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Trapped regions bounded by horizons are the defining features of black holes. However, formation of a
singularity-free apparent horizon in finite time of a distant observer is consistent only with special states of
geometry and matter in its vicinity. In spherical symmetry such horizons exist only in two classes of
solutions of the Einstein equations. Both violate the null energy condition (NEC) and allow for expanding
and contracting trapped regions. However, an expanding trapped region leads to a firewall. The weighted
time average of the energy density for an observer crossing this firewall is negative and exceeds the
maximal NEC violation that quantum fields can produce. As a result, either black holes can only evaporate
or the semiclassical physics breaks down already at the horizons. Geometry of a contracting trapped region
approaches the ingoing Vaidya metric with decreasing mass. Only one class of solutions allows for a test
particle to cross the apparent horizon, and for a thin shell to collapse into a black hole. These results
significantly constrain the regular black hole models. Models with regular matter properties at the horizon
can be realized only if significant departures from the semiclassical physics occur already at the horizon
scale. The Hayward-Frolov model may describe only evaporation, but not formation of a regular black
hole.

DOI: 10.1103/PhysRevD.101.124053

I. INTRODUCTION

Black holes are probably the most celebrated prediction
of classical general relativity (GR) [1,2]. Absence of a fully
developed theory of quantum gravity leaves us with a
hierarchy of approximate models that combine GR and
quantum mechanics [3]. Quantum effects are known to
modify the Einstein equations [3–6] and to enable viola-
tions of the classical energy conditions [1–3,7,8]. These
results make plausible three distinct types of ultracompact
objects (UCOs) models that purport to describe the
observed astrophysical black holes [9,10].
Models of the first type have event horizon and singu-

larity, even if their formation and properties are modified by
quantum effects. The final result of their evolution may be a
black hole remnant [11]. Another scenario envisages
formation of horizonless UCOs. The third option is a black
hole that has an apparent horizon, but no event horizon or
singularity.
Current observations [12–14] only weakly constrain

these scenarios. Given the apparent tension between
quantum mechanics and GR, issues of logical consistency
of models, as well as the information loss problem [15,16],
it is important to understand what each scenario entails.
There are different opinions on what makes a UCO a

black hole [17]. However, the strongest degree of con-
sensus is that it should have a trapped spacetime region,
whose boundary is the apparent horizon [1,2,12]. A trapped

region is a domain where both ingoing and outgoing future-
directed null geodesics emanating from a spacelike two-
dimensional surface with spherical topology have negative
expansion [1,2,18]. The apparent horizon is the outer
boundary of the trapped region and the defining feature
of a physical black hole (PBH) [19,20]. To be physically
relevant the apparent horizon should form in a finite time of
a distant observer.
Here we investigate the consequences of having a

PBH. The simplest setting to investigate is a spherically
symmetric collapse, where the apparent horizon is unam-
biguously defined in all foliations that respect this sym-
metry [21].
Building on the results of Refs. [20,22,23] we describe

the two possible classes of the near-horizon geometries,
discuss their properties, and consider the implications for
singularity-free black hole models.

II. GEOMETRY NEAR THE APPARENT
HORIZON: TWO CLASSES OF SOLUTIONS

We assume validity of semiclassical gravity. That means
we use classical notions (horizons, trajectories, etc.), and
describe dynamics via the Einstein equationsGμν ¼ 8πTμν,
where the standard left-hand side is equated to the expect-
ation value Tμν ¼ hT̂μνiω of the renormalized energy-
momentum tensor (EMT). The latter represents both
the collapsing matter and the created excitations of the
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quantum fields. We do not assume existence of the
Hawking radiation or specific properties of the state ω.
Boundaries of the trapped region are nonsingular in

classical GR [1,2], a requirement that is typically assumed
to extend to the semiclassical regime. We implement
this property by requiring that the scalars T ≔ Tμ

μ and
T ≔ TμνTμν are finite. The Einstein equations imply that
64π2T ¼ RμνRμν and 8πT ¼ −R, where Rμν and R are the
Ricci tensor and the Ricci scalar, respectively. Finite values
of these scalars are a necessary regularity condition, and
additional tests may be required.
A general spherically symmetric metric in the

Schwarzschild coordinates is given by

ds2 ¼ −e2hðt;rÞfðt; rÞdt2 þ fðt; rÞ−1dr2 þ r2dΩ; ð1Þ

where r is the areal radius. The Misner-Sharp mass
[12,18,24] Cðt; rÞ is invariantly defined via

1 − C=r ≔ ∂μr∂μr; ð2Þ

and thus the function fðt; rÞ ¼ 1 − Cðt; rÞ=r is invariant
under general coordinate transformations. The apparent
horizon is located at the Schwarzschild radius rg that is the
largest root of fðt; rÞ ¼ 0 [18,21]. The function hðt; rÞmay
contain information about potential hairs of the stationary
PBHs [2,25], and plays the role of an integrating factor in
the coordinate transformations.
It is convenient to introduce

