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In this work, we consider the full Horndeski Lagrangian applied to wormhole geometries and present the
full gravitational field equations. We analyze the general constraints imposed by the flaring-out conditions
at the wormhole throat and consider a plethora of specific subclasses of the Horndeski Lagrangian, namely,
quintessence and phantom fields, k-essence, scalar-tensor theories, covariant Galileons, nonminimal
kinetic coupling, kinetic gravity braiding, and the scalar-tensor representation of Gauss-Bonnet couplings,
among others. The generic constraints analyzed in this work serve as a consistency check of the main
solutions obtained in the literature and draw out new avenues of research in considering applications of
specific subclasses of the Horndeski theory to wormhole physics.
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I. INTRODUCTION

Traversable wormholes are hypothetical shortcuts in
spacetime, where the key ingredient involves the flaring-
out condition at the throat [1–4]. In general relativity,
through the Einstein field equation this restriction entails
the violation of the null energy condition (NEC), which is
defined as Tμνkμkν ≥ 0, for any null vector kμ [5,6].
However, in modified theories of gravity, it has been
shown that the NEC can be satisfied for normal matter
threading the wormhole throat, and it is the higher-order
curvature terms that sustain the wormhole geometry [7]. In
fact, wormhole physics has been extensively explored in
modified theories of gravity, such as in fðRÞ gravity [8],
extended theories with a nonminimal curvature-matter
coupling [9,10], scalar-tensor theories with nonminimal
derivative coupling [11,12], hybrid metric-Palatini gravity
[13] and its generalized version [14], and higher-
dimensional theories [15–19], among many other theories
(we refer the reader to Ref. [4] for a recent review). These
extended theories of gravity admit an equivalent scalar-
tensor representation.
Indeed, scalar fields are popular building blocks used to

construct physical theories and are appealing as such fields
are ubiquitous in theories of high-energy physics beyond
the standard model. Given the large number of models, the
question arises how we should study and compare them in a
unified manner. A particularly useful tool in this direction is
the realization that all these classes of models are special

cases of the most general Lagrangian which leads to
second-order field equations, namely, the Horndeski
Lagrangian [20], which was recently rediscovered [21].
The Horndeski action can be given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p X5
i¼2

Li þ SM½gμν; χM�; ð1:1Þ

where g is the determinant of metric tensor gμν and SM is
the matter action, in which χM collectively denotes all
matter fields. The Lagrangians Li are defined by

L2 ¼ G2ðϕ; XÞ;
L3 ¼ −G3ðϕ; XÞ□ϕ;

L4 ¼ G4ðϕ; XÞRþ G4;Xðϕ; XÞ½ð□ϕÞ2 − ð∇μ∇νϕÞ2�;

L5 ¼ G5ðϕ; XÞGμν∇μ∇νϕ −
1

6
G5;X

× ½ð□ϕÞ3 − 3□ϕð∇μ∇νϕÞ2 þ 2ð∇μ∇νϕÞ3�; ð1:2Þ

respectively, where R is the Ricci scalar and Gμν is the
Einstein tensor; the factors Gi (i ¼ 2, 3, 4, 5) are arbitrary
functions of the scalar field ϕ and the canonical kinetic
term, X ¼ − 1

2
∇μϕ∇μϕ. We consider the definitionsGi;X ≡

∂Gi=∂X, ð∇μ∇νϕÞ2 ¼ ∇μ∇νϕ∇ν∇μϕ, and ð∇μ∇νϕÞ3 ¼
∇μ∇νϕ∇ν∇ρϕ∇ρϕ∇μϕ. Furthermore, we assume that the
matter fields χM are minimally coupled to gravity.
Note that by choosing the functions Gi appropriately,

one may reproduce any second-order scalar-tensor tensor
theory. For instance, the G2 term is used in k-essence
[22,23], and the G3 term was explored in the context of
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kinetic gravity braiding [24]. One may also consider
theories in which the scalar field is nonminimally coupled
to the Ricci scalar R in the form G4ðϕÞR [25], where a
representative example is Brans-Dicke (BD) theory [26]
with a scalar potential VðϕÞ. The specific assumption of
G4 ¼ const provides the Hilbert-Einstein term. The choices
of G4 ¼ X or G5 ¼ −ϕ have been used in nonminimal
couplings of the form Gμν∇μ∇νϕ [27,28]. We refer the
reader to [29] for a plethora of specific cases. These theories
all belong to a subclass of more general second-order scalar-
tensor theories denoted by Horndeski theories [20].
An interesting application of scalar-tensor theories is in

wormhole physics, where a wide variety of solutions have
been obtained in the literature [30–36], especially related to
the stability issues [37–41]. These (and other) solutions are
specific subclasses of the Horndeski action (1.1), so it is
important to consider the most general conditions that are
needed to obtain wormhole geometries in Horndeski
theories. Thus, in this work, we consider the analysis
restricted to the wormhole throat and analyze a wide variety
of subclasses of the Horndeski Lagrangian. This proves to
be extremely useful as it serves as consistency checks for
the solutions obtained in the literature and paves the way
for new avenues of research related to subclasses of
Horndeski wormhole solutions.
This work is organized in the following manner: In

Sec. II, we present the wormhole metric and the general
constraints of the full Horndeski Lagrangian at the worm-
hole throat. In Sec. III, we consider specific subclasses of
the Horndeski theory, namely, quintessence and phantom
fields, k-essence, scalar-tensor theories, covariant Galileons,
nonminimal kinetic coupling, kinetic gravity braiding, and
the scalar-tensor representation of Gauss-Bonnet couplings,
among others. In Sec. IV, we conclude and discuss our
results.
In addition to this, as the gravitational field equations

for the full Horndeski theory are extremely lengthy, we
opt to present these in Appendix A. The field equations
at the throat are written in Appendix B, which are then
used to deduce the most general flaring-out condition for
Horndeski wormholes, in terms of the scalar field ϕ, the
kinetic term X, the factors Gi and their derivatives, and
presented in Appendix C.

II. GENERAL ANALYSIS AT THE
WORMHOLE THROAT

A. Metric and flaring-out condition

Consider a static and spherical symmetric configuration
in the theory (1.1). In this case the spacetime metric can be
taken as follows:

ds2 ¼ −AðuÞdt2 þ A−1ðuÞdu2 þ r2ðuÞdΩ2; ð2:1Þ
where dΩ2 ¼ dθ2 þ sin2 θdφ2 is the linear element of the
unit sphere and the metric functions AðuÞ and rðuÞ and the

scalar field ϕ are functions of the radial coordinate u. Here
the radial coordinate lies in the range u ∈ ð−∞;þ∞Þ, so
that two asymptotically flat regions exist, i.e., u → �∞,
and are connected by the throat. In addition to this, the
function rðuÞ possesses a global positive minimum at the
wormhole throat u ¼ u0, which one can set at u0 ¼ 0,
without a loss of generality.
The wormhole throat is defined as r0 ¼ minfrðuÞg ¼

rð0Þ. In order to avoid event horizons and singularities
throughout the spacetime, one imposes that the function
AðuÞ is positive and regular everywhere. Taking into
account these restrictions, namely, the necessary conditions
for the minimum of the function, imposes the flaring-out
conditions, translated as

r00 ¼ 0; r000 > 0: ð2:2Þ

As the metric function AðuÞ is positive and regular ∀ u, it
is useful to analyze its first and second derivatives at the
throat u ¼ 0. Thus, A0 is a free parameter, as is A0

0, which
for simplicity, we impose hereafter A0

0 ¼ 0. Now, the sign
of A00

0 determines the type of extrema of AðuÞ; i.e., it is a
minimum if A00

0 > 0 and a maximum if A00
0 < 0. This

implies that the maximum (minimum) of AðuÞ corresponds
to a maximum (minimum) of the gravitational potential, so
that in the vicinity of a maximum (minimum) the gravi-
tational force is repulsive (attractive). Thus, the wormhole
throat possesses a repulsive or an attractive nature that
depends on the sign of A00

0 .

