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We consider static and cylindrically symmetric interior string-type solutions in the scalar-tensor
representation of the hybrid metric-Palatini modified theory of gravity. As a first step in our study, we
obtain the gravitational field equations and further simplify the analysis by imposing Lorentz invariance along
the t and z axes, which reduces the number of unknownmetric tensor components to a single functionW2ðrÞ.
In this case, the general solution of the field equations can be obtained, for an arbitrary form of the scalar field
potential, in an exact closed parametric form,with the scalar fieldϕ taken as a parameter.We consider in detail
several exact solutions of the field equations, corresponding to a null and constant potential, and to a power-
law potential of the form VðϕÞ ¼ V0ϕ

3=4, in which the behaviors of the scalar field, of the metric tensor
components, and of the string tension can be described in a simplemathematical form.We also investigate the
stringmodelswith exponential andHiggs-type scalar field potentials by using numericalmethods. In thisway,
we obtain a large class of novel stable stringlike solutions in the context of hybrid metric-Palatini gravity, in
which the basic parameters, such as the scalar field, metric tensor components, and string tension, depend
essentially on the initial values of the scalar field, and of its derivative, on the r ¼ 0 circular axis.
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I. INTRODUCTION

The formation of topological defects is a well-studied
physical process in the context of condensed matter,
namely, metal crystallization [1], liquid crystals [2,3],
superfluid helium-3 [4] and helium-4 [5], and supercon-
ductivity [6]. The formation of topological defects is a by-
product of phase transitions and behind their formation lies
a fundamental concept in physics, namely, spontaneous
symmetry breaking (SSB). Although we can distinguish
first and second order phase transitions, the essential
features of such a concept can be illustrated by a simple
Goldstone model [7–9]. Here, the physical system of a
Higgs field exhibits a nondegenerate vacuum expectation
value at T > Tc, but as the system is cooled, the minima
of the potential becomes degenerate for T < Tc and the
field will “roll” to the new minima, where Tc ¼

ffiffiffi
6

p
η is the

critical temperature in second order phase transitions,
related to the energy breaking scale, η. The new vacuum

state now does not exhibit the same invariance as the
previous minimum and, hence, the symmetry is sponta-
neously broken.
From the standpoint of cosmology, the formation of

topological defects is related with the symmetries shown by
the Standard Model of particle physics. In fact, many grand
unification theories (GUTs) postulate that the universe, as it
cooled, underwent a series of phase transitions associated
with SSB, meaning that at sufficiently high temperatures
there was invariance under a more general group of
symmetries. Each of these phase transitions may have left
behind a network of topological defects [10]. In fact, the
Kibble and Zurek mechanism [10,11] describes the non-
equilibrium dynamics and the formation of topological
defects in a system which is driven through a continuous
phase transition at finite rate. When Tc is reached, random
fluctuations will dictate which of the minima state will be
“chosen” by the field; regions of spacetime separated by a
distance larger than the size of the particle horizon will
choose independent, but equivalent, states on the minima
manifold. Indeed, the kind of defects we expect to be
formed depend on the (nontrivial) topology of the minima
manifold [12].
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In the case of a discrete symmetry breaking, whenever
the vacuum manifold is disconnected, a domain wall is
formed, which is a surface that separates two patches with
different vacuum expectation values. If the vacuum
manifold contains unshrinkable surfaces, the field might
develop nontrivial configurations corresponding to point-
like defects, known as monopoles. In this work, we limit
ourselves to the investigation of what are considered to be
the most viable types of topological defects, which may
have already formed in the early Universe, namely, cosmic
strings [8,9]. These are linelike defects formed when the
topology of the minima manifold is not simply connected.
In field theoretical models, strings can form once an axial

symmetry is broken spontaneously. Strings can exist in the
form of loops, or they can be infinitely long, spanning to the
horizon. The equations of motion for two models of
circular cosmic string loops with windings in a simply
connected internal space were investigated numerically in
[13]. The Kosambi-Cartan-Chern theory was used to
analyze the Jacobi stability of the string equations and
determine bounds on the physical parameters that ensure
dynamical stability of the windings. One may also consider
more exotic defects, composed of combinations of strings.
For a more comprehensive discussion of the set of possible
topological defects, we refer the reader to [8,9]. The
formation of a network of cosmic defects, and their
symmetry breaking scale, is a key feature in many grand
unified scenarios [14], and hence the search for the
cosmological consequences of such defects is a key aspect
for constraining different models.
Some defects tend to be inherently unstable [8], while

domain walls and monopoles are either cosmologically
catastrophic or severely constrained by current observa-
tions [15]. On the other hand, the presence of cosmic
strings can have important cosmological consequences,
such as, for example, in the case of the cosmic microwave
background (CMB) anisotropies [16], for small scale
structure formation [17], for the reionization history of
the Universe [18], for gamma ray bursts [19,20], for the
gravitational lensing observations [21], and for the under-
standing of the formation of the supermassive black holes
in the early universe [22], respectively.
Furthermore, the role of inflation on the survival of

topological defects cannot be overstated, as defects formed
too early would become diluted in the universe, which is
useful in the case of domain walls or monopoles, but
defects formed too late would become energetically dom-
inant, changing drastically the standard cosmological
model. However, it has been shown that strings are a
by-product of several GUTs at the end of inflation [14] and
are stable topological defects, which make them good
candidates for further analysis. Due to the existence of a
magnetic flux inside the string [23], cosmic strings can
either be infinite or form closed loops, which will oscillate
and radiate energy via gravitational waves (GW), and thus

decay. This radiation will cause a stochastic background in
the GW spectra [24].
Even though most of the research on cosmic strings has

been done in the framework of standard general relativity,
the properties of cosmic strings have also been investigated
in modified theories of gravity. Stringlike solutions have
been found in fðRÞ gravity [25–27]. Cylindrically sym-
metric string solutions with constant Ricci curvature have
been derived in [25], and it was shown that there is only one
solution for R ¼ 0. Families of vacuum solutions for which
R ¼ const ≠ 0 were also found, representing fðRÞ ana-
logues of the Linet-Tian solution [28,29]. In fact, the
solution obtained in [25] is a member of the general
Tian family of solutions in general relativity, and therefore
it can describe the exterior of a cosmic string. Kasner-type
static, cylindrically symmetric interior string solutions in
the framework of fðR;LmÞ gravity [30,31] were considered
in [32]. Gravitationally bound general relativistic strings
consisting of a Bose-Einstein condensate matter that is
described, in the Newtonian limit, by the zero temperature
time-dependent nonlinear Schrödinger equation (the Gross-
Pitaevskii equation), with repulsive interparticle inter-
actions were investigated in [33].
Cosmic strings have also been extensively explored in

other extensions of general relativity, such as in scalar-
tensor theories [34–44]. An interesting aspect in these
theories is the proof that the Vilenkin prescription in which
an infinitely long straight static local gauge string satisfies
the condition of the energy-momentum tensor Tt

t ¼ Tz
z ≠ 0

and all the other components Tμ
ν ¼ 0 [45], is inconsistent in

Brans-Dicke theory of gravity [39]. However, this incon-
sistency can be removed by including a cosmological
constant [44], or by considering a more general scalar-
tensor theory [42]. This fact motivates investigating string-
type solutions in the scalar-tensor representation of the
recently proposed hybrid metric-Palatini gravity [46–48],
which is a modified theory of gravity that combines the
metric and Palatini formalisms, already introduced in the
study of standard general relativity, to construct a new
gravitational Lagrangian.
In fact, theories of gravity with a gravitational action

consisting of more general combinations of curvature in-
variants than the traditional Einstein-Hilbert term have been
in recent years a source of intense scrutiny [46,49–54].
Either by their ability to account for the late-time cosmic
acceleration without dark energy [55], or by the possibility
of explaining the large scale dynamics of self-gravitating
systems without the need for dark matter [56–60]. The
hybrid metric-Palatini theory is one of these cases [46–
48,54,61–65]. From a theoretical point of view, the main
advantage of hybrid metric-Palatini gravity is that it is a
viable gravity theory that includes elements of both Palatini
and metric formalisms. A main success of the theory is the
possibility of generating long-range forces that pass the
classical local tests at the Solar System level of gravity.
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Another important advantage of the theory is that it admits
an equivalent scalar-tensor representation, which greatly
simplifies the analysis of the field equations, and the
construction of their solutions. Vacuum solutions of the
gravitational field equations in the hybrid metric-Palatini
gravity were considered in [66–68].
In this work, we will analyze local gauge string solutions

with a phenomenological energy momentum tensor, as
prescribed by Vilenkin [45], in the context of the hybrid
gravitational theory. The general solution of the field
equations can be obtained in an exact parametric form
for arbitrary scalar field potentials. Several solutions of the
field equations, obtained for different functional forms of
the scalar field potential, are considered in detail. In
particular, we consider the cases of the null and constant
potentials, as well as the power-law potential of the form
VðϕÞ ¼ V0ϕ

3=4. For all these cases, the solutions of the
gravitational field equations can be represented in a simple
mathematical form. Two important scalar field potentials
are the exponential and the Higgs-type scalar field poten-
tials, which can be investigated only with the extensive use
of numerical methods. As a result of our investigations, we
obtain several classes of novel stable stringlike solutions in
hybrid metric-Palatini gravity. An interesting property of
these solutions is that the behavior of all physical and
geometrical quantities describing these stringlike objects
(scalar field, metric tensor components, and string tension),
essentially depend on the initial values along the r ¼ 0
circular line of the scalar field, and of its derivative.
This work in organized in the following manner. In

Sec. II, we present the scalar-tensor representation of the
hybrid metric-Palatini theory, by writing out the action and
field equations for a general static, cylindrically symmetric
metric. This is followed by Sec. III, where we present the
general solution of the field equations, for an arbitrary form
of the scalar field potential, in an exact closed parametric
form, with the scalar field ϕ taken as a parameter. In
Sec. IV, we consider in detail several exact and numerical
solutions of the field equations, by choosing several
interesting choices for the potential. Finally, we summarize
and discuss our results in Sec. V.

II. COSMIC STRINGLIKE OBJECTS IN
HYBRID METRIC-PALATINI GRAVITY

In the present section, wewill first briefly review some of
the basic properties of the cosmic string and stringlike
objects. Then we introduce the action and the field
equations of the hybrid metric-Palatini gravity theory,
and we write down the system of equations describing
cosmic strings in static cylindrical symmetry.

A. Cosmic strings—a brief review

Cosmic strings naturally appear in spontaneously broken
gauge theories, which often exhibit stable topological

defects. The simplest model that gives rise to a string
solution is based on the matter Lagrangian [69,70],

Lm ¼ j∂μΦj2 − λ

4
ðjΦj2 − η̄2Þ2; ð1Þ

where λ is a dimensionless coupling constant, while η̄ is the
vacuum expectation value of the field Φ. The Lagrangian
(1) is invariant under the gauge transformations ϕðxÞ →
ϕðxÞeiαðxÞ, AμðxÞ → AμðxÞ − ð1=eÞ∂μαðxÞ. A straight cos-
mic string oriented along the z axis is a solution of the field
equations of the form ϕðt; z; ρ;φÞ ¼ ðη= ffiffiffi

2
p ÞfðρÞeinφ,

Aμðt; z; ρ;φÞ ¼ −ðn=eÞhðρÞ∂μϕ, where we have used
cylindrical polar coordinates, and n ∈ N [23]. Generally,
the corresponding field equations cannot be solved ana-
lytically. The model can also be extended to include gauge
fields of the electromagnetic type [23]. In fact, the study of
cosmic strings was pioneered in [10], and ever since it has
become a popular subject of investigation. For a review of
cosmic string and superstring properties, see [69,70].
Cosmic string configurations can also be obtained as

solutions of the Einstein gravitational field equations. The
stringlike configurations are generally constructed by
assuming a cylindrically symmetric metric of the form [71]

ds2 ¼ −N2ðrÞdt2 þ dr2 þ L2ðrÞdθ2 þ K2ðrÞdz2: ð2Þ

Such a metric with K ¼ N was used to give a complete
classification of the stringlike solutions of the gravitating
Abelian Higgs model, where the functions L and N must
satisfy the regularity conditions Lð0Þ ¼ 0, L0ð0Þ ¼ 1,
Nð0Þ¼1, and N0ð0Þ¼0, respectively [71]. Cosmic strings
have the interesting property that around a straight, local
cosmic string the spacetime is flat [69].
For a cosmic string located along the z axis, a solution of

the Einstein field equations is given by [45]

ds2 ¼ −dt2 þ dr2 þ ð1 − 8πGμÞr2dθ2 þ dz2: ð3Þ

The metric (3) was obtained in the linear approxi-
mation of general relativity, by assuming that the
matter energy-momentum tensor is given by Tν

μðx; yÞ ¼
μðxÞδðx − aÞδðy − bÞdiagð1; 0; 0; 1Þ, where μðxÞ is the
linear energy density of the string. Then, by representing
the metric tensor as gμν ¼ ημν þ hμν, where ημν is the
Minkowski metric, and hμν ≪ 1, one obtains the grav-
itational field equations as given by ð∇2−∂2

t Þhμν ¼
16πGðTμν−ð1=2ÞημνTÞ, which must be considered
together with the harmonic coordinate conditions
∂νðhνμ − ð1=2ÞδνμhÞ ¼ 0 [45]. Then one obtains (3) as a
solution of the linearized field equations.
In terms of the modified azimuthal coordinate

θ0 ¼ ð1 − 4GμÞθ, ranging from 0 to 2π − 8πGμ, the geom-
etry described by the line element (3) is flat. This implies
that the gravitational acceleration of massive objects toward
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the string is zero [45]. From a physical point of view, this
effect is due to the equality of the tension and the energy per
unit length, with the tension acting as a negative source of
the gravitational field. On the other hand, it is important to
point out that globally the spacetime is not flat, and it
fundamentally has a conical form. Hence, the geometry of
the massive string can be described as a conical singularity,
having a deficit angle proportional to the mass density μ.
More generally, the metric for a string oriented along the

z axis and having an infinite length can be written as [72]

ds2 ¼ −dt2 þ dr2 þ
�
1 −

μðrÞ
2π

�
2

r2dθ2 þ dz2: ð4Þ

For this metric, the Riemann curvature is zero everywhere,
except along the tz-hyperplane, representing the string
world sheet.
Another interesting string configuration is given by the

Barriola and Vilenkin string [73], with metric

ds2 ¼ −
�
1 − 8πη̄2 −

2M
r

�
dt2 þ dr2

ð1 − 8πη̄2 − 2M
r Þ

þ r2ðdθ2 þ sin2θdφ2Þ: ð5Þ

This solution generalizes the matter Lagrangian (1)
by considering a self-coupling scalar field triplet ϕa,
a ¼ 1, 2, 3, so that the matter action is given by Lm ¼
ð1=2Þ∂μϕ

a∂μϕa − λðϕaϕa − η̄2Þ2. To solve the gravita-
tional field equations, one uses the ansatz ϕa ¼ ηfðrÞxa=r.
In the framework of the Brans-Dicke theory, static

cylindrically symmetric solutions of the field equations
have been obtained in [44], for a gravitational action
of the form

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ϕð−Rþ 2ΛÞ þω

ϕ
gμν∂μϕ∂νϕ

�
þ Sm½Ψ; g�;

ð6Þ

where Λ is the cosmological constant. For Λ > 0 and a
boost invariant cylindrically symmetric metric of the form
(29) (see below), containing only a nontrivial metric tensor
component W2ðrÞ, the solution of the field equations is
given by [44]

WðrÞ ¼ A sinðωþ1Þ=ðωþ2ÞðαrÞ tanϵ=ðωþ2Þ
�
αr
2

�
; ð7Þ

ϕðrÞ ¼ A sin1=ðωþ2ÞðαrÞ tan−ϵ=ðωþ2Þ
�
αr
2

�
; ð8Þ

where α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Λð2þ ωÞp

> 0, ϵ ¼ �1, and A is an inte-
gration constant. Similar solutions can be obtained in the
case Λ < 0, with the trigonometric functions replaced by
the hyperbolic ones, so that

WðrÞ ¼ A sinhðωþ1Þ=ðωþ2ÞðβrÞ tanhϵ=ðωþ2Þ
�
βr
2

�
; ð9Þ

ϕðrÞ ¼ A sinh1=ðωþ2ÞðβrÞ tanh−ϵ=ðωþ2Þ
�
αr
2

�
; ð10Þ

where β ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij2Λð2þ ωÞjp
. The regularity conditions

Wð0Þ ¼ 0 and W0ð0Þ ¼ 0 on the axis for cylindri-
cally symmetry of the string are satisfied if A ¼
2−ω=ð2ωþ4Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðωþ 2ÞΛp
[44]. Hence, for this choice of

A, the solution is regular and free of any conical singularity.
Moreover, the solutions with ϵ ¼ 1 are smooth, regular, and
free of any singularity on the axis r ¼ 0. Generally, the
behavior of the solution and the regularity conditions
depend on the adopted values of the model parameters
ðA; α; βÞ.

B. Action and field equations

The action of hybrid metric-Palatini gravity is specified
as [47,48]

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ fðRÞ� þ Sm; ð11Þ

where Sm is the matter action, κ2 ≡ 8πG, R is the Einstein-
Hilbert term,R≡ gμνRμν is the Palatini curvature, andRμν

is defined in terms of an independent connection Γ̂α
μν as

Rμν ≡ Γ̂α
μν;α − Γ̂α

μα;ν þ Γ̂α
αλΓ̂λ

μν − Γ̂α
μλΓ̂λ

αν: ð12Þ
The action (11) can be written in the scalar-tensor

representation [47] by the following action:

S¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
ð1þϕÞRþ 3

2ϕ
∂μϕ∂μϕ−VðϕÞ

�
þSm:

ð13Þ

Performing the variation of the action with respect to the
metric and the scalar field ϕ yields the field equations

ð1þ ϕÞGμν ¼ κ2Tμν þ∇μ∇νϕ −∇α∇αϕgμν

−
3

2ϕ
∇μϕ∇νϕþ 3

4ϕ
∇λϕ∇λϕgμν −

1

2
Vgμν

ð14Þ
and

−∇μ∇μϕþ 1

2ϕ
∂μϕ∂μϕþ ϕ

3
½2V − ð1þ ϕÞV;ϕ� ¼

ϕκ2

3
T;

ð15Þ
where V;ϕ denotes the derivative of V with respect to the
scalar field. This equation of motion shows that, unlike in
the Palatini case, the scalar field is dynamical and not
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affected by the microscopic instabilities found in Palatini
models with infrared corrections [47].

C. Metric of a cosmic stringlike object

We now consider the specific case of a straight infinite
cosmic string. Cosmic strings are part of the class of
linelike topological defects. This makes them different
from the pointlike monopoles and the membrane shaped
domain walls. In any field theory, the appearance of defects
is related to the topology of the vacuum manifold [10].
In fact, as mentioned above, a crucial parameter in

cosmic strings is the energy density, μ (which is usually
represented as a dimensionless quantity Gμ) closely related
to the energy scale of the symmetry breaking, η ∼ ffiffiffi

μ
p

; the
tension of the string network, Gμ is significantly con-
strained (for a detailed discussion, see [16]), either by the
CMB spectra (Gμ < 2.6 × 10−7) [74], gravitational lensing
(Gμ < 10−9) [75], 21-cm observations (Gμ < 10−10) [76],
and, with the advent of LISA, it can be even more tightly
constrained by the stochastic background GW spectra [77].
Throughout this paper, we will use Vilenkin’s prescrip-

tion [45], given by

Tt
t ¼ Tz

z ¼ −σðrÞ; ð16Þ
where σ is the string tension.

1. Coordinates and geometry

In the following, we will consider an infinitely long,
straight cylindrical string, whose matter content is
described by the energy momentum (16). We assume that
the geometry of the string has cylindrical symmetry, that is,
rotational symmetry about the cylinder axis, together with
translational symmetry along the axis. Generally, a space-
time V4 ¼ ðM; gÞ is called cylindrically symmetric if and
only if it admits a G2 on S2 group of isometries that contain
an axial symmetry, where G2 is the two-dimensional
Abelian Lie group (for an in-depth discussion of the
definition of cylindrical symmetry, see [78] and references
therein). If the spacetime admits two spacelike commuting
Killing vector fields ξ ¼ ∂z and η ¼ ∂θ, both of them being
mutually and hypersurface orthogonal, and G2 acts
orthogonally transitively, then the general cylindrically
symmetric static metric takes the form [79]

ds2 ¼ −e2ðK−UÞdt2 þ e2ðK−UÞdr2 þ e−2UW2dθ2 þ e2Udz2;

ð17Þ
where t, r, θ, and z denote the time, radial, angular, and
axial cylindrical coordinates, respectively, and K,U, andW
are functions of r alone. The assumption of stationary axial
symmetry requires for the metric to be invariant with
respect to the transformations x0 → x0 þ c1 (stationarity),
x3 → x3 þ c2 (axial symmetry), and x0 → −x0, x3 → −x3
(simultaneous reflection).

To admit an interpretation in terms of cylindrical
symmetry, any cylindrically symmetric metric must have
an axis. From a formal point of view, the axis of symmetry
can be defined as the set of fixed points of the map
τ∶T × V4 → V4, where T is the one dimensional torus, that
is, W2 ≡ −x ∈ V4, τϕðxÞ ¼ x, ∀ϕ ∈ T, thus representing
a two-dimensional surface W2 [80,81]. In other words,
axial symmetry can be defined as an isometric SOð2Þ
mapping of space-time such that the set of fixed points
forms a (regular) two-dimensional surface W2, called the
axis of rotation [79]. The condition of the existence of an
axis is that the scalar products of the Killing vectors ηaηa ¼
e−2UðrÞW2ðrÞ vanish on it, and the metric must be regular
on this axis [79]. For a metric with U ≡ 0, the condition for
the existence of an axis is therefore W2ðrÞjaxis ¼ 0. If this
condition is not satisfied, there is no axis for the system.
Many of the known solutions of the Einstein field equations
do not have an axis, or the axis is not regular [79]. However,
these metrics may be appropriate to describe the exterior
field of the cylindrically symmetric systems containing a
self-gravitating mass distribution [79].
The solutions we will consider in the present inves-

tigation do not satisfy the condition for the existence of an
axis, that is, they have the property thatW2ðrÞjaxis ≠ 0, and
thusW2ðrÞ does not vanish on any axis. Therefore, a proper
axis cannot be defined in this case, and the corresponding
solutions of the field equations cannot be called cosmic
strings in the usual sense. In the present paper, we will call
them stringlike solutions. Moreover, in order to be able to
provide a description of the obtained solutions in geomet-
rical and physical terms, we will call the r ¼ 0 line a
circular line.

D. Full field equations

Taking into account the metric (17), then the field
equation (14) provides the following nonzero components:

ð1þ ϕÞ
�
−U02 þ K0 W

0

W
−
W00

W

�

¼ ϕ00 −
3

4ϕ
ϕ02 −

�
K0 −U0 −

W0

W

�
ϕ0

þ
�
κ2σ þ 1

2
V
�
e2ðK−UÞ; ð18Þ

ð1þ ϕÞ
�
−U02 þ K0 W

0

W

�

¼ −
3

4ϕ
ϕ02 −

�
K0 −U0 þW0

W

�
ϕ0 −

1

2
Ve2ðK−UÞ; ð19Þ

ð1þ ϕÞðU02 þ K00Þ ¼ −ϕ00 þ 3

4ϕ
ϕ02 −U0ϕ0 −

1

2
Ve2ðK−UÞ;

ð20Þ
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ð1þϕÞ
�
U02þK00−2U00−2U0W

0

W
þW00

W

�

¼−ϕ00 þ 3

4ϕ
ϕ02þ

�
U0−

W0

W

�
ϕ0−

�
κ2σþ1

2
V
�
e2ðK−UÞ:

ð21Þ

Additionally, we can use Eq. (15) to determine the
effective Klein-Gordon equation for the scalar field ϕ,

e−2ðK−UÞ
�
−ϕ00 −

W0

W
ϕ0 þ ϕ02

2ϕ

�
þ ϕ

3
½2V − ðϕþ 1ÞV;ϕ�

þ 2ϕκ2σ

3
¼ 0: ð22Þ

Since in this model the matter field couples minimally
with curvature, it is possible to show that the energy
conservation equation still holds, i.e.,

∇μTμ
ν ¼ 0; ð23Þ

which provides K0σ ¼ 0, and apart from the trivial vacuum
solution, σ ¼ 0, this implies that K0 ¼ 0. Thus, we consider
from now on that eK ¼ 1, so that Eqs. (18)–(21) simplify to
the following relations:

ð1þ ϕÞ
�
−U02 −

W00

W

�

¼ ϕ00 −
3

4ϕ
ϕ02 þ

�
U0 þW0

W

�
ϕ0 þ

�
κ2σ þ 1

2
V

�
e−2U;

ð24Þ

ð1þ ϕÞU02 ¼ 3

4ϕ
ϕ02 þ

�
−U0 þW0

W

�
ϕ0 þ 1

2
Ve−2U; ð25Þ

ð1þ ϕÞU02 ¼ −ϕ00 þ 3

4ϕ
ϕ02 − U0ϕ0 −

1

2
Ve−2U; ð26Þ

ð1þ ϕÞ
�
U02 − 2U00 − 2U0 W

0

W
þW00

W

�

¼ −ϕ00 þ 3

4ϕ
ϕ02 þ

�
U0 −

W0

W

�
ϕ0 −

�
κ2σ þ 1

2
V

�
e−2U;

ð27Þ

respectively. Additionally, the effective Klein-Gordon
equation for the scalar field ϕ reduces to

e2U
�
−ϕ00 −

W0

W
ϕ0 þ ϕ02

2ϕ

�
þ ϕ

3
½2V − ðϕþ 1ÞV;ϕ�

þ 2ϕκ2σ

3
¼ 0: ð28Þ

E. Field equations with boost invariance

Note that local gauge strings preserve boost invariance
along the t and z [45], so that this requires U ¼ 0. Hence,
the only surviving nontrivial metric tensor component is
gθθ ¼ W2ðrÞ. From a geometric point of view, WðrÞ
is nothing but the radius of the coordinate circles
r ¼ constant, z ¼ constant, parametrized by the angle θ.
Since in this geometry the circumference of a circle equals
the value of 2πW, in the following, we will call the only
remaining metric tensor component W2ðrÞ a circular
radius. On the other hand, W2ðrÞ also has the geometric
meaning of a length that may be counted from any zero
point, with its value at r ¼ 0 not distinguished geometri-
cally. Hence, the metric of the cosmic string reduces to the
form

ds2 ¼ −dt2 þ dr2 þW2ðrÞdθ2 þ dz2: ð29Þ

Applying this symmetry, the gravitational field equations
simplify considerably,

ð1þ ϕÞ
�
−
W00

W

�
¼ ϕ00 −

3

4ϕ
ϕ02 þW0

W
ϕ0 þ κ2σ þ 1

2
V;

ð30Þ

0 ¼ 3

4ϕ
ϕ02 þW0

W
ϕ0 þ 1

2
V; ð31Þ

0 ¼ −ϕ00 þ 3

4ϕ
ϕ02 −

1

2
V; ð32Þ

ð1þ ϕÞW
00

W
¼ −ϕ00 þ 3

4ϕ
ϕ02 −

W0

W
ϕ0 − κ2σ −

1

2
V; ð33Þ

where Eqs. (30) and (33) become redundant.
Combining Eqs. (31) and (32) yields the following

relation for the potential V:

V ¼ −ϕ00 −
W0

W
ϕ0; ð34Þ

which substituting into the Klein-Gordon equation (28), the
latter reduces to

Vð3þ 2ϕÞ − V;ϕϕðϕþ 1Þ þ 2κ2σϕþ 3ϕ02

2ϕ
¼ 0: ð35Þ

Additionally, we can further deduce

κ2σ ¼ 1

W
½ð1þ ϕÞW0� ð36Þ

and
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½ð1þ ϕÞW�00
W

¼ −ðV þ κ2σÞ: ð37Þ

An important physical parameter characterizing the
cosmic string properties is the mass per unit length of
the string, which is defined as

mðRsÞ ¼
Z

2π

0

dθ
Z

Rs

0

σðrÞWðrÞdr

¼ 2π

Z
Rs

0

σðrÞWðrÞdr; ð38Þ

where Rs is the radius of the stringlike object. In the
following, we will interpret the string radius Rs as repre-
senting the maximum value of the coordinate r at which the
string density is nonzero, so that σðrÞ ¼ 0 for r ≥ Rs.

F. Regularity and asymptotic conditions

A specific stringlike solution of the gravitational field
equations in cylindrical symmetry must satisfy a number of
physical and geometrical requirements. In the case of self-
gravitating systems, we may go beyond the description of
cosmic strings as simple conical singularities, and assume
they are solitonlike structures [82]. The soliton or stringlike
solutions of the field equations must satisfy a number of
regularity and asymptotic conditions. The first of these
conditions is the regularity along the string axis, which
requires the absence of the conical singularity, and the
finiteness of the algebraic curvature invariants, such as the
Kretschmann scalar, K ¼ RαβγδRαβγδ. The condition of
the finiteness of the Kretschmann invariants is satisfied
if the g00 and g22 components of the metric tensor are finite
on the axis. Equivalently, this condition can be formulated
physically as the condition that all components of the
energy-momentum tensor are finite.
The second condition for a string configuration obtained

as a solution of the gravitational field equations is the
requirement of its existence at infinity, where the metric is
either flat, or corresponds to the metric of a standard cosmic
string configuration. This means first that the g00 and the
g11 components of the metric tensor must tend at infinity to
1, g00 → 1, g11 → 1. Moreover, the curvature tensor must
also vanish at infinity, and all the components of the
energy-momentum tensor must decay rapidly.
Third, we require that the total matter energy density per

unit length of the string is finite, so thatZ
T0
0

ffiffiffiffiffiffiffiffi
−3g

q
d3x ¼

Z
T0
0e

ðK−UÞWdrdθdz < ∞: ð39Þ

In flat-space field theory, this condition is used as a
criterion for the field energy to be localized around the
symmetry axis. One should point out that even the vacuum
cylindrically symmetric solution of the Einstein gravita-
tional field equations in general has no regular asymptotic

[82]. From a physical point of view, this can be explained
by the infinite total mass of the infinitely long cylinder
representing the string. The flat space-time metric, having a
conical singularity on the axis [45], is the only vacuum
solution with a regular asymptotic [82]. Static, linear,
massless scalar fields, minimally coupled to gravity, also
cannot provide a regular asymptotic, with the mass integral
(39) diverging at infinity. Another class of stringlike are
solutions that do not satisfy the asymptotic conditions are
those obtained when the energy-momentum tensor behaves
like a cosmological constant. Hence, these solutions have
asymptotics of cosmological nature. A few example of such
models are those corresponding to closed models, like the
Melvin magnetic universe, or those with de Sitter or anti–de
Sitter behavior at infinity [82].

III. GENERAL SOLUTION
OF THE FIELD EQUATIONS

In the present section, we will consider the general
solution of the field equations for a cosmic string in hybrid
metric-Palatini gravity. It turns out that the system of
gravitational equations describing a cosmic string can be
solved analytically, with the solution represented in an
exact (closed) form, with all the geometric and physical
quantities expressed in a parametric form, with the scalar
field ϕ taken as a parameter. As an application of the
obtained solution, in the next section, we will investigate
the behavior of cosmic strings for several choices of the
scalar field potential, including the cases of the constant
potential, of the exponential potential, and of the Higgs-
type potential, respectively.
By taking into account Eq. (32), the field equations (30)

and (33) reduce to the form

ð1þ ϕÞW
00

W
¼ −

W0

W
ϕ0 − κ2σ: ð40Þ

Equation (32) is independent of W and, from a mathemati-
cal point of view, it represents a second order nonlinear
differential equation. In order to solve it, we first rescale the
radial coordinate r according to the transformation r ¼ βξ,
where β is an arbitrary length scale to be fixed from
physical considerations. Hence, Eq. (32) takes the form

d2ϕ
dξ2

−
3

4ϕ

�
dϕ
dξ

�
2

þ 1

2
β2VðϕÞ ¼ 0: ð41Þ

In order to solve Eq. (41), we introduce the transformations

dϕ
dξ

¼ u;
d2ϕ
dξ2

¼ du
dξ

¼ du
dϕ

dϕ
dξ

¼ u
du
dϕ

¼ 1

2

d
dϕ

u2 ð42Þ

and

u2 ¼ v; ð43Þ
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respectively. Then Eq. (41) becomes a first order linear
differential equation of the form

dv
dϕ

−
3

2ϕ
vþ β2VðϕÞ ¼ 0; ð44Þ

with the general solution given by

vðϕÞ ¼ ϕ3=2

�
C − β2

Z
ϕ−3=2VðϕÞdϕ

�
; ð45Þ

where C is an arbitrary constant of integration. We
immediately obtain

uðϕÞ ¼ ϕ3=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
C − β2

Z
ϕ−3=2VðϕÞdϕ

�s
ð46Þ

and

ξþ C0 ¼
Z

ϕ−3=4dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½C − β2

R
ϕ−3=2VðϕÞdϕ�

q ; ð47Þ

respectively, where C0 is an arbitrary constant of
integration.
Equation (31) can be successively transformed as

1

W
dW
dξ

dϕ
dξ

¼ −
3

4ϕ

�
dϕ
dξ

�
2

−
β2

2
VðϕÞ ð48Þ

and

1

W
dW
dϕ

¼ −
3

4ϕ
−
β2

2

ϕ−3=2VðϕÞ
½C − β2

R
ϕ−3=2VðϕÞdϕ�

¼ −
3

4ϕ
þ 1

2

d
dϕ

ln

�
C − β2

Z
ϕ−3=2VðϕÞdϕ

�
;

ð49Þ

yielding

WðϕÞ ¼ W0ϕ
−3=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C − β2

Z
ϕ−3=2VðϕÞdϕ

s
; ð50Þ

where W0 is an arbitrary constant of integration.
As a last step, we need to obtain the expression of σ.

Using Eq. (31), then Eq. (40) can be rewritten as

ð1þ ϕÞ 1

W
d2W
dξ2

¼ 3

4ϕ

�
dϕ
dξ

�
2

þ 1

2
β2VðϕÞ − β2κ2σ: ð51Þ

Taking into account the mathematical identities,

dW
dξ

¼ dW
dϕ

dϕ
dξ

¼ dW
dϕ

u; ð52Þ

d2W
dξ2

¼ d2W
dϕ2

vþ 1

2

dW
dϕ

dv
dϕ

; ð53Þ

respectively, Eq. (51) takes the form

ð1þ ϕÞ
�
1

W
d2W
dϕ2

vþ 1

2

1

W
dW
dϕ

dv
dϕ

�

¼ 3

4ϕ
vþ 1

2
β2VðϕÞ − β2κ2σ: ð54Þ

Finally, after some simple calculations, we obtain

κ2σðϕÞ ¼ 1

4ϕ

��
2ϕðϕþ 1ÞV 0ðϕÞ þ 3

ffiffiffiffi
ϕ

p Z
VðϕÞ
ϕ3=2 dϕ

−2ð2ϕþ 3ÞVðϕÞ
�
− 3ðC=β2Þ

ffiffiffiffi
ϕ

p �
: ð55Þ

Equation (47), (50), and (55) give the complete solution
of the field equations describing the geometry of a cosmic
string in hybrid metric-Palatini gravity. The solution is
obtained in a parametric form, with ϕ taken as a parameter.
It also contains three arbitrary integration constants C0, C,
and W0, respectively, which must be obtained from the
initial or boundary conditions imposed on the cosmic string
configuration.
As for the mass of the string, in the dimensionless

variable ξ, it can be obtained as

mðξsÞ ¼ 2πβ

Z
ξs

0

σðξÞWðξÞdξ; ð56Þ

where ξs ¼ Rs=β. We will also often consider the condition
r → ∞, or, equivalently, ξ → ∞ in the metric given by
Eq. (29), which means that along the radial coordinate an
infinite (very large) distance is to be covered.

IV. SPECIFIC COSMIC STRINGLIKE SOLUTIONS

In the present section, we consider specific applications
of the general solution of the field equations for a cosmic
string in hybrid metric-Palatini gravity, outlined in the
previous section. We will investigate the behavior of
cosmic strings for several choices of the scalar field
potential, including the cases of the constant potential,
of the exponential potential, and of the Higgs-type poten-
tial, respectively.

A. Constant scalar field potential: V =V0

As a first example of a cosmic string model in the hybrid
metric-Palatini modified theory of gravity, we will assume
that the potential of the scalar field is a constant,
VðϕÞ ¼ V0 ¼ constant.
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1. The particular case V = 0

In the particular case V ¼ 0, the field equations describ-
ing the cosmic string configuration can be solved exactly.
From Eq. (47), we immediately obtain

ϕðξÞ ¼ Cðξ − 4C0Þ4: ð57Þ

The initial conditions ϕð0Þ ¼ ϕ0 and ϕ0ð0Þ ¼ ϕ0
0 fix the

constants C0 and C as

C0 ¼ −
ϕ0

ϕ0
0

; C ¼ ϕ04
0

256ϕ3
0

: ð58Þ

For W, we find

W2ðξÞ ¼ w2
0

ðξ − 4C0Þ6
: ð59Þ

Hence, from the above expression, it follows that W2ðξÞ
does not satisfy the condition Wð0Þ ¼ 0. On the r ¼ 0

circular line, the circular radius W2 takes the finite value,

W2ð0Þ ¼ W2
0 ¼

w2
0

4096C6
0

¼ w2
0ϕ

06
0

4096ϕ6
0

;

a condition that fixes the integration constant w2
0 as

w2
0 ¼ 4096W2

0ϕ
6
0=ϕ

06
0 . As for the energy density σ of the

string, it is given by

κ2σðξÞ ¼ −
12

ðξ − 4C0Þ2
: ð60Þ

Both the metric and the energy density are singular at
ξ ¼ 4C0. However, if C0 ¼ −ϕ0=ϕ0

0 < 0, implying that
both ϕ0 and ϕ0

0 are positive, there is no infinite-type
singularity in the metric or energy density. The circular
radius W2ðξÞ, the energy density σ, and the scalar field are
monotonically increasing functions of ξ, with ϕ tending to
infinity for ξ → ∞.
As for the mass of the string, it is obtained as

mðξsÞ ¼ 24πβW0

�
1

1024C4
0

−
1

4ðξs − 4C0Þ4
�
; ð61Þ

where ξs is the string radius. If ξs ¼ 4C0, the total mass of
the string is (negative) infinite. On the other hand, for
C0 < 0, the string extends to infinity, but its mass is finite,
taking the value

lim
ξs→∞

mðξsÞ ¼
3πβW0

128C4
0

¼ 3πβW0ϕ
04
0

128ϕ4
0

: ð62Þ

2. The case V =V0 ≠ 0

We will proceed now to the general case of a constant
potential, V ¼ V0 ≠ 0. Moreover, we will choose the
scaling parameter of the radial coordinate r so that
β2V0 ¼ 1, giving β ¼ 1=

ffiffiffiffiffiffi
V0

p
, and ξ ¼ ffiffiffiffiffiffi

V0

p
r. Then the

variation of the scalar field as a function of ξ is obtained
from Eq. (47) as

ξþ C0 ¼
Z

ϕ−3=4dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ 2ϕ−1=2

p ; ð63Þ

giving

Cðξþ C0Þ ¼ 4
ffiffiffiffi
ϕ4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ 2ffiffiffiffi

ϕ
p

s
ð64Þ

and

ϕðξÞ ¼ ½C2ðξþ C0Þ2 − 32�2
256C2

; ð65Þ

respectively. The integration constants C0 and C must be
determined from the initial conditions ϕðξ0Þ ¼ ϕ0 and
ϕ0ðξ0Þ ¼ ϕ0

0, respectively, and they are given by

C0 ¼ � 2ϕ0 − ϕ02
0

ϕ3=2
0

; C ¼ 4ϕ0ϕ
0
0

ϕ02
0 − 2ϕ0

− ξ0: ð66Þ

The variation of the scalar field is represented in Fig. 1.
For large values of the radial coordinate r ¼ ξ=

ffiffiffiffiffiffi
V0

p
, the

scalar field is a monotonically decreasing function of ξ,
and, at large distances from the string, it reaches the value
zero. The variation of ϕ is strongly dependent, from a

FIG. 1. Variation of the scalar field of the cosmic string
configuration in the presence of a constant potential for
ϕð0Þ ¼ ϕ0 ¼ 1, and for different values of ϕ0

0: ϕ
0
0 ¼ 0.012 (solid

curve), ϕ0
0 ¼ 0.056 (dotted curve), ϕ0

0 ¼ 0.084 (short dashed
curve), ϕ0

0 ¼ 0.126 (dashed curve), and ϕ0
0 ¼ 0.148 (long dashed

curve), respectively.
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quantitative point of view, on the initial conditions for the
field on the r ¼ 0 circular line. For large values of ϕ0

0 and
near the circular line, the scalar field is an increasing
function of ξ, and, after reaching a maximal value at a finite
r, ϕ begins to decrease tending toward zero for very large
values of r.
For W, we obtain

WðϕÞ ¼ W0ϕ
−3=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ 2ϕ−1=2

q
; ð67Þ

or

WðξÞ ¼ 64C3W0ðξþ C0Þ
½C2ðξþ C0Þ2 − 32�2 : ð68Þ

For ξ ¼ 0, we have

Wð0Þ ¼ 64C3W0C0

ðC2C2
0 − 32Þ2 :

The condition Wð0Þ ¼ 0 would require to take C0 ¼ 0,
which imposes the relation 2ϕ0 ¼ ϕ02

0 between the initial
values of the field and of its derivative on the string r ¼ 0
circular line. But if this relation is satisfied, as can be seen
immediately from the second of the Eqs. (66), the constant
C is undefined, and diverges for ξ ¼ 0. Therefore,W2ðξÞ is
not defined for r ¼ 0. The variation of W2ðξÞ is repre-
sented, for ϕð10−7Þ ¼ 1, Wð10−7Þ ¼ 10−3, and for differ-
ent values of ϕ0

0, in Fig. 2.
The circular radiusW2ðξÞ is divergent for C2ðξþ C0Þ2−

32 ¼ 0, which gives for the value of the singular point ξ∞
the expression

ξ∞ ¼ ðϕ02
0 − 2ϕ0Þ

�
4

ffiffiffi
2

p

4ϕ0ϕ
0
0 − ξ0ðϕ02

0 − 2ϕ0Þ
� 1

ϕ3=2
0

�
: ð69Þ

The position of the singular point is essentially deter-
mined by the initial values of the scalar field and of its
derivative near the r ¼ 0 circular line. At the metric
singularity, the scalar field vanishes, as one can see
immediately from Eq. (65). However, a different physical
behavior is also possible, if near the origin the integration
constants C0 and C satisfy the condition C2C2

0 ≫ 32, or,
equivalently, ϕ0

0 ≫ 2ϕ0. In this case, W2ðξÞ can be
approximated as

W2ðξÞ ≈ 4096W2
0

C2ðξþ C0Þ6
: ð70Þ

For ξ → ∞, W2ðξÞ → 0, and there are no infinity-type
singularities in the metric. However, a zero-type singularity
in the metric cannot be avoided even for this choice of the
initial conditions.
As for σ, we easily find the expression

κ2σðϕÞ ¼ V0

�
−

3C
4

ffiffiffiffi
ϕ

p −
ðϕþ 3Þ

ϕ

�
; ð71Þ

or

κ2σðξÞ ¼ V0

½C2ðξþC0Þ2 − 32�2 fC
2fðξþC0Þ2

× ½−ðC2ððξþC0Þ2 þ 12Þ− 64Þ�− 384g− 1024g:
ð72Þ

The variation of σðξÞ is represented, for ϕð0Þ ¼ 1 and
different values of ϕ0ð0Þ in Fig. 3.

FIG. 2. Variation of W2ðξÞ for the cosmic string configuration
in the presence of a constant potential for ϕð10−7Þ ¼ 1,
Wð10−7Þ ¼ 10−3, and for different values of ϕ0

0: ϕ0
0 ¼ 0.010

(solid curve), ϕ0
0 ¼ 0.012 (dotted curve), ϕ0

0 ¼ 0.014 (short
dashed curve), ϕ0

0 ¼ 0.016 (dashed curve), and ϕ0
0 ¼ 0.018 (long

dashed curve), respectively.

FIG. 3. Variation of the energy density κ2σðξÞ of the cosmic
string configuration in the presence of a constant potential for
ϕð0Þ ¼ 1, and for different values of ϕ0

0: ϕ0
0 ¼ 1.272 (solid

curve), ϕ0
0 ¼ 1.258 (dotted curve), ϕ0

0 ¼ 1.244 (short dashed
curve), ϕ0

0 ¼ 1.230 (dashed curve), and ϕ0
0 ¼ 1.216 (long dashed

curve), respectively.
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In order to have positive values of σ, the integration
constant C must be negative, C < 0, a condition that
imposes some strong constraints on the initial values of
the scalar field, and its derivative. The energy density of the

string is a monotonically decreasing function of ξ, and, at
least for the present choice of the initial conditions, it does
not have any singularities.
For the total mass of the string, we obtain the expression

mðξsÞ ¼
64π

κ2
βV0CW0

�
−
C2
0ðC2

0 þ 24ÞC4 − 64ðC2
0 þ 8ÞC2 þ 1024

ðC2
0C

2 − 32Þ3

þ C4ðC0 þ ξsÞ2½ðC0 þ ξsÞ2 þ 24� − 64C2½ðC0 þ ξsÞ2 þ 8� þ 1024

½C2ðC0 þ ξsÞ2 − 32�3
�
: ð73Þ

The mass is divergent for C2
0C

2 ¼ 32 and for
C2ðC0 þ ξsÞ2 → 32. If the string radius tends to infinity,
the mass of the string is finite, and it is given by

lim
ξs→∞

mðξsÞ ¼
64πβCW0

ð32 − C2
0C

2Þ3
× ½C2

0ðC2
0 þ 24ÞC4 − 64ðC2

0 þ 8ÞC2 þ 1024�;
ð74Þ

where we have assumed that C2
0C

2 < 32.

B. Power-law potential: VðϕÞ=V0ϕ3=4

The gravitational field equations describing a cosmic
string in hybrid metric-Palatini gravity also admit another
exact solution, corresponding to the power-law-type
scalar field potential VðϕÞ ¼ V0ϕ

3=4. We rescale the radial
coordinate r by imposing the condition β2V0 ¼ 1, which
gives r ¼ ξ=

ffiffiffiffiffiffi
V0

p
. With these choices from Eq. (47), we

obtain explicitly the scalar field as a function of ξ, given by

ϕðξÞ ¼ ðξ2ϕ3=4
0 � 2ξϕ0

0 � 8ϕ0Þ4
4096ϕ3

0

; ð75Þ

where we have used the usual initial conditions ϕð0Þ ¼ ϕ0

and ϕ0ð0Þ ¼ ϕ0
0, respectively. For the circular radiusW, we

obtain

WðξÞ ¼ W0

ðξ2ϕ3=4
0 � 2ξϕ0

0 � 8ϕ0Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ξ� 2ϕ0

0=ϕ
3=4
0

q ; ð76Þ

whereW0 is an arbitrary constant of integration. For ξ ¼ 0,
we obtain W2ð0Þ ¼ �W2

0=524288ϕ
21=4
0 ϕ0

0. Since W
2 must

be positive for all ξ ≥ 0, it follows that the physical solution
for the string configuration is the one with the positive sign.
Hence, in the case of the VðϕÞ ¼ V0ϕ

3=4 potential, the
solutions of the field equations describing a cosmic string
in hybrid metric-Palatini gravity are

ϕðξÞ ¼ ðξ2ϕ3=4
0 þ 2ξϕ0

0 þ 8ϕ0Þ4
4096ϕ3

0

;

W2ðξÞ ¼ W2
0

ðξ2ϕ3=4
0 þ 2ξϕ0

0 þ 8ϕ0Þ6ð2ξþ 2ϕ0
0=ϕ

3=4
0 Þ

;

respectively, withW2
0 ¼ 524288W2ð0Þϕ21=4

0 ϕ0
0, a condition

that implies ϕ0 > 0 and ϕ0
0 > 0. For the string tension, we

obtain the expressions

κ2σðϕÞ ¼ V0

−6C − 5ðϕ − 3Þ ffiffiffiffi
ϕ4

p
8

ffiffiffiffi
ϕ

p ð77Þ

and

κ2σðξÞ ¼ V0ϕ
3=4
0

ðξ2ϕ3=4
0 þ 2ξϕ0

0 þ 8ϕ0Þ2
�
−48Cϕ3=4

0

− 5ðξ2ϕ3=4
0 þ 2ξϕ0

0 þ 8ϕ0Þ

×

�ðξ2ϕ3=4
0 þ 2ξϕ0

0 þ 8ϕ0Þ4
4096ϕ3

0

− 3

��
; ð78Þ

respectively.
In this case, the scalar field is a monotonically increasing

function of the distance ξ from the string and tends to
infinity for ξ → ∞. On the other hand, W2ðξÞ decreases
monotonically from a finite value at ξ ¼ 0 to zero at
infinity. For ξ ¼ 0, the string tension takes the finite value

σð0Þ ¼ V0½−48Cϕ3=4
0 − 40ðϕ0 − 3Þϕ0�
64ϕ5=4

0

;

while limξ→∞ σðξÞ ¼ −∞, indicating that σ is a monoton-
ically decreasing function of ξ. In the first order of
approximation, we obtain for the mass of the string of
radius ξs the expression
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mðξsÞ¼
πβW0ξs

8192ϕ33=8
0 ϕ03=2

0

×f6Cξsϕ7=4
0 þ15ξsϕ

02
0 ðC−2

ffiffiffiffiffi
ϕ0

4
p

Þ−4ϕ0ϕ
0
0

× ½6Cþ5ðϕ0−3Þ
ffiffiffiffiffi
ϕ0

4
p

�þ5ξsðϕ0−3Þϕ2
0g: ð79Þ

In this approximation, the mass is monotonically increasing
with the string radius.

C. Exponential potential: VðϕÞ=V0e− λϕ
As a second example of a string-type configuration,

we will consider the configuration generated by an expo-
nential-type potential, with VðϕÞ ¼ V0e−λϕ, where V0 and
λ > 0 are constants. The solutions of the gravitational field
equations for different scalar field models with exponential
potentials have been intensively investigated in the recent
physical literature, including the cases of both homo-
geneous and inhomogeneous scalar fields [83–90]. In
four-dimensional effective Kaluza-Klein or string-type
theories, an exponential potential is generated from the
compactification of the higher dimensions [91]. Due to the
curvature of the internal spaces or to the interaction
with form fields on the internal spaces, the moduli fields
may acquire exponential-type potentials. Nonperturbative
effects such as gaugino condensation can also lead to
exponential-type potentials for scalar fields [92].
In the case of the exponential potential, Eq. (47) giving

the scalar field-radial coordinate dependence becomes

ξþC0¼
Z

ϕ−3=4dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ2

ffiffiffi
π

p
β2V0

ffiffiffi
λ

p
erfð ffiffiffiffiffiffi

λϕ
p Þþ2β2V0e−λϕ=

ffiffiffiffi
ϕ

pq ;

ð80Þ

where erfðxÞ is the error function and cannot be represented
in a closed form; therefore, we will use a numerical
approach to solve the field equations. We rescale first
the scalar field so that ϕ ¼ Φ=λ, and we choose the scaling
parameter β of the radial coordinate as β ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2=V0λ
p

. Then
Eq. (41), which gives the variation of the scalar field, takes
the form

d2Φ
dξ2

−
3

4Φ

�
dΦ
dξ

�
2

þ e−Φ ¼ 0: ð81Þ

The variation of W2 can be obtained from the equation

1

W
dW
dξ

dΦ
dξ

¼ −
3

4Φ

�
dΦ
dξ

�
2

− e−Φ: ð82Þ

The behavior of the scalar field with exponential-type
potential is represented in Fig. 4. For the sake of com-
parison, we have chosen the same initial values for the

field Φ and for its derivative as in the case of the constant
potential.
The variation of W2ðξÞ is represented in Fig. 5. For the

adopted set of initial values, the behavior of the scalar field
and of the metric is very similar to the constant potential
case. The scalar field is a monotonically decreasing
function of ξ, and it reaches the value zero at a greater
distance from the string r ¼ 0 circular line than in the case
of the constant potential. The behavior of the field is
strongly dependent on the initial conditions. The circular
radius W2ðξÞ is a monotonically increasing function of ξ,
and it is defined properly for r ¼ 0. However, it becomes
singular at a finite distance from the circular line of the

FIG. 4. Variation of the scalar field of the cosmic string
configuration in the presence of an exponential potential VðΦÞ ¼
e−Φ for Φð0Þ ¼ Φ0 ¼ 1, and for different values of Φ0

0: Φ0
0 ¼

0.012 (solid curve), Φ0
0 ¼ 0.056 (dotted curve), Φ0

0 ¼ 0.084
(short dashed curve), Φ0

0 ¼ 0.126 (dashed curve), and Φ0
0 ¼

0.148 (long dashed curve), respectively.

FIG. 5. Variation of W2ðξÞ for the cosmic string configuration
in the presence of an exponential potential VðΦÞ ¼ e−Φ for
Φð0Þ ¼ 1, Wð0Þ ¼ 10−3, and for different values of Φ0

0: Φ0
0 ¼

0.010 (solid curve), Φ0
0 ¼ 0.012 (dotted curve), Φ0

0 ¼ 0.014
(short dashed curve), Φ0

0 ¼ 0.016 (dashed curve), and Φ0
0 ¼

0.018 (long dashed curve), respectively.
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string-type object, tending to infinity at a finite ξ. For
distances in the range ξ ∈ ð0; 1Þ, or r ∈ ð0; ffiffiffiffiffiffiffiffiffiffiffiffiffi

2=λV0

p Þ,
W2ðξÞ is practically a constant, and its behavior is basically
independent on the initial conditions of the scalar field. For
the exponential potential the energy density of the string
can be obtained generally as a function of the scalar field in
the form

β2σðϕÞ ¼ −
3

4
ffiffiffiffi
ϕ

p ½Cþ 2
ffiffiffi
π

p
β2

ffiffiffi
λ

p
V0erfð

ffiffiffiffiffiffi
ϕλ

p
Þ�

−
2β2V0e−λϕ

4ϕ
½ϕðλϕþ λþ 2Þ þ 6�: ð83Þ

However, since the numerical solutions for ϕðξÞ and
WðξÞ are known, it is more convenient to obtain σðξÞ from
the equation

β2κ2σðxÞ ¼ −
1þ ϕ

W

�
d2W
dξ2

þ 1

1þ ϕ

dW
dξ

dϕ
dξ

�
: ð84Þ

The variation of σ as a function of ξ is represented in
Fig. 6. In order to obtain positive energy densities, the
initial values of Φ0

0 must be negative. There is a significant
difference between the behavior of the energy density σ as
compared to the constant potential case. The energy density
initially decreases for increasing values of the radial
coordinate, but for ξ > ξcr, the energy density begins to
increase, and tends to infinity. Thus, the stringlike object
experiences a singularity at large distances from its circular
line r ¼ 0.
In the first order of approximation, and after rescaling the

variable ϕ, the integrand in Eq. (80) can be approximated as

Φ−3=4dΦffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ 2

ffiffiffi
π

p
erfð ffiffiffiffi

Φ
p Þ þ 2e−Φ=

ffiffiffiffi
Φ

pq

≈
ffiffiffiffiffiffiffi
2Φ

p
−

CΦ
4

ffiffiffi
2

p þ ð3C2 − 16ÞΦ3=2

48
ffiffiffi
2

p

þ Cð48 − 5C2ÞΦ2

256
ffiffiffi
2

p þOðΦ9=4Þ; ð85Þ

giving

ξþ C0 ≈ λ−1=4
� ffiffiffiffiffiffiffi

2Φ
p

−
CΦ
4

ffiffiffi
2

p þ ð3C2 − 16ÞΦ3=2

48
ffiffiffi
2

p

þ Cð48 − 5C2ÞΦ2

256
ffiffiffi
2

p þOðΦ9=4Þ
�
: ð86Þ

However, this equation is not particularly useful in the
study of the behavior of the string models with exponential
potential. On the other hand, at infinity, we obtain

Φ−3=4dΦffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ 2

ffiffiffi
π

p
erfð ffiffiffiffi

Φ
p Þ þ 2e−Φ=

ffiffiffiffi
Φ

pq ≈
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cþ 2
ffiffiffi
π

pp
Φ3=4

;

ð87Þ

which provides

ξþ C0 ≈ λ−1=4
4

ffiffiffiffi
Φ4

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ 2

ffiffiffi
π

pp ð88Þ

and

ΦðξÞ ≈ λ

256
ðCþ 2

ffiffiffi
π

p Þ2ðC0 þ ξÞ4; ð89Þ

respectively.
Within the framework of this approximation, the circular

radius W is given by the differential equation

1

W
dW
dξ

¼ −
64e−

1
256

ðCþ2
ffiffi
π

p Þ2λðC0þξÞ4

ðCþ 2
ffiffiffi
π

p Þ2λðC0 þ ξÞ3 −
3

C0 þ ξ
; ð90Þ

with the general solution given by

WðξÞ ¼ 1

ðC0 þ ξÞ3 exp
�
2

�
16e−

1
256

ðCþ2
ffiffi
π

p Þ2λðC0þξÞ4

ðC0 þ ξÞ2ðCþ 2
ffiffiffi
π

p Þ2λ

þ
ffiffiffi
π

p

ðCþ 2
ffiffiffi
π

p Þ ffiffiffi
λ

p

× erf

�
1

16
ðCþ 2

ffiffiffi
π

p Þ
ffiffiffi
λ

p
ðC0 þ ξÞ2

���
: ð91Þ

Even in this approximation the full analysis of the
behavior of the cosmic string configuration in hybrid

FIG. 6. Variation of the energy density κ2σðξÞ of the cosmic
string configuration in the presence of an exponential potential
VðΦÞ ¼ e−Φ for Φð0Þ ¼ 1, and for different values of Φ0

0: Φ0
0 ¼

−0.20 (solid curve), Φ0
0 ¼ −0.30 (dotted curve), ϕ0

0 ¼ −0.40
(short dashed curve), Φ0

0 ¼ −0.50 (dashed curve), and Φ0
0 ¼

−0.60 (long dashed curve), respectively.
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metric-Palatini gravity in the presence of an exponential-
type potential can only be done using numerical methods.

D. Higgs-type potential

Next, we consider the case when the scalar field potential
is of the Higgs type, given by

VðϕÞ ¼ � μ̄2

2
ϕ2 þ ν

4
ϕ4; ð92Þ

where μ̄2 and ν are constants. In the following, we will
investigate only the case with μ̄2 < 0, that is, we will adopt
the minus sign in the definition of the potential. By
following the standard approach in elementary particle
physics, we assume that the constant μ̄2 is related to the
mass of the scalar field particle asm2

ϕ ¼ 2ξv2 ¼ 2μ̄2, where
v2 ¼ μ̄2=ξ gives the minimum value of the potential.
The Higgs self-coupling constant ν can be obtained, in
the case of strong interactions, from the determination
of the mass of the Higgs boson in laboratory experiments,
and its numerical value is of the order of ν ≈ 1=8 [93].
By rescaling the radial coordinate and the scalar field
according to

r ¼
ffiffiffi
2

p
μ̄ξ; ϕ ¼ Φ

ðνμ̄Þ1=3 ; ð93Þ

then Eq. (47) provides the profile of the scalar field in the
following form:

d2Φ
dξ2

−
3

4ϕ

�
dΦ
dξ

�
2

−Φ2 þΦ4 ¼ 0: ð94Þ

The general solution of this equation is given in a closed
form by

ξþ C0 ¼
Z

1

Φ3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ 2

21
ð7 − 3Φ2ÞΦ3=2

q dΦ: ð95Þ

However, this solution cannot be expressed in an analytical
form in terms of known functions. In the first order
approximation, we obtain

ξþ C0 ≈
4

ffiffiffiffi
Φ4

pffiffiffiffi
C

p −
4Φ7=4

21C3=2 þOðΦ9=4Þ; ð96Þ

but this representation is not particularly useful from the
point of view of concrete calculations.
The variation of the scalar field with Higgs potential

supporting a string configuration in hybrid metric-Palatini
gravity is represented in Fig. 7. There is a significant
qualitative difference between this string model and the
constant, simple power-law, or exponential potentials. Note
that the scalar field for the Higgs-type potential shows a

basically periodic structure, changing between successive
maxima and minima. There are singularities in the field. Its
behavior is strongly affected by the initial conditions on the
circular line, and the field extends to infinity.
The variation of W2ðξÞ in the presence of a Higgs

potential is represented in Fig. 8. The same oscillatory
pattern can also be observed in the case of the circular
radius W2. However, there is a difference in the phase of
these to quantities. When the field reaches its maximum at
ξ ≈ 1, the metric tends to zero, W2ð1Þ ≈ 0. Then, while the
scalar field decreases, W2ðξÞ increases, reaching its maxi-
mum at the minimum of the field, corresponding to ξ ≈ 2.
This pattern is repeated up to infinity. On the other hand,
as one sees Fig. 8, the actual physical solution may be

FIG. 7. Variation of the scalar field for the cosmic string
configuration in the presence of a Higgs-type potential VðΦÞ ¼
−Φ2 þΦ4 for Φð0Þ ¼ Φ0 ¼ 1, and for different values of Φ0

0:
Φ0

0 ¼ 0.034 (solid curve), Φ0
0 ¼ 0.056 (dotted curve), Φ0

0 ¼
0.084 (short dashed curve), Φ0

0 ¼ 0.126 (dashed curve), and
Φ0

0 ¼ 0.148 (long dashed curve), respectively.

FIG. 8. Variation of W2ðξÞ for the cosmic string configuration
in the presence of a Higgs-type potential VðΦÞ ¼ −Φ2 þΦ4 for
Φð0Þ ¼ 1, Wð0Þ ¼ 10−3, and for different values of Φ0

0: Φ0
0 ¼

0.034 (solid curve), Φ0
0 ¼ 0.056 (dotted curve), Φ0

0 ¼ 0.084
(short dashed curve), Φ0

0 ¼ 0.126 (dashed curve), and Φ0
0 ¼

0.148 (long dashed curve), respectively.
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considered as being defined between two adjacent zeros of
WðξÞ, which are centers on the ðξ; θÞ surface. Hence, the
obtained string configuration may represent a closed world
in these two directions.
The variation of the string tensionwith respect to the radial

coordinate in the presence of the Higgs potential is depicted
in Fig. 9. The variation of σ is in phase with that of the scalar
field, and both quantities reach their maxima and minima at
the same position. The string tension also has an oscillatory
behavior, which is a general property of all physical and
geometrical parameters of the string configurations sup-
ported by scalar fields with a Higgs-type potential.

V. DISCUSSIONS AND FINAL REMARKS

In the present paper, we have investigated string-type
solutions in hybrid metric-Palatini gravity, which is an
extension of general relativity that combines the metric and
Palatini formalisms. From a theoretical point of view, the
main advantage of the hybrid metric-Palatini theory is that
it is a viable theory of gravity that includes elements of both
formalisms. A main success of the theory is the possibility
of generating long-range forces that pass the classical local
tests at the Solar System level of gravity. Another important
advantage of the theory is that it admits an equivalent
scalar-tensor representation, which greatly simplifies the
analysis of the field equations, and the construction of their
solutions. In this work, we have explored local gauge string
solutions with a phenomenological energy-momentum
tensor, as prescribed in [45].
In our present investigation of the cosmic string-type

solutions in the context of the hybrid metric-Palatini
gravitational theory we have adopted, after several sim-
plifications, the metric (29), of the form similar to the
metric (4), with W2ðrÞ ¼ ½1 − μðrÞ=2π�2r2. By adopting

the scalar-tensor representation, the gravitational field
equations can be formulated in terms of the circular radius
W, the scalar field, and its derivatives, and the string
tension, respectively. The model also contains as an
essential ingredient the scalar field potential V.
Generally, for the case of an arbitrary potential, the general
solution of the field equations can be obtained in a closed
form. For at least three particular choices of the scalar field
potential, the solution of the field equations can be
expressed in an exact (and simple) analytic form. It is
important to point out that for all considered solutions
W2ð0Þ ≠ 0, and therefore one cannot define an axis for
these solutions [79]. That is why they do not represent
proper string solutions of the gravitational field equations,
and their properties show significant differences with
respect to the standard string solutions of the other geo-
metric gravitational field theories.
For some types of potentials, the string solutions in the

hybrid theory have some important distinctive features as
compared to the other string models. First of all, the
behavior of the solutions is strongly dependent on the
initial conditions of the scalar field and of its derivative for
r ¼ 0. These initial conditions are rather arbitrary, since a
large number of such field configurations can be con-
structed. Depending on the initial conditions for the field,
we obtain two distinct classes of solutions. The first class
consists of the solutions that become singular for a finite
value of the rescaled radial coordinate ξ. For example, in
the string solution with V ¼ 0, if ϕ0 > 0 and ϕ0

0 < 0, then
C0 ¼ ϕ0=ϕ0

0 > 0, and the metric and the string tension are
becoming singular (infinite) at ξ∞ ¼ 4ϕ0ϕ

0
0. In this case,

the scalar field vanishes for ξ∞. A completely different
situation arises if both ϕ0 and ϕ0

0 are positive. In this case,
both the string tension and the metric tend to zero at
infinity, with the scalar field becoming singular for ξ → ∞.
The exact solution of the field equations corresponding

to the V ¼ V0ϕ
3=4 corresponds to the second class. The

requirement of the positivity of the metric tensor compo-
nents for r ¼ 0 imposes the condition that the metric tensor
components and the string tension are decreasing functions
of the radial coordinate r, since both ϕ0 and ϕ0

0 must be
positive. As a consequence, it is the scalar field that
diverges at infinity. However, in these cases, one could
also define a string radius by introducing an effective cutoff
length ξco for the metric and scalar field, which would allow
to construct finite string configurations, with finite values
of the scalar field, string tension, and metric tensor
components. But, in this case, the definition of ξco is either
arbitrary, or based on some empirical considerations, such
as the consistency with observational data.
In the case of the exponential and Higgs-type scalar field

potentials, one can use the condition of the vanishing of the
string tension σðrÞ to define a radius of the string. This can
be done only numerically, and the numerical value of the
string radius is strongly dependent on the initial conditions

FIG. 9. Variation of the string tension κ2σðξÞ of the cosmic
string configuration in the presence of a Higgs-type potential
VðΦÞ ¼ −Φ2 þΦ4 for Φð0Þ ¼ 1, Wð0Þ ¼ 10−3, and for differ-
ent values of Φ0

0: Φ0
0 ¼ 0.034 (solid curve), Φ0

0 ¼ 0.056 (dotted
curve), Φ0

0 ¼ 0.084 (short dashed curve), Φ0
0 ¼ 0.126 (dashed

curve), and Φ0
0 ¼ 0.148 (long dashed curve), respectively.
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of the scalar field and its derivative at r ¼ 0. For example,
in the case of the exponential potential, the string tension
vanishes at ξcr ≈ 0.6, which would allow to define a string
radius Rs of the order of magnitude Rs ≈ 0.6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=V0λ

p
ξcr.

Generally, the exponential potential σ reaches its zero/
minimum value for finite values of the scalar field potential,
and of the metric tensor components, and hence the
condition σ ≈ 0 may define the string radius for this type
of scalar field potential.
The case of the Higgs potential is quite interesting. The

string tension does not vanish for any value of the radial
coordinate, and it reaches its minimum value for ξ ≈ 3.5.
For this value of ξ, the scalar field is at its minimum, while
the circular radius W2ðξÞ is singular, and tends to zero.
Alternatively, one could define the string radius as corre-
sponding to the first zero of the metric tensor component
W2ðξÞ (ξ ≈ 1), with the scalar field and the string tension
reaching their first maxima. One can also introduce a cutoff
radius for these potentials, with its value being determined
from the confrontation of the theoretical predictions with
observations. For example, one can construct a string
configuration by introducing a cutoff radius of W@ðξÞ
before reaching the singularity. In the case of the Higgs
potential, we may choose ξs ≈ 0.90, and then we match the
solution either with the cosmological background, or with
another (standard general relativistic) string solution. In this
way, we obtain a well-behaved stringlike structure in the
interval ξ ∈ ½0; ξs�. Another possibility is to consider as the
physical string solution the interval ξ0 ≤ ξ ≤ ξ1, where ξ0
and ξ1 are the two zeros ofW2ðξÞ. In this configuration, the
string has two singular points at its extremities.
In Sec. II F, we have presented, following [82], the

standard regularity and asymptotic conditions required for
stringlike solutions of the gravitational field equations.
They are regular on the string axis, regular at infinity, and
possess a finite mass per unit length. Generally, all our
solutions satisfy the regularity condition on the circular
line, with the circular radius W2 taking finite values for
ξ ¼ 0. W2ð0Þ is determined by the initial conditions
satisfied by the scalar field. On the other hand, very few
of our solutions satisfy the asymptotic conditions at
infinity, with either W2ðξÞ, the scalar field ϕ, or total mass
being singular (zero or infinite) at infinity. From a physical
point of view, we explain this result as due to two factors:
(1) in our investigations we have used the scalar-tensor
representation of the hybrid metric-Palatini gravity theory.
As pointed out in [82], string solutions in scalar-tensor field
models do not satisfy the asymptotic conditions, and this
may also be the case for the scalar-tensor-type theory
we have used in our investigations, and (ii) the hybrid
metric-Palatini gravity theory naturally explains the recent
acceleration of the Universe. Therefore, it represents a
viable alternative to the dark energy paradigm and to the
standard ΛCDM cosmological model. Thus, in hybrid
metric-Palatini gravity, an effective cosmological constant

naturally appears. Far from the gravitating sources, in
spherical symmetry, the scalar field behaves as

ϕðrÞ ≈ ϕðvacÞ
0 þ 2GϕðbÞ

0 M
3r

e−mϕr; ð97Þ

with the effective mass mϕ given by

mϕ ¼ 1

3
½2V − V;ϕ − ϕð1þ ϕÞV;ϕϕ�jϕ¼ϕðbÞ

0

;

where ϕðbÞ
0 is the background value of the scalar field. For

the metric perturbations, we obtain [47,54]

hð2Þ00 ¼ 2GeffM
r

þ VðvacÞ
0 r2

6ð1þ ϕðbÞ
0 Þ

; ð98Þ

where VðbÞ
0 ¼ VðϕðbÞ

0 Þ is the background value of the scalar
field potential and Geff is the effective gravitational con-

stant. It is obvious that hð2Þ00 diverges as r → ∞. This implies
that the vacuum at infinity is of the de Sitter type, and that
generally the solutions of the field equations in hybrid
metric-Palatini gravity are not asymptotically flat. Hence,
the divergence at infinity of our solutions is an indicator of
the presence of a vacuum energy (an effective cosmological
constant) at infinity. This also indicates that our string
solutions are of cosmological type.
We would also like to point out that the singular behavior

of the solutions, being of cosmological nature, happens at
the “cosmological infinity,” at distances from the circular
line having the order of magnitude of the Hubble radius.
These distances are much larger than those we may
associate to the “astrophysical infinity.” Hence, we may
assume that in the range of the distances relevant astro-
physically (up to the galaxy cluster level, for example), one
can construct regular string solutions, by introducing a
cutoff radius for the string.
Since the hybrid metric-Palatini gravity theory is intrinsi-

cally cosmological, with the vacuum at infinity being of de
Sitter type, in order to construct physically realistic
solutions a cutoff procedure must be introduced, in order
to avoid any pathological behavior of the geometrical and
physical quantities. If we assume that the cosmic strings
extend indefinitely with the increasing distance from the
central circular line, the resulting spacetime is not asymp-
totically flat, but of de Sitter type. This is due to the
presence of the (effective) cosmological constant in the
Universe. There are two possibilities to estimate the upper
bound for the cutoff of the strings. The first one, we call
cosmological cutoff, is based on the idea to define the string
radius as the distance from the circular line at which the
decreasing density profile of the string becomes smaller
than the average energy density of the Universe. More
specifically, we define the cosmological cutoff radius ξs of
the string as the finite distance from the r ¼ 0 circular line
that satisfies the following two conditions: (i) the scalar
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field takes its background value ϕðξsÞ ¼ ϕ0, and (ii) the
string tension satisfies the condition σðξsÞ ≤ ρuniv, where
ρuniv is the mean energy density of the Universe. The mean
density of the Universe as well as the numerical value of the
effective cosmological constant can be also expressed by
using the density parameters Ω ¼ ρuniv=ρcrit and ΩΛ ¼
Λc2=3H2

0, where H0 is the Hubble constant, and ρcrit ¼
3H2

0=8πG is the critical density of the Universe.
We can obtain a simple qualitative estimate of the

extension of a cosmic string from the following simple
computation. By assuming that the (effective) cosmological
constant has a numerical value of the order of Λ ¼ 3 ×
10−56 cm−2 [94], at a distance from the circular line of the
order of r ¼ 100 kpc, for a supermassive cosmic string
with mass M ¼ 1010 M⊙, the quantities GM=r ¼ 4.94 ×
10−9 and Λr2 ¼ 2.7 × 10−9, appearing in Eq. (98), are
roughly of the same order of magnitude. For radial
distances greater than 100 kpc, the effects of the cosmo-
logical constant become dominant. This example shows
that even in the case of an extremely heavy cosmic string
the infinities of the theory are of astrophysical type, of the
order of hundreds of kiloparsecs, much smaller than the
cosmological infinities of the order of the Hubble radius of
the Universe, which is around 3000 megaparsecs. On the
other hand, for the case of a small mass cosmic string with
M ¼ 10−20 M⊙, the gravitational potential energy and
cosmological expansion energy are of the same order of
magnitude for r ¼ 0.11 kpc only.
As an example of the application of the cosmological

cutoff procedure, we will consider the case of the simplest
string solution, corresponding to V ¼ 0, and given by
Eqs. (57), (59), and (60), respectively. Hence, in order to
define a proper radius of the string, we require that at some
finite radius ξs the scalar field reaches its background value,

ϕðξsÞ ¼ ϕðbÞ
0 , which gives for ξs the expression

ξs ¼ 4C0 þ
�
ϕðbÞ
0

C

�1=4

: ð99Þ

The condition of the equality of the string tension with
the critical density of the Universe, jσðξsÞj ¼ ρcrit ¼
3H2

0=8πG, gives for the integration constant C the expres-

sion C ¼ ðH2
0=32πGÞ2ϕðbÞ

0 , while for W2ðξsÞ we obtain

W2ðξsÞ ¼ w2
0C

3=2ðϕðbÞ
0 Þ−3=2. The metric is not asymptoti-

cally flat, and ξ > ξs the cosmological background domi-
nates the string dynamics.
A second possibility for defining a cutoff radius for the

string is to match the hybrid metric-Palatini gravity string-
like solutions with another, exterior string solution. If at
radii exceeding some radius specific rs, the effects of
the scalar field may become negligibly small, and
hybrid metric-Palatini gravity reduces to standard general
relativity, then the present string solutions may go smoothly
into a general relativistic cylindrically symmetric solution

of the Einstein field equations. For example, by assuming
that in a certain limit, the stringlike metrics obtained in
the present study reduces to the metric (3), we can again
define a finite string radius by imposing the conditions
W2ðξsÞ ¼ ð1 − 8πGμÞβ2ξ2s , and σðξsÞ ¼ μ, where the mass
per unit length of the string must satisfy the condition
μ ¼ constant for all ξ ≥ ξs.
In the case of the zero potential, the matching of the two

metrics gives the string radius as

ξs ¼ 4C0 þ
ffiffiffiffiffi
12

μ

s
; ð100Þ

with μ obtained as a solution of the algebraic equation

w2
0

�
μ

12

�
¼ ð1 − 8πGμÞβ2

�
4C0 þ

ffiffiffiffiffi
12

μ

s �2

: ð101Þ

For the scalar field at the string boundary, we obtain the
expression

ϕðξsÞ ¼
144C
μ2

: ð102Þ

On the other hand, for some scalar field potential types,
one could define the boundary of the string as the point
where the energy density of the string vanishes. But even in
this case one should match the string solution either with
the cosmological background, or with an exterior string
solution.
An important geometrical quantity, the angular deficit

Δθ in the cylindrical symmetry, due to the presence of the
string, is given by [95]

Δθ ¼ 2π½1 − lim
r→∞

W0ðrÞ�: ð103Þ

In the first order of approximation, and for strings with
finite extension, we may replace W0ð∞Þ with W0ðRsÞ in
Eq. (103), where Rs is the string radius, thus obtaining

Δθ ≈ 2π½1 −W0ðRsÞ�: ð104Þ
In variable ξ, the angular deficit can be represented as

Δθ ≈ 2π

�
1 −

1

β
W0ðξsÞ

�
: ð105Þ

Since the variation ofW depends on the initial conditions of
the scalar field on the r ¼ 0 circular line, the stringlike
geometries obtained in the present study allow a very large
range of deficit angles, which significantly impact the
geometry of the spacetime near the string. For the solutions
with limξ→∞ WðξÞ → 0, generally also limξ→∞W0ðξÞ → 0,
like, for example, in the zero potential case with ϕ0 and ϕ0

0

positive. In this case, we obtain Δθ ≈ 2π. In the opposite
limit of limξ→∞W0ðξÞ → ∞, the deficit angle is formally
infinite. We can still define a finite deficit angle by
introducing a cutoff radius Rs that formally defines the
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radius of the string. For the exponential and Higgs
potentials, one can define explicitly the radius of the
stringlike objects, which also allows the explicit estimation
of the deficit angle.
Cosmic strings have a number of very intriguing proper-

ties. For example, as suggested by Witten [96], strings
behave like superconducting wires. Hence, they can inter-
act with external cosmic electromagnetic fields, and as they
move through cosmic magnetic fields they can develop
electric currents. Therefore, short electromagnetic and
highly beamed bursts can be emitted from some peculiar
points (cusps), located on small string segments, where the
velocity approaches the speed of light [97–101]. Hence, the
cusp is a powerful source of electromagnetic radiation that
may produce a jet of accelerated particles that may play an
important role in many astrophysical phenomena, such as
gamma ray bursts and afterglow emissions, respectively. It
would be interesting to consider superconducting strings in
the framework of modified theories of gravity and in
particular in hybrid metric-Palatini gravity. Such a study
would offer some possibilities between discriminating
standard cosmic strings from stringlike structures that
appear in modified theories of gravity.
Another important physical effect that could, at least in

principle, discriminate between standard general relativistic
cosmic strings, cosmic strings in modified gravity, and
other filamentary matter distributions is gravitational lens-
ing. According to the standard general relativistic string
scenario, the curvature of the spacetime is not changed by a
vacuum string. However, the topology of the spacetime is
modified [102]. Hence, photon beams are not bent by a
cosmic string. But if two light rays travel on the different
sides of the string, the presence of the specific conical
structure of the spacetime geometry determines their later
convergence at the same point of observation [103]. Hence,
for a cosmic string located between a terrestrial observer
and a distant cosmological source, the observer will detect
two images of the light emitting source, separated by an
angle δθ ¼ 8μs sin αDLS=DOS, where by μs we have

denoted the linear mass density of the string, α represents
the angle between the observer-source direction and the
string, while DOS and DLS represent the distance between
the observer and the source, and the lens and the source,
respectively. Hence, it follows that for the case of the
standard general relativistic conical string, due to the string
presence, the two images formed are identical to the
original source, without any distortion or amplification
[103]. This effect is very different from the gravitational
lensing by gas filaments, which show a very different image
structure, formed from one or three elongated images [103].
Hence, the lensing properties of the string solutions in
hybrid metric-Palatini gravity obtained in the present study
could help in discriminating between these string solutions
and the corresponding solutions obtained in standard string
theory, or other modified gravity models. The systematic
study of the lensing properties of hybrid metric-Palatini
gravity strings, and their observational implications, will be
considered in a future work.
The in-depth investigation of modified theories of gravity

and of their astrophysical and cosmological implications is a
major field of study in present day theoretical physics.
Despite the fact that from the observational point of view
cosmic strings are still elusive astrophysical and cosmologi-
cal objects, the investigation of their theoretical properties
may lead to a better understanding of the theoretical structure
of modified gravity. In the present paper, we have provided
some basic theoretical tools that would enable the in-depth
investigation of the properties of the cosmic strings in the
hybrid metric-Palatini theory of gravity and of their astro-
physical and cosmological implications.
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