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The use of modern effective field theory techniques has sparked significant developments in many areas
of physics, including the study of gravity. Case in point, such techniques have recently been used to show
that binary black holes can amplify incident, low-frequency radiation due to an interplay between
absorption at the horizons and momentum transfer in the bulk of the spacetime. In this paper, we further
examine the consequences of this superradiant mechanism on the dynamics of an ambient scalar field by
taking the binary’s long-range gravitational potential into account at the nonperturbative level. Doing so
allows us to capture the formation of scalar clouds that are gravitationally bound to the binary. If the scalar
is light enough, the cloud can be sufficiently diffuse (i.e., dilute while having considerable spatial extent)
that it engulfs the binary as a whole. Its subsequent evolution exhibits an immensely rich phenomenology,
which includes exponential growth, beating patterns, and the upscattering of bound states into scalar waves.
While we find that these effects have negligible influence on the binary’s inspiral in the regime wherein our
approximations are valid, they offer new, analytic insight into how binary black holes interact with external
perturbations. They may also provide useful, qualitative intuition for interpreting the results from future
numerical simulations of these complex systems.
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I. INTRODUCTION

The details of how binary black holes evolve and
coalesce are now well established [1–8]. Indeed, our ability
to extract gravitational-wave signals from data gathered by
the LIGO Scientific and Virgo collaborations [9–11] is a
testament to how accurately we understand these systems
according to general relativity. That being said, while we
now have a strong grasp of how binary black holes behave
when isolated in empty space, their dynamical response to
external perturbations is less well understood.
The presence of some matter distribution on top of this

spacetime generically introduces multiple new scales into
the problem, which can lead to a myriad of new effects. As
a first step, recent work in addressing this question has
focused on the ramifications of perturbing a binary black
hole with a Klein-Gordon field.1 While a scalar field is a
natural starting point due to its technical simplicity, it is also

of particular interest on phenomenological grounds, as the
existence of new ultralight fundamental fields is a generic
prediction of string theory [23–27]. Because these hypo-
thetical particles may couple only very weakly to the
Standard Model, prospects for their detection rest on
finding novel and innovative probes. In this regard, the
advent of gravitational-wave astronomy is particularly
opportune [28–31].
On one end of the spectrum, it is now known that

ultralight bosons can rapidly form “clouds” around a
rotating black hole due to a superradiant instability, which
is most pronounced when the field’s Compton wavelength
is comparable to the gravitational radius of the hole
[32–58]. If such a cloud forms around a black hole
belonging to a binary system, multiple studies [59–64]
have shown that this scalar (or vector) cloud can lead to a
large dephasing of the gravitational-wave signal. A key
prediction is that these clouds can undergo resonant
transitions during the early inspiral phase, when the cloud’s
characteristic size λ is much smaller than the binary’s orbital
separation a. For field configurations with even larger spatial
extent, Bernard et al. [65] recently reported the existence of
global quasinormal modes, which were observed in numeri-
cal simulations of a scalar Gaussian pulse of size λ ∼ a
scattering off a binary. Last, working analytically in the long-
wavelength limit (λ ≫ a), we recently demonstrated that
binary black holes can amplify incident, low-frequency
radiation under certain conditions [66].
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1In a related context, a significant amount of work has already
been undertaken to quantify the astrophysical systematics intro-
duced by accretion disks, magnetic fields, and tidal perturbations
[12–22].
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These advances notwithstanding, there is still much to
learn about how binary black holes interact with external
fields and whether these interactions can be used to search
for new physics. The goal of this present paper is to further
our understanding of this problem in the long-wavelength
limit by incorporating the effects of the binary’s long-range
gravitational potential at the nonperturbative level. In doing
so, we will be able to study not just the scattering of
radiation but also the formation and evolution of scalar
clouds diffuse enough to engulf the binary as a whole. As
we will show, the same mechanism that led to the
amplification of radiation discovered in Ref. [66] triggers,
among other things, the exponential growth or decay of
these clouds.
At the heart of this phenomenon is the absorptive nature

of the binary’s constituents: Because an ambient field must
always satisfy purely ingoing boundary conditions at the
horizons, it is “dragged” alongside the black holes as they
orbit one another. Consequently, while a part of this scalar
field irreversibly crosses the horizons and deposits its
energy into the individual black holes, what remains in
the bulk spacetime is agitated by the binary’s motion and
can either gain or lose momentum as a result. Together,
these two effects facilitate a direct exchange of energy and
momentum between the binary and the scalar field, which
can proceed in either direction depending on their relative
phase velocities. Given this description, the close parallel
between this process and the reflection of electromagnetic
waves off moving conductive boundaries [67–69] is unsur-
prising. The underlying mathematics also shares many
features in common with superradiant phenomena in
general [32,33,70], making it natural to regard this mecha-
nism as a novel variant of superradiance fueled by the
binary’s orbital motion. Accordingly, we will refer to this
mechanism as orbital superradiance.
The remainder of this paper proceeds as follows. In

Sec. II, we begin by reviewing the low-energy effective
field theory (EFT) constructed in Ref. [66] to describe the
propagation of a long-wavelength scalar field on a binary
black hole spacetime. Owing to the inherent separation of
scales, this problem is analytically tractable and a pertur-
bative solution is obtained in Sec. III. The result is then
discussed in two stages. In Sec. IV, we track the evolution
of a scalar cloud and calculate the rate at which different
bound states grow or decay as a result of orbital super-
radiance. Then, in Sec. V, we show that the periodic forcing
exerted by the binary inevitably converts a fraction of these
bound states into outgoing scalar radiation. Also in this
section, we reanalyze the effect of mode mixing on the
amplification of scalar waves. Finally, a brief summary of
our key results is presented in Sec. VI. Supplementing this
main line of discussion are Appendixes A–D, which
contain additional technical details and some of the
lengthier derivations.

II. EFFECTIVE FIELD THEORY

Our goal is to study the evolution of a real Klein-Gordon
field ϕðxÞ around a binary black hole. In realistic scenarios,
the energy density in this field is always expected to be
sufficiently dilute that its backreaction may be neglected as
a first approximation. Even in this test-field limit, however,
obtaining a solution is prohibitively difficult for current
analytic methods due to the complexity of the spacetime;
hence, further assumptions are necessary to render the
problem tractable.
In this paper, we restrict our attention to scalar-field

configurations whose characteristic length scale λ is much
greater than the binary’s orbital separation a. Because the
individual black holes cannot be resolved by such a long-
wavelength field, the binary as a whole behaves like an
effective point particle that couples to the scalar via a set of
multipole moments. This coarse-grained description of the
system is essentially an extension of the multipolar post-
Minkowskian formalism [71] with the addition of a
scalar field.
The interactions between this effective point particle and

the fields living in the bulk are encoded in the action [66]

Spp ¼ −
Z

dτM þ
X∞
l¼0

Z
dτOLðτÞ∇LϕðτÞ þ � � � ; ð2:1Þ

where M ¼ M1 þM2 is the total mass of the binary. The
scalar field ϕðτÞ≡ ϕðzðτÞÞ is to be evaluated at the position
of the binary’s barycenter, which travels along the world-
line zμðτÞwith proper time given by dτ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμνdxμdxν
p

. In
the second term,2 the composite operators OLðτÞ are
symmetric and trace-free (STF) tensors localized on the
worldline that capture how this point particle’s internal
degrees of freedom interact with the long-wavelength scalar
[72–74]. The ellipsis in Eq. (2.1) alludes to the presence of
analogous composite operators that couple to the gravita-
tional field [75], although these will play no role in our
discussion.
Induced multipole moments.—Generically, each of the

composite operators in Eq. (2.1) can be decomposed into
two pieces [76]. WritingOL ¼ OL

ðSÞ þOL
ðRÞ, the first term is

a permanentmultipole that is present if the internal degrees
of freedom can directly source the scalar field. Such terms
would be present, for instance, were the action in Eq. (2.1)
to describe a binary neutron star system in a scalar-tensor

2We use conventional multi-index notation: A tensor with l
spatial indices is written as OL ≡Oi1���il , while l factors of a
vector are written as zL ≡ zi1 � � � zil , and similarly
∇L ≡∇i1 � � �∇il . Angled brackets around indices denote the
STF projection of a tensor. In Eq. (2.1), the indices i ∈ f1; 2; 3g
label the three spatial directions that are mutually orthogonal to
one another and to the tangent of the worldline zμðτÞ. In the
nonrelativistic limit, these reduce to the usual three spatial
directions in Minkowski space.
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theory of gravity [77–83]. A binary black hole in general
relativity, however, is not generic because stringent no-hair
theorems [84–93] stipulate that Kerr black holes cannot
support stationary scalar-field configurations. Put another
way, Kerr black holes cannot possess permanent scalar
charges. Accordingly, OL

ðSÞ ¼ 0 ∀ l in our case. What

remains is OL
ðRÞ, which represents the binary’s dynamical

multipole moments that are induced in response to external
perturbations. From now on, we drop the subscript (R) to
declutter our notation.
As ϕðxÞ is assumed to behave like a test field, the

solution for these induced multipoles is given by linear
response theory. With retarded boundary conditions
imposed [72,73,76],

OLðτÞ ¼
Z

dτ0iθðτ − τ0Þ
X∞
l0¼0

h½OLðτÞ; OL0 ðτ0Þ�i∇L0ϕðτ0Þ:

ð2:2Þ

Written in this quantum-mechanical language, the expect-
ation value h� � �i above requires the notion of some Hilbert
space for the internal degrees of freedom. When specified
correctly, this formalism can be used to systematically
incorporate quantum effects like Hawking radiation [94].
That being said, in this work we will only be interested in
purely classical observables. It is then unnecessary to
specify the density matrix with which this expectation
value is taken, as the commutator is simply a c-number
when Planck-suppressed terms are neglected [94].
By matching this post-Minkowskian formulation of the

binary to a post-Newtonian description valid in its near
zone, Ref. [66] showed that the classical solution to
Eq. (2.2) is

OLðtÞ ¼ −
X2
N¼1

X∞
l0¼0

AN

l!l0!
zhLiN ðtÞ d

dt
½zhL0i

N ðtÞ∂L0ϕðt; 0Þ�

ð2:3Þ

in the nonrelativistic, low-frequency limit. In writing this
solution, we have chosen coordinates such that the binary’s
barycenter is at rest at the origin. The motion of the Nth
black hole, whose horizon has area AN , is then given by the
vector zNðtÞ.
Expansion parameters.—At this stage, it is worth

enumerating the four different expansion parameters that
appear in this EFT. It will be convenient to assume that the
two black holes have comparable masses for the purposes
of power counting, although this formalism remains valid
for arbitrary mass ratios as long as the binary’s constituents
are widely separated.
The first two expansion parameters come from the post-

Newtonian description of the binary in its near zone: the
solution in Eq. (2.3) is only the leading term in a series

organized as an expansion in the binary’s orbital velocity
v ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=a

p
and the ratio of time scales GMω. To be

specific, the latter is the ratio of the black holes’ light-
crossing times to the characteristic time scale ω−1 of the
scalar. The fact that Eq. (2.3) depends only on the areas of
the black holes but not on their spins is a consequence of
working to leading order in these parameters [66]. The
induced multipoles are generated as a result of absorption
of the scalar across the horizons [74], and a black hole’s
absorption cross section in the low-frequency limit is
s-wave dominated and equal to its area [95].
The approximation of the entire binary as an effective

point particle introduces an additional two expansion
parameters: the post-Minkowskian parameter GM=λ and
the ratio of length scales a=λ. The first of these character-
izes the nonlinearity of a given term in the solution due to
self-interactions of the gravitational field. In this work, we
work to first order in GM=λ and will treat it nonperturba-
tively in order to capture the bound states of ϕðxÞ, but
otherwise we neglect all higher-order corrections in GM=λ.
As for the fourth expansion parameter, we will—rather

unusually from the point of view of an EFT—treat terms
with different powers of a=λ on equal footing, despite
higher-order terms being parametrically suppressed. Doing
so will allow us to keep track of the mixing between
different angular-momentum modes, which leads to inter-
esting consequences.
These four parameters control different aspects of the

perturbative expansion, but enforcing the two conditions
v ≪ 1 and a=λ ≪ 1 is often sufficient to ensure that we are
inside the EFT’s regime of validity. For a scalar cloud that is
gravitationally bound to a binary, its characteristic fre-
quency is set by the scalar field’s mass, ω ≃ μ, up to some
nonrelativistic binding energy ∼GMμ=λdB. In the denom-
inator is the de Broglie wavelength λdB ∼ ðGMμ2Þ−1, which
determines the characteristic length scale of the cloud. This
second expression may be used to recast the condition
a=λ ≪ 1 into an upper bound for the scalar’s mass, namely,