τt ≔ e−2hTtt; τr ≔ Trr; τrt ≔ e−hTt
r; ð3Þ

and represent the Misner-Sharp mass as

C ¼ rgðtÞ þWðt; r − rgÞ; ð4Þ

where the definition of the apparent horizon implies

Wðt; 0Þ ¼ 0; Wðt; xÞ < x: ð5Þ

In this notation the three Einstein equations for Gtt, Gt
r, and

Grr become

∂rC
r2

¼ 8π
τt
f
; ð6Þ

∂tC
r2

¼ 8πehτrt ; ð7Þ

∂rh
r

¼ 4π
ðτt þ τrÞ

f2
; ð8Þ

respectively.
Regularity of the apparent horizon is expressed as a set of

conditions on the potentially divergent parts of the curva-
ture scalars. For T and T these are

T ¼ ðτr − τtÞ=f → g1ðtÞfκ1 ; ð9Þ

T ¼ ððτrÞ2 þ ðτtÞ2 − 2ðτrt Þ2Þ=f2 → g2ðtÞfκ2 ; ð10Þ

for some g1;2ðtÞ and κ1;2 ≥ 0. Here we exclude Tθ
θ ≡ Tϕ

ϕ

from consideration, because the Einstein equations imply
that Tθ

θ is finite (Appendix A 1).
Equations (9) and (10) require the EMT components to

scale as some power fk as r approaches the apparent
horizon at rg. All spherically symmetric PBH solutions
can be classified by the values of k. Only the classes k ¼ 0
(that results in the divergent energy density and pressure at
the apparent horizon) and k ¼ 1 (finite nonzero values of
energy density and pressure at the apparent horizon) are
self-consistent. They are described below.
Using the advanced and the retarded null coordinates

allows additional insights into the near-horizon geometry. Its
description in the terms of the advanced null coordinate v,

dt ¼ e−hðehþdv − f−1drÞ; ð11Þ

is useful in the case of contracting apparent horizon,
r0g < 0. A general spherically symmetric metric in ðv; rÞ
coordinates is

ds2 ¼ −e2hþ
�
1 −

Cþ
r

�
dv2 þ 2ehþdvdrþ r2dΩ: ð12Þ

If r0g > 0 it is useful to employ the retarded null coordinateu.
Imposing the finiteness conditions on the Ricci scalar

R (Appendix A 2) at the apparent horizon rþðvÞ≡
Cþðv; rþÞ ¼ rgðtÞ, we obtain that as r → rg ≡ rþ,

Cþðv; rÞ ¼ rþðvÞ þ wþðvÞðr − rþÞ þ wþ
2 ðr − rþÞ2…;

ð13Þ

hþðv; rÞ ¼ χþðvÞðr − rþÞ þ…; ð14Þ

for some functions wþ, w2, and χþ, where the condition
wþ ≤ 1 follows from the requirement C < r outside the
Schwarzschild radius.
Components of the EMT are related by

θv ≔ e−2hþΘvv ¼ τt; ð15Þ

θvr ≔ e−hþΘvr ¼ ðτrt − τtÞ=f; ð16Þ

θr ≔ Θrr ¼ ðτr þ τt − 2τrt Þ=f2; ð17Þ

where Θμν denote the EMT components in the ðv; rÞ
coordinates. The limits θþμν ≔ limr→rþθμν are

θþv ¼ ð1 − wþÞ
r0þ

8πr2þ
; θþvr ¼ −

wþ
8πr2þ

; θþr ¼ χþ
4πrþ

:

ð18Þ
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A. Divergent density and pressure

Regularity conditions of Eqs. (9) and (10) require that
divergent terms in the curvature scalars must cancel.
Adding the requirement that the function Cðt; rÞ is a real
solution of Eq. (6) results in

τt ¼ τr ¼ −ϒ2ðtÞfk; τrt ¼ �ϒ2fk; ð19Þ

where ϒ2ðtÞ is some function of time, k < 1, and the
higher-order terms are omitted. In the orthonormal basis the
ðt̂ r̂Þ block of the EMT is

Tâ b̂ ¼ −ϒ2fk−1
�

1 �1

�1 1

�
: ð20Þ

The upper (lower) signs of Tt̂ r̂ correspond to growth
(evaporation) of the PBH. Leading terms of the solutions
for Cðt; rÞ and hðt; rÞ are given in Appendix A 3. Static
non-vacuum solutions with τrt → 0 are impossible for
k < 1, as the regularity condition Eq. (10) cannot be
satisfied unless all three components are zero.
The null energy condition (NEC) requires Tμνlμlν ≥ 0

for all null vectors lμ. It is violated for all values of k < 1 by
radial vectors lâ ¼ ð1;∓1; 0; 0Þ for the evaporating and the
accreting PBH solutions, respectively.
Violations of the NEC are bounded by quantum energy

inequalities (QEIs) [8,26]. For a growing PBH, r0g > 0, in
the reference frame of an infalling massive test particle the
energy density (as well as the pressure and the flux),
diverge (Appendix B 1). Such a transient firewall leads to a
violation of the quantum energy inequality [8,27], that is
shown by repeating the analysis of Ref [23]. Henceforth we
consider only the solutions with r0g < 0.
Comparison of Eqs. (15)–(18) with Eq. (19) shows that

only the case k ¼ 0 is allowed, with ϒ2 ¼ −θþv . Solutions
with k < 0 are incompatible with Eq. (15). Solutions with
0 < k < 1 are excluded by following the chain of reasoning
that leads to Eqs. (25)–(27) (Appendix A 3).
For k ¼ 0 the leading terms in the metric functions in

