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Advanced gravitational-wave detectors are limited by quantum noise in their most sensitive frequency
band. Quantum noise suppression techniques, such as the application of the quantum squeezed state of
light, have been actively studied in the context of homodyne readouts. In this paper, we consider quantum
squeezing schemes for the heterodyne readouts. This is motivated by a successful suppression of the
higher-order-mode content by stable recycling cavities in advanced detectors. The heterodyne readout
scheme requires precise tuning of the interferometer parameters and a broadband squeezing source, but is
conceptually simple and elegant. We further show that it is compatible with the frequency-dependent
squeezing, which reduces both the shot noise and the radiation-pressure noise. We propose a test of
the heterodyne readout with squeezing in Advanced LIGO. This can serve as a pathfinder not only for the
implementation in future detectors, such as the Einstein Telescope and Cosmic Explorer, but also for
general high-precision optical measurements.
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I. INTRODUCTION

The Pound-Drever-Hall heterodyne technique [1–9] is a
powerful tool for stabilization of optical cavities in modern
precision instruments, such as frequency references for
optical atomic clocks, passive laser gyroscopes, and gravi-
tational-wave detectors. In the heterodyne readout, phase
modulated light probes the motion of the optical cavity and
produces the signal on photodetectors at radio frequencies
(rf). After demodulation, the residual signal is proportional
to the cavity motion or the laser frequency noise. The
heterodyne technique circumvents laser technical noise by
upconverting the signal detection to frequencies where the
laser light is shot-noise-limited (a few MHz) [10] but
couples technical noises of the modulation oscillator [11].
In this paper, we do not focus on the technical noises of the
heterodyne readout scheme and only consider the funda-
mental quantum noise.
Quantum noise in the heterodyne readout techniques has

been previously studied in Refs. [12,13] in the context of
gravitational-wave detectors. As it turns out, there are
additional vacuum noises at twice the rf modulation
frequency 2ωm away from the carrier frequency ω0, which
leads to 50% higher shot noise compared to the homodyne
readout. The squeezed state of light can be used to suppress
this additional noise, and in general, we need to have
squeezing near the carrier frequency ω0 and the two rf

sidebands frequencies ω0 � 2ωm [9,14,15]. In this paper,
we further advance these studies and consider application
of quantum noise suppression techniques to the heterodyne
readout in advanced gravitational-wave detectors; i.e., a
single squeezer is not only sufficient to improve the shot
noise [16] but also can be made compatible with frequency-
dependent squeezing, which reduces the quantum radiation-
pressure noise. As discussed in Secs. II and III, we find that
quantum squeezing works for the heterodyne readout if
(i) the source of squeezed states of light has a bandwidth at
least twice the rf modulation frequency (ωm), (ii) the filter
cavity for the frequency-dependent squeezing is tuned the
same as in the current homodyne readout scheme, and
(iii) the power imbalance of the upper and lower rf side-
bands, which are on phase quadrature, is less than 10% for
12 dB broadband squeezing.
The main advantage of the homodyne readout scheme is

that its quantum shot noise is a factor of
ffiffiffiffiffiffiffi
1.5

p
smaller

compared to the one in the heterodyne readout for the
same level of squeezing and optical losses. The price paid
for this improvement is complexity involved in the bal-
anced homodyne readout scheme, which requires an addi-
tional local oscillator field and optical cavities to filter the
carrier field from the rf sidebands [17–20]. In Advanced
LIGO, an additional local oscillator field is derived by
offsetting the interferometer from its operating point. This
scheme, known as dc readout [5,21–23], is also the current
readout scheme in Advanced Virgo [7], KAGRA [24],
and GEO 600 [21]. It has been very successful and allowed
direct observation of gravitational waves for the first
time [25–27]. However, the offset couples technical noise
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sources and will not allow future gravitational-wave detec-
tors to reach their design sensitivity at low frequencies [28].
The heterodyne technique is ideal for coupled optical

resonators and is already used in the Advanced LIGO
detectors to stabilize auxiliary degrees of freedom and
for initial stabilization of the gravitational-wave channel.
In this paper, we explore optical parameters when quantum
noise in heterodyne and homodyne readout schemes
are identical but heterodyne readout is conceptually
simpler as shown in Fig. 1. This study is motivated by
successful operation of the stable recycling cavities [29] in
the Advanced LIGO detectors, which has significantly
suppressed higher-order-mode (HOM) content in the rf
sidebands due to misalignments in the cavity [30] and is
also good for suppressing the HOM content from contrast
defect. In Sec. IV, we show quantum noise of the Advanced
LIGO detectors with the heterodyne readout and discuss
steps for further improvements.