μ

Ω
≪

1

v2
; ð2:4Þ

which follows after using v2 ∼GM=a and v3 ∼GMΩ. As a
rough guide, Eq. (2.4) says that a scalar field should have
a mass μ ≪ 10−11 eVðv=0.1ÞðM⊙=MÞ if it is to engulf a
binary of total mass M with orbital velocity v.
An additional upper bound must be established for freely

propagating scalar waves that impinge on the binary with
frequency ω and momentum k ∼ 1=λ. For high-momentum
modes, we choose to replace the necessary condition
a=λ ≪ 1 with the sufficient condition aω ≪ 1 for simplic-
ity. The latter equivalently reads

ω

Ω
≪

1

v
: ð2:5Þ
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For low-momentum modes, the quantity a=λ can be
arbitrarily small, so now the ultraviolet (UV) cutoff for
this EFT is set by another expansion parameter, namely,
GMω. Since ω ∼ μ in this limit, the condition GMω ≪ 1 is
equivalent to μ=Ω ≪ v−3. This upper bound is weaker than
that of Eq. (2.4), and thus we are guaranteed to remain in
the EFT’s regime of validity when the UV cutoffs in
Eqs. (2.4) and (2.5) are both respected.
Equation of motion.—Extremizing the total effective

action with respect to ϕðxÞ, we obtain

�
□ − μ2 þ 2GMμ2

r

�
ϕðxÞ ¼ −

X∞
l¼0

ð−1ÞlOLðtÞ∂Lδ
ð3ÞðxÞ;

ð2:6Þ

where □ denotes the wave operator on flat space and we
have also included the leading contribution from the
binary’s gravitational potential on the lhs. On the rhs,
the induced multipolesOLðtÞ are given by Eq. (2.3); hence,
this is a linear, homogeneous differential equation for ϕðxÞ.
It is worth remarking that the delta function on the rhs of

Eq. (2.6) inevitably leads to singularities. Likewise, sin-
gularities also arise from the operators OLðtÞ, which are
functions of the scalar field and its derivatives evaluated at
the origin. These UV divergences, which in this case
originate from the point-particle approximation of the
binary, are commonplace in EFTs and can be dealt with
in the usual way by using a convenient regulator in
conjunction with a renormalization scheme [96,97]. This
procedure turns out to be unnecessary, however, up to first
order in perturbation theory.

III. PERTURBATIVE SOLUTION
VIA GREEN’S FUNCTION

We obtain an approximate solution to Eq. (2.6)
by treating the interaction terms on the rhs as small
perturbations. Denoting the differential operator on the
lhs by Dx, this entails looking for a solution of the form
ϕ ¼ ϕð0Þ þ ϕð1Þ þ � � �, where the zeroth-order piece is an
exact solution to the noninteracting theory, Dxϕ

ð0ÞðxÞ ¼ 0,
while the first-order correction is

ϕð1ÞðxÞ ¼
Z

d4x0Gðx; x0Þ
X∞
l0¼0

ð−1Þl0Oð0Þ
L0 ðt0Þ∂L0δð3Þðx0Þ

þ ϕð1Þ
cf ðxÞ: ð3:1Þ

The first term is the particular integral sourced3 by the

induced multipoles Oð0Þ
L ðtÞ, where the superscript (0)

indicates that the expression in Eq. (2.3) is to be evaluated
using the zeroth-order solution ϕð0Þ. Meanwhile, the second
term in Eq. (3.1) is the complementary function,

Dxϕ
ð1Þ
cf ðxÞ ¼ 0, whose inclusion may be necessary to

ensure that the overall solution satisfies our choice of
boundary conditions.
In this section, we discuss the three ingredients that make

up the particular integral. We begin by writing down the
general solution ϕð0Þ to the noninteracting theory, which is
then fed into Eq. (2.3) to obtain explicit expressions for

Oð0Þ
L ðtÞ. Finally, taking their convolution with the retarded

Green’s function Gðx; x0Þ produces the end result.

A. The noninteracting theory

To establish some nomenclature and introduce the basis
for our perturbative approach, we begin in this subsection
with a brief review of the Coulomb functions [98,99].
As the noninteracting theory is time-translation invariant

and spherically symmetric, we may look for solutions of
the form ϕðxÞ ∝ RðrÞYlmðx̂Þe−iωt, where Ylmðx̂Þ are the
usual spherical harmonics. The radial part RðrÞ must then
satisfy the differential equation

�
d2

dr2
þ k2 þ 2GMμ2

r
−
lðlþ 1Þ

r2

�
rRðrÞ ¼ 0; ð3:2Þ

with k2 ≡ ω2 − μ2. The resulting set of solutions can be
divided into three categories depending on the value of this
quantity. In what follows, we define k≡ kðωÞ as the
appropriate root of k2, namely,

kðωÞ ≔
(
sgnðωÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2

p
ðk2 ≥ 0Þ;

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p
ðk2 < 0Þ:

ð3:3Þ

Radiation modes.—Let us begin with the case k2 ≥ 0.
Defining ζ ≔ −GMμ2=k, two linearly independent solu-
tions to Eq. (3.2) are

R�
l ðk; rÞ ≔

H�
l ðζ; krÞ
�ikr

; ð3:4aÞ

where H�
l are Coulomb functions. (We follow the con-

ventions in Ref. [100].) From their asymptotic forms at
large r, given in Eq. (A1), we can deduce that these
solutions correspond to ingoing (−) and outgoing (þ)
spherical waves.
For later purposes, it will also be useful to define a

particular linear combination of these radiation modes. Let

Rlðk; rÞ ≔
1

2
½Rþ

l ðk; rÞ þ R−
l ðk; rÞ�≡ Flðζ; krÞ

kr
; ð3:4bÞ

where Fl is another Coulomb function. This solution
describes a superposition of ingoing and outgoing waves

3More accurately, the terms on the rhs of Eq. (2.6) should be
viewed as sink terms, since the induced multipoles arise from
absorption.
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in equal measure and is regular at the origin as a result.
Additionally, let us define the mode functions

ϕ�
klmðxÞ ≔ R�

l ðk; rÞYlmðx̂Þ; ð3:5aÞ

ϕklmðxÞ ≔ Rlðk; rÞYlmðx̂Þ; ð3:5bÞ

which describe the three-dimensional spatial profile of
these scalar waves.
Yukawa modes.—Solutions to Eq. (3.2) for the case

k2 < 0 may now be obtained by analytic continuation.
Represented in terms of Whittaker functions [100], they
read

R�
l ðk; rÞ ¼ ð∓ iÞlþ1eπζ=2�iσlðζÞ W∓iζ;lþ1=2ð∓ 2ikrÞ

kr
;

ð3:6aÞ

Rlðk; rÞ ¼
ClðζÞ

ð−2iÞlþ1

M−iζ;lþ1=2ð−2ikrÞ
kr

; ð3:6bÞ

where the Coulomb phase shift σlðζÞ and the Gamow
factor ClðζÞ are given by [98,100]

σlðζÞ ≔
1

2i
½logΓðlþ 1þ iζÞ − logΓðlþ 1 − iζÞ�;

ð3:7aÞ

ClðζÞ ≔
Γðlþ 1 − iζÞ
Γð2lþ 2Þ 2leiσlðζÞ−πζ=2: ð3:7bÞ

For imaginary k defined according to Eq. (3.3), the
R−
l ðk; rÞ solution is seen to grow exponentially with r and

is therefore unphysical. In contrast, Rþ
l ðk; rÞ describes

a nonpropagating field profile with characteristic size
λ ∼ 1=jkj. Depending on the value of k ∈ iR>0, this
solution can either be singular or regular at r ¼ 0.
The set of singular solutions includes the ω ¼ l ¼ 0

mode, which has the asymptotic form

Rþ
0 ðiμ; rÞ ∼

e−μr

r
eGMμ logð2 μrÞ½1þOðr−1Þ� ð3:8Þ

at large r up to some constant prefactor. One easily
recognizes this as the Yukawa potential sourced by a point
charge at the origin, albeit with corrections coming from
the gravitational potential of the point mass M. In general,
we will refer to this set of singular solutions as the Yukawa
modes. Because these modes correspond to having pure
imaginary k in the continuous domain iR>0 modulo a
discrete set of points to be discussed below, the term
continuum stateswill be used to refer to the combined set of
radiation modes and Yukawa modes.
Bound states.—The solution Rþ

l ðk; rÞ is regular at the
origin when k takes special values such that −iζ ¼ n is an
integer and n ≥ lþ 1. These regular solutions have cor-
responding frequencies ω ¼ �En given by

En ¼ μ

�
1 −

ðGMμÞ2
n2

�
1=2

≃ μ −
μðGMμÞ2

2n2
; ð3:9Þ

which is reminiscent of the hydrogen bound-state spectrum.
Accordingly, this set of regular solutions will be called the
bound states. To make the connection to the hydrogen atom
even more explicit, let us define RnlðrÞ to be a rescaled
version of the solution Rþ

l ðk; rÞ when evaluated at ζ ¼ in.4

In terms of the Whittaker functions, it reads

RnlðrÞ≔
ð−1Þn−l−1ð−2ikÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðnþ lÞ!ðn− l− 1Þ!p W−iζ;lþ1=2ð−2ikrÞ

−2ikr

����
ζ¼in

≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ lÞ!ð−2ikÞ3
2nðn− l− 1Þ!

s
M−iζ;lþ1=2ð−2ikrÞ
ð2lþ 1Þ!ð−2ikrÞ

����
ζ¼in

:

ð3:10Þ

The second line follows from Eq. (13.14.32) of Ref. [100],
which shows that Rþ

l and Rl become proportional to one
another when ζ → in. Note also that −ik ¼ GMμ2=n in
this limit, and thus RnlðrÞ is a real-valued function. With
this definition, the mode functions

ψnlmðxÞ ≔ RnlðrÞYlmðx̂Þ ð3:11Þ

are exactly the (orthonormal) hydrogen wave functions,
albeit with GMμ in place of the fine-structure constant.
General solution.—Because we are treating absorption

of the scalar field by the black holes perturbatively via
interaction terms, the origin is devoid of sinks or sources in
the noninteracting theory. Consequently, the zeroth-order
solution ϕð0Þ must be regular at r ¼ 0. This boundary
condition precludes the existence of Yukawa modes at this
order and, moreover, a net flux of radiation into or out of
the origin is also prohibited. The general solution is thus
given by the linear combination

ϕð0ÞðxÞ ¼
X
l;m

Z
dω
2π

2I>
ωlmϕklmðxÞe−iωt

þ 1ffiffiffiffiffi
2μ

p
X
n;l;m

cð0ÞnlmψnlmðxÞe−iωt þ c:c: ð3:12Þ

The first term is the sum over a superposition of ingoing
and outgoing waves [the factor of 2 follows from
Eqs. (3.4b) and (3.5)], where a given mode ðω;l; mÞ
has an ingoing amplitude specified by the coefficient
I>
ωlm. The “>” symbol is used to emphasize that this

4This rescaling is also necessary on mathematical grounds, as
the original solution Rþ

l ðk; rÞ vanishes when ζ ¼ in. This
behavior can be traced back to the Coulomb phase shift, as
the first gamma function in Eq. (3.7a) is being evaluated at one of
its poles.
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function can be chosen without loss of generality to have
support only in the domain ω ≥ 0, corresponding to
positive-frequency modes. The negative-frequency modes
are then automatically taken into account by the complex
conjugate (c.c.) terms. Further note that I>

ωlm must vanish
for ω ∈ ð−μ; μÞ as per the boundary conditions described
above. Meanwhile, the second term in Eq. (3.12) is the sum
over bound states, with a conventional prefactor of 1=

ffiffiffiffiffi
2μ

p

included to render the coefficients cð0Þnlm dimensionless.