ðt; rÞ coordinates are given as power series in terms of x ≔
r − rg as

C ¼ rg − w
ffiffiffi
x

p þ 1

3
x…; h ¼ −

1

2
ln
x
ξ
þ 4

3w

ffiffiffi
x

p þ…;

ð21Þ

where w2 ≔ 16πϒ2r3g and the higher-order terms depend
on the higher-order terms in the EMT expansion [22]. The
function ξðtÞ is determined by the choice of the time
variable. The metric functions C and h are obtained as the
solutions of Eqs. (6) and (8), respectively. Equation (7)
must then hold identically. Both of its sides contain terms
that diverge as 1=

ffiffiffi
x

p
. Their identification results in the

consistency condition

r0g=
ffiffiffi
ξ

p
¼ �4

ffiffiffi
π

p
ϒ

ffiffiffiffi
rg

p ¼ �w=rg: ð22Þ

A static observer finds that the energy density ρ ¼ −Tt
t,

the pressure p ¼ Tr
r, and the flux diverge at the apparent

horizon. On the other hand, in the reference frame of
the infalling observer on an arbitrary radial trajectory
ðTAðτÞ; RAðτÞ; 0; 0Þ these quantities are

ρA ¼ pA ¼ ϕA ¼ −
ϒ2

4 _R2
; ð23Þ

at the horizon crossing. Additional properties of this metric
are discussed in Refs. [20,23].
Further relations between the EMT components near the

apparent horizon are obtained as follows. A point on the
apparent horizon has the coordinates ðv; rþÞ and ðt; rgÞ in
the two coordinate systems. Moving from rþðvÞ along the
line of constant v by δr leads to the point ðtþ δt; rg þ δrÞ.
Equations (11) and (22) imply

δt ¼ −
e−h

f

����
r¼rg

δr ¼ −
rgδrffiffiffi
ξ

p
w
¼ δr

r0g
: ð24Þ

Hence the EMT components are related at the first order in
δr by

∂rθ
þ
v ¼ −2ϒϒ0=r0g þ α; ð25Þ

∂rθ
þ
v þ 1 − wþ

rþ
θþvr ¼ −2ϒϒ0=r0g þ β; ð26Þ

∂rθ
þ
v þ 2

1 − wþ
rþ

θþvr ¼ −2ϒϒ0=r0g þ γ; ð27Þ

where ∂rθ
þ
v ≔ ∂rθvjrþ , αðtÞ ≔ ∂rτtjrg , β ≔ ∂rτ

r
t jrg ,

γ ≔ ∂rτ
rjrg . As a result, the subleading terms satisfy

αþ γ ¼ 2β: ð28Þ

This metric approaches the pure ingoing Vaidya metric
with decreasing mass, which is the usual near-horizon
approximation when the backreaction from Hawking
radiation is taken into account [28,29]. The triple limit
τt; τr; τrt → −ϒ2 is observed in the ab initio calculations
of the renormalized energy-momentum tensor on the
Schwarzschild background [30].

B. Finite density and pressure

For k ≥ 1 Eqs. (9) and (10) do not impose any constraints,
and different components of the energy-momentum tensor
can converge to zero at different rates. However, only the
case k ¼ 1, where at the leading order in f

τt ¼ EðtÞf; τr ¼ PðtÞf; τrt ¼ ΦðtÞf; ð29Þ
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allows for a solution with r0g ≠ 0 (see Appendixes A 4
and B 3 for details). These solutions exhibit a finite pressure
and a finite density at the apparent horizon, ρðt; rgÞ ¼ E and
pðt; rgÞ ¼ P, respectively.
Then Eq. (6) results in the Misner-Sharp mass

C ¼ rgðtÞ þ 8πEr2gxþ…; 8πEr2g < 1: ð30Þ

The strict inequality follows from Eq. (34) below, as
8πr2gE ¼ 1 is incompatible with r0g ≠ 1. Consistency of
Eqs. (7) and (8) results in

4πðEþ PÞr2g
1 − 8πEr2g

¼ −1; ð31Þ

that ensures the necessary logarithmic divergence of h,

h ¼ − ln
x

ξðtÞ þ ωðtÞxþ…; ð32Þ

for some ξðtÞ > 0 and ωðtÞ. As a result, Eq. (7) relates the
rate of change of the Schwarzschild radius and the flux as

r0g ¼ 8πΦξrg: ð33Þ

Requiring the Ricci scalar to be finite at rg (Appendix B 4)
imposes the constraint

ð1 − 8πEr2gÞξ ¼ �r0grg; ð34Þ

where the upper (lower) signs correspond to the expansion
(contraction) of the apparent horizon.
The above conditions imply that a single quantity deter-

mines the two other parameters at the apparent horizon,

P ¼ −1þ 4πEr2g
4πr2g

; Φ ¼ � 1 − 8πEr2g
8πr2g

; ð35Þ

where the upper (lower) sign corresponds to accretion
(evaporation). The ðt; rÞ block of the EMT is given in
Appendix B 2. The NEC is violated in both cases. For
example, for r0g < 0 and the outward pointing null vector kμ

as r → rg

Tμνkμkν ≈ −
1

2πrgx
: ð36Þ

For Φ > 0 (an accreting trapped region, r0g > 0) in the
reference frame of an infalling observer the energy density
diverges. This transient firewall leads to the violation of the
QEI, similarly to the k ¼ 0 case (Appendix B 2).
The metric of Eq. (12) describes the k ¼ 1 evaporating

black hole only if wþ ≡ 1. Compatibility with Eqs. (16)
and (17) results in the relations

8πr2gðE −ΦÞ ¼ 1; Eþ P − 2Φ ¼ 0; ð37Þ

that are automatically satisfied due to Eq. (35).
Consider now a time-independent apparent horizon, so

the PBH is neither accreting not evaporating, while the
solution is still time dependent (such solutions were
considered in the framework of modified gravity, e.g., in
Ref. [31]). We treat it as a limiting case of evaporation,
Φ ≤ 0. The condition r0g ¼ 0 requires

4πðEþ PÞr2g
1 − 8πEr2g

¼ −λ; ð38Þ

λ < 1 to hold. The Ricci scalar is finite only if either the
density takes the extreme allowed value E ¼ ð8πr2gÞ−1, or
λ ¼ 1

2
(Appendix B 4). Using Eq. (37) (that still holds up to

the end of the dynamical phase), we obtain

Φ ¼ 0; E ¼ −P ¼ 1=ð8πr2gÞ; ð39Þ

in both cases. The NEC is not violated so the solution
cannot be realized in finite time t.
A static solution with all metric function being inde-

pendent of time is possible only if τrt ≡ 0. If h ≠ 0 there
is no general requirement ρ ¼ −p, but Eqs. (25)–(27)
imply E ¼ −P.

C. Crossing the apparent horizon

Both massless sufficiently fast (4πr2gϒ2 < _R2) massive
test particles cross the apparent horizon of k ¼ 0 PBH in
finite time of a distant observer [23]. However, it is
impossible to fall into a k ¼ 1 black hole.
Consider for simplicity a massless test particle. It is

convenient to parametrize the radial ingoing null geodesic
ðTA; RAÞ by its radial coordinate, λ ¼ −RA. Possibility of
the horizon crossing is conveniently monitored by the gap
function [32,33],

XðλÞ ≔ RA − rgðTAðλÞÞ; ð40Þ

whose negative rate of change Xλ ¼ dX=dλ ¼
−1 − r0gdTA=dλ indicates that the particle keeps approach-
ing the apparent horizon.
Noting that

dTA

dλ
¼ e−hðTA;RAÞ

fðTA; RAÞ
¼ rg

ξ

1 − ðω − r−1g ÞX
1 − 8πEr2g

þOðX2Þ: ð41Þ

Similarly, the rate of change of the coordinate time with
respect to the proper time of an infalling massive test
particle is also finite. Expanding XðλÞ in powers of X we
find that

Xλ ¼ −ðω − r−1g ÞX þOðX2Þ: ð42Þ
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If ðω − r−1g Þ < 0, then once a certain minimal coordi-
nate distance is reached the gap has to increase. If
ðω − r−1g Þ > 0, then the gap will close exponentially
slowly,

X ≈ X0 exp

�
−
Z

λ

λ0

ðω − r−1g Þdλ
�
; ð43Þ

and thus crossing of the apparent horizon (X ¼ 0) of an
evaporating k ¼ 1 PBH never happens. The same con-
clusion is obtained by considering a massive test particle
and the proper time parametrization.
These results cast doubt on the possibility that k ¼ 1

black holes can actually form. A thin dust shell, with a flat
metric inside and a curved metric outside, provides the
simplest tractable model of the collapse. The classical
Schwarzschild exterior leads to the well-known result of a
finite proper time of the collapse and an infinite collapse
time t, according to the clock of a distant observer. By using
the Vaidya metrics to emulate the effects of evaporation,
one obtains results that depend on their choice [22].
By assuming the outgoing Vaidya metric with decreasing

mass (which satisfies the NEC and thus cannot lead to the
formation of a PBH in finite coordinate time t), the apparent
horizon is never formed, but the shell either becomes
superluminal [34] or develops a surface pressure at the
coordinate distance x ∼ w2 from the Schwarzschild radius
[22,33]. On the other hand, the ingoing Vaidya metric of
Eq. (12) leads to the horizon formation in finite time
according to both clocks [22]. However, if the exterior is
modeled by Eq. (1) with k ¼ 1 metric functions [Eqs. (30)
and (32)], Eq. (43) indicates that the shell’s collapse will
never be complete, even if the exterior metric violates
the NEC.

III. IMPLICATIONS FOR MODELS OF
REGULAR BLACK HOLES

Whether their motivation is to construct a geodetically
complete spacetime, to resolve the information loss para-
dox, or to illustrate the effects of quantum gravity, models
of regular black holes (RBHs) envisage a trapped region
with a singularity-free core (see, e.g., Refs. [35–40] and the
reviews [11,41,42]). Considerations of a geometric nature
[43], as well as constraints from the effective field theory of
quantum gravity [44,45] restrict these models. Here we
explore the further constraints that are imposed by the
results of Sec. II.
Many of the proposed static models [35,37,39] assume

finite density and pressure at the horizon and thus belong to
the class k ¼ 1. However, such solutions cannot be realized
without a breakdown of the semiclassical physics. Leaving
aside the doubts about viability of the dynamical k ¼ 1
solutions, the static situation (E ¼ −P, Φ ¼ 0) still cannot
arise at finite t, as in this case the NEC is satisfied and the
apparent horizon is hidden from the distant observer by the

event horizon. Appearance of the feature that the model is
built to prevent indicates its breakdown.
Even the asymptotic case cannot be realized without

some radical departures from the semiclassical physics. The
zero flux limit can be produced only if the scenario of
Eq. (39) is realized. However, in the limit 8πr2gE → 1 the
formerly regular terms in the curvature scalars diverge
(Appendix B 4).
The leading behavior of the function h of the k ¼ 0

solutions matches the regular static scenario with k ¼ 1,
λ ¼ 1

2
. Nevertheless, the latter is not a suitably defined limit

of the former. First, to produce this effect some mechanism
should freeze the apparent horizon and thus push ϒ in τt ¼
−ϒ2 þ αxþ � � �, etc., to zero. This is exactly opposite of
the expected semiclassical behavior [2,16,29]. Moreover,
after the freezing, to avoid a discontinuous change in the
black hole (Misner-Sharp) mass, the linear terms in Eqs. (21)
and (30) should match. This leads to a contradiction

E ¼ 1

24πr2g
≠

1

8πr2g
¼ −P; ð44Þ

where the first value of E is obtained by matching with
the linear part of Eq. (21) and the second value results
from Eq. (39).
A dynamical model of Hayward and Frolov [37,38] uses

ðv; rÞ coordinates and the minimal modification of the
Vaidya metric by setting

CþðvÞ ¼
2mðvÞr3

r3 þ 2mðvÞb2 ; hþ ¼ 0; ð45Þ

for some b > 0 and mðvÞ. When m ≫ b the approximate
locations of the apparent horizon and the inner horizon are
given by

rg ≈ 2m −
b2

2m
; rin ≈

5b
4
−

3b2

32m
; ð46Þ

respectively, and the nonzero components of the energy-
momentum tensor at the apparent horizon are

Θvv ≈
m0ðvÞ

16πm2ðvÞ ; Θvr ≈ −
3b2

128m4
: ð47Þ

This model belongs to the k ¼ 0 class. It is consistent with
formation of the apparent horizon at a finite time of a
distant observer.
However, it is a consistent description of only the

evaporation part of the RBH evolution and cannot des-
cribe its formation. Leaving aside the issue of a transient
firewall that accompanies accretion, for m0ðvÞ > 0 the
NEC is not violated in this model. Thus the apparent
horizon, if it exists, is hidden behind the even horizon that
was purportedly eliminated. In fact, no model that uses
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ðv; rÞ coordinates and has a regular function hþðv; rÞ can
describe growth of a PBS, as in this case τrt → þϒ2,

∂rhþ
r

¼ 4πΘþ
rr →

16π

f2
ϒ2; ð48Þ

that ensures divergence of at least of ∂rhþ.
Since the energy density and pressure are negative in the

vicinity of the apparent horizon and positive in the vicinity
of the inner horizon [19,23], there should be density and
pressure jumps at the intersection of the two horizons,
making problematic the blanket requirement of continuity
of density and pressure. If we accept that violations of the
QEI is a sufficient reason to discount the growth of the
trapped region, the horizon structure of a regular black hole
is schematically shown on Fig. 1.
In this case the model with the metric functions (45)

cannot describe the first stages of the evolution of the
trapped region, even if C0þ < 0. For a RBH of Fig. 1 both
the apparent horizon and the inner horizon develop from a
single trapped surface that appears at some tF and meet
again at tE, possibly forming a remnant. The Misner-Sharp
mass of Eq. (45) allows a latter possibility [at mðvEÞ ¼
3

ffiffiffi
3

p
b=4], but not the former one, as Eq. (46) indicates.