II. SQUEEZING FOR HETERODYNE READOUT

In this section, we will show the resulting quantum noise
level for the heterodyne readout with a broadband squeez-
ing. We choose the demodulation phase such that the
photocurrent is proportional to the phase quadrature Ŷ,
which is given by

ŶðΩÞ ¼ Ŷ0ðΩÞ þ
Ŷþ2ðΩÞ þ ξŶ−2ðΩÞ

1þ ξ
; ð1Þ

where ξ denotes the amplitude ratio of two rf
sidebands, which are on phase quadrature (more details
are presented in Appendix A). Here, Ŷ0 and Ŷ�2 represent
the phase quadrature of three modes around the
carrier frequency ω0 and the rf sidebands frequencies
ω0 � 2ωm, which are linear combinations of their audio
sidebands, as illustrated in Fig. 2. The last two terms
contribute to the additional noise of the heterodyne

readout compared to the homodyne readout. The
quantum noise level is quantified by the single-sided
spectral density, which is defined for any operators ÂðΩÞ
and B̂ðΩ0Þ: hψ j½ÂB̂† þ B̂†Â�=2jψi≡ πSABðΩÞδðΩ −Ω0Þ.
In the absence of squeezing, the quantum state jψi is in
the vacuum state j0i. Using the fact that h0j½ŶiðΩÞŶ†

jðΩ0Þ þ
Ŷ†
jðΩ0ÞŶiðΩÞ�=2j0i ¼ πδðΩ − Ω0Þδij ði; j ¼ 0;�2Þ, we

have

SYY ¼ 1þ 1þ ξ2

ð1þ ξÞ2 : ð2Þ

Considering the balanced case with ξ ¼ 1,

SYY jbalanced ¼
3

2
; ð3Þ

which is 50% higher than that of the homodyne
readout.

A. Audio band versus broadband squeezing

With the introduction of squeezing, the quantum noise
level will be different, depending on the squeezing band-
width. For the audio band squeezing, the squeezing
is limited to the audio frequencies. The audio sidebands
around the carrier frequency are entangled, which can
be mapped to the (anti)squeezing of the corresponding
amplitude quadrature X̂0 and the phase quadrature Ŷ0 [31].
For the phase squeezing, the spectral densities of the
quadratures satisfy the following covariance matrix:

Vo ¼
"
e2r0 0

0 e−2r0

#
; ð4Þ

where r0 is the squeezing factor at the audio frequencies.
However, the sidebands around frequencies ωo � 2ωm
are still in the vacuum state and are uncorrelated.
Therefore, the audio band squeezing results in the spectral
density for Ŷ,

Balanced homodyne readout 

Audio band
squeezer

Broadband
squeezer

Heterodyne readout

FIG. 1. Schematics of the balanced homodyne readout and the
heterodyne readout, which requires a broadband squeezer with
bandwidth at least twice the modulation frequency ωm.

FIG. 2. Schematics of a broadband squeezer in the sideband
and the quadrature picture. In contrast for an audio band squeezer,
the sidebands are entangled only for Ω up to kHz.
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SYY ¼ e−2r0 þ 1þ ξ2

ð1þ ξÞ2 : ð5Þ

In contrast, as illustrated in Fig. 2, for the broad-
band squeezing with a bandwidth up to rf, the sidebands
around frequencies ω0 þ 2ωm and ω0 − 2ωm are entangled.
Their corresponding quadratures also form the Einstein-
Podolsky-Rosen (EPR) entanglement [16,31–34], and for
the phase squeezing, their spectral densities satisfy the
following 4 × 4 covariance matrix:

V� ¼

2
6664
α 0 β 0

0 α 0 −β
β 0 α 0

0 −β 0 α

3
7775; ð6Þ

where α ¼ cosh 2r2ωm
, β ¼ sinh 2r2ωm

with r2ωm
denoting

the squeezing factor at twice of the rf. As we can see,
the uncertainties of the individual quadratures are larger
than that of the vacuum, namely SYþ2Yþ2

¼ SY−2Y−2
¼ α≥ 1.