B. Generic constraints at the wormhole throat

We present the full field equations for the Horndeski
action (1.1), using the metric (2.1), in Appendix A. Thus,
taking into account the field equations (A1)–(A3), evalu-
ated at the throat, and using the condition A0

0 ¼ 0 (see
discussion above), one obtains restrictions for the worm-
hole geometry. More specifically, setting r0 ¼ 0 at the
throat, we obtain a set of linear algebraic equations for
the second derivatives r000 , A

00
0 , and ϕ00

0 . In this work, we
use the three components of the gravitational field
equations (A1)–(A3) and the scalar field equation (A4)
presented in Appendix A.
The ðrrÞ component (A2) of the field equations is of first

order, represents a constraint on initial conditions, and is
given by

1

r20
¼ −

1

2

G2 þ A0ϕ
02
0 ðG2;X −G3;ϕÞ

G4 þ A0ϕ
02
0 ðG4;X − 1

2
G5;ϕÞ

����
u0

: ð2:3Þ

This condition places an additional constraint on the
wormhole geometry, as 1=r20 > 0. Note that, taking into
account the metric (2.1), the kinetic term at the throat is
negative and takes the form X0 ¼ − 1

2
A0ϕ

02
0 < 0.

Furthermore, in order to obtain the flaring-out condition,
we have to resolve the linear algebraic equations with
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respect to r000, which places further constraints on the
wormhole geometry through the flaring-out condition
(2.2). For this purpose, we write out the field equa-
tions at the throat, presented in Appendix A, by taking
into account the conditions r00 ¼ 0 and A0

0 ¼ 0, so that
Eqs. (A1) and (A3) and the scalar field equation (A4)
reduce to Eqs. (B1)–(B3) in Appendix B. Finally, elimi-
nating the terms A00

0 and ϕ00
0 , one finally arrives at the most

general flaring-out condition for Horndeski wormholes,
solely in terms of the scalar field ϕ, the kinetic term X, the
factors Gi and their derivatives, given by Eq. (C1), which
due to its extremely lengthy and messy form is presented in
Appendix C. We then refer to this condition, when
analyzing specific subclasses of the Horndeski action.
Note that these relations are constrained by the impo-

sition r20 > 0 and the flaring-out condition r000 > 0 at the
throat. Thus, in order to be a wormhole solution, these
equations impose tight restrictions on the spacetime geom-
etry. The strategy to follow is take into account these
conditions in order to analyze and serve as a consistency
check on specific solutions obtained in the literature. In
addition to this, one can obtain generic impositions to
obtain novel solutions and which may trace out new
avenues of research in wormhole physics, in the context
of subclasses of Horndeski theories.

III. SUBCLASSES OF HORNDESKI THEORY

A. Quintessence and phantom fields

Recent observations suggest that a large fraction of the
energy density of the Universe has negative pressure, where
a possible explanation is in the form of a scalar field slowly
evolving down a potential, denoted quintessence [42–44].
The latter possesses a positive kinetic energy; however,
phantom scalar fields with a negative kinetic energy [45]
have also been considered.
For the specific case of quintessence and phantom fields,

consider the following functions:

G2 ¼ ϵX − VðϕÞ; G4 ¼
1

16π
; G3 ¼ G5 ¼ 0;

ð3:1Þ

where ϵ ¼ �1. Note that the case ϵ ¼ þ1 corresponds to
the standard canonical term [42–44], and ϵ ¼ −1 to a
phantom field which possesses a negative kinetic energy
[45]. In fact the phantom field rolls up the potential due to
the negative kinetic energy, so that if the potential is
unbounded from above, the energy density tends to infinity.
Recall that taking into account the metric (2.1),

the kinetic term at the throat is negative, i.e., X0 ¼
− 1

2
A0ϕ

02
0 < 0. Thus, Eqs. (2.3) and (C1) reduce to

1

r20
¼ 8πðϵX0 þ V0Þ; ð3:2Þ

r000
r0

¼ 8πϵX0

A0

; ð3:3Þ

respectively, from which we verify that Eq. (3.3) is
consistent with the flaring-out condition, i.e., r000 > 0,
only if ϵ < 0, corresponding to a phantom field. This
reproduces the well-known result that a wormhole solution
in general relativity is only permitted with a minimally
coupled phantom scalar field with negative kinetic energy
[45–47]. Condition (3.2) imposes that V0 > −A0ϕ

02
0 =2 (for

ϵ ¼ −1). These results are consistent with those presented
in [45–55].
In fact, it has been suggested that a possible candidate

for the present accelerated expansion of the Universe is
“phantom energy” [56], which possesses an equation of
state of the form ω ¼ p=ρ < −1, where ρ is the energy
density and p the pressure. This consequently violates the
null energy condition, which is the fundamental ingredient
to sustain traversable wormholes, so that this cosmic fluid
presents us with a natural scenario for the existence of these
exotic geometries.

B. k-essence

As quintessence is based on a canonical scalar field with
a potential, it is known that scalar fields with noncanonical
kinetic terms appear in high-energy physics. This motivates
the presence of an arbitrary function of the scalar field and
the kinetic term in the gravitational Lagrangian. Therefore,
one may consider the following functions, which generalize
the case studied above:

G2 ¼ Kðϕ; XÞ; G4 ¼
1

16π
; G3 ¼ G5 ¼ 0; ð3:4Þ

so that Eqs. (2.3) and (C1) take the form

1

r20
¼ −8πðK0 − 2X0KX0

Þ; ð3:5Þ

r000
r0

¼ 8πX0KX0

A0

; ð3:6Þ

respectively.
Thus, Eqs. (3.5) and (3.6) impose the following con-

ditions at the wormhole throat:

K0 − 2X0KX0
< 0; KX0

< 0: ð3:7Þ

(The first condition can be written in the following form:
K0 þ A0ϕ

02
0 KX0

< 0.) More specifically, KX0
< 0 imposes

that K0 < A0ϕ
02
0 jKX0

j. These conditions are consistent with
those presented in Ref. [57], where static and spherically
symmetric configurations in the context of k-essence
theories defined by a function depending solely on the
kinetic term, i.e., K ¼ KðXÞ, were presented. In fact, a
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no-go theorem was proved, claiming that a possible
black-hole-like Killing horizon of finite radius cannot
exist if the function KðXÞ is required to have a finite
derivative dK=dX.
As a specific example, consider the case of a ghost

condensate model [58], given by the function K ¼ −Xþ
X2=M4, so that conditions (3.7) impose

X0 −
3

M4
X2
0 < 0; −1þ 2

M4
X0 < 0; ð3:8Þ

which, taking into account that X0 < 0, are automatically
satisfied.
One may also consider actions arising from low-energy

effective string theory, which gives rise to higher-order
derivative terms coming from loop corrections to the tree-
level action [59]. For instance, consider the specific case
Kðϕ; XÞ ¼ K̄ðϕÞX þ LðϕÞX2, so that KX ¼ K̄ þ 2LX, and
conditions (3.7) impose

K̄ðϕ0Þ < −2X0Lðϕ0Þ; K̄ðϕ0Þ < −3X0Lðϕ0Þ; ð3:9Þ

where the bounds essentially depend on the signs of the
functions K̄ðϕ0Þ and Lðϕ0Þ.

C. Scalar-tensor theories

Scalar fields have a long history in gravitation, starting
with Brans-Dicke theory [26], in which gravity is mediated
by the scalar field and the metric tensor field. In fact,
modified theories of gravity may be written in a scalar-
tensor representation, by introducing specific Legendre
transformations, which motivates the further analysis of
specific cases of scalar-tensor theories in more detail.
Consider the general nonminimally coupled theories given
by the couplings [60–65]

G2 ¼ ωðϕÞX − VðϕÞ; G4 ¼ FðϕÞ; G3 ¼ G5 ¼ 0;

ð3:10Þ

so that Eqs. (2.3) and (C1) take the form

1

r20
¼ 1

2F0

ðV0 þ ωX0Þ ð3:11Þ

and

r000
r0

¼ fωXFðωþ 2F00Þ þ ðωX þ VÞF02

þ FF0½Xðω − ω0Þ þ V − V 0�gju0=
½2AFðωF þ FF0 þ 2F02Þ�ju0 ; ð3:12Þ

respectively.
In order to have wormhole geometries, as mentioned

above, these quantities are imposed to be positive. We will

analyze specific cases below, namely, Brans-Dicke theory
with a potential and the scalar-tensor representations of
several modified theories of gravity.

1. Brans-Dicke theory

Wormholes physics has been extensively explored in the
context of Brans-Dicke theory [66–74]. Here, we consider
the most general conditions for the existence of these exotic
geometries. In Brans-Dicke theory [26] with the scalar
potential VðϕÞ, we have

G2 ¼
1

16π

�
ωBD

ϕ
X − VðϕÞ

�
;

G4 ¼
1

16π
ϕ; G3 ¼ G5 ¼ 0: ð3:13Þ

In the limit that ωBD → ∞, we recover general relativity
(GR) with a quintessence scalar field.
For this case, Eqs. (2.3) and (C1) take the form

1

r20
¼ 1

2ϕ2
0

ðωBDX0 þ ϕ0V0Þ; ð3:14Þ

r000
r0

¼ ωBDX0

2A0ϕ
2
0

þ V0ð1þ ϕ0Þ − V 0
0ϕ0

2A0ϕ0ð2þ ωBD þ ϕ0Þ
; ð3:15Þ

respectively. Note that in the absence of the potential,
V ¼ 0, conditions (3.14) and (3.15) impose that ωBD < 0,
which is consistent with the literature. However, con-
sidering a nonzero potential alleviates this restriction,
where inequality (3.14) imposes a general condition on
the value of the potential at the throat given by ϕ0V0 >
−ωBDX0 (note that this relaxes the restriction ωBD < 0).
On the other hand, inequality (3.15) imposes an inequality
on the derivative of the potential, assuming that 2þ ωBD þ
ϕ > 0, given by

V 0
0 <

ð2þ ωBD þ ϕÞωBDX0

ϕ2
0

þ V0ð1þ ϕ0Þ
ϕ0

: ð3:16Þ

Below, we consider specific cases of modified theories of
gravity, that can be represented as particular cases of Brans-
Dicke theory.

2. f ðRÞ gravity: Metric formalism

An extension of general relativity that has recently been
explored in detail is fðRÞ gravity, in order to explain the
late-time cosmic acceleration [75,76]. The action of fðRÞ
gravity is given by

SH ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ; ð3:17Þ

where fðRÞ is an arbitrary function of R. The metric fðRÞ
gravity, which corresponds to the variation of (3.17) with
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respect to gμν, is represented by the following choices of the
Lagrangian:

G2 ¼ −
1

16π
ðRF − fÞ; G4 ¼

1

16π
F; G3 ¼ G5 ¼ 0;

ð3:18Þ
where FðRÞ≡ ∂f=∂R. This corresponds to the Jordan
frame representation of the action of a Brans-Dicke theory
with ωBD ¼ 0 and we define the scalar potential as V ¼
ðRF − fÞ [77,78]. Here the scalar degree of freedom ϕ ¼
FðRÞ arises from the gravitational sector.
Note, however, that it has been argued in the literature

that traversable wormhole geometries are only valid in the
interval −3=2 < ωBD < −4=3 [68], consequently appa-
rently excluding fðRÞ gravity wormholes, which are equiv-
alent to their Brans-Dicke counterparts, with ωBD ¼ 0.
However, it was shown that this referred interval is only
valid for a specific choice of an integration constant of the
field equations derived on the basis of a post-Newtonian
weak field approximation, and there is no reason for it to
hold in the presence of compact objects with strong
gravitational fields [71].
For this case, Eqs. (2.3) and (C1) take the form

1

r20
¼ V0

2ϕ0

; ð3:19Þ

r000
r0

¼ V0ð1þ ϕ0Þ − V 0
0ϕ0

2A0ϕ0ð2þ ϕ0Þ
; ð3:20Þ

respectively. Here, inequality (3.19) imposes the following
generic restriction V0=ϕ0 > 0, which may be interpreted as
a constraint on the potential at the throat. Inequality (3.20)
imposes a generic condition on the derivative of the
potential at the throat, assuming that 2þ ϕ0 > 0, given by

V 0
0 <

V0ð1þ ϕ0Þ
ϕ0

: ð3:21Þ

Note that this restriction is consistent with considering
ωBD ¼ 0 in inequality (3.16).

3. f ðRÞ gravity: Palatini approach
The Palatini fðRÞ gravity, which corresponds to the

variation of (3.17) with respect to gμν and the connection,
in the scalar-tensor representation corresponds to a Brans-
Dicke theory with the BD parameter ω ¼ −3=2 [79]. Thus,
Eqs. (3.14) and (3.15) reduce to

1

r20
¼ 2ϕ0V0 − 3X0

4ϕ2
0

; ð3:22Þ

r000
r0

¼ −
3X0

4A0ϕ
2
0

þ V0ð1þ ϕ0Þ − V 0
0ϕ0

A0ϕ0ð1þ 2ϕ0Þ
; ð3:23Þ

respectively.

Condition (3.22) provides ϕ0V0 > 3X0=2, while inequa-
lity (3.23) imposes the following generic constraint on the
derivative of the potential evaluated at the throat, assuming
that 1þ 2ϕ0 > 0:

V 0
0 < −

3ð1þ 2ϕ0ÞX0

4ϕ2
0

þ V0ð1þ ϕ0Þ
ϕ0

: ð3:24Þ

In fact, in this context, nontrivial wormhole topologies
in Planck-suppressed quadratic extensions of GR formu-
lated in the Palatini formalism have been explored and the
physical significance of curvature divergences in theory
and the topology change issue have been analyzed in the
literature [80–83]. This study supports the view that space-
time could have a foamlike microstructure pervaded by
wormholes generated by quantum gravitational effects.

4. Hybrid metric-Palatini theory

It has been established that both metric and Palatini ver-
sions of fðRÞ theories of gravity have interesting features
but also manifest severe and different downsides. A hybrid
combination of theories, containing elements from both
these two formalisms, turns out to be also very successful
accounting for the observed phenomenology and is able to
avoid some drawbacks of the original approaches [13,84–86].
More specifically, this approach consists of adding to the
Einstein-Hilbert Lagrangian an fðRÞ term constructed à la
Palatini [84]. Using the respective dynamically equivalent
scalar-tensor representation, it has been shown that the
theory passes the Solar System observational constraints
even if the scalar field is very light. This implies the existence
of a long-range scalar field, which is able to modify the
cosmological and galactic dynamics but leaves the Solar
System unaffected.
The action of the hybrid metric-Palatini theory is given

by [84]

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ fðRÞ� þ Sm; ð3:25Þ

where Sm is the matter action, R is the Einstein-Hilbert
term, R≡ gμνRμν is the Palatini curvature, and Rμν is
defined in terms of an independent connection given
by Rμν ≡ Γ̂α

μν;α − Γ̂α
μα;ν þ Γ̂α

αλΓ̂λ
μν − Γ̂α

μλΓ̂λ
αν.

The action (3.25) may be expressed as the following
scalar-tensor theory:

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

16π

�
ð1þ ϕÞRþ 3

2ϕ
∂μϕ∂μϕ − VðϕÞ

�
þ Sm;

ð3:26Þ

which differs from w ¼ −3=2 Brans-Dicke theory in the
coupling of the scalar to the curvature, which in the w ¼
−3=2 theory is ϕR.
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Thus, the Horndeski Gi factors are given by

G2 ¼
1

16π

�
−

3

2ϕ
X − VðϕÞ

�
;

G4 ¼
1

16π
ð1þ ϕÞ; G3 ¼ G5 ¼ 0; ð3:27Þ

so that Eqs. (2.3) and (C1) take the form

1

r20
¼ 2ϕ0V0 − 3X0

4ϕ0ð1þ ϕ0Þ
; ð3:28Þ

r000
r0

¼ f4ϕ2
0V0ð2þ ϕ0Þ − 4V0

0ϕ
2
0ð1þ ϕ0Þ

þ 3X0½1 − ϕ0ð3þ 2ϕ0Þ�g=½4A0ϕ0ð2ϕ3
0 þ 5ϕ2

0 − 3Þ�;
ð3:29Þ

respectively.
Assuming that ϕ0ð1þ ϕ0Þ > 0, then condition (3.28)

imposes ϕ0V0 − 3X0=2 > 0 in order to have wormhole
solutions [87], and the positivity of condition (3.29) may be
interpreted as a condition of the derivative of the potential.

D. Nonminimal kinetic coupling

One of the simplest Lagrangians in the Horndeski theory
contains a nonminimal kinetic coupling of a scalar field to
the curvature. In fact, cosmological applications have been
explored in the literature [88–91]. Relative to wormhole
physics, solutions with a nonminimal kinetic coupling were
studied in [11,12]. More specifically, general solutions
describing asymptotically flat traversable wormholes were
obtained by means of numerical methods [12], and par-
ticular exact wormhole solutions in an analytical form have
been found by using the Rinaldi method [11].
Consider the functions

G2 ¼ ϵX − VðϕÞ; G3 ¼ 0; G4 ¼
1

16π
; G5 ¼

1

2
ηϕ;

ð3:30Þ
so that Eqs. (2.3) and (C1) take the form

1

r20
¼ 8πðϵX0 þ V0Þ

1þ 8πηX0

; ð3:31Þ

r000
r0

¼ 8πX0ðϵ − 8πηV0Þ
A0ð1þ 8πηX0Þ2

; ð3:32Þ

respectively, which is consistent with the results extensively
explored in Ref. [11]. Indeed, rather than analyze these
results, we refer the reader to [11,12] for more details.

E. Kinetic gravity braiding

A large class of scalar-tensor models with interactions
containing the second derivatives of the scalar field, but not

leading to additional degrees of freedom, has been intro-
duced. These models exhibit peculiar features, such as an
essential mixing of scalar and tensor kinetic terms [24], and
have been denoted by kinetic braiding. It is interesting that
this braiding essentially causes the scalar stress tensor to
deviate from the perfect-fluid form [92], and in particular,
in cosmology these models possess a rich phenomenology.
In fact, the late-time asymptotic is a de Sitter state, and the
scalar field can exhibit a phantom behavior that is able to
cross the phantom divide with neither ghosts nor gradient
instabilities.
For the kinetic gravity braiding, consider the functions

G2 ¼ ϵX − VðϕÞ; G3 ≠ 0; G4 ¼
1

16π
; G5 ¼ 0;

ð3:33Þ

so that Eqs. (2.3) and (C1) take the form

1

r20
¼ 8π½X0ðϵ − 2G3;ϕÞ þ V0�; ð3:34Þ

r000
r0

¼ 8πX0

A0

½2XG3;ϕXð2G3;ϕ − ϵÞ − G3;XG3;ϕϕðϕþ 4XÞ

− 16πXG2
3;Xð2XG3;ϕ − ϵX − VÞ þ ð2G3;ϕ − ϵÞ2

þG3;Xð2XG3;ϕ − ϵX − V þ V 0Þ�ju0=½ϵ − 2G3;ϕ

− 2G3;ϕXX þ XG3;Xð48πXG3;X − 1Þ�ju0 ; ð3:35Þ

respectively.
From Eq. (3.34), one finds that the general condition

X0ðϵ − 2G3;ϕÞ þ V0 < 0 is imposed. However, one cannot
extract much information from inequality (3.35), and we
will resort to specific cases. For instance, consider the case
of G3 ¼ λgðϕÞ, so that Eqs. (3.34) and (3.35) reduce to

1

r20
¼ −8πX0ð2g0λ − ϵ − V0Þ; ð3:36Þ

r000
r0

¼ −8πX0ð2g0λ − ϵÞ; ð3:37Þ

respectively, which impose the conditions ð2g0λ − ϵ −
V0Þ > 0 and ð2g0λ − ϵÞ > 0. For the specific simple linear
case of gðϕÞ ¼ ϕ and with zero potential V ¼ 0, one has
the generic condition imposed on the wormhole throat
2λ > ϵ.
For the specific case of functions solely on the kinetic

term, namely, G2 ¼ KðXÞ and G3 ¼ G3ðXÞ [93], for in-
stance, taking into account G2 ¼ −X þ λX2 and G3 ¼ ηX,
the conditions (3.34) and (3.35) reduce to the following:

1

r20
¼ −8πX0ð1 − 3λX0Þ ð3:38Þ
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and

r000
r0

¼ −
8πX0

A0

½1þ ηX0ð1 − 16πηX0Þð1 − 3λX0Þ − 4λX0

× ð2 − 3λX0Þ�=ð1þ ηX0 − 6λX0 − 48πη2X2
0Þ;

ð3:39Þ

respectively. Taking into account X0 < 0, condition (3.38)
imposes the generic constraint 3λX < 1. Note that for λ ≥ 0,
condition (3.38) is automatically satisfied, and for the
specific case of λ ¼ 0, condition (3.39) simplifies to

r000
r0

¼ −
8πX0

A0

�
1þ ηX0 − 16πη2X2

0

1þ ηX0 − 48πη2X2
0

�
; ð3:40Þ

which imposes constraints of the factor η, so that the term in
parentheses should be positive; note that η ¼ 0 is automati-
cally satisfied and reduces to the phantom case with zero
potential.
Wormhole geometries in the context of the kinetic gra-

vity braiding have been largely unexplored in the literature,
and the authors of the present work are currently analyzing
several lines of research in this direction.

F. Covariant Galileons

In the context of the original Galileons, the field
equations are invariant under the shift ∂μϕ → ∂μϕþ bμ
in Minkowski spacetime [94]. However, in curved space-
time, the construction of covariant Galileon Lagrangians
[95] maintains the equations of motion up to second order
and recovers the Galilean shift symmetry in the Minkowski
limit. Indeed, covariant Galileons are characterized by the
functions

G2 ¼ β1X −m3ϕ; G3 ¼ β3X;

G4 ¼
M2

pl

2
þ β4X2; G5 ¼ β5X2; ð3:41Þ

where m and βi (with i ¼ 1, 3, 4, 5) are constants. More
specifically, in the absence of the linear potential VðϕÞ ¼
m3ϕ, i.e., for m ¼ 0, a self-accelerating de Sitter solution
exists that satisfies X ¼ const [93,96–98]. Below we
consider this case, for simplicity.
Thus, for covariant Galileons, taking into accountm¼ 0,

the conditions (2.3) and (C1) take the following form:

1

r20
¼ 8πβ1X0

1 − 48πβ4X2
0

; ð3:42Þ

r000
r0

¼ 8πβ1X0

A0

�
β24π

3ðβ1β5 − β3β4ÞX7
0 þ

π3

3
ðβ21β25 − 4β1β3β4β5 − 9β1β

3
4 þ 3β23β

2
4ÞX6

0

þ π2β4
24

�
β1β5 −

5

2
β3β4

�
X5
0 þ

3π2β4
16

�
β1β4 þ

2

9
β23

�
X4
0 −

π

768
ðβ1β5 þ β3β4ÞX3

0

þ π

768
ðβ1β4 − β23ÞX2

0 þ
β3X0

12288
−

β1
12288

��	
ð48πβ4X2

0 − 1Þ½β24π3ðβ1β5 þ 3β3β4ÞX7
0

þ π3

3
ðβ21β25 þ 6β1β3β4β5 − 27β1β

3
4 − 27β23β

2
4ÞX6

0 þ
π2β4
24

�
β1β5 þ

3

2
β3β4

�
X5
0

−
π2

24

�
β1β3β5 −

9

2
β1β

2
4 − 9β23β4

�
X4
0 −

π

768
ðβ1β5 þ 5β3β4ÞX3

0 þ
π

768
ðβ1β4 − β23ÞX2

0

þ β3X0

12288
−

β1
12288



; ð3:43Þ

respectively. Note that not much information can be
extracted from this lengthy expression, so it is useful to
consider specific cases.
For instance, consider the case of β4 ¼ 0 and β5 ¼ 0, so

that Eqs. (3.42) and (3.43) reduce to

1

r20
¼ 8πβ1X0; ð3:44Þ

r000
r0

¼ 8πβ1X0

A0

�
β1 − β3X0 þ 16πβ23X

2
0

β1 − β3X0 þ 48πβ23X
2
0

�
; ð3:45Þ

respectively. Condition (3.44) imposes that β1 < 0, and
(3.45) places specific restrictions on β3.
Second, consider the case of β3 ¼ 0 and β4 ¼ 0, so that

Eqs. (3.42) and (3.43) reduce to

1

r20
¼ 8πβ1X0;

r000
r0

¼ 8πβ1X0

A0

; ð3:46Þ

respectively, which impose that β1 < 0, in order to have
wormhole geometries.
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Third, consider the case of β3 ¼ 0 and β5 ¼ 0, so that
Eqs. (3.42) and (3.43) reduce to

1

r20
¼ 8πβ1X0

1 − 48πβ4X2
0

; ð3:47Þ

r000
r0

¼ 8πβ1X0

A0

1 − 16πβ4X2
0

ð1 − 48πβ4X2
0Þ2

; ð3:48Þ

respectively. Now, if β4 < 0, both conditions above impose
that β1 < 0, to have wormhole geometries. If β4 > 0, then
we have two restrictions, namely: (i) the conditions β1 < 0

and β4 > 1=ð48πX2
0Þ are imposed, or (ii) β1 > 0 and β4 <

1=ð48πX2
0Þ, to have wormhole solutions. Furthermore, if

β4 ¼ 0, this reduces to β1 < 0, and to the phantom case
without a potential, where we identify β1 ¼ ϵ.
We note that wormhole geometries have been considered

for a specific subclass of a Galileon Lagrangian given
by L ¼ Fðϕ; XÞ þ Kðϕ; XÞ□ϕ, i.e., G2 ¼ Fðϕ; XÞ and
G3 ¼ −Kðϕ; XÞ [99–101]. For this specific subclass, it
was argued that these theories do not admit stable, static
and spherically symmetric asymptotically flat travers-
able wormholes. Our analysis further generalizes the
Lagrangian considered in [99–101]. Indeed, we have found
the specific conditions, at the throat, that these more general
subclasses of theories will allow the existence of wormhole
geometries and will hopefully spur research in this context.

G. Gauss-Bonnet couplings

An interesting modified gravitational theory is the
Gauss-Bonnet coupling given by the action [102–105]

SH ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16π
Rþ X − VðϕÞ þ ξðϕÞG

�
ð3:49Þ

which includes a coupling of the form ξðϕÞG [106], where
ξðϕÞ is a function of ϕ and G is the Gauss-Bonnet curvature
invariant defined by

G ¼ R2 − 4RαβRαβ þ RαβγδRαβγδ: ð3:50Þ

These theories can be accommodated in the framework
of Horndeski theories for the following choice of the
factors [107]:

G2 ¼ ϵX − VðϕÞ þ 8ξð4ÞðϕÞX2ð3 − lnð−XÞÞ;
G3 ¼ −4ξð3ÞðϕÞXð7 − 3 lnð−XÞÞ;

G4 ¼
1

16π
þ 4ξð2ÞðϕÞXð2 − lnð−XÞÞ;

G5 ¼ −4ξð1ÞðϕÞ lnX; ð3:51Þ

where ξðnÞðϕÞ≡ ∂nξðϕÞ=∂ϕn.

Now, Eq. (2.3) provides the following general relation:

1

r20
¼ 8π

�
ϵX0 þ V0 − 48X2

0ξ
ð4Þðϕ0Þ

�
ln jX0j −

7

3

��
: ð3:52Þ

However, Eq. (C1) yields an extremely lengthy expression,
from which it is difficult to extract any useful information.
Thus, we rather restrict ourselves to simple examples, such
as a zero potential VðϕÞ ¼ 0, and two specific cases for the
couplings, namely, (i) the linear coupling ξðϕÞ ¼ λ1ϕ, for
which the theory is shift symmetric [108,109], i.e., it is
invariant for ϕ → ϕþ const; and (ii) a quadratic function
ξ ¼ λ2ϕ

2 [110,111], which leads to a spontaneous scala-
rization of black holes, i.e., to dynamical formation of
nonperturbative scalar field configurations.
For the linear case, conditions (2.3) and (C1) simplify to

1

r20
¼ 8πϵX0;

r000
r0

¼ 8πϵX0

A0

; ð3:53Þ

respectively, where both conditions are satisfied for the
case ϵ ¼ −1.
For the quadratic case ξ ¼ λ2ϕ

2, Eqs. (2.3) and (C1)
yield

1

r20
¼ 8πϵX0; ð3:54Þ

r000
r0

¼ 8πϵX0

A0

�
−
λ22π

2ϕ0

8
X2
0 lnð−X0Þ þ λ22π

3ϵϕ2
0X

2
0

þ λ22π
2X2

0ðϕ0 − 2Þ
4

þ λ2πX0ðϕ0 − 6Þ
1024

−
1

65536

��
�
−
λ22π

2ϕ0

8
X2 lnð−X0Þ þ λ22π

3ϵϕ2
0X

2
0

þ λ22π
2X2

0ϕ0

4
þ λ2πX0ðϕ0 − 4Þ

1024
−

1

65536

�
; ð3:55Þ

respectively. Note that condition (3.54) imposes that
ϵ ¼ −1, in order to have wormhole geometries. Con-
dition (3.55) provides one with the most general condition
for this subclass of quadratic Gauss-Bonnet couplings.
Wormhole geometries in the context of the Gauss-Bonnet
coupling considered by the action (3.49) have been largely
unexplored in the literature, and hopefully the analysis
outlined in this subsection will spur research in wormhole
geometries in this context.

IV. CONCLUSIONS

A fundamental ingredient in wormhole physics is the
flaring-out condition at the throat which, in classical
general relativity, entails the violation of the null energy
condition. However, it has been shown that in the context of
modified gravity, one may impose that the matter fields
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threading the wormhole throat satisfy all of the energy
conditions, and it is the higher-order curvature terms, which
may be interpreted as a gravitational fluid, that support
these nonstandard wormhole geometries. Thus, it was
explicitly shown that wormhole geometries can be theo-
retically constructed without the presence of exotic matter
but are sustained in the context of modified gravity. This
has recently spurred research of wormhole physics in
modified gravity. Indeed, most of these extended theories
of gravity can be cast into an equivalent scalar-tensor
representation. Given the large number of models, the
question arises how we should study and compare them in a
unified manner.
A particularly useful tool in this direction is the reali-

zation that all these classes of models are special cases of
the most general Lagrangian which leads to second-order
field equations, namely, the Horndeski Lagrangian [20],
which was recently rediscovered [21]. It enables research-
ers to adopt a unifying framework and to determine subsets
within this general theory that have appealing theoretical
properties. In combination with the need to fit observations
such properties are helpful in preferring regions of this
general theory, and hence particular models. One example
of such an appealing theoretical property is the possibility
that terms within the Horndeski Lagrangian can be used to
partially explain the huge discrepancy between the value of
the vacuum energy in particle physics and the value of the
cosmological constant as inferred from cosmological
observations.
In this work, we consider the full Horndeski Lagrangian

applied to wormhole geometries and present the full gravi-
tational field equations. We analyze the general constraints
imposed by the flaring-out conditions at the wormhole
throat and consider a plethora of specific subclasses of
the Horndeski Lagrangian, namely, quintessence and
phantom fields, k-essence, scalar-tensor theories, covariant
Galileons, nonminimal kinetic coupling, kinetic gravity
braiding, and the scalar-tensor representations of Gauss-
Bonnet couplings and Gauss-Bonnet gravity, among others.

Note that is this work, we have used the specific metric
given by Eq. (2.1); however, the analysis could be gener-
alized by considering the general line element provided by
ds2 ¼ −fðuÞdt2 þ gðuÞdu2 þ r2ðuÞdΩ2, where the metric
functions fðuÞ, gðuÞ and rðuÞ are solely functions of the
radial coordinate u. In order to avoid event horizons and
singularities throughout the spacetime, one imposes that the
metric functions fðuÞ and gðuÞ are positive and regular
everywhere, and rðuÞ also obeys the flaring-out restrictions
provided by conditions (2.2). Here, the kinetic term is given
by X ¼ −ϕ02=2gðuÞ and, as in this work, is negative
everywhere. However, the field equations are extremely
lengthy and messy and shall be considered in a future work.
The generic constraints analyzed in this work serve as

a consistency check of the main solutions obtained in
the literature and draw out new avenues of research in
considering applications of specific subclasses of the
Horndeski theory to wormhole physics.
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APPENDIX A: FULL GRAVITATIONAL
FIELD EQUATIONS

1. Effective Einstein field equations

Varying the action (1.1) with respect to gμν, we obtain the
following equations of motion.
tt component:

− A2ϕ04G5;XX

�
r02

2r2
A0ϕ0 þ r02

r2
Aϕ00

�
þ Aϕ03G5;Xϕ

�
r02

r2
Aϕ0 −

2r0

r
Aϕ00 −

r0

r
A0ϕ0

�

þ 2G5;ϕϕ
r0

r
Aϕ03 þ ϕ0G5;X

�
−
A0ϕ02

2r2
−
Aϕ0ϕ00

r2
−
A03ϕ02

6A
−
2

3
A02ϕ0ϕ00 −

2

3
AA0ϕ002 þ 5r02

2r2
AA0ϕ02

þ 3r02

r2
A2ϕ0ϕ00 þ 2r0r00

r2
A2ϕ02

�
þG5;ϕ

�
4r0

r
Aϕ0ϕ00 þ 2r00

r
Aϕ02 þ 3r0

r
A0ϕ02 þ r02

r2
Aϕ02 þ ϕ02

r2

�

þ ϕ03G4;XX

�
2AA0ϕ00 þ A02ϕ0 þ 2r0

r
AA0ϕ0 þ 4r0

r
A2ϕ00

�
þ G4;Xϕ

�
2Aϕ02ϕ00 þ A0ϕ03 −

4r0

r
Aϕ03

�

− 2ϕ02G4;ϕϕ − 2G4;X

�
2r0

r
Aϕ0ϕ00 þ 2r00

r
Aϕ02 þ 2r0

r
A0ϕ02 þ r02

r2
Aϕ02

�
−G4;ϕ

�
2ϕ00 þ 4r0

r
ϕ0 þ A0

A
ϕ0
�

þG4

�
2

r2A
−
4r00

r
−
2r02

r2
−
2r0A0

rA

�
− ϕ02G3;X

�
1

2
A0ϕ0 þ Aϕ00

�
þ ϕ02G3;ϕ þ

1

A
G2 ¼ 0: ðA1Þ
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rr component:

A0ϕ03G5;XX

�
1

12
A02ϕ02 þ 1

3
A2ϕ002 þ 1

3
AA0ϕ0ϕ00 −

r02

2r2
A2ϕ02

�
− Aϕ04G5;Xϕ

�
r0

r
A0 þ r02

r2
A

�

− A0ϕ0G5;X

�
A02

6A
ϕ02 þ 2

3
A0ϕ0ϕ00 þ 2

3
Aϕ002 −

5r02

2r2
Aϕ02 þ ϕ02

2r2

�
þ ϕ02G5;ϕ

�
3r02A
r2

þ 3r0A0

r
−

1

r2

�

þ ϕ03G4;XX

�
A02ϕ0 þ 2AA0ϕ00 þ 2r0

r
AA0ϕ0 þ 2r02

r2
A2ϕ0

�
þ ϕ03G4;Xϕ

�
4r0

r
Aþ A0

�

þ 2ϕ02G4;X

�
1

r2
−
2r0A0

r
−
2r02

r2
A

�
− ϕ0G4;ϕ

�
4r0

r
þ A0

A

�
þ G4

�
2

r2A
−
2r0A0

rA
−
2r02

r2

�

− ϕ03G3;X

�
1

2
A0 þ 2r0

r
A

�
− ϕ02G3;ϕ þ ϕ02G2;X þ 1

A
G2 ¼ 0: ðA2Þ

θθ component:

−
1

2
AA0ϕ04G5;XX

�
r0

r
Aϕ00 þ r0

2r
A0ϕ0

�
− ϕ03G5;Xϕ

�
1

4
A02ϕ0 þ 1

2
AA0ϕ00 þ r0

r
A2ϕ00

�

þ ϕ03G5;ϕϕ

�
1

2
A0 þ r0A

r

�
þ ϕ0G5;X

�
r00

2r
AA0ϕ02 −

2

3
AA0ϕ002 þ r0

r
A02ϕ02 −

A03ϕ02

6A
−
2

3
A02ϕ0ϕ00

þ r0

2r
AA00ϕ02 þ 3r0

2r
AA0ϕ0ϕ00

�
þ G5;ϕ

�
A0ϕ0ϕ00 þ 2r0

r
Aϕ0ϕ00 þ r00

r
Aϕ02 þ 1

2
A00ϕ02 þ A02ϕ02

2A
þ 2r0

r
A0ϕ02

�

þ ϕ03G4;XX

�
3

2
A02ϕ0 þ 3AA0ϕ00 þ r0

r
AA0ϕ0 þ 2r0

r
A2ϕ00

�

þ G4;Xϕ

�
2Aϕ02ϕ00 −

2r0

r
Aϕ03

�
− 2ϕ02G4;ϕϕ − G4;X

�
A0ϕ0ϕ00 þ 2r0

r
Aϕ0ϕ00 þ 2r00

r
Aϕ02

þA00ϕ02 þ A02ϕ02

2A
þ 3r0

r
A0ϕ02

�
−G4;ϕ

�
2ϕ00 þ 2r0

r
ϕ0 þ 2A0ϕ0

A

�

− G4

�
2r00

r
þ A00

A
þ 2r0A0

rA

�
− ϕ02G3;X

�
1

2
A0ϕ0 þ Aϕ00

�
þ ϕ02G3;ϕ þ

1

A
G2 ¼ 0: ðA3Þ

2. Scalar field equation

The scalar field equation reads

∇μ

�X5
i¼2

Jiμ

�
¼

X5
i¼2

Pi; ðA4Þ

where the terms ∇μJiμ are given by

∇μJ2μ ¼ G2XXAϕ02
�
Aϕ00 þ 1

2
A0ϕ0

�
−G2XϕAϕ02 −G2X

�
Aϕ00 þ A0ϕ0 þ 2

r0

r
Aϕ0

�
; ðA5Þ

∇μJ3μ ¼ −G3XXAϕ03
�
1

2
AA0ϕ00 þ 2

r0

r
A2ϕ00 þ 1

4
A02ϕ0 þ r0

r
AA0ϕ0

�

þG3XϕAϕ02
�
−2Aϕ00 −

1

2
A0ϕ0 þ 2

r0

r
Aϕ0

�
þ 2G3ϕϕAϕ02 þ 2G3ϕ

�
A0ϕ0 þ Aϕ00 þ 2

r0

r
Aϕ0

�

þG3Xϕ
0
�
4
r0

r
A2ϕ00 þ 2

r00

r
A2ϕ0 þ 2

r02

r2
A2ϕ0 þ AA0ϕ00 þ 5

r0

r
AA0ϕ0 þ 1

2
AA00ϕ0 þ 1

2
A02ϕ0

�
; ðA6Þ
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∇μJ4μ ¼ 2G4X

�
r02

r2
A2ϕ00 þ r0

r
AA0ϕ00 þ r00

r
AA0ϕ0 þ r0

r
AA00ϕ0 þ 3

r02

r2
AA0ϕ0 þ 2

r0r00

r2
A2ϕ0 þ r0

r
A02ϕ0

−
A0ϕ0

r2
−
Aϕ00

r2

�
− 2G4Xϕ

�
2
r00

r
A2ϕ02 þ r02

r2
A2ϕ02 þ 4

r0

r
AA0ϕ02 þ 4

r0

r
A2ϕ0ϕ00 þ Aϕ02

r2

þ 1

2
AA00ϕ02 þ AA0ϕ0ϕ00 þ 1

2
A02ϕ02

�
− Aϕ03G4Xϕϕ

�
A0 þ 4

r0

r
A

�

− 2G4XX

�
4
r0

r
A2A0ϕ02ϕ00 þ 4

r02

r2
A3ϕ02ϕ00 þ 5r0

2r
AA02ϕ03 þ r0

r
A2A00ϕ03 þ r00

r
A2A0ϕ03

þ 9r02

2r2
A2A0ϕ03 þ 2

r0r00

r2
A3ϕ03 −

A2ϕ02ϕ00

r2
−
AA0ϕ03

2r2

�

þ 2G4XXϕ

�
−
r02

r2
A3ϕ04 þ 2

r0

r
A3ϕ03ϕ00 þ 1

4
AA02ϕ04 þ 1

2
A2A0ϕ03ϕ00

�

þ G4XXX

�
2
r0

r
A3A0ϕ04ϕ00 þ 2

r02

r2
A4ϕ04ϕ00 þ r0

r
A2A02ϕ05 þ r02

r2
A3A0ϕ05

�
; ðA7Þ

∇μJ5μ ¼ 2G5ϕ

�
A0ϕ0

r2
þ Aϕ00

r2
− 2

r0r00

r2
A2ϕ0 −

r0

r
AA00ϕ0 −

r0

r
AA0ϕ00 −

r00

r
AA0ϕ0 − 3

r02

r2
AA0ϕ0

−
r0

r
A02ϕ0 −

r0

r
A2ϕ00

�
þ 2Aϕ02G5ϕϕ

�
1

r2
−
r0

r
A0 −

r02

r2
A
�

þ 3G5X

�
r02

r2
A2A0ϕ0ϕ00 −

r02

r2
AA02ϕ02 −

r0r00

r2
A2A0ϕ02 −

r02

2r2
AA00ϕ02 þ AA0ϕ0ϕ00

3r2

þA02ϕ02

6r2
þ AA00ϕ02

6r2

�
þ G5Xϕ

�
5
r0

r
A2A0ϕ02ϕ00 þ 5

r02

r2
A3ϕ02ϕ00 þ 2

r0r00

r2
A3ϕ03

þ r0

r
AA02ϕ03 þ r0

r
A2A00ϕ03 þ r00

r
A2A0ϕ03 þ 7r02

2r2
A2A0ϕ03 − 2

A2ϕ02ϕ00

r2
−
AA0ϕ03

2r2

�

þ r0

r
A2ϕ04G5Xϕϕ

�
A0 þ r0

r
A

�
þ 1

4
Aϕ03G5XX

�
−
A02ϕ0

r2
− 2

AA0ϕ00

r2
þ 9

r02

r2
AA02ϕ0

þ2
r02

r2
A2A00ϕ0 þ 14

r02

r2
A2A0ϕ00 þ 4

r0r00

r2
A2A0ϕ0

�
− A2ϕ04G5XXϕ

�
r0

2r
A02ϕ0 þ r0

r
AA0ϕ00 þ r02

r2
A2ϕ00

�

−
r02

4r2
A3A0ϕ05G5XXXðA0ϕ0 þ 2Aϕ00Þ; ðA8Þ

respectively, and the factors Pi are provided by

P2 ¼ G2ϕ; ðA9Þ

P3 ¼ G3ϕϕϕ
0 −

1

2
Aϕ02G3Xϕð2Aϕ00 þ A0ϕ0Þ; ðA10Þ

P4 ¼ G4ϕ

�
−A00 − 4

r00

r
A − 2

r02

r2
A − 4

r0

r
A0 þ 2

r2

�

þ G4Xϕ

�
4
r0

r
A2ϕ0ϕ00 þ 2

r02

r2
A2ϕ02 þ AA0ϕ0ϕ00 þ 4

r0

r
AA0ϕ02 þ 1

2
A02ϕ02

�
; ðA11Þ
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P5 ¼ G5ϕϕ

�
r02

r2
A2ϕ02 þ r0

r
AA0ϕ02 −

Aϕ02

r2

�
þG5Xϕ

�
−2

r02

r2
A3ϕ03ϕ00 − 2

r0

r
A2A0ϕ02ϕ00

−
3r02

2r2
A2A0ϕ03 −

r0

r
AA02ϕ03 þ A2ϕ02ϕ00

r2
þ AA0ϕ03

2r2

�
; ðA12Þ

respectively.

APPENDIX B: GRAVITATIONAL FIELD EQUATIONS AT THE THROAT

Here, we write out the field equations, presented in Appendix A, at the throat, by taking into account the conditions
r00 ¼ 0 and A0

0 ¼ 0, so that Eqs. (A1) and (A3) and the scalar field equation (A4) reduce to the following:

r00

r
ð2Aϕ02G5;ϕ − 4Aϕ02G4;X − 4G4Þ þ ϕ00

�
2Aϕ02G4;Xϕ −

Aϕ02

r2
G5;X − 2G4;ϕ − Aϕ02G3;X

�

¼ −
ϕ02

r2
G5;ϕ þ 2ϕ02G4;ϕϕ −

2

r2A
G4 − ϕ02G3;ϕ −

1

A
G2; ðB1Þ

r00

r
ðAϕ02G5;ϕ − 2Aϕ02G4;X − 2G4Þ þ A00

�
1

2
ϕ02G5;ϕ − ϕ02G4;X −

G4

A

�

þ ϕ00ð2Aϕ02G4;Xϕ − 2G4;ϕ − Aϕ02G3;XÞ ¼ 2ϕ02G4;ϕϕ − ϕ02G3;ϕ −
1

A
G2; ðB2Þ

and

r00

r
ð4AG4ϕ − 4A2ϕ02G4Xϕ þ 2A2ϕ02G3XÞ þ A00

�
Aϕ02

2r2
G5X − Aϕ02G4Xϕ þ

1

2
Aϕ02G3X þG4ϕ

�

þ ϕ00
�
2
A
r2
G5ϕ − 3

A2ϕ02

r2
G5Xϕ − 2

A
r2
G4X þ 2

A2ϕ02

r2
G4XX − A2ϕ02G3Xϕ þ 2AG3ϕ þ A2ϕ02G2XX − AG2X

�

¼ −3
Aϕ02ϕ02

r2
G5ϕϕ þ 2

Aϕ02

r2
G4Xϕ þ

2

r2
G4ϕ þ ðϕ0 − 2Aϕ02ÞG3ϕϕ þ Aϕ02G2Xϕ þ G2ϕ; ðB3Þ

respectively. Note that we have removed the subscript u0, denoting evaluation at the wormhole throat, from the expressions
above, in order to not overload the notation.

APPENDIX C: GENERAL FLARING-OUT CONDITION AT THE THROAT

Finally, eliminating the terms A00
0 and ϕ00

0 , one finally arrives at the most general flaring-out condition for Horndeski
wormholes, solely in terms of the scalar field ϕ, the kinetic term X, the factors Gi and their derivatives, given by (as above,
we have removed the subscript u0 as not to overload the notation)

r000
r0

¼
	
−2A2

	
2

�
G4;X −

G5;ϕ

2

��
1

2
ð−G2;XX þG3;XϕÞG3;ϕ þ ð−G2;Xϕ þG3;ϕϕÞG4;Xϕ þ

�
G2;Xϕ

2
−G3;ϕϕ

�
G3;X

þG4;ϕϕðG2;XX −G3;XϕÞ
�
r4 þ

�
1

2
ðG2;XX − G3;XϕÞG2

5;ϕ þ
�
ð−G2;XX þ G3;XϕÞG4;X þ

�
−
G2;Xϕ

2
þ G3;ϕϕ

�
G5;X

þ
�
G4;XX −

3

2
G5;Xϕ

�
G3;ϕ þ 4G2

4;Xϕ − 3ðG5;ϕϕ þG3;XÞG4;Xϕ þ
G2

3;X

2
þ 3

2
G5;ϕϕG3;X

− 2

�
G4;XX −

3G5;Xϕ

2

�
G4;ϕϕ

�
G5;ϕ þ

�
ðG2;Xϕ − 2G3;ϕϕÞG5;X þ ð−2G4;XX þ 3G5;XϕÞG3;ϕ − 4G2

4;Xϕ

þ 2ð3G5;ϕϕ þ G3;XÞG4;Xϕ − 3G5;ϕϕG3;X þ 4

�
G4;XX −

3

2
G5;Xϕ

�
G4;ϕϕ

�
G4;X
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− 2

�
G4;ϕϕ −

G3;ϕ

2

��
G4;Xϕ −

G3;X

2

�
G5;X

�
r2 þ

�
G4;XX −

3G5;Xϕ

2

�
G2

5;ϕ þ
�
ð−2G4;XX þ 3G5;XϕÞG4;X

− 2

�
G4;Xϕ −

3G5;ϕϕ

4
−
G3;X

4

�
G5;X

�
G5;ϕ þ 2

��
G4;Xϕ −

3G5;ϕϕ

2

�
G4;X þ 1

2

�
G4;ϕϕ −

G3;ϕ

2

�
G5;X

�
G5;X



ϕ06

− 2A2

�
G4;X −

G5;ϕ

2

�
½ð−2G4;Xϕ þG3;XÞr2 þ G5;X�G3;ϕϕr2ϕ05 − 4A2

	��
1

2
ð−G2;XX þ G3;XϕÞG3;ϕ

þ ð−G2;Xϕ þ 2G3;ϕϕÞG4;Xϕ þ
�
G2;Xϕ

2
−G3;ϕϕ

�
G3;X þ ðG2;XX −G3;XϕÞG4;ϕϕ

�
G4

þ
�
G4;X −

G5;ϕ

2

��
−G2

3;ϕ þ
�
2G4;ϕϕ þ

G2;X

2

�
G3;ϕ −G4;XϕG2;ϕ þ

1

2
G2;ϕG3;X þ ðG2;Xϕ − 2G3;ϕϕÞG4;ϕ

−G4;ϕϕG2;X −
G2

2
ðG2;XX −G3;XϕÞ

��
r4 þ

	��
G3;X

2
−G4;Xϕ

�
G5;ϕ þ ð−G2;XX þ G3;XϕÞG4;X

þ
�
G4;ϕϕ þ

G2;Xϕ

2
−
G3;ϕ

2
−G3;ϕϕ

�
G5;X þ

�
G4;XX −

3G5;Xϕ

2

�
ð2G4;ϕϕ − G3;ϕÞ þ ð−G3;X þ 3G5;ϕϕÞG4;Xϕ

þ 1

2
G2

3;X −
3

2
G5;ϕϕG3;X

�
G4 þ

�
−
G2;Xϕ

4
þG3;ϕ −G4;ϕϕ

�
G2

5;ϕ þ
��

3G4;ϕϕ þ
G2;X

2
−
5G3;ϕ

2

�
G4;X −

G2;ϕG5;X

4

−G4;XϕG4;ϕ þ
3

2
G4;ϕG5;ϕϕ þ

1

2

�
G4;XX −

3

2
G5;Xϕ

�
G2

�
G5;ϕ þ ðG3;ϕ − 2G4;ϕϕÞG2

4;X þ
�
1

2
G2;ϕG5;X þG3;XG4;ϕ

− 3G4;ϕG5;ϕϕ −
�
G4;XX −

3

2
G5;Xϕ

�
G2

�
G4;X þ G2

2

�
G4;Xϕ −

1

2
G3;X

�
G5;X



r2 þ

�
ð−2G4;XX þ 3G5;XϕÞG4;X

−
3

2

�
−
G3;X

3
þG5;ϕϕ

�
G5;X

�
G4 þ

G3
5;ϕ

2
þ
�
−
3G5;ϕ

2
þ G4;X

�
G4;XG5;ϕ þ G5;X

�
−
G2G5;X

4
þ G4;XG4;ϕ

�

ϕ04

− 4AG3;ϕϕr2
	��

G3;X

2
− G4;Xϕ

�
G4 þ

�
G4;X −

G5;ϕ

2

�
G4;ϕ

�
r2 þ G5;X

2
G4;X



ϕ03

− 4A
	��

−G2
3;ϕ þ

�
2G4;ϕϕ þ

G2;X

2

�
G3;ϕ −G4;XϕG2;ϕ þ

G2;ϕG3;X

2
þ ðG2;Xϕ − 2G3;ϕϕÞG4;ϕ − G4;ϕϕG2;X

−
1

2
ðG2;XX − 3G3;XϕÞG2

�
G4 þ

�
1

2
G2G2;X −G2G3;ϕ þ G4;ϕG2;ϕ

��
G4;X −

G5;ϕ

2

��
r4

þ
�
ð−G2;XX − 2G4;Xϕ þ G3;Xϕ þ G3;XÞG2

4 þ
�
ð−G3;ϕ þ 2G4;ϕϕ þG4;ϕÞG5;ϕ þ ð−G3;ϕ − 2G4;ϕϕ þG2;XÞG4;X

þ 1

2
ð−G2 þG2;ϕÞG5;X − 2G4;XϕG4;ϕ þ 2G3;XG4;ϕ − 3G4;ϕG5;ϕϕ −

�
G4;XX −

3G5;Xϕ

2

�
G2

�
G4

þ ðG2G4;X − G2G5;ϕ þ 2G2
4;ϕÞ

�
G4;X −

G5;ϕ

2

��
r2 þ 2

��
−G4;XX −

3G5;Xϕ

2

�
G4 þ G2

4;X −G4;XG5;ϕ

þ G4;ϕG5;X

�
G4



ϕ02 − 4G3;ϕϕG4G4;ϕϕ

0r4 − 4

��
1

2
G2G2;X −G2G3;ϕ þ G4;ϕG2;ϕ

�
r4

× ½ð2G4;ϕ þ G2;X − 2G3;ϕÞG4 þ G2ðG4;X − G5;ϕÞ þ 2G2
4;ϕ�r2 þ 2G4ðG4;X − G5;ϕÞ

�
G4


�
	
8A

�
A

�
G4;X −

1

2
G5;ϕ

�
ϕ02 þG4

�	
A2

��
ðG2;XX −G3;XϕÞ

�
G4;X −

1

2
G5;ϕ

�
− 3

�
G4;Xϕ −

1

2
G3;X

�
2
�
r4

×

��
G4;XX −

3

2
G5;Xϕ

�
ð2G4;X −G5;ϕÞ þ

�
G4;Xϕ −

1

2
G3;X

�
G5;X

�
r2 þ G2

5;X

4

�
ϕ04
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− 2

	�
1

2

�
−G2;XX þ G3;Xϕ −G4;Xϕ þ

1

2
G3;X

�
G4 þ

�
1

2
G2;X −G3;ϕ

��
G4;X −

1

2
G5;ϕ

�

−
5

2
G4;ϕ

�
G4;Xϕ −

G3;X

2

��
r2 þ 1

2

�
−
G5;X

2
− 2G4;XX þ 3G5;Xϕ

�
G4 þ G2

4;X −
3G4;XG5;ϕ

2
þ 3G4;ϕG5;X

4

þ G2
5;ϕ

2



Ar2ϕ02 − 2

	��
G4;ϕ

2
þG2;X

2
−G3;ϕ

�
G4 þ G2

4;ϕ

�
r2 þ ðG4;X − G5;ϕÞG4



r2




: ðC1Þ

Note that this relation is constrained by the imposition of the flaring-out condition r000 > 0 at the throat. Thus, in order to
be a wormhole solution, this equation, in addition to r0 > 0 given by condition (2.3), imposes tight restrictions on the
spacetime geometry.
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