4, this condition always holds, and thus, we
can find a potential well at any point on the axis. On
the other hand, for n ≥ 5, the condition (65) holds only in
the range,

0 ≤ ρ ≤
2Rffiffiffiffiffiffiffiffiffiffiffi
n − 4

p : ð66Þ

These results for stability are consistent with the above
results of the asymptotic analysis of the stability of the
circular orbits.
Finally, let us summarize the results for stable circular

orbits on the axis of symmetry. For n ¼ 3, no stable circular
orbits exist on the axis since the direction of motion is 1D,
and the gravitational force is attractive. For n ≥ 4, the
sequences of stable circular orbits are visualized in Fig. 1.
For n ¼ 4, we obtain the sequence of stable circular orbits
in the range,

R ≤ ρ < ∞ ðn ¼ 4Þ; ð67Þ
which is shown by a red half line in Fig. 1. Within the
range, we have E0 < 0. Note that the sequence terminates at
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ρ ¼ R. The circular orbit here is the ISCO with E0 ¼
−GMm=ð8R2Þ and Q2

0 ¼ GMm2=4. In the range where
0 ≤ ρ < R, circular orbits exist but are unstable. For n ¼ 5,
we obtain the sequence of stable circular orbits in the range,ffiffiffi

6
p

2
≤

ρ

R
≤ 2 ðn ¼ 5Þ; ð68Þ

which is shown by a red segment in Fig. 1. As seen in the
asymptotic analysis, while there is no mechanism to have
a local minimum of the effective potential in the far region,
a local minimum can be formed near the center by the
balance between a centrifugal barrier and gravitational
force. We can understand ρ ¼ 2R, the radius of the
outermost stable circular orbit, as a switching point
between these two mechanisms. However, the sequence
terminates at ρ ¼ ffiffiffi

6
p

R=2, the radius of the ISCO, because
the bound of particles in circular orbits becomes unstable
against perturbations in the ζ direction here. It is worth
noting that the energy of a particle in a stable circular orbit
is not positive in the range

ffiffiffi
6

p
=2 ≤ ρ=R ≤

ffiffiffi
2

p
. On the

other hand, the energy is positive in the range
ffiffiffi
2

p
< ρ=

R < 2. For n ¼ 6, there exists a marginally stable circular
orbit only at the radius,

ρ ¼
ffiffiffi
2

p
R ðn ¼ 6Þ; ð69Þ

which is shown by a red point in Fig. 1. The energy and
angular momentum of a particle to stay here is E0 ¼
GMm=ð108R4Þ and Q2

0 ¼ 4GMm2=ð27R2Þ, respectively.

For n ≥ 7, we have no stable circular orbits on the axis of
symmetry.

IV. SUMMARY AND DISCUSSIONS

In this paper, we have considered the Newtonian
gravitational potential sourced by a homogeneous circular
ring in En and have seen that the potential in even-
dimensional space is greatly simplified into a form with
finite terms. We can expect that the parity of the potential
must be shared by black ring solutions in general dimen-
sions; for example, the spacetime metrics of even spatial
dimensions would have a simpler structure than those of
odd. A new exact solution of the black rings may be found
not from 5D space but from 6D space earlier.
In the main part, we have considered the dynamics of

free falling massive particles in the Newtonian potential, in
particular stable circular orbits on the symmetric plane,
which is the plane containing the ring, and on the axis of
symmetry. One of the results is that particles cannot move
in a circular orbit stably on the symmetric plane in higher-
dimensional space. We can understand it as the disappear-
ance of stable equilibrium between the centrifugal and
gravitational forces caused by the increase of the inverse
power of gravity as increasing spatial dimensions. In 3D
space, however, stable circular orbits exist from infinity to a
certain radius larger than the radius of the ring. This lower
bound corresponds to the ISCO, which is familiar in black
hole spacetimes, but it is not the only case that appears.
It is worth noting that the phenomenon of the ISCO we

have seen in 3D is not due to ring properties such as
symmetry. One of the mechanisms of the ISCO formation is
the degeneracy of the radii of stable and unstable circular
orbits. It occurs, for example, when the gravitational
potential dominates both at infinity and at a certain location
such as the source position, and the centrifugal potential
becomes dominant between them. This is exactly the case
with the behavior of the effective potential in 3D space. A
homogeneous ring is not the only source of such a situation,
and it is worthwhile to consider various sources that form
the ISCO by a similar mechanism.
We have also clarified that particles constrained on the

axis of symmetry of the ring can only move linearly in 3D
space, while they are allowed to take circular orbits in the
direction of extra dimensions in higher-dimensional spaces.
In 4D space, in particular, a sequence of stable circular
orbits exists from infinity to the ISCO radius, which is
nonzero. In 5D space, such a sequence exists from the
radius of the outermost stable circular orbit to the nonzero
ISCO radius. On the other hand, in spaces higher than 6D,
only unstable circular orbits appear. These are the results
of the dimensional dependence of the gravitational field
created by the ring.
Our results reveal a part of the nature of timelike geodesics

of higher-dimensional black ring solutions through the most
fundamental particle orbits: stable circular orbits in the

FIG. 1. Range of the sequence of stable circular orbits on the
axis of symmetry of a homogeneous circular ring. The blue
shaded area above the solid blue line is the region where particles
in circular orbits on the axis are stably bound to the axis against
perturbations in the ζ direction. The blue shaded area below the
dashed blue line is the region where particles in circular orbits on
the axis are stably bound against perturbations in the ρ direction.
The overlap of these two shaded shows the region where stable
circular orbits can exist. The sequences of stable circular orbits
are drawn by the red solid lines. The orange dotted line shows
zero of the energy of particles in the circular orbits.
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Newtonian gravity. Based on the blackfold approach, we can
approximate the gravitational field in the vicinity of a black
ring with a bent black string. Since the dynamics of particles
in the vicinity of an (nþ 1)-dimensional black string are
equal to that of an n-dimensional black hole, we can predict
its behavior relatively easily. The full picture will become
clearer when the exact solution of the higher-dimensional
black ring is discovered, and the behavior of the timelike
geodesics, including the vicinity of the horizon, is clarified.
Clarification of the entire sequences of stable circular orbits
in the region away from the symmetry plane and axis of
symmetry is an issue for the future. A branch of the
sequences may extend towards the ring.While the equation
of motion is integrable in 4D case, it remains unsolved
whether or not it is also integrable in the case of more than
5D. With the change in dimensions, this system may even
manifest chaotic instead of integrable.
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APPENDIX: CIRCULAR ORBITS ON THE
SYMMETRIC PLANE

The conditions satisfied by a particle moving in a circular
orbit on the symmetric plane are

V 0
nðζÞ ¼ 0; VnðζÞ ¼ E; ðA1Þ

where the explicit form of VnðζÞ is given in Eq. (36).
Solving these in terms of E and L, we obtain

E0 ¼
GMm

2ðζ þ RÞn−1
�ðn − 4Þζ − 2R

n − 2
F

�
1

2
;
n − 2

2
; 1; z

�

þ Rζðζ − RÞ
ðζ þ RÞ2 F

�
3

2
;
n
2
; 2; z

��
; ðA2Þ

L2
0 ¼

GMm2ζ3

ðζ þ RÞn−1
�
F

�
1

2
;
n − 2

2
; 1; z

�

þ Rðζ − RÞ
ðζ þ RÞ2 F

�
3

2
;
n
2
; 2; z

��
; ðA3Þ

respectively. According to the results of numerical analysis
of L2

0, there seem to be no circular orbits in 0 ≤ ζ < R
because L2

0 < 0. On the other hand, there seem to be
circular orbits in ζ > R because L2

0 > 0. The second
derivative of VnðζÞjL¼L0

evaluated at ζ > R is

V 00
nðζÞjL¼L0

¼ GMm
2ζðζ þ RÞnþ2

�
uðζÞF

�
3

2
;
n
2
; 2; z

�

þ vðζÞF
�
5

2
;
n
2
; 2; z

��
; ðA4Þ

where

uðζÞ ¼ ðn − 4Þζ3 þ 2ð2n2 − 13nþ 17ÞRζ2
þ ð8 − 7nÞR2ζ − 6R3; ðA5Þ

vðζÞ ¼ 3ðζ − RÞ2½2R − ðn − 4Þζ�: ðA6Þ

The numerical analysis shows that V 00
nðζÞjL¼L0

< 0 for
n ≥ 4, which means that the circular orbits are unstable.
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