However, the sum of their phase quadratures, Ŷs ¼
ðŶþ2 þ Ŷ−2Þ=

ffiffiffi
2

p
, has uncertainty less than 1, namely,

SYsYs
¼ α − β ¼ e−2r2ωm . With a broadband squeezer, the

spectral density for Y reads

SYY ¼ 3

2
e−2r þ

�
1 − ξ

1þ ξ

�
2 e2r

2
; ð7Þ

where we have assumed r0 ¼ r2ωm
≡ r for simplicity.

If two rf sidebands were balanced with ξ ¼ 1,

SYY jbalanced ¼
3

2
e−2r: ð8Þ

The additional noise due to the fluctuations around ω0 �
2ωm is smaller by a factor of e2r comparing with Eq. (3).
Figure 3 shows SYY as a function of the sidebands
imbalance. With 10% imbalance in the sideband power,
i.e., ξ ¼ ffiffiffiffiffiffiffi

0.9
p

, there is still around 10 dB quantum noise
suppression for 12 dB input broadband squeezing.

B. Frequency-dependent squeezing

Frequency-dependent squeezing has been proposed to
simultaneously suppress the shot noise and the quantum
radiation-pressure noise in gravitational-wave detectors
[35]. It uses a Fabry-Perot cavity as the filter cavity to
transform the squeezed light and will be implemented in,
e.g., the Advanced LIGO plus upgrade. In this section, we
will show the suppression of the additional noise with
the broadband squeezing also holds for the frequency-
dependent squeezing.
The filter cavity imprints different phases on the side-

bands, which effectively creates a frequency-dependent

rotation of the quadratures. Mathematically, the rotation is
described by the following transfer matrix [36]:

R ¼ eiΦ
�
cos θ − sin θ

sin θ cos θ

�
: ð9Þ

Here, the phase Φ and rotation angle θ are

Φ¼ atan
2γΩ

γ2þΔ2−Ω2
; θ¼ atan

2γΔ
γ2−Δ2þΩ2

: ð10Þ

The frequency γ is the filter cavity bandwidth. The
frequency Δ is the cavity detuning and is different for
the three modes: Δ≡ Δ0 for the mode around the carrier
frequency; for rf modes around ω0 � 2ωm,

Δ�2 ≡ Δ0 �mod ð2ωm; FSRÞ; ð11Þ

where FSR is the free spectral range of the filter cavity.
In the balanced case, the spectral density of the addi-

tional noise due to fluctuations around ω0 � 2ωm is

SaddYY ¼ 1

2
½α − β cosðΦþ2 −Φ−2Þ cosðθþ2 þ θ−2Þ�; ð12Þ

where Φ�2 and θ�2 are the phase and rotation angle for
quadratures of ω0�2ωm. Ideally, we wantΦ�2 ¼ θ�2 ¼ 0,
so that SaddYY ¼ ðα − βÞ=2 ¼ e−2r2ωm =2, which leads to the
minimum additional noise. This can be approximately
achieved when Δ�2 is much larger than the filter cavity
bandwidth γ, namely having 2ωm away from any FSR of
the filter cavity. As an illustration, in Fig. 4, we show the
additional noise as a function of the distance of 2ωm away
from the FSR (normalized by γ). We assume a filter cavity
parameter the same as the Aþ design, namely, the cavity
bandwidth γ=ð2πÞ ¼ Δ0=ð2πÞ ¼ 45.8 Hz. Indeed, when
2ωm is offset from N × FSR by 200 times of the filter
cavity bandwidth, the additional noise level is close to

FIG. 3. Quantum noise level in dB for the heterodyne readout
as a function of the power imbalance of two rf sidebands,
considering different broadband squeezing lever.
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e−2r2ωm =2 for the entire frequency band relevant to gravi-
tational-wave signals. Here N is an arbitrary integer.

III. HIGHER-ORDER-MODES AND
SCHNUPP ASYMMETRY

In comparison with the homodyne readout, there are two
new quantum-noise related issues associated with the
heterodyne readout. The first issue is the higher-order-mode
content leaking through the dark port due to the absence of
output mode cleaner, which shall be traded off with the
benefit of removing the outputmode cleaner that induces the
mode mismatch and misalignment loss. The second issue
has to dowith vacuum fluctuations aroundω0 � 2ωm, which
transmit from the bright port to the dark port due to the
Schnupp asymmetry. They act like additional optical losses.
In the absence of output mode cleaner, the high-order-

mode content at the carrier frequency and in the rf side-
bands will both introduce additional quantum noise at
ω0 � ωm, which are in the vacuum sate. We define the ratio
of the power of the higher-order-mode content to the total
sideband power as ζHOM ¼ ζ0HOM þ ζωm

HOM, in which ζ0HOM
represents carrier frequency components and ζωm

HOM repre-
sents rf components. In the case of balanced rf sidebands,
the total quantum noise spectral density of the heterodyne
readout is

SHeterodyneYY ¼ 3

2
e−2r þ ζ0HOM þmζωm

HOM; ð13Þ

where m is between 1 and 1.5 depending on the mode
coherence between upper and lower rf sideband. For the
homodyne readout, the output mode cleaner loss, quanti-
fied by ζOMC, also leads to a degradation of the squeezing,
namely,

SHomodyne
YY ¼ ð1 − ζOMCÞe−2r þ ζOMC: ð14Þ

In Fig. 5, we show the ratio of these two spectral densities
in dB as a function of ζHOM and ζOMC. We take the lower
bound shot noise contribution from HOM content in rf
sidebands, i.e., m ¼ 1.
The Schnupp asymmetry allows the rf sidebands from

the bright port to transmit to the readout port (dark port) as
the local oscillator for the heterodyne readout. However, it
also couples the vacuum noise from the bright port to the
dark port, which is equivalent to introducing optical loss to
the broadband squeezing near twice of the rf. Such a loss
is determined by the transmissivity of the coupled power
and signal recycling cavities, which depends on the optical
properties of three components: the power recycling mirror,
the signal recycling mirror, and the central Michelson. In
particular, the effective amplitude transmissivity and reflec-
tivity of the central Michelson is, according to Ref. [37],
tMI ¼ − sinωmΔL=c, rMI ¼ − cosωmΔL=c, where ΔL is
the Schnupp asymmetry and c is the speed of light. In
advanced LIGO, the 45 MHz sidebands resonate in both
power recycling cavity and signal recycling cavity. The
resonance condition of 90 MHz filed is different; it still
resonates in signal recycling cavity but antiresonates in
power recycling cavity. The effective optical loss for
90 MHz and the transmissivity for 45 MHz are shown
in the Fig. 6. As we can see, in current aLIGO configu-
ration, the optical loss for 90 MHz squeezing fields is
around 0.2%. And the transmission of 45 MHz sidebands
can be adjusted significantly by tuning the Schnupp
asymmetry or the signal recycling mirror transmissivity
without boosting the optical loss at 90 MHz significantly.

IV. HETERODYNE IN ADVANCED LIGO

In this section, we illustrate our findings in Secs. II and
III on the example of the Advanced LIGO detectors, which
currently operate with squeezing and homodyne readout
[38]. The source injects 7.2� 0.3 dB of squeezing and the
maximum observed level is 3.2� 0.1 dB. The discrepancy

FIG. 4. Plot shows the level of the additional noise from ω0 �
2ωm in the phase quadrature at the reflection port of the filter
cavity for different rf ωm. The broadband squeezing level is
assumed to be 12 dB. The optical parameters of the filter cavity
are the same as Aþ design.

FIG. 5. Figure shows the ratio of the quantum noise spectral
density of the heterodyne readout over the that of homodyne
readout as a function of the OMC loss (ζOMC) in homodyne
readout and HOM content (ζHOM) in heterodyne readout in the
unit of dB. The contour line of 0 dB denotes the cases when the
two noise levels are equal. 12 dB input squeezing is assumed.
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between the amount of injected and observed squeezing
comes from the optical losses in the interferometer.
According to Ref. [38], around 25% of the signal is lost
on the Faraday isolators, on the output mode cleaner, and
photodiodes. Another 10% of the signal is lost on some
optical components yet to be identified.
If switched to the heterodyne readout, the quantum noise

level in the Advanced LIGO detectors would be

StotalYY ¼ ð1 − ϵ0Þe−2r0 þ ϵ0

þ 1

2
½ð1 − ϵ2ωm

Þe−2r2ωm þ ϵ2ωm
Þ� þ ζ0HOM þ ζωm

HOM;

ð15Þ

where ϵ0 and ϵ2ωm
are optical losses of the interferometer

near the carrier frequency and rf sidebands at 2ωm, respec-
tively. For the current Advanced LIGO configuration,
according to Ref. [39], ζHOM ¼ 0.12 and the higher-
order-mode content is dominated by the 02 modes of the
rf sideband. The bandwidth of the LIGO squeezing source
is ∼10 MHz [40], which is much smaller than 2ωm ¼
90 MHz, and therefore, we have r2ωm

≈ 0. Furthermore,
the loss from themodematching and alignment of the output
mode cleaner which is 5%–15% in the homodyne readout
scheme is negligible in the heterodyne readout, as it does not
require outputmode cleaner.Using the parameters discussed
above and Eq. (15) we estimate the final observed squeezing
is around 1.7� 0.2 dB for the heterdoyne readout in the
current Advanced LIGO detectors.
The LIGO parameters can be optimised for the hetero-

dyne readout as discussed in Secs. II and III. First, we need

to increase the bandwidth of the squeezing source above
∼100 MHz. Achieving this milestone will make r2ωm

¼ r0.
The observed squeezing level will be increased up to
3.9� 0.2 dB. Finally, if we can suppress the 02 mode
of the rf sidebands at the antisymmetric port, we will reduce
the higher-order-mode content down to ζHOM ¼ 0.02, and
the Advanced LIGO detectors will reach the observed level
of squeezing equal to 4.7� 0.3 dB.
The corresponding shot noise amplitude spectral density

is only a factor of ≈1.02 larger than the current shot noise
in the Advanced LIGO detectors, which is much smaller
compared to a factor of

ffiffiffiffiffiffiffi
1.5

p
≈ 1.22 for the case of the

same optical losses in both readouts. Moreover, higher
input squeezing will further shrink the gap between the
homodyne and heterodyne readout in our model since we
remove the output mode cleaner for the heterodyne readout.
Performing a test described in this section has a strong
potential to help the Advanced LIGO detectors to estimate
losses and technical noises of the output mode cleaner. The
test will also demonstrate that squeezing of the quantum
noise in the heterodyne readout works according to our
model and can be considered for future gravitational-wave
detectors.
So far, we have been focused on the cases with rf

sidebands having nearly equal power. The imbalance was
treated as an imperfection, which is the case for gravita-
tional-wave detectors, as the imbalance usually introduces
undesired technical noises. If the technical noises can be
suppressed, we can consider more general heterdyne read-
outs with strongly imbalanced sidebands or even a single
sideband. However, a single broadband squeezing will
not be able to suppress the additional quantum noise from
ω0 � 2ωm, and we would need three-mode squeezing
schemes shown in Appendix B.

V. CONCLUSION AND DISCUSSION

To summarize, we have investigated squeezing schemes
for the heterodyne readout in advanced gravitational-wave
detectors. Our research shows that the heterodyne readout
is compatible with frequency-dependent squeezing by
using a broadband squeezer and a filter cavity the same
as the one for the homodyne readout. We have studied the
problem of the higher-order-mode content leaking to the
dark port and the vacuum noise coupling from the bright
port to the dark port around frequencies ω0 � 2ωm due to
the Schnupp asymmetry, which turns out to be negligible.
Taking Advanced LIGO, for instance, there is a promising
path to reduce the higher-order-mode content with the
stable signal recycling cavity and the suppression of the
dominant 02 mode. The heterodyne readout requires less
auxiliary optics, and its sensitivity can be made comparable
to that of the balanced homodyne readout.
The strategies of incorporating quantum squeezing into

general heterodyne readout can be applied to a broad class
of optical measurements that use rf sidebands as in the

FIG. 6. The top panel shows the transmissivity for 45 MHz
sidebands. The bottom panel is the equivalent optical loss for
squeezing around 90 MHz as a function of the Schnupp
asymmetry and the SRM transmissivity. The stars are rough
estimates for the current situation of Advanced LIGO (aLIGO).
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Pound-Drever-Hall technique. Therefore, our findings
will not only have impacts to the gravitational-wave
community but also the general high-precision measure-
ment community.
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APPENDIX A: DESCRIPTION OF
HETERODYNE READOUT

In heterodyne readout, the rf sidebands are generated
by modulating the phase of the carrier field with a rf
sinusoidal signal ½mþ δmðtÞ� cos ðωmtþ δϕðtÞÞ, where m
is the modulation index, ωm is the modulation frequency,
δmðtÞ is the modulation index fluctuations and δϕðtÞ is the
modulation phase fluctuations. Whenm ≪ 1, the laser field
can be described approximately as

EðtÞ ¼ E0

�
1 −

m2

4

�
eiω0t

þ E0

�
im
2

þ iδmðtÞ
2

�
eiω0tðe−iωmt þ eiωmtÞ

þ E0

mδϕðtÞ
2

eiω0tðe−iωmt − eiωmtÞ þ H:c:; ðA1Þ

where E0 is the amplitude of the carrier field, H:c: denotes
the Hermitian conjugate. According to Eq. (A1), we
symbolize the rf local oscillator as

LðtÞ ¼ ½Lþ þ lþðtÞ�eiðω0þωmÞt

þ ½L− þ l−ðtÞ�eiðω0−ωmÞt þ H:c:; ðA2Þ
where Lþ, L− are the upper and lower rf sidebands
with Lþ ¼ L− ¼ i m

2
E0. lþ; l− are the fluctuation terms

of the local oscillator beam. Their classical parts have the
amplitude,

lþðtÞ ¼
�
iδmðtÞ −mδϕðtÞ

2

�
E0; ðA3aÞ

l−ðtÞ ¼
�
iδmðtÞ þmδϕðtÞ

2

�
E0: ðA3bÞ

We define the signal field ZðtÞ and specify only three
modes around frequencies ω0 and ω0 � 2ωm, which will
eventually contribute to the final output. There is

ZðtÞ ¼ ½Z̄0 þ Z0ðtÞ�eiω0t þ ZþðtÞeiðω0þ2ωmÞt

þ Z−ðtÞeiðω0−2ωmÞt þ H:c:; ðA4Þ

where Z̄0 is the amplitude of the carrier that leaks to the dark
port of the interferometer, Z0ðtÞ represents the fluctuations
around frequencyω0, including both signal and noise.ZþðtÞ
and Z−ðtÞ represent the fluctuations around frequencies
�ωm, respectively. Ignoring the second order terms and the
terms at irrelevant frequencies, the beat between local
oscillator and signal field can be calculated as

½LðtÞ þ ZðtÞ�½LðtÞ þ ZðtÞ�†
¼ 2½Lþ þ lþðtÞ�½ðZ̄o þ ZoðtÞÞ†eiωmt þ Z†

þðtÞe−iωmt�
þ 2½L− þ l−ðtÞ�½ðZ̄o þ ZoðtÞÞ†e−iωmt þ Z†

−ðtÞeiωmt�
þ H:c: ðA5Þ

This photocurrent is then demodulated by the sinusoidal
signal ½m0 þ δm0ðtÞ� cosðωmtþ ϕ0 þ δϕ0ðtÞÞ, which is from
the same source of modulation signal. It can be written
approximately as

½m0 þδm0ðtÞ�cosðωmtþϕ0Þ−δϕ0ðtÞm0 sinðωtþϕ0Þ; ðA6Þ

where m0 and δm0ðtÞ represent the amplitude of demodu-
lation signal and its fluctuations; ϕ0 and δϕ0ðtÞ represent the
demodulation phase and its fluctuations. After applying a
low pass filter with audio bandwidth to the product of
Eqs. (A5) and (A6), we can get the demodulated output.
It is convenient to describe the output in frequency

domain using quadrature operator base on the relation [13],

AẐ†
−Ω þ A†ẐΩ ¼

ffiffiffi
2

p
jAjẐζðΩÞ; ðA7Þ

where A ¼ jAjeiζ is an arbitrary complex amplitude. The
quadrature operator Zζ is defined as

ZζðΩÞ ¼ X̂ðΩÞ cos ζ þ ŶðΩÞ sin ζ; ðA8Þ

with

X̂ðΩÞ ¼ ẐΩ þ Ẑ†
−Ωffiffiffi

2
p ; YðΩÞ ¼ ẐΩ − Ẑ†

−Ωffiffiffi
2

p
i

; ðA9Þ

representing amplitude quadrature and phase quadrature,
respectively. Eventually, the demodulated output can then
be calculated as

IðΩÞ¼
ffiffiffi
2

p
m0½jL0jZ0ζ0ðΩÞþ jLþjZþζþðΩÞþ jL−jZ−ζ−ðΩÞ�

þ
ffiffiffi
2

p
m0jZ̄0j½lþαþðΩÞþ l−α−ðΩÞ�

−2m0δϕ0ðΩÞ½jLþjjZ̄0jcosβþþjL−jjZ̄0jcosβ−�
þ2δm0ðΩÞ½jLþjjZ̄0jcosψþþjL−jjZ̄0jcosψ−�;

ðA10Þ
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where

jL0j ¼ jLþe−iϕ
0 þ L−eiϕ

0 j; ðA11Þ

and

ζ0 ¼ arg ðLþe−iϕ
0 þ L−eiϕ

0 Þ; ðA12aÞ

ζ� ¼ �ϕ0 þ argL�; ðA12bÞ

α� ¼ �ϕ0 þ arg Z̄0; ðA12cÞ

βþ ¼ arg ðLþe−iϕ
0 Þ − arg Z̄0 −

π

2
; ðA12dÞ

β− ¼ arg ðL−eiϕ
0 Þ − arg Z̄0 þ

π

2
; ðA12eÞ

ψþ ¼ arg ðLþe−iϕ
0 Þ − arg Z̄0; ðA12fÞ

ψ− ¼ arg ðL−eiϕ
0 Þ − arg Z̄0: ðA12gÞ

When Z̄0 ¼ 0, considering balanced rf sidebands which
are on phase quadrature and ϕ0 ¼ 0 for phase measurement,
there is

IðΩ; jLþj ¼ jL−jÞ

¼
ffiffiffi
2

p
m0jL0j

�
Y0ðΩÞ þ

Yþ2ðΩÞ þ Y−2ðΩÞ
2

�
; ðA13Þ

where Y0 and Y�2 represent the phase quadrature
of three modes around frequency ω0 and ω0 � 2ωm. If,
jLþj ≠ jL−j,

I

�
Ω;

���� jL−j
jLþj

¼ ξ

�

¼
ffiffiffi
2

p
ð1þξÞm0jLþj

�
Y0ðΩÞþ

Yþ2ðΩÞþξY−2ðΩÞ
1þξ

�
;

ðA14Þ

where ξ ¼ j L−
Lþ

j denotes the ration of amplitude of two rf

sidebands on phase quadrature.

APPENDIX B: THREE MODES
SQUEEZING SCHEMES

In this Appendix, we introduce squeezing schemes as
shown in Fig. 7, which produce three independent squeez-
ing modes around ω0 and ω0 � 2ωm.
Scheme (a) uses three audio band squeezing sources

which are coherently combined through two optical
cavities that properly reflect and transmit the fields using
their frequency selectivity. Scheme (b) uses a single cavity
with three pumps interacting with the nonlinear crystal. The
longitudinal mode frequency of the cavity coincide with

that of three squeezing modes. The squeezing bandwidth of
the crystal, however, needs to be smaller than 2ωm to avoid
the EPR entanglement between neighboring modes. If it is
challenging to achieve, we can consider scheme (c), which
uses coupled cavities and two nonlinear crystals.
In scheme (c), we define the optical modes of the three

cavities as a, b and c with identical frequency ωE. The
power transmissivities of the mirrors between cavities a, b
is defined as T1; the power transmissivities of the mirrors
between cavities b, c is defined as T2. The cavities lengths
are defined as La, Lb, Lc. They should satisfy that the
cavity coupling frequencies between each pair of adjacent
cavities are identical. So the coupling frequency ωc can be
calculated as [41]

ωc ¼
c

ffiffiffiffiffi
T1

p
2

ffiffiffiffiffiffiffiffiffiffiffi
LaLb

p ¼ c
ffiffiffiffiffi
T2

p
2

ffiffiffiffiffiffiffiffiffiffiffi
LbLc

p : ðB1Þ

In the interaction picture, the optical part of the Hamiltonian
of the three coupled cavities can be written as

Hopt ¼ ℏ½ a†b†c† �

2
64
ωE ωc 0

ωc ωE ωc

0 ωc ωE

3
75
2
4 a

b

c

3
5: ðB2Þ

The decoupled eigenmodes of the three coupled cavities,
n0, n�, can be derived by diagonalizing the matrix above,
which gives

2
64
a

b

c

3
75 ¼

2
6664

1ffiffi
2

p 1
2

1
2

0 − 1ffiffi
2

p 1ffiffi
2

p

− 1ffiffi
2

p 1
2

1
2

3
7775
2
64
n0
n−
nþ

3
75: ðB3Þ

Pump frequency:

(a) (b)

(c)

Three-mode squeezing schemes

FIG. 7. Different three-mode squeezing schemes to produce
independent squeezing fields near ω0 − 2ωm, ω0, and ω0 þ 2ωm
for general imbalanced heterodyne readouts. Scheme (a) coher-
ently combines the squeezing from three independent sources.
Scheme (b) uses three longitudinal modes of a single cavity,
which are separated by the free spectral range equal to 2ωm. It
works when the crystal squeezing bandwidth is smaller than 2ωm.
Otherwise, a more sophisticated scheme (c) with three cavities
coupled together can be an option.
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The three eigenmodes have eigenfrequencies, ωE and
ωE � ffiffiffi

2
p

ωc. For our purpose, we need

ωc ¼
ffiffiffi
2

p
ωm: ðB4Þ

The Hamiltonian describing the interactions in the system
can be written as [42]

HI ¼ −
iℏ
2

�
χa0

n02 þ nþn−
2

þ χa−
n−2

4
þ χaþ

nþ2

4

−
ffiffiffi
2

p
χb0nþn− þ χb−

n−2

2
þ χbþ

nþ2

2

�
þ H:c:; ðB5Þ

where each constant, χa0; χ
a
−; χaþ; χb0; χ

b
−; χbþ is proportional to

the second-order nonlinear susceptibility of crystal in cavity

a and b and the amplitude of the pumps. By designing the
power of pumps and crystal features satisfying χa0 ¼ 2

ffiffiffi
2

p
χb0 ,

the correlations between mode nþ and n− can be coherently
canceled. Thus, Eq. (B5) can be rewritten as

HI ¼ −
iℏ
2
ðg0n†02 þ g−n†−2 þ gþn

†
þ
2Þ þ H:c:; ðB6Þ

where

g0¼
χa0
2
; g− ¼

χa−þ2χb−
4

; gþ ¼ χaþþ2χbþ
4

: ðB7Þ

It is then straightforward to see the three pairs of independent
interactions, which will give three modes of single mode
squeezing.
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