IV. DISCUSSION

We have seen that in the vicinity of the apparent horizon
a singular nature of Schwarzschild coordinates serves a

useful purpose. Scaling of the suitably selected functions
of the EMT components with the powers k of f ¼ ð1 −
Cðt; rÞ=rÞ allows us to classify solutions of the Einstein
equations. Only two types of solutions with k ¼ 0, 1 are
possible. Both violate the NEC and result in a firewall at the
expanding apparent horizon. Only k ¼ 0 solutions allow a
collapsing thin shell to form a black hole or for a test
particle to cross the apparent horizon. These failures cast
doubts on the physical relevance of the k ¼ 1 solutions.
Analysis of the inner regions of RBHs leads to the

arguments indicating the need for physics beyond the
standard model to support such objects [40,46]. Our
analysis of the near-horizon regions indicates that k ¼ 0
models of evaporating RBHs are as exotic as any UCO
with or without an apparent horizon. On the other hand,
complete regularity (finite values of density and pressure
for both static and infalling observers) of k ¼ 1 PBH may
be impossible to realize without significant modification of
the semiclassical gravity.
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APPENDIX A: SOLUTIONS WITH k < 1

1. Behavior of Tθ
θ

The regularity conditions Eqs. (9) and (10)

T ¼ −
τt
f
þ τr

f
þ 2Tθ

θ; ðA1Þ

T ¼
�
τt
f

�
2

þ
�
τr

f

�
2

− 2

�
τrt
f

�
2

þ 2ðTθ
θÞ2; ðA2Þ

constrains the leading term in Tθ
θ ≡ Tϕ

ϕ when r → rg if the
three other components of the EMT scale as fk, k < 1. Set

Ξ1 ≔ lim
r→rg

τt=fk; Ξ2 ≔ lim
r→rg

τr=fk; ðA3Þ

Ξ3 ≔ lim
r→rg

Tθ
θ=f

k−1; Ξ4 ≔ lim
r→rg

τrt =fk; ðA4Þ

and focus on the leading terms. The two conditions become

−Ξ1 þ Ξ2 þ 2Ξ3 ¼ 0; Ξ2
1 þ Ξ2

2 þ 2Ξ2
3 − 2Ξ2

4 ¼ 0:

ðA5Þ

Taking Ξ1 and Ξ2 as the independent variables we find

Ξ3 ¼
1

2
ðΞ1 − Ξ2Þ; Ξ4 ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ξ2

1 þ 3Ξ2
2 − 2Ξ1Ξ2

q
:

ðA6Þ

FIG. 1. Schematic depiction of the evolution of a RBH from the
point of view of a distant observer. The dark blue line represents
the apparent horizon and the double dark red line represents the
inner horizon. The trapped region is cross hatched. The NEC-
violating region (blue spread, dashed boundary) appears prior to
the formation of the first marginally trapped surface ðtF; rFÞ and
covers part of the trapped region. Its outer boundary is not
constrained by our considerations. The thin black line traces the
surface of the collapsing body up to the NEC-violating region.
The trapped region evaporates at some ðtE; rEÞ where the two
hypersurfaces cross again.
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The Einstein equation (6) does not change; the leading
terms of the Misner-Sharp mass are

C ¼ rg − w1x1=ð2−kÞ; ðA7Þ

where w1 ¼ ð−8ð2 − kÞπr3−kg Ξ1Þ1=ð2−kÞ. The limiting form
of Eq. (8) now becomes

∂rh ¼ 4πðΞ1 þ Ξ2Þr3−kg
wk−2
1

x
¼ −

Ξ1 þ Ξ2

2ð2 − kÞΞ1x
; ðA8Þ

which results in the leading term

h ¼ −
Ξ1 þ Ξ2

2ð2 − kÞΞ1

ln
x
ξ
: ðA9Þ

Hence, consistency of Eq. (7) imposes

−
Ξ1 þ Ξ2

2ð2 − kÞΞ1

¼ −
1

2 − k
; ðA10Þ

resulting in Ξ1 ¼ Ξ2 and

Ξ3 ¼ 0; Ξ4 ¼ �Ξ1: ðA11Þ

2. Regular solutions in ðv;rÞ coordinates
Existence of the apparent horizon constrains the Misner-

Sharp function to have the form

Cþ ¼ rþðvÞ þ wþ
1 ðvÞx1−α1 þ wþ

2 ðvÞx1−α1þα2 þ…;

ðA12Þ

where x ¼ r − rþ, and α1 < 1, α2 > 0, while we keep the
function h unconstrained,

hþ ¼ hþðvÞ ln x=ξðvÞ þ hþ1 ðvÞxβ1 þ hþ2 ðvÞxβ1þβ2 þ…:

ðA13Þ

Explicit evaluation of the Ricci scalar R for the metric (12)
with the above functions results in a number of the
divergent terms, that as x → 0 behave as its various powers.
The curvature scalar is finite if the coefficients of all such
divergent powers cancel. However, it is possible only if
hþ ¼ 0, as well as all the coefficients of all fractional
powers that are less than 2.

3. Leading terms of the solutions, k < 1

For the EMT components of Eq. (19) with k < 1 (and
thus finite Tθ

θ ≡ Tϕ
ϕ) the Einstein equations with divergent

terms become

∂rC ≈ −8πr2gϒ2fk−1; ðA14Þ

∂tC ≈�8πr2gehϒ2fk; ðA15Þ

∂rh ≈ −8πrgϒ2fk−2: ðA16Þ

The sign choice follows from the observation that the
equations have no real solutions if τt and τr areþϒ2fk. The
leading terms of the metric functions are then

C ¼ rgðtÞ − w1x1=ð2−kÞ; w2−k
1 ¼ 8ð2 − kÞπr3−kg ϒ2;

ðA17Þ

and

h ¼ −
1

2 − k
ln
x
ξ
: ðA18Þ

Eq. (A15) results in the constraint

�r0g ¼
w1ξ

1=ð2−kÞ

rg
: ðA19Þ

It was shown in Sec. II A that solutions with k < 0 are
incompatible with Eq. (15). By following the chain of
reasoning that established Eqs. (25)–(27) we show that
solutions with k > 0 are also inadmissible. For k < 1
moving from ðv; rþðvÞÞ along the line of constant v leads
to the point ðtþ δt; rg þ δrÞ, where Eqs. (A17) and (A18)
imply

δt ¼ −
e−h

f

����
r¼rg

δr ¼ δr
r0g

: ðA20Þ

For k ≠ 1 the analog of Eq. (25) is a contradictory
expression

∂rθ
þ
v ¼ −

kϒ2

f1−k
þ… → −∞; ðA21Þ

showing that solutions with 0 < k < 1 are to be excluded.

4. Leading terms of the solutions, k ≥ 1

For the EMT components of Eq. (19) with k ≥ 1 the
Einstein equations with divergent terms become

∂rC ≈ 8πr2gEðtÞfk−1; ðA22Þ

∂tC ≈ 8πr2gehΦðtÞfkΦ ; ðA23Þ

∂rh ≈ 4πrgðEðtÞfk−2 þ PðtÞfkP−2Þ; ðA24Þ

for some functions EðtÞ, PðtÞ, and ΦðtÞ and powers
k; kΦ; kP ≥ 1. The leading terms of the Misner-Sharp mass
are then
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C ¼ rgðtÞ þ 8πEr2gxk: ðA25Þ

For k > 1 the constraints of Sec. II B do not apply. In this
case

f ¼ x
rg

þ…: ðA26Þ

Solutions with variable rgðtÞ impose via Eq. (A15) that
eh ∝ x−kΦ , i.e., the logarithmic divergence of the function
h. For k > 1 it can be realized only if kP ¼ 1. Then

h ¼ 4πPr2g ln
x
ξ
; 4πPr2g ¼ −kΦ: ðA27Þ

Further properties of these solutions are discovered by
using the relations between the EMT components (15)–
(17). Equation (15) is satisfied if wþ ¼ 1. Equation (16)
then implies kΦ ¼ 1 and Φ ¼ −1=ð8πr2gÞ. Equation (17) is
satisfied if k ≥ 2. We see that these solutions are rather
peculiar: energy density vanishes at the apparent horizon
and the pressure and the flux are determined by the
Schwarzschild radius. Moreover, the firewall is present
even if Φ < 0 (Appendix B 3).
For k ¼ 1 and kΦ > 1 the equality 8πEr2g ¼ 1 is still

impossible. Assuming that it is true we find that the Misner-
Sharp mass in the vicinity of rg is

C ¼ rg þ x − b2x2 þ…; f ¼ b2x2=rg þ…; ðA28Þ

for some bðtÞ. Equation (7) becomes, in the leading order,

2b2r0gx
rg

¼ 8πΦ
�
b2x2

rg

�
kΦ
eh; ðA29Þ

requiring

h ¼ −ð2kΦ − 1Þ ln x
ξ
þ…; ðA30Þ

where the higher-order terms are omitted for time-
dependent Schwarzschild radius. Equation (8) then results
in the leading order relation

∂xh
rg

¼ r2g
b4x4

�
E
b2x2

rg
þ P

�
b2x2

rg

�
kP
�
; ðA31Þ

resulting in 1=x divergence of the function h.
Evaluation of the Ricci scalar with these metric functions

results in the divergent expression unless kP ¼ kΦ ¼ 1. It is
given in Appendix B 4.

APPENDIX B: SOME PROPERTIES
OF THE SOLUTIONS

1. Firewall at the apparent horizon, k < 1

For a radially infalling massive particle the four-velocity
components are related by

_TA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F þ _R2

A

q
eHF

≈
j _Rj
eHF

þ 1

2j _RAjeH
; ðB1Þ

where H ¼ hðTA; RAÞ and F ¼ fðTA; RAÞ. For k < this
means that the four-velocity of an infalling observer at the
leading order is given by

uμA ¼ j _RAj
�

rg
w1ξ

1=ð2−kÞ ;−1; 0; 0
�
; ðB2Þ

while the leading terms in the ðt; rÞ block of the EMT are

Tab ¼ −
ϒ2

x
wk−2
1

rk−2g

�
w2
1ξ

2=ð2−kÞ=r2g �w1ξ
1=ð2−kÞ=rg

�w1ξ
1=ð2−kÞ=rg 1

�
;

ðB3Þ

where the upper (lower) sign corresponds to r0g < 0

(r0g > 0), respectively. The energy density in the frame
of the particle is ρA ¼ Tμνu

μ
Au

ν
A.

For r0g < 0 the divergent terms in the energy density
cancel out. However, for the expanding apparent horizon
the energy density is negative and divergent,

ρA ≈ −
4 _R2ϒ2r2−kg

w2−k
1 X

; ðB4Þ

where X ¼ RA − rg.

2. Firewall at the apparent horizon, k= 1

The leading terms of the metric functions are

C ¼ rg þ 8πEr2gx; h ¼ − ln x=ξ: ðB5Þ

The four-velocity of an infalling observer at the leading
order is then given by

uμA ¼ j _RAj
�

rg
ξð1 − 8πEr2gÞ

;−1; 0; 0
�
; ðB6Þ

and the leading terms in the ðt; rÞ block of the EMT are

Tab ¼
1

rgx

�
8πEð1 − 8πEr2gÞξ2 r0g

r0g −ð2 − 8πEr2gÞ=ð1 − 8πEr2gÞ

�
: ðB7Þ
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In the case of expansion the function ξ satisfies

ð1 − 8πEr2gÞξ ¼ þr0grg; ðB8Þ

and the resulting energy density diverges as

ρA ≈ −
4 _R2

rgX
: ðB9Þ

For spacetimes of small curvature explicit expressions
that bound time-averaged energy density for a geodesic
observer were derived in Ref. [27]. For any Hadamard state
ω and a sampling function fðτÞ of compact support,
negativity of the expectation value of the energy density
ρA as seen by a geodesic observer on a trajectory γðτÞ is
bounded by

Z
γ
f2ðτÞρdτ ≥ −BðR; f; γÞ; ðB10Þ

where B > 0 is a bounded function that depends on the
trajectory, the Ricci scalar, and the sampling function [27].
Consider a growing apparent horizon, r0g > 0. For a

macroscopic black hole the curvature at the apparent
horizon is low and its radius does not appreciably change
while the observer (a massive test particle) moves in its
vicinity. Then _X ≈ _R, and for a given geodesic trajectory,
we can choose f ≈ 1 at the horizon crossing and f → 0
within the NEC-violating domain. As the trajectory passes
through X0 þ rg → rg the left-hand side of Eq. (B10)
behaves as

Z
γ
f2ρAdτ ≈ −

Z
γ

4 _R2dτ
rgX

≈
Z
γ

4j _RjdX
rgX

∝ logX0 → −∞;

ðB11Þ

where we used _R ∼ const. The right-hand side of Eq. (B10)
remains finite, and thus the QEI is violated.

3. Firewall at the apparent horizon, k > 1

Using the results of Appendix A 4 for k>1, kP¼kΦ¼1
we find that the four-velocity of an infalling observer at the
leading order is then given by

uμA ¼ j _RAj
�
rg
ξ
;−1; 0; 0

�
; ðB12Þ

and the leading terms in the ðt; rÞ block of the EMT are

Tab ¼
�

E −ð8πr2gÞ−1
−ð8πr2gÞ−1 −ð4πrgxÞ−1

�
; ðB13Þ

where the minimal allowed power k ¼ 2 was used
in τt ¼ Efk.
As a result the energy density in the infalling frame

ρA ≈ −
1

4πrgX
; ðB14Þ

diverges even for an evaporating k ≥ 2 black hole, and
the violation of the QEI is established analogously to
Appendix B 1.

4. The Ricci scalar, k= 1

For a dynamical solution in the case k ¼ 1 with the
metric functions given by Eqs. (30) and (32) expansion of
the Ricci scalar near the apparent horizon gives

R ¼ −
ð1 − 8πEr2gÞ2ξ2 − r2gr02g

rgð1 − 8πEr2gÞξ2x
þOðx0Þ: ðB15Þ

It is finite if and only if Eq. (34) is satisfied.
The Ricci scalar diverges if the evaporating black hole

freezes (rg → 0), as the regular (as a function of x) part of R
contains a clearly divergent term

R0 ¼
1

r2gr0g
: ðB16Þ

If the metric function h has a proportionality coefficient
that is different from one (if kΦ > 1 while kP ≥ 1 and
k ¼ 1),

h ¼ −λ ln
x
ξ
þ…; ðB17Þ

Equation (7) implies that λ ¼ kΦ, and the Ricci scalar
contains a potentially divergent term

R−1 ¼
λð2λ − 1Þð1 − 8πEr2gÞ

rgx
; ðB18Þ

that will be zero only if λ ¼ 0; 1
2
or E ¼ ð8πr2gÞ−1.

The two former options (with 8πEr2g < 1) contradict the
assumption λ ¼ kϕ > 1. The third option—the identity
8πEr2g ¼ 1—is impossible to satisfy, as demonstrated in
Appendix A 4.
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