B. Induced multipoles for circular orbits

The zeroth-order solution in Eq. (3.12) may now be fed
into Eq. (2.3) to obtain the binary’s induced multipoles. To
that end, we begin by introducing some compact notation:
let u≡ ðn;l; mÞ collectively refer to the three integers that
specify a bound state and, likewise, let w≡ ðω;l; mÞ refer
to the parameters for a given continuum state. We then
write

X
u

≡ X
n;l;m

and
X
w

≡X
l;m

Z
dω
2π

ð3:13Þ

to denote summing over the bound and continuum states,
respectively. In this new shorthand, the zeroth-order sol-
ution reads

ϕð0ÞðxÞ ¼
X
w

2I>
wϕklmðxÞe−iωt þ

1ffiffiffiffiffi
2μ

p
X
u

cð0Þu ψuðxÞe−iEnt

þ c:c: ð3:14Þ

Rather than substitute this directly into Eq. (2.3) to
produce a set of tensorial objects, it is more convenient to
work with the components ofOLðtÞ obtained via projection
onto a basis of STF tensors. For each l, let Ylm

L denote
the basis vectors that generate the spherical harmonics
[i.e., Ylmðx̂Þ ¼ Ylm

L x̂L] and satisfy the orthogonality
relation [101]

ðYlm
L Þ�Ylm0

L ¼ ð2lþ 1Þ!!
4πl!

δmm0
: ð3:15Þ

The 2lþ 1 independent degrees of freedom of OLðtÞ can
then be obtained via the projection

OlmðtÞ ¼ −
1

4πi
4πl!

ð2lþ 1Þ!! ðY
lm
L Þ�OLðtÞ; ð3:16Þ

where the prefactor of −4πi is included purely for con-
venience. To reconstruct OLðtÞ, one simply inverts this
relation to find

OLðtÞ ¼ −4πi
Xl
m¼−l

Ylm
L OlmðtÞ: ð3:17Þ

At the moment, the formula in Eq. (2.3) for these induced
multipoles does not make any assumptions about the black
holes’ trajectories, apart from requiring that jzNðtÞj ≪ λ.
For simplicity, in this paper we will restrict our attention to
circular orbits with frequency Ω oriented such that its
angular momentum points along the positive z axis. For this
configuration, Ref. [66] showed that the components
OlmðtÞ are given by

OlmðtÞ ¼
X
l0;m0

4πY�
lmðdÞYl0m0 ðdÞBll0

ð2lþ 1Þ!!ð2l0 þ 1Þ!! e
−iðm−m0ÞΩt

× ðm0Ω − i∂tÞðYl0m0
L0 Þ�∂L0ϕðt; 0Þ; ð3:18Þ

where d is the unit vector parallel to z1ð0Þ and

Bll0 ≔
X
N

ANr
lþl0
N ð3:19Þ

characterizes the interaction strength between the black
holes and the scalar, with r1 ¼ aM2=M and r2 ¼ −aM1=M
denoting the displacements of the black holes from their
barycenter.
The induced multipoles OLðtÞ are necessarily real by

construction; hence, the definition in Eq. (3.17) can be used
to show that its components must satisfy the constraint

O�
lmðtÞ ¼ −ð−1ÞmOl;−mðtÞ; ð3:20Þ

which follows from the identity for the complex conjugate
of a spherical harmonic; cf. Eq. (A12). This motivates
writing

OlmðtÞ ¼ O>
lmðtÞ − ð−1ÞmO>�

l;−mðtÞ ð3:21Þ

such that Eq. (3.20) is automatically satisfied for any
function O>

lmðtÞ. It is then easy to show that for a real
scalar-field solution of the form ϕðxÞ ¼ ϕ>ðxÞ þ c:c:, one
obtainsO>

lmðtÞ by evaluating the rhs of Eq. (2.3) using only
ϕ>ðxÞ rather than ϕðxÞ. In other words, we find

Oð0Þ>
lm ðtÞ ¼

X
w0

Y�
lmðdÞYl0m0 ðdÞBll0

ð2lþ 1Þ!! Rl0 ðk0Þðm0Ω − ω0Þ

× 2I>
w0e−i½ω

0þðm−m0ÞΩ�t

þ 1ffiffiffiffiffi
2μ

p
X
u0

Y�
lmðdÞYl0m0 ðdÞBll0

ð2lþ 1Þ!!
×Rn0l0 ðm0Ω − En0 Þcð0Þu0 e

−i½En0þðm−m0ÞΩ�t ð3:22Þ

LEONG KHIM WONG PHYS. REV. D 101, 124049 (2020)

124049-6



after substituting only the positive-frequency part of
Eq. (3.14) into Eq. (3.18). In obtaining this result, we
have made use of the identities in Eq. (A10) and have
defined

RlðkÞ ≔ lim
r→0

1

l!
dl

drl
Rlðk; rÞ; ð3:23Þ

Rnl ≔ lim
r→0

1

l!
dl

drl
RnlðrÞ; ð3:24Þ

explicit expressions for which are provided in Eq. (A11).
The result in Eq. (3.22) can now be used to determine
the first-order correction ϕð1Þ via the method of Green’s
functions.

C. Integration contours

The Green’s function in Eq. (3.1) is defined by the
equation DxGðx; x0Þ ¼ −δð4Þðx − x0Þ and may be written as
the inverse Fourier transform

Gðx; x0Þ ¼
X
l;m

Z
dω
2π

Gωlðr; r0ÞYlmðx̂ÞY�
lmðx̂0Þe−iωðt−t0Þ;

ð3:25Þ

where the radial part is given by [102,103]

Gωlðr; r0Þ ¼ ð−2ikÞΓðlþ 1þ iζÞ
ð2lþ 1Þ!

W−iζ;lþ1=2ð−2ikr>Þ
−2ikr>

×
M−iζ;lþ1=2ð−2ikr<Þ

−2ikr<
; ð3:26Þ

with r> ≔ maxðr; r0Þ and r< ≔ minðr; r0Þ.
To evaluate the particular integral in Eq. (3.1), we first

note that the delta function imposes the restrictions r< ¼ r0
and r> ¼ r, which make performing the integral over x0
relatively straightforward. First integrating by parts to move
the derivatives ∂L0 onto Gðx; x0Þ, we obtain

ϕð1ÞðxÞ⊃
X
l;m

Z
dω
2π

X∞
l0¼0

Z
d4x0Oð0Þ

L0 ðt0Þe−iωðt−t0Þ

× ð−2ikÞΓðlþ1þ iζÞ
ð2lþ1Þ!

W−iζ;lþ1=2ð−2ikrÞ
−2ikr

Ylmðx̂Þ

×δð3Þðx0Þ∂L0

�
M−iζ;lþ1=2ð−2ikr0Þ

−2ikr0
Y�
lmðx̂0Þ

�
:

ð3:27Þ

Now using Eqs. (3.15), (3.17), and (A9), this can be shown
to simplify to

ϕð1ÞðxÞ⊃−i
X
l;m

Z
dω
2π

Γðlþ1þ iζÞ
ð2lÞ!!

Z
dt0Oð0Þ

lmðt0Þe−iωðt−t
0Þ

× ð−2ikÞlþ1
W−iζ;lþ1=2ð−2ikrÞ

−2ikr
Ylmðx̂Þ ð3:28Þ

after also using the identity n!≡ n!!ðn − 1Þ!! for the double
factorial. Given that ð2lÞ!! ¼ 2ll!, an equivalent expres-
sion for the particular integral is

ϕð1ÞðxÞ ⊃
X
l;m

Z
dω
2π

Γðlþ 1þ iζÞ
Γðlþ 1Þ

Z
dt0Oð0Þ

lmðt0Þe−iωðt−t
0Þ

× ð−ikÞlþ1
W−iζ;lþ1=2ð−2ikrÞ

kr
Ylmðx̂Þ: ð3:29Þ

Both expressions will turn out to be useful in later sections.
It remains to perform the integrals over t0 and ω. Care

must be exercised with the latter because the Green’s
function contains poles at ω ¼ �En and branch points at
ω ¼ �μ and at infinity [102]. To proceed, we split the
integral over ω into two parts: its principal value along the
real line gives rise to the continuum states, while the bound
states are obtained by integrating over closed contours
encircling each of the poles; see also Fig. 1.
The complete first-order solution is thus a sum of three

parts:

ϕð1Þ ¼ ϕð1Þ
b þ ϕð1Þ

c þ ϕð1Þ
cf : ð3:30Þ

The first term contains the bound states, which we study
in Sec. IV, while the second contains the continuum
states, discussed in Sec. V. Finally, recall from our earlier
discussion that the third term is a complementary function
that may be required to satisfy boundary conditions.

FIG. 1. Illustration (not to scale) showing the different con-
tributions to the ω integral. The principal value (red line) gives
rise to the continuum states, while the bound states come from
closed contours (black lines) that encircle each of the poles of the
Green’s function. The poles (cross marks) are shifted off the real
axis to enforce retarded boundary conditions and thus contribute
to the solution only when the black contours are closed in the
lower half of the complex plane. The limit δ → 0 and L → ∞
should be taken at the end. Note also the presence of branch
points at ω ¼ �μ and at infinity.
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IV. BOUND STATES

The bound states surrounding a binary evolve in an
intricate manner as a result of their interaction with the
black holes. In perturbation theory, this evolution can be
regarded as being sourced by the induced multipolesOLðtÞ.
The first-order result ϕð1Þ

b is obtained by performing the ω
integral in Eq. (3.28) over closed contours that each
encircle one of the poles ω ¼ �En of the Green’s function.
When t > t0, these contours should be closed in the

lower half of the complex plane; see Fig. 1. In the limit
δ → 0 and L → ∞, the integrals along the vertical paths
cancel each other, while the integral over the bottom
horizontal path vanishes. The residue theorem can then
be applied to show that

ϕð1Þ
b ðxÞ ¼

X
s¼�1

X
u

ð−iÞ2 Res½Γðlþ 1þ iζÞ�
ð2lÞ!! ð−2ikÞlþ1

×
Z

dt0θðt − t0ÞOð0Þ
lmðt0Þeiωt

0

×
W−iζ;lþ1=2ð−2ikrÞ

−2ikr
Ylmðx̂Þe−iωt

����
ω¼sEn−iϵ

;

ð4:1Þ

where the poles have been shifted by an amount −iϵ to
enforce retarded boundary conditions and the sum over s ¼
�1 is used to account for both the positive- and negative-
frequency solutions. Note also the presence of the step
function θðt − t0Þ, which follows from the fact that the
contour should be closed in the upper half of the complex
plane when t < t0.
To determine the residue of the gamma function at the

pole ω ¼ sEn, we use the standard Laurent expansion
Γð−jþzÞ¼ð−1Þj=ðj!zÞþOðz0Þ valid for any non-negative
integer j to obtain

Res½Γðlþ 1þ iζÞ�ω¼sEn
¼ −

ð−1Þn−l−1ðGMμ2Þ2
ðn − l − 1Þ!n3sEn

: ð4:2Þ

Substituting this back into Eq. (4.1) and using Eq. (3.10) to
rewrite the Whittaker function in terms of RnlðrÞ, one finds

ϕð1Þ
b ðxÞ ¼

X
s¼�1

X
u

Rnl

2sEn
ð2lþ 1Þ!!ψuðxÞ

×
Z

dt0θðt − t0ÞOð0Þ
lmðt0Þe−iðsEn−iϵÞðt−t0Þ; ð4:3Þ

which can be further simplified to

ϕð1Þ
b ðxÞ ¼

X
u

Rnl

2En
ð2lþ 1Þ!!ψuðxÞ

Z
t
dt0Oð0Þ

lmðt0Þe−iEnðt−t0Þ

þ c:c: ð4:4Þ

The latter expression follows after making two observa-
tions. First, the s ¼ −1 terms are exactly the complex
conjugates of the s ¼ þ1 terms, which one can show by
using the identities in Eqs. (3.20) and (A13) together with
the freedom to relabelm → −m as it is being summed over.
Second, the lower bound of the t0 integral at −∞ yields no
contribution because of the −iϵ term in the exponent, and
thus we need only keep track of the result from the upper
bound. Discarding this lower bound constitutes no loss in
generality, as the freedom to specify initial conditions for
the amplitudes of the bound states at some initial time, say
t ¼ 0, is provided by our freedom to choose the comple-

mentary function ϕð1Þ
cf .

The result in Eq. (4.4) is not yet in a useful form because

Oð0Þ
lmðt0Þ contains both the positive- and negative-frequency

parts of the zeroth-order solution, whose separate contri-
butions we would like to make manifest. To do this, we use
the decomposition in Eq. (3.21) to write

ϕð1Þ
b ðxÞ ¼

X
u

Rnl

2En
ð2lþ 1Þ!!ψuðxÞ

Z
t
dt0½Oð0Þ>

lm ðt0Þ

− ð−1ÞmOð0Þ>�
l;−m ðt0Þ�e−iEnðt−t0Þ þ c:c: ð4:5Þ

The freedom to swap the terms involving Oð0Þ>�
l;−m ðtÞ with

their complex conjugates and to relabel m → −m gives us
our final expression:

ϕð1Þ
b ðxÞ ¼

X
u

Rnl

2En
ð2lþ 1Þ!!ψuðxÞ

Z
t
dt0½Oð0Þ>

lm ðt0Þ

−Oð0Þ>
lm ðtÞe2iEnðt−t0Þ�e−iEnðt−t0Þ þ c:c: ð4:6Þ

It is now apparent that the full solution ϕ ¼ ϕð0Þ þ
ϕð1Þ þ � � � for the bound states has the form

ϕbðxÞ ¼
1ffiffiffiffiffi
2μ

p
X
u

½cuðtÞψuðxÞe−iEnt þ c:c:�; ð4:7Þ

with cuðtÞ≡ cð0Þu þ cð1Þu ðtÞ þ cð1Þcf;u þ � � �. The time evolu-
tion of the amplitude is given to first order by

cð1Þu ðtÞ ¼
ffiffiffiffiffi
2μ

p Rnl

2En
ð2lþ 1Þ!!

Z
t
dt0Oð0Þ>

lm ðt0Þ

× ðeiEnt0 − e2iEnte−iEnt0 Þ; ð4:8Þ

while cð1Þcf;u is a constant term coming from ϕð1Þ
cf that we tune

in order to choose initial conditions.
Finally, substituting the expression for Oð0Þ>

lm ðtÞ in
Eq. (3.22) into Eq. (4.8) yields the explicit solution
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cð1Þu ðtÞ ¼
X
u0

Vuu0

2En
ðm0Ω − En0 Þcð0Þu0

Z
t
dt0ðeiΔuu0 t

0 − e2iEnteiðΔuu0−2EnÞt0 Þ

þ 1

2μ

X
w0

Vuw0

2En
ðm0Ω − ω0Þ2I>

w0

Z
t
dt0ðeiΔuw0 t

0 − e2iEnteiðΔuw0−2EnÞt0 Þ; ð4:9Þ

which is written in terms of the energy differences

Δuu0 ¼ En − En0 − ðm −m0ÞΩ; ð4:10aÞ

Δuw0 ¼ En − ω0 − ðm −m0ÞΩ ð4:10bÞ

and the matrix elements

Vuu0 ¼ Y�
lmðdÞYl0m0 ðdÞBll0RnlRn0l0 ; ð4:11aÞ

Vuw0 ¼ ð2μÞ3=2Y�
lmðdÞYl0m0 ðdÞBll0RnlRl0 ðk0Þ: ð4:11bÞ

Note the extra normalization factor of 1=ð2μÞ in the second
line of Eq. (4.9) has been included because the sum over
continuum states

P
w is dimensionful; cf. Eq. (3.13).

Written in this way, Vuu0 and Vuw0 both have dimensions
of energy.

A. Growth rates

We are now in a position to discuss the physical
implications of this result. To begin with, suppose that

cð0Þu ≠ 0 and consider its contribution to cð1Þu ðtÞ. Since
Δuu ¼ 0, we have that

cð1Þu ðtÞ ⊃ Vuu

2En
ðmΩ − EnÞcð0Þu

Z
t
dt0ð1 − e2iEnðt−t0ÞÞ

¼ cð0Þu Γutþ const: ð4:12Þ

Because the constant term may be removed by an appro-

priate choice of cð1Þcf;u, the physical effect of the diagonal
element Vuu is to cause the bound state u to grow at the rate

Γu ≔
Vuu

2En
ðmΩ − EnÞ: ð4:13Þ

Thus, the bound states of the noninteracting theory turn into
quasibound states once their interaction with the binary is
taken into account.
It is worth remarking that the linear growth in Eq. (4.12)

is an approximation that is valid only at early times
t ≪ 1=Γu. Once Γut becomes of order unity, terms of
the form ∼ðΓutÞp that appear at higher orders in perturba-
tion theory all become relevant. One might naturally expect
that resumming these polynomials to all orders will lead to
an exponentially growing solution cuðtÞ ∝ expðΓutÞ and,
indeed, this turns out to be the case. The details of this

resummation procedure, while interesting on theoretical
grounds, have been relegated to Appendix B as they will
not be relevant to this paper’s main line of discussion. In
what follows, it will suffice to work with the linear
approximation in Eq. (4.12).
Written out explicitly, the growth rate for the u≡

ðn;l; mÞ mode reads

Γu ¼
���� YlmðdÞ
ð2lþ 1Þ!

����2 ðnþ lÞ!ð2GMμ2Þ2lþ3

ðn − l − 1Þ!4n2lþ4En
BllðmΩ − EnÞ:

ð4:14Þ

It is instructive to first compare this result with the growth
rate of a long-wavelength scalar cloud around a single
rotating black hole [34,60,73]. Strikingly, after identi-
fying the total mass M of the binary with the mass of
the single black hole and, likewise, identifying the binary’s
orbital frequency Ω with the angular frequency of the
horizon, the expressions for the two growth rates are seen
to be equivalent up to an overall factor associated with
differences in the geometry. That these two results are so
closely related is not a coincidence, but is a reflection of the
fact that a binary and a single black hole both effectively
behave like point particles in the long-wavelength limit.
Indeed, at leading order in the expansion parameters,
the bound (and continuum) states of a Klein-Gordon field
on these two spacetimes are mathematically equivalent.
All differences between the two cases can therefore be
attributed to differences in the corresponding operators
OLðtÞ that are localized at the origin. (For an EFTapproach
to single black hole superradiance along these lines,
see Ref. [73].)
This is not to say that there is nothing novel about orbital

superradiance, however. Indeed, the particular “dumbbell”
geometry of the binary establishes a selection rule that
requires lþm to be even if the mode is to interact with
the binary. Otherwise, the growth rate Γu vanishes. This
property can be traced back to the spherical harmonic in
Eq. (4.14), or more generally to the spherical harmonics
in the matrix elements of Eq. (4.11), which are being
evaluated with respect to the unit vector d that is confined
to be in the z ¼ 0 plane. As was already pointed out in
Ref. [66], the vanishing of these matrix elements has a
simple physical interpretation: modes with lþm ∉ 2Z
correspond to field profiles that are concentrated away from
the z ¼ 0 plane and are therefore unappreciable in the
neighborhood of the binary, in which case no interaction
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can occur. If instead lþm ∈ 2Z, a given mode grows if
0 < En < mΩ and decays otherwise.

B. Mode mixing

Growth rates aside, the geometric properties of a binary
also give rise to a number of other interesting effects. From
the general solution in Eq. (4.9), it is clear that even if a
given mode u has zero amplitude cuð0Þ ¼ 0 at an initial
time t ¼ 0, the presence of another bound state u0 ≠ u will
seed the growth of u as long as Vuu0 ≠ 0. Likewise, energy
from ingoing radiation can also be captured and converted
into bound states, as the second line in Eq. (4.9) demon-
strates. In fact, this is the reason why we have chosen to call
the objects in Eq. (4.11) matrix elements: in analogy with
quantum mechanics, they characterize the overlap between
different modes as a result of their interaction with the
binary.
The appearance of mode mixing is unsurprising in this

context, as the underlying spacetime is not time-translation
invariant nor is it rotationally symmetric.5 Accordingly, the
modes u≡ ðn;l; mÞ and w≡ ðω;l; mÞ do not remain
eigenstates of the interacting theory. Actually, this last
statement needs refining because the matrix elements in
Eq. (4.11) vanish when at least one of lþm or l0 þm0 is
odd for reasons already discussed. Thus, modes with lþ
m ∉ 2Z are effectively blind to the presence of the black
holes and are conserved (at this order in perturbation
theory), while modes with lþm ∈ 2Z interact with the
binary and get mixed into one another.
Let us highlight another consequence of mode mixing:

as the solution in Eq. (4.9) shows, a given mode u will
oscillate not just at its natural frequency En but also at
the secondary frequencies jEn − Δuu0 j, which results in a
beating pattern when viewed in the time domain. Crucially,
note that some of these secondary frequencies are much
greater than the scalar field’s mass μ. If a particle of the
same mass were to have an energy given by one of these
high frequencies, we would expect it to escape the
gravitational potential of the binary and travel off to
infinity. Indeed, the same thing happens in the case of a
long-wavelength scalar field, as we show later in Sec. V.

C. Backreaction and energy extraction

In many well-motivated scenarios [24–27], an ultralight
scalar couples only very weakly to the Standard Model. As
such, if a binary black hole is enveloped by a cloud of
quasibound states, we should not expect to observe the
evolution of this scalar cloud directly and must infer its
presence through more indirect means. One possibility is
by examining the way it affects the binary’s orbital

evolution. Because any momentum transferred from the
black holes to the scalar field must be accompanied by an
appropriate backreaction of the scalar onto the black holes,6

any secular increase in the energy Eb of the bound states
must have been extracted from the energy stored in the
binary.
To gain a sense for how much energy is extracted via

this process, let us consider a simplified scenario in which
only a single mode û≡ ðn̂; l̂; m̂Þ is populated initially.
Time averaged over a period much longer than the other
time scales in the problem, the rate at which energy is
extracted from the binary into this bound state is given
by [42–44]7

_Eb ¼ 2ΓûMû ð4:15Þ

at first order in the interactions, where Mû ≔ μjcð0Þû j2 is the
total (initial) energy in the scalar cloud. Note that the time-
averaging procedure eliminates any contribution from
mode mixing at this order.
If Γû > 0, the growth of this mode extracts energy from

the binary and causes it to inspiral more rapidly than it
would in pure vacuum. On the other hand, if Γû < 0, this
decaying mode injects energy into the orbit while it is being
absorbed and will decelerate the inspiral as a result.
Whether either of these effects leave an observable imprint
depends on the magnitude of Eq. (4.15). A useful measure
is to compare it to the energy flux of gravitational waves
emitted by the binary, given to leading order by [105]

F ¼ 32

5

G4M2
1M

2
2ðM1 þM2Þ
a5

ð4:16Þ

for the case of circular orbits. Taking the ratio of Eq. (4.15)
to Eq. (4.16), we find

_Eb

F
¼ Mû

Eorb

2Γû

ΓGW
; ð4:17Þ

where Eorb ¼ GM1M2=2a is the magnitude of the binary’s
orbital energy and

ΓGW ¼ 64

5

G3M1M2ðM1 þM2Þ
a4

ð4:18Þ

is the rate at which the orbit shrinks due to gravitational
radiation.

5Note, however, that the binaries we consider in this paper
possess a residual helical symmetry [104] because we have
restricted our attention to circular orbits and have, moreover,
neglected the emission of gravitational waves.

6This backreaction can be understood in terms of a force that
the scalar exerts on the black holes [66,74].

7At leading order, a number of results from the literature on
the superradiant instability of a single Kerr black hole can be
adapted to the study of orbital superradiance because, as we
mentioned earlier, the mathematics describing the bound states of
a Klein-Gordon field in the long-wavelength limit is identical in
both cases.
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A cursory glance at Eqs. (3.19) and (4.14) will confirm
that, for fixed component masses M1 and M2, the
scalar cloud’s growth rate is largest when both black holes
are spherical. In this limit, the ratioΓu=ΓGW can be expressed
as a function of three dimensionless quantities: the binary’s
orbital velocity v, the symmetric mass ratio ν ≔ M1M2=M2,
and the ratio μ=Ω that relates the scalar’s mass to the binary’s
orbital frequency. An explicit formula is provided in
Appendix D, where we also argue that the precise value
of ν has little effect on our conclusions. For this reason, we
consider only equal-mass binaries in what follows.
The value of Γu=ΓGW as a function of μ=Ω is shown in

Fig. 2 for an equal-mass binary composed of spherical
black holes. A value of v ¼ 0.1 has been chosen for the
orbital velocity, which is large enough that it is at the limit
of validity of the post-Newtonian expansion. As the curves
in Fig. 2 would all move downwards for smaller values of
v, they represent the largest-possible rates that we can
reliably calculate using this EFT.
For small values of μ, the u ¼ ð2; 1; 1Þ mode has the

largest growth rate, which reaches a maximum of
Γ211=ΓGW ∼ 2 × 10−22 when μ ≃ 9Ω=10. Above the thresh-
old at μ ≃Ω (note En ≃ μ), it turns into a decaying mode
and leaves the (3,2,2) mode to take over as the fastest-
growing mode, until it too becomes a decaying mode at the
next threshold μ ≃ 2Ω. This pattern continues for increas-
ing values of μ, with ðlþ 1;l;lÞ being the fastest-growing
mode when ðl − 1Þ ≲ μ=Ω≲ l. The overall trend in
Fig. 2 clearly shows that the maximum value Γu can
attain decreases rapidly as μ increases. Although the
EFT breaks down as we approach μ=Ω ∼ v−2, this trend
strongly suggests that orbital superradiance is always
grossly inefficient. Consequently, the exponential growth

of a long-wavelength scalar cloud is unlikely to leave any
measurable impact on the evolution of a binary black hole.
In contrast, the decay rates can become much larger as μ

increases (see the right panel of Fig. 2), but their obser-
vational viability rests on Mû being comparable to Eorb.
The fact that the growth rates are so small implies that
clouds with such high densities are unlikely to have formed
dynamically around binary black holes that start off in pure
vacuum.
Having said that, there may be a possibility that other

processes could generate these clouds, particularly in
alternative theories of gravity wherein the scalar field is
nonminimally coupled to matter. For instance, does the core
collapse of a massive star into a black hole remnant leave
behind an appreciable scalar cloud? If so, could successive
supernova events in a stellar binary lead to a pair of black
holes enveloped by a common scalar cloud (assuming an
optimal value for μ)? It has been shown that a large amount
of scalar radiation can be produced during core collapse in a
certain class of scalar-tensor theories [106–109], although
current numerical methods are unable to determine if a
scalar cloud can develop around a black hole remnant
[110]. Exploring these open questions presents an exciting
opportunity for future work.

V. OUTGOING RADIATION

The periodic forcing that a binary exerts on a surround-
ing cloud inevitably leads to a fraction of the scalar field
being upscattered and ejected as outgoing radiation.
Additionally, ingoing radiation can scatter off this binary
and undergo amplification when given the right initial
conditions. In our perturbative approach, both of these
phenomena are encoded in the principal value of the ω

FIG. 2. The rates Γu ≡ Γnlm at which different quasibound states grow or decay around a binary black hole is shown as a function of
the scalar field’s mass μ relative to the binary’s orbital frequency Ω. They are normalized in units of ΓGW, which is the rate at which the
orbit shrinks due to gravitational radiation. The binary itself is taken to be composed of spherical black holes of equal mass traveling
with orbital velocity v ¼ 0.1. The growth rates of the ðn;l; mÞ ¼ ðlþ 1;l;lÞ modes are shown for l ∈ ½1; 10� in the left panel,
whereas the decay rates for the ðlþ 1;l;−lÞ modes are shown for l ∈ ½0; 10� in the right panel. Note that for a given angular-
momentum mode ðl; mÞ, a larger principal quantum number n would result in a lower rate Γnlm.
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integral in Eq. (3.29). Using Eq. (3.6) to replace the
Whittaker function with the radial solution Rþ

l ðk; rÞ, the
result is

ϕð1Þ
c ðxÞ ¼

X
l;m

Z
ω∈Rnf�Eng

dω
2π

Að1Þ
w ϕþ

klmðxÞe−iωt; ð5:1Þ

where the first-order correction to the outgoing amplitude
for a given mode w≡ ðω;l; mÞ is

Að1Þ
w ¼ slðζÞklþ1

Z
dtOð0Þ

lmðtÞeiωt; ð5:2aÞ

slðζÞ ¼
Γðlþ 1þ iζÞ

Γðlþ 1Þ e−πζ=2−iσlðζÞ: ð5:2bÞ

It is worth highlighting that the solution in Eq. (5.1) is
not of the form ϕ ¼ ϕ> þ c:c:; hence, Að1Þ

w implicitly
accounts for both positive- and negative-frequency modes.
Because the overall solution must be real, these coefficients
will have to satisfy a constraint analogous to Eq. (3.20).
Combining Eq. (A18) with the freedom to relabel ω → −ω
and m → −m as they are being integrated and summed
over, respectively, we arrive at the constraint

Að1Þ
ωlm ¼ e−πζð−1ÞlþmAð1Þ�

−ωl−m: ð5:3Þ

One can now verify that the solution in Eq. (5.2) adheres to
this constraint after using Eq. (3.20) along with the
identities ½ΓðzÞ�� ≡ Γðz�Þ and k�ðωÞ≡ −kð−ωÞ, the latter
following directly from the definition in Eq. (3.3).
To compute the rate _ESW at which energy is carried away

from the binary in the form of scalar waves, it is useful to
first recast the zeroth-order solution (3.14) into a form
similar to Eq. (5.1). The identity in Eq. (A18b) can be used
to rewrite the sum over continuum states as

ϕð0Þ
c ðxÞ ¼

X
w

2IwϕklmðxÞe−iωt; ð5:4Þ

where Iw ≡ Iωlm ¼ I>
ωlm þ eπζð−1ÞlþmI>�

−ωl−m implic-
itly accounts for the ingoing amplitudes of both positive-
and negative-frequency modes, and can be seen to satisfy
the requisite constraint

Iωlm ¼ eπζð−1ÞlþmI�
−ωl−m: ð5:5Þ

Taken in combination with Eq. (5.1), the full solution ϕ ¼
ϕð0Þ þ ϕð1Þ þ � � � for the continuum states has the form

ϕcðxÞ ¼
X
w

½Iwϕ
−
klmðxÞe−iωt þRwϕ

þ
klmðxÞe−iωt�; ð5:6Þ

whereRw ≔ Iw þAw is the total outgoing amplitude, with
Aw given to first order in the interactions in Eq. (5.2).

Now integrating the ðt; rÞ component of the scalar’s
energy-momentum tensor over a spherical shell of radius r
and taking the limit r → ∞, the time-averaged power loss is
given by the difference between the energy flux flowing
into and out of the system, _ESW ¼ _Eout

SW − _Ein
SW. These

quantities have simple expressions when integrated over
all time: Z

∞

−∞
dt _Eout

SW ¼
X
w

θðk2Þω
k
jRwj2; ð5:7aÞ

Z
∞

−∞
dt _Ein

SW ¼
X
w

θðk2Þω
k
jIwj2: ð5:7bÞ

A. Ejection of bound states

To better understand the physical implications of
Eq. (5.1), let us start by supposing—as we did in
Sec. IV C—that there is no ingoing radiation and only a
single bound state û is populated at zeroth order. In this
case, the outgoing radiation we compute represents the
portion of the scalar cloud that is being ejected out of the
system. The energy flux for this process is given to leading
order by

_ESW ¼ 1

2πδð0Þ
X
w

θðk2Þω
k
jAð1Þ

w j2; ð5:8Þ

where the delta function in the denominator is associated
with the integral over all time,

R
dt≡ 2πδð0Þ. Because this

formula is quadratic in Að1Þ
w , it is formally of second order

in the interactions, and thus _ESW will generally be smaller
than the rate _Eb at which energy extracted from the binary
fuels the growth of bound states, cf. Eq. (4.15). However,
this hierarchy becomes inverted when the scalar field is
sufficiently light, as we will show.
Since ζ and, consequently, σlðζÞ are real when k2 > 0

[100], taking the absolute square of Eq. (5.2a) yields

jAð1Þ
w j2 ¼ SlðζÞk2ðlþ1Þ

����
Z

dtOð0Þ
lmðtÞeiωt

����2: ð5:9Þ

One might recognize SlðζÞ≡ jslðζÞj2 as the Sommerfeld
enhancement factor [111–113], which may be rewritten as

SlðζÞ ¼
1

ðl!Þ2
πζe−πζ

sinhðπζÞ
Yl
j¼1

ðj2 þ ζ2Þ ð5:10Þ

after using standard identities for the gamma function
[111]. On the mathematical level, this factor arises naturally
in our calculations because the interaction terms involve
evaluating derivatives of Coulomb functions at the origin.
We run into difficulties, however, when attempting to
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assign to this factor its usual physical interpretation. We
elaborate further in later parts of this section.
When only a single bound state û is populated, a close

inspection of Eq. (3.22) reveals that mode mixing will
generate continuum states with frequencies in a discrete
set given by ωm ¼ jEn̂ þ ðm − m̂ÞΩj. As we argued at the
end of Sec. IV B, these continuum states are generated
alongside newly populated quasibound states u ≠ û, which
oscillate at the same set of frequencies jEn − Δuûj≡
jEn̂ þ ðm − m̂ÞΩj. The subset of these continuum states
with ωm > μ are radiation modes that propagate to infinity.
Substituting Eq. (3.22) into Eq. (5.8), the power in these
radiation modes is

_ESW ¼ 1

2μ

X
l;m

����Y�
lmðdÞY l̂ m̂ðdÞ
ð2lþ 1Þ!! Bll̂Rn̂ l̂ðm̂Ω − En̂Þcð0Þû

����2
× θðk2mÞ½SlðζmÞ þ Slð−ζmÞ�ωmk2lþ1

m ; ð5:11Þ

where km ≡ kðωmÞ and likewise ζm ≡ ζðωmÞ. (The inter-
mediate steps for this general type of calculation are
presented in Appendix C.)
As it stands, this result is not particularly illuminating. It

is perhaps most instructive to compare Eq. (5.11) to
Eq. (4.15), in which case one finds

_ESW

_Eb

¼
X
l;m

���� YlmðdÞ
ð2lþ 1Þ!!

����2 En̂B2
ll̂

2μ2Bl̂ l̂

ðm̂Ω − En̂Þ

× θðk2mÞ½SlðζmÞ þ Slð−ζmÞ�ωmk2lþ1
m : ð5:12Þ

Although this is a sum over infinitely many modes, it
suffices to keep only the lowest few values of l to obtain
a good approximation because the prefactor jYlmðdÞ=
ð2lþ 1Þ!!j2 decays rapidly like ∼1=ð2lþ 1Þ!. To proceed,
let us begin by analyzing the limiting behavior of a given
term in Eq. (5.12) when k2m > 0 and ζm ≫ 1. The sum of
Sommerfeld factors reads8

SlðζÞþSlð−ζÞ¼
1

ðl!Þ2 2πζ cothðπζÞ
Yl
j¼1

ðj2þζ2Þ; ð5:13Þ

which has the asymptotic form ∼2πjζj2lþ1 when ζ → ∞.
While it may be natural to want to think of this as
describing the usual Sommerfeld enhancement for low-
momentum modes (recall ζ ∝ 1=k), in the present context
there is no analogous process that occurs on flat space,
since bound states cannot form in the absence of the
binary’s gravitational potential. With this in mind, the
Sommerfeld factors appearing in Eq. (5.12) are perhaps
best regarded as simply an inevitable part of the result
rather than engendering any kind of enhancement.

Taking the limit ζm ≫ 1, the corresponding term in
Eq. (5.12) reduces to

���� YlmðdÞ
ð2lþ 1Þ!!

����2 En̂B2
ll̂

2μBl̂ l̂
2πðGMμ2Þ2lþ1ðm̂Ω − En̂Þ; ð5:14Þ

since ωm ≃ μ in this case. Power counting reveals that this
term scales with the EFT’s expansion parameters as
∼v5ða=λdBÞ2lþ1ðm̂ − μ=ΩÞ. Accordingly, for clouds with
m̂ ∼Oð1Þ and μ=Ω ≪ v−2 [cf. Eq. (2.4)], the rate at which
energy is carried away by low-momentum radiation is
parametrically suppressed relative to _Eb.
Indeed, each term in Eq. (5.12) is a monotonically

increasing function of km, so most of the energy is carried
away in high-momentum modes (ζm ≪ 1). In this limit,
SlðζÞ ∼ 1, and thus the corresponding term in Eq. (5.12)
reduces to

���� YlmðdÞ
ð2lþ 1Þ!!

����2 En̂B2
ll̂

μ2Bl̂ l̂

ωmk2lþ1
m ðm̂Ω − En̂Þ: ð5:15Þ

To assess the typical size of this term, it is instructive to
express it in terms of the ratio fμ ≔ μ=Ω. Also using the
definition ωm ¼ jEn̂ þ ðm − m̂ÞΩj and approximating
En̂ ≃ μ, Eq. (5.15) becomes

1

fμ

���� YlmðdÞ
ð2lþ 1Þ!!

����2 B
2
ll̂

Bl̂ l̂
Ω2lþ2ðm̂ − fμÞðfμ þ ΔmÞ

× ð2fμΔmþ Δm2Þlþ1=2; ð5:16Þ

where Δm ¼ m − m̂. This term scales as ∼v2lþ6 when fμ,
m̂, and Δm are all of order unity, meaning the rate at which
energy is carried away by high-momentum radiation is—in
this case—also parametrically suppressed relative to _Eb.
However, when fμ ≪ 1, the 1=fμ prefactor enhances this
term such that power loss to radiation can become
significant in comparison to _Eb. More precisely, a given
high-momentummode will extract energy from the cloud at
a rate greater than _Eb if 9

μ=Ω≲ v2lþ6 ≤ v6: ð5:17Þ

One may conclude from this simple scaling analysis that
scalar clouds cannot form dynamically around binary black
holes when the scalar field’s mass μ is sufficiently light, as
the rate at which the cloud is depleted via scalar radiation is

8This sum is even in ζ and ensures that physical results are
independent of our choice of sign for ω.

9This is a conservative upper bound that does not take the
possibility that B2

ll̂
can vanish into consideration. As an example,

if an equal-mass binary is surrounded by a cloud comprised of
only the û ¼ ð2; 1; 1Þ mode, one finds B01 ¼ 0; hence, energy is
predominantly radiated away in the l ¼ 1 modes. In this case,
_ESW becomes larger than _Eb only when μ=Ω≲ v8.
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greater than the rate at which it grows due to orbital
superradiance. As a rough guide, this occurs when
μ≲ 10−19 eVðv=0.1Þ3ðM⊙=MÞ.
Gravitational waves.—It is worth briefly remarking that

a scalar cloud will also emit gravitational waves due to the
oscillatory nature of its backreaction onto the spacetime.
When only the single bound state û is populated (and
further assuming l̂ ¼ m̂ for simplicity), the energy flux of
gravitational waves emitted by the cloud is [42,44]

_EGW ≃
Cû
G

�
Mû

M

�
2

ðGMμÞ4l̂þ10; ð5:18Þ

where Cû (< 1) is some dimensionless prefactor whose
exact form will not be important to us, but we note that
Cn00 ¼ 0. Comparing this with Eq. (4.15), we find
_EGW= _Eb∼ ðMû=MÞf4μv4l̂þ9. We should expect Mû=M<1

if the scalar is to behave like a test field around the binary,
and thus _EGW is generally much smaller than _Eb. Moreover,
unless l̂ ¼ 1 and fμ is close to the UV cutoff of this EFT
[cf. Eq. (2.4)], a comparison with Eq. (5.16) reveals that
_EGW is also typically smaller than _ESW.

B. Superradiant scattering

We now turn our attention to a different setup in which
the zeroth-order solution is given by a steady stream of
radiation. In realistic astrophysical scenarios, we would
expect an incident wave to be essentially planar on the
scales of the binary, but such a configuration turns out to be
difficult to analyze in the present context. Specifically,
because a plane wave can always be written as a linear
combination of spherical waves, this zeroth-order solution
will contain infinitely many modes that subsequently mix
into one another as a result of their interactions with the
binary. To render the following discussion more tractable,
we will consider a simpler, albeit more artificial setup that
should nevertheless suffice for illustrating the most salient
features. The more realistic case of plane waves is left for
future work.
With this in mind, let us consider a steady stream of

ingoing radiation peaked at the single mode ŵ≡ ðω̂; l̂; m̂Þ.
This corresponds to making the choice

I>
ωlm ¼ Φŵ2πδðω − ω̂Þδll̂δmm̂; ð5:19Þ

where Φŵ is in general some complex-valued coefficient
with dimensions of energy. It has previously been shown
that this ingoing wave can extract energy from the binary’s
orbital motion and undergo amplification under the right
conditions [66]. In this subsection, we extend the results of
Ref. [66] in several directions.
Amplification factor.—From Eq. (3.22), we learn that

a single ingoing mode ŵ will scatter into multiple out-
going modes with frequencies in a discrete set given by

ωm ¼ jω̂þ ðm − m̂ÞΩj. Included in this spectrum is the
original (or “primary”) mode with frequency ω̂≡ ωm̂,
which typically comprises the majority of the outgoing
energy flux as a result of its interference with the ingoing
radiation. Explicitly, one expands Eq. (5.7) to findZ

dt _ESW ¼
X
w

θðk2Þω
k
2Re I�

wA
ð1Þ
w þOðA2Þ: ð5:20Þ

Now substituting Eq. (3.22) into the above formula and
making use of the symmetries in Eqs. (5.3) and (5.5), we
obtain

_ESW¼ 2Re
j2Y l̂m̂ðdÞj2
ð2l̂þ1Þ!! Bl̂ l̂jΦŵj2sl̂ðζ̂ÞCl̂ðζ̂Þω̂k̂2l̂ðm̂Ω− ω̂Þ

ð5:21Þ

to first order in the interactions. (The details of this
calculation are presented in Appendix C.) As the
Gamow factor ClðζÞ≡ s�lðζÞ=ð2lþ 1Þ!! when ζ ∈ R,
the above expression is already real and can be further
simplified to read

_ESW ¼
���� 2Y l̂ m̂ðdÞ
ð2l̂þ 1Þ!!

����22Bl̂ l̂jΦŵj2Sl̂ðζ̂Þω̂k̂2l̂ðm̂Ω − ω̂Þ:

ð5:22Þ

To gain a sense of how much energy is exchanged
during this scattering process, it is instructive to compare
Eq. (5.22) to the total flux of ingoing radiation _Ein

SW,
an expression for which is also derived in Appendix C
[cf. Eq. (C14)]. This dimensionless ratio defines the total
amplification factor Z ≔ _ESW= _Ein

SW, which is given by

Z¼
�

2Sl̂ðζ̂Þ
1þe−2πζ̂

����� 2Yl̂m̂ðdÞ
ð2lþ1Þ!!

����2Bl̂ l̂k̂
2l̂þ1ðm̂Ω− ω̂Þ ð5:23Þ

in the case of a single ingoing mode ŵ. As was the case for
the growth rate Γu, this result is identical—up to a geo-
metric factor and appropriate identifications of Ω and M—
to the amplification factor for a long-wavelength scalar
field scattering off a single rotating black hole [33,73,114].
Note that the comparison can only be made for massless
scalars, however, as an analytic expression for the ampli-
fication of massive scalar waves by a Kerr black hole is not
presently known (to the best of our knowledge).
Returning to the result in Eq. (5.23), observe that a key

feature in the massive case is the appearance of the
Sommerfeld factor Sl̂. For high-momentum modes with
k̂ ≫ GMμ2 (ζ̂ ≪ 1), Sl̂ðζ̂Þ and the exponential e−2πζ̂

both reduce to unity such that we recover the result in
Ref. [66]. This limiting behavior signifies that the binary’s
long-range gravitational potential has negligible influence
on the amplification or absorption of high-momentum
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modes. For more general values of k̂, Eq. (5.10) may be
used to show that

2SlðζÞ
1þ e−2πζ

¼ 1

ðl!Þ2
2πζ

sinhð2πζÞ
Yl
j¼1

ðj2 þ ζ2Þ; ð5:24Þ

which has the asymptotic form ∼jζj2lþ1e−2πjζj when
ζ → ∞. This leads to an exponential suppression of the
energy carried away by low-momentum modes.
Interestingly, one might naively expect that the appear-

ance of SlðζÞ in Eq. (5.22) should lead to Sommerfeld
enhancement, but this is directly contradicted by the result
in Eq. (5.24), which we interpret as follows. In the classical
analog of Sommerfeld enhancement, we imagine a stream
of particles impinging on a star of radius R⋆ [113]. In the
absence of gravity, the geometric cross section σ0 ¼ πR2⋆ of
this star provides a measure of the fraction of particles that
collide with it and are subsequently absorbed. However, the
actual cross section σ for this interaction can be much
larger, especially for particles with low momenta, because
the star’s attractive gravitational potential is able to pull in
particles that have impact parameters greater than R⋆.
With this picture in mind, one should now expect no

analogous enhancement to occur in the present scenario. In
our setup, the ingoing mode ŵ is a spherical wave that is
already directed straight at the origin; hence, the presence
of the binary’s gravitational potential does nothing to affect
the amount of radiation that reaches it. While this argues for
the lack of Sommerfeld enhancement, it remains to explain
the suppression of low-momentum modes observed in
Eq. (5.24). Although the physical origin of this suppression
is still not fully understood, the most likely explanation is
that it is due to the conversion of radiation modes into
bound states [cf. the second line in Eq. (4.9)], which is
enhanced at low momenta. A full quantitative analysis is

needed to validate this interpretation, although such a task
is beyond the scope of this present paper.
Putting these conceptual issues aside, let us discuss the

likelihood of observing this energy exchange between the
binary and the scalar. As we discussed earlier in Sec. IV,
the particular geometry of the binary prevents it from
interacting with any long-wavelength mode whose angular
momentum is such that lþm ∉ 2Z. For the remaining
modes, amplification occurs if 0 < ω̂ < m̂Ω, in which case
the binary loses energy and inspirals more rapidly as a
result. Otherwise, there is a net absorption of the scalar by
the binary, which then gains energy and experiences a
slowing down of its inspiral. The feasibility of observing
either of these effects depends on the magnitude of _ESW
when compared to the outgoing flux of gravitational
radiation F . As a rough estimate, we should expect to
observe the influence of this energy exchange on the orbital
motion only if the ratio

_ESW

F
¼ Z

_Ein
SW

F
ð5:25Þ

is not too much smaller than unity.
The amplification factor Z is shown as a function of the

ingoing frequency for different values of the scalar field’s
mass in Fig. 3. As we did in Sec. IV C, we assume an equal-
mass binary composed of spherical black holes traveling
with orbital velocity v ¼ 0.1. The same reasoning as before
justifies limiting ourselves to this specific case. First, the
curves in Fig. 3 would all move downwards for smaller
values of v, so once again they represent the largest
possible values that can be reliably calculated using this
EFT. Moreover, the precise value of the binary’s mass ratio
has little effect on our overall conclusions, as Appendix D
argues.

FIG. 3. The amplification factor Z for a single ingoing radiation mode is shown as a function of its frequency ω in units of the binary’s
orbital frequency Ω. The binary itself is taken to be composed of spherical black holes of equal mass traveling with orbital velocity
v ¼ 0.1. The values of Z for the l ¼ m modes are shown for l ∈ ½1; 10� in the left panel, while in the right panel we plot the
corresponding values for the l ¼ −m modes in the range l ∈ ½0; 10�. In both panels, the amplification factors are shown for three
different values of the scalar field’s mass: μ ¼ 0 (solid lines), μ ¼ 0.1Ω (dashed lines), and μ ¼ Ω (dotted lines).
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In the left panel of Fig. 3, we see that amplification is most
pronounced for the l ¼ m ¼ 1 mode, which reaches a
maximum value Z ∼ 4 × 10−10 when ω ¼ 3Ω=4. As the
higher l ¼ m modes are less efficiently amplified, the
overall trend suggests that this orbital superradiant mecha-
nism continues to become increasingly insignificant even for
large frequencies ω≳ Ω=v beyond the EFT’s regime of
validity. Given the smallness of Z and the unlikelihood that
the ingoing flux _Ein

SW of scalar waves would match or exceed
the outgoing gravitational-wave flux F in realistic astro-
physical scenarios, we deduce that the amplification of long-
wavelength scalar fields is observationally inaccessible.
Granted, this conclusion is based on a rather artificial setup,
although it seems unlikely to changewerewe to consider the
more realistic case of plane waves.
In contrast, the right panel of Fig. 3 demonstrates that

absorption continues to become more efficient as ω
increases, naturally prompting us to ask: is there any
regime (possibly at some frequency ω≳ Ω=v outside the
EFT’s regime of validity) in which jZj and _Ein

SW are both
large enough that they can leave a measurable imprint on
the evolution of the binary? On a more theoretical level, it is
also interesting to ask: what is the maximum amount of
radiation that can be absorbed by a binary black hole in a
given time? Because the amplification factor is bounded
from below (Z ≥ −1), there are two possibilities for what
might occur in the high-frequency regime: either Z gradu-
ally tends to a minimum value (meaning absorption would
be most pronounced at high frequencies), or it has a turning
point (i.e., there is a critical frequency beyond which
absorption becomes less efficient again). The fact that
moving black holes can amplify high-frequency radiation
[115] (via what is essentially the slingshot effect) is a hint
that the latter may be more likely. These questions point to
potential directions for future work.
Secondary modes.—To complete our discussion on the

scattering of scalar waves, we ought to discuss the addi-
tional energy that is carried away by the secondary modes
w ≠ ŵ generated through mode mixing. Although their
contribution to the energy flux is typically subleading
because they first appear in _ESW at second order in the
interactions, the energy they carry can exceed that of the
primary mode if ω̂ is sufficiently small, as we now show.
Let us denote thisOðA2Þ correction to the energy flux as

_Eð2Þ
SW. The calculation is almost identical to that in Sec. VA

and the end result is found to be

_Eð2Þ
SW ¼ 1

2πδð0Þ
X
w

θðk2Þω
k
jAð1Þ

w j2 ð5:26Þ

¼
X
l;m

���� 2ΦŵY�
lmðdÞY l̂m̂ðdÞ

ð2lþ1Þ!!ð2l̂þ1Þ!!

����2B2
ll̂
Sl̂ðζ̂Þk̂2l̂ðm̂Ω− ω̂Þ2

×θðk2mÞ½SlðζmÞþSlð−ζmÞ�ωmk2lþ1
m ; ð5:27Þ

where the frequencies of the modes being summed over are
given by ωm ¼ jω̂þ ðm − m̂ÞΩj. To see that this second-
order correction can be much larger than the outgoing flux

at OðAÞ in Eq. (5.22), which we here denote by _Eð1Þ
SW, we

simply divide one by the other to find

_Eð2Þ
SW

_Eð1Þ
SW

¼
X
l;m

1

ω̂

���� YlmðdÞ
ð2lþ 1Þ!!

����2 B
2
ll̂

Bl̂ l̂
ðm̂Ω − ω̂Þ

× θðk2mÞ½SlðζmÞ þ Slð−ζmÞ�ωmk2lþ1
m : ð5:28Þ

Observe that Eq. (5.28) has the same mathematical
structure as Eq. (5.12); hence, the analysis will proceed
in a largely similar fashion. First, recall that while sums of
this kind are to be taken over infinitely many modes, a good
approximation can be obtained by keeping only the lowest
few values of l, since the higher multipoles are factorially
suppressed. Next, the fact that each term in Eq. (5.28) is a
monotonically increasing function of km signifies that most
of the energy carried away will be in the form of high-
momentum modes ðζm ≪ 1Þ.
Therefore, let us concentrate on a given term in

Eq. (5.28) and suppose that ζm ≪ 1. In terms of the
dimensionless ratio fω̂ ≔ ω̂=Ω, this term reads

1

fω̂

���� YlmðdÞ
ð2lþ 1Þ!!

����2 B
2
ll̂

Bl̂ l̂
Ω2lþ2ðm̂ − fω̂ÞðΔmþ fω̂Þ

× ½ðΔmþ fω̂Þ2 − ðμ=ΩÞ2�lþ1=2; ð5:29Þ

where Δm ¼ m − m̂. When fω̂, m̂, and Δm are all of order
unity, this term scales as ∼v2lþ6 and is thus parametrically
suppressed. However, if instead fω̂ ≪ 1 (and necessarily
μ=Ω < fω̂ if ŵ is to be a radiation mode), this term can
become arbitrarily large. As a result, the energy carried
away in a secondary mode of frequency ωm will dominate
over the energy carried by the primary mode ŵ when
ω̂=Ω≲ v2lþ6 ≤ v6.
This phenomenon is particularly interesting if ŵ is a

counterrotating mode satisfying m̂Ω − ω̂ < 0, since in this
case we would predict an amplification factor Z < 0 when
truncating to OðAÞ. However, if this ingoing mode has
ω̂≲ v6Ω, the outgoing energy flux is dominated by the
OðA2Þ term, which is positive definite, cf. Eq. (5.26). Thus,
we learn that energy is always extracted from the binary
during this kind of scattering process if the ingoing
frequency is low enough.

To be clear, while _Eð2Þ
SW can be very large relative to _Eð1Þ

SW,
its magnitude is still small in comparison to _Ein

SW and
further decreases as ω̂ → 0, meaning the actual amount of
energy that a low-frequency, counterrotating mode extracts
from a binary is always negligible. Nonetheless, this
calculation illustrates the kinds of rich physics that can
arise as a consequence of mode mixing.
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VI. DISCUSSION

While we now have a comprehensive picture of how
binary black holes evolve when in isolation, questions
about their dynamical response to external perturbations are
stimulating an emerging area of active research. The
benefits to be reaped from this enterprise are twofold.
First, the study of how ultralight fields influence the orbital
evolution of a binary provides us with the prospect of using
gravitational-wave detectors as tools to search for new
physics. Second, even in the absence of a discovery, this
kind of theoretical work offers new insight into general
relativity and the properties of gravitational systems.
In this paper, we tracked the evolution of a long-

wavelength scalar field living on a fixed binary black
hole background. The interplay between absorption at the
horizons and momentum transfer in the bulk gives rise to a
novel energy-extraction mechanism, which we have herein
dubbed “orbital superradiance.” It was previously shown
that this mechanism can lead to the amplification of
incident, low-frequency radiation [66]. The main novelty
in this work is a nonperturbative treatment of the binary’s
long-range gravitational potential, which facilitates an
extension of the results in Ref. [66] to include the formation
and evolution of bound states.
The key takeaway is as follows. Consider for simplicity

an incident spherical wave that is peaked at some frequency
ω̂ and has angular momentum specified by the integers
ðl̂; m̂Þ. Three effects are triggered when this scalar wave
scatters off a binary black hole. First, the ingoing mode is
reflected back out with an amplitude that is either amplified
or reduced. Amplification occurs if it corotates with the
binary at an angular phase velocity ω̂=m̂ smaller than the
binary’s orbital frequency Ω, while a net absorption of
the mode occurs otherwise. Second, owing to the inherent
lack of symmetries in this system,multiple secondary modes
are generated during scattering, which propagate outwards at
certain frequencies given by ωm ¼ jω̂þ ðm − m̂ÞΩj. Third,
a fraction of this ingoing wave is captured and converted
into (quasi)bound states. It is worth noting that the binary’s
“dumbbell” geometry establishes a selection rule that
requires the integer l̂þ m̂ to be even if any of these effects
are to take place, since field configurations that violate this
condition are unappreciable in the neighborhood of the
binary. Likewise, only secondary outgoingmodes and bound
states with angular momenta satisfying lþm ∈ 2Z are
generated during this scattering process.
The bound states that form around a binary subsequently

evolve in an intricate manner due to a combination of
three effects: First, orbital superradiance drives each bound
state to either grow or decay exponentially, depending
on its angular momentum. Second, the underlying geom-
etry of the spacetime allows different modes to mix into
one another, causing each bound state to exhibit a beating
pattern by virtue of oscillating at multiple frequencies.

For a scalar field of mass μ, the bound states with angular
momentum ðl; mÞ oscillate at frequencies given approx-
imately by ωm0 ≃ jμþ ðm −m0ÞΩj. Third, a fraction of
these bound states are inevitably upscattered and ejected
out of the system as scalar waves. (There is also a
concomitant emission of gravitational waves from the
cloud, although this is typically a subleading effect.) The
rate at which outgoing scalar radiation depletes the energy
in the scalar cloud can exceed the growth rates of the bound
states when μ is considerably smaller than Ω, in which case
scalar clouds can no longer form dynamically around the
binary.
All of these effects illustrate the rich phenomenology

that can arise in systems with horizons (or dissipative
channels, more broadly) when time-translation invariance
and rotational symmetry are weakly broken.10 Furthermore,
the calculations underpinning these results demonstrate the
usefulness of modern EFT methods in understanding the
dynamics of complex systems with multiple hierarchies of
scales. Unfortunately, they predict that orbital superra-
diance is grossly inefficient: the energy extracted from a
binary black hole to amplify incident scalar radiation or to
fuel the growth of bound states is always negligible for
systems within the EFT’s regime of validity. Moreover, the
trends in Figs. 2 and 3 suggest that this conclusion also
extends to scalar fields with higher frequencies or larger
masses, as long as the binary is in its early inspiral phase.11

While this is certainly disappointing from an observa-
tional standpoint, our results still constitute useful infor-
mation about which effects play an important role during a
binary’s lifetime. Besides, orbital superradiance is expected
to be just one of many phenomena that arise when a binary
is perturbed by an external field. There is still much to do
before a comprehensive survey of all of the effects that can
occur is in hand.
Natural next steps include relaxing some of the assump-

tions made in this paper. In particular, truncating to leading
order in perturbation theory led us to neglect any interaction
between the scalar field and the spins of the individual
black holes. However, it has been shown that ambient
matter generically exerts a “gravitational Magnus force” on
spinning black holes [116]; hence, the presence of an
external scalar field is likely to have an effect on the
precession of the binary’s orbital plane. Additionally, it is
conceivable that generalizing to the case of eccentric orbits

10In the sense that both symmetries are restored in the
EFT upon removal of the interaction terms, which we treated
perturbatively.

11Our perturbative approach breaks down when the binary is
closer to merger, although the way the growth rates and
amplification factors scale with the orbital velocity suggests that
they may become appreciable in this regime. While this may be
true, the binary does not remain in this stage for long and the
usual version of black hole superradiance quickly takes over once
the binary coalesces.
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or including gravitational radiation from the binary will also
teach us something new about how these systems interact
with external fields. That being said, it is important to temper
our expectations for observing any effect we study in this
long-wavelength limit, since the large separations of scales
inherent in this regime typically lead to strong power-law
suppression by the EFT’s expansion parameters.
Indeed, all work to date (including the upward trends in

the right panels of Figs. 2 and 3) point to the likelihood of
scalar fields with higher frequencies or larger masses
having a more dramatic impact on the orbital evolution
of a binary black hole; especially when resonant excitations
can occur [61,65]. Even so, studies in the long-wavelength
limit will continue to be of value moving forward. The fact
that we have a strong analytic handle on the problem in this
regime can be used to gain physical intuition for better
interpreting the results of numerical simulations, which
may be the only recourse in certain scenarios. Of particular
interest, for example, is the case of a scalar field whose
characteristic size is comparable to the binary’s orbital
separation. The general ideas and techniques found in this
paper could also find applications in other branches of
physics that involve open systems wherein one or more
spacetime symmetries are weakly broken.
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APPENDIX A: PROPERTIES OF THE
RADIAL SOLUTIONS

This Appendix provides a collection of useful identities
for the radial solutions to Eq. (3.2).
Limiting forms.—The identities in this first part have

all been reproduced or adapted from Ref. [100]. At large
distances (r → ∞), the R�

l solutions have the asymptotic
forms

R�
l ðk; rÞ ¼

H�
l ðζ; krÞ
�ikr

∼
e�iθlðζ;krÞ

�ikr
½1þOðr−1Þ�; ðA1Þ

θlðζ; krÞ ¼ kr − ζ logð2krÞ − lπ
2

þ σlðζÞ: ðA2Þ

If instead r → 0, the behavior of the radial solutions around
the origin may be inferred from the limiting forms of the
Whittaker functions. The solutions that are regular at the
origin are all proportional to

M−iζ;lþ1=2ðzÞ ¼ zlþ1½1þOðzÞ�; ðA3Þ

whereas the irregular solutions are proportional to

W−iζ;lþ1=2ðzÞ¼
Γð2lþ1Þ

Γðlþ1þ iζÞ×
�
z−l½1þOðzÞ� ðl≥ 1Þ;
1þOðz logzÞ ðl¼ 0Þ:

ðA4Þ

It is also useful to know the limiting behavior of these
solutions for small and large values of ζ. For ζ → 0 with k
held fixed (corresponding to a removal of the gravitational
potential), one has

R�
l ðk; rÞ ∼ h�l ðkrÞ; Rlðk; rÞ ∼ jlðkrÞ; ðA5Þ

where h�l are the spherical Hankel functions while jl is the
spherical Bessel function of the first kind. Instead taking
the low-momentum limit k → 0 (i.e., ζ → ∞ with M and μ
held fixed), one recovers the usual Bessel functions:

ð−ζÞleπζ=2−iσlðζÞ
Γðlþ 1 − iζÞ Rlðk; rÞ ∼

J2lþ1ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMμ2r

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2GMμ2r
p ; ðA6Þ

e∓iσlðζÞΓðlþ 1� iζÞ
�2πið−ζÞlþ1eπζ=2

R�
l ðk; rÞ ∼

Y2lþ1ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMμ2r

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2GMμ2r
p :

ðA7Þ

Note that the prefactor multiplying Rþ
l on the lhs of

Eq. (A7) has exactly the same k dependence as the outgoing

amplitude Að1Þ
w in Eq. (5.2), thus providing a good sanity

check that the solution in Eq. (5.1) is well behaved for all
values of k.
Derivatives.—The result for the induced multipoles in

Eq. (3.22) requires computing derivatives of the scalar field
evaluated at the origin. Because ∂L0ϕðt; 0Þ is contracted

with the STF product zhL
0i

N ðtÞ in Eq. (2.3), only the STF part
of the derivative contributes and note that we can write

∂hLiϕðt; 0Þ≡
Z

d3x δð3ÞðxÞ∂hLiϕðt;xÞ: ðA8Þ

Since both Rlðk; rÞ and RnlðrÞ are proportional to the
Whittaker function M, a good starting point is

Z
d3x δð3ÞðxÞ∂hL0i

�
M−iζ;lþ1=2ð−2ikrÞ

−2ikr
Ylmðx̂Þ

�
¼ ð−2ikÞll!ðYlm

L0 Þδll0 ; ðA9Þ

which follows from Eq. (A3) and the identity ∂LxL ¼ l!.
The definitions in Eqs. (3.6) and (3.10) can then be used to
show that

LEONG KHIM WONG PHYS. REV. D 101, 124049 (2020)

124049-18



4π

ð2l0 þ1Þ!!ðY
l0m0
L0 Þ�∂L0ϕklmð0Þ¼RlðkÞδll0δmm0

; ðA10aÞ

4π

ð2l0 þ 1Þ!! ðY
l0m0
L0 Þ�∂L0ψnlmð0Þ ¼ Rnlδ

ll0δmm0
; ðA10bÞ

where the coefficients on the rhs are given by

RlðkÞ ¼ ClðζÞkl; ðA11aÞ

Rnl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnþ lÞ!
2ðn − l − 1Þ!

s
ð2GMμ2Þlþ3=2

ð2lþ 1Þ!nlþ2
: ðA11bÞ

Complex conjugates.—Several instances in the main text
exploit identities for the complex conjugates of the mode
functions to obtain simplified expressions. These identities
are derived here. Combining the well-known identity

Y�
lmðx̂Þ≡ ð−1ÞmYl;−mðx̂Þ ðA12Þ

with the fact that RnlðrÞ is a real function tells us that the
complex conjugate of a bound-state mode function is

ψ�
nlmðxÞ≡ ð−1Þmψnl−mðxÞ: ðA13Þ

As for the continuum states, the identity [117]

½H�
l ðζ; zÞ�� ≡H∓

l ðζ�; z�Þ ðA14Þ
can be used to show that

½R�
l ðk;rÞ��≡R∓

l ðk�;rÞ; ½Rlðk;rÞ��≡Rlðk�;rÞ: ðA15Þ
These can be written in a more useful form by utilizing the
circuital relations [117,118]

Flðζ; zÞ≡ −eiπðlþiζÞFlð−ζ; ze−iπÞ; ðA16aÞ

Hþ
l ðζ; zÞ≡ e−iπðlþiζÞH−

l ð−ζ; ze−iπÞ ðA16bÞ

in conjunction with the identity k�ðωÞ≡ −kð−ωÞ, which is
a consequence of the definition in Eq. (3.3). Only the
results for Rþ

l and Rl are relevant for physical solutions.
They are

½Rþ
l ðk; rÞ�� ≡ eþiπðlþiζ̄ÞRþ

l ðk̄; rÞ; ðA17aÞ
½Rlðk; rÞ�� ≡ e−iπðlþiζ̄ÞRlðk̄; rÞ; ðA17bÞ

where we write k̄≡ kð−ωÞ and ζ̄≡ ζð−ωÞ as shorthand.
Combined with Eq. (A12), the complex conjugates of the
continuum-state mode functions are

ϕþ�
klmðxÞ ¼ e−πζ̄ð−1Þlþmϕþ

k̄l−mðxÞ; ðA18aÞ

ϕ�
klmðxÞ ¼ eþπζ̄ð−1Þlþmϕk̄l−mðxÞ: ðA18bÞ

APPENDIX B: RESUMMATION AND LATE-TIME
BEHAVIOR OF BOUND STATES

The growth of Γut in Eq. (4.12) invalidates our naive
perturbative approach once it becomes of order unity, even
though the expansion parameters enumerated in Sec. II all
remain small. This kind of secular growth turns out to be
generic in any system with an interaction Hamiltonian that
persists for all times [119]. For the scenario studied in this
paper, this late-time breakdown of perturbation theory
poses no threat because the binary will typically coalesce
well before Γut ∼ 1. That being said, on theoretical
grounds, it is interesting to explore how we might obtain
an approximate solution to Eq. (2.6) that remains valid at
late times. The general results may find application in
studies of other open systems whose lifetimes exceed 1=Γu.
The key is to carefully resum the dominant polynomial

behavior ∝ tp at each order p in perturbation theory while
neglecting subleading terms. Included in this set of terms
we will neglect are backreaction effects from the outgoing
radiation and Yukawa modes (see Sec. V), because they
contribute to cuðtÞ beginning only at second order.
Additionally, higher-order corrections to the formula for
the induced multipoles in Eq. (2.3), which are suppressed
by extra powers of v and GMω, can also be neglected. For
added simplicity, we will also assume no ingoing radiation
in this Appendix.
With these considerations in mind, resummation

amounts to looking for a solution to Eq. (2.6) of the form
ϕðxÞ ¼ P∞

p¼0 ϕ
ðpÞðxÞ, where each term in this series is

sourced by the previous term via the iteration

ϕðpþ1ÞðxÞ ¼
Z

d4x0Gðx; x0Þ
X∞
l¼0

ð−1ÞlOðpÞ
L ðt0Þ∂Lδ

ð3Þðx0Þ

þ ϕðpÞ
cf ðxÞ: ðB1Þ

This is, of course, simply a generalization of Eq. (3.1).
Accordingly, the coefficients for the bound states at order
pþ 1 are given by

cðpþ1Þ
u ðtÞ ¼

X
u0

Vuu0

2En

Z
t
dt0½ðm0Ω − En0 ÞcðpÞu0 − i _cðpÞu0 �

× ðeiΔuu0 t
0 − e2iEnteiðΔuu0−2EnÞt0 Þ ðB2Þ

after suitably generalizing Eq. (4.9). Rather than perform
this string of integrals, the trick is to now differentiate twice
to obtain

c̈ðpþ1Þ
u − 2iEn _c

ðpþ1Þ
u

¼ −i
X
u0
Vuu0 ½ðm0Ω − En0 ÞcðpÞu0 − i _cðpÞu0 �eiΔuu0 t: ðB3Þ

In the same way that Eq. (B1) is an iterative solution to the
equation of motion in Eq. (2.6), this set of differential
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equations in Eq. (B3) can be viewed as establishing an
iterative method (assuming V is suitably small) for solving
the master equation12

c̈u − 2iEn _cu ¼ −i
X
u0
Vuu0 ½ðm0Ω − En0 Þcu0 − i _cu0 �eiΔuu0 t:

ðB4Þ
This equation is strongly reminiscent of time-dependent

perturbation theory in quantum mechanics, albeit with two
key differences. First, the terms on the rhs can be regarded
as arising from some interaction Hamiltonian for the
system, whereby hujHintju0i ∝ −iVuu0e−iðm−m0ÞΩt. Given
that the diagonal elements Vuu are real, the prefactor of
−i indicates that Hint is not Hermitian—a necessary
condition for this system to exhibit nonunitary evolution.
The other key difference is that Eq. (B4) is clearly a set of
second-order, rather than first-order, differential equations,
reflecting the relativistic nature of this system.
To perform the requisite resummation, we now treat the

terms involving the diagonal elements Vuu on the rhs of
Eq. (B4) nonperturbatively. Moving them over to the lhs,
the master equation may be rewritten as

c̈u − ð2iEn − VuuÞ _cu þ 2iEnΓucu ¼ −iJu; ðB5Þ

where

JuðtÞ ¼
X
u0≠u

Vuu0 ½ðm0Ω − En0 Þcu0 − i _cu0 �eiΔuu0 t ðB6Þ

is independent of cu and can therefore be regarded as a
source term. To solve this equation, we begin by noting that
it is of the form

c̈u − ðγþ þ γ−Þ _cu þ γþγ−cu ¼ −iJu; ðB7Þ
where γ� are the two zeros of the characteristic polynomial
γ2� − ð2iEn − VuuÞγ� þ 2iEnΓu. As V ≪ En, it suffices to
use the approximate solutions

γþ ≃ 2iEn − ðΓu þ VuuÞ ¼ 2iEn þ Γū; ðB8aÞ

γ− ≃ Γu; ðB8bÞ

where we define ū≡ ðn;l;−mÞ as shorthand. For later
purposes, it will also be useful to define γu ≔ ðγþ − γ−Þ=2.
Now choosing boundary conditions such that cuð0Þ ¼ cð0Þu

and cuðtÞ → cð0Þu ∀ t in the limit V → 0, the solution to
Eq. (B7) is

cuðtÞ ¼ cð0Þu eγ−t þ i
2γu

Z
t

0

dt0ðeγ−ðt−t0Þ − eγþðt−t0ÞÞJuðt0Þ:

ðB9Þ

This is only a formal solution because Ju depends on the
other bound states u0 ≠ u, whose solutions are also given
by Eq. (B9). To obtain an explicit result, we iterate Eq. (B9)

in powers of V=γ ≪ 1. Starting with cuðtÞ ¼ cð0Þu eΓutþ
OðV=γÞ, after one iteration we find

cuðtÞ ¼ cð0Þu eΓut þ
X
u0≠u

Vuu0

2γu
ðm0Ω − Ẽu0 Þ

�
eiΔuu0 teΓu0 t − eΓut

Δ̃uu0

−
eiΔuu0 teΓu0 t − e2iEnteΓūt

Δ̃uu0 þ 2iγu

�
cð0Þu0 þOððV=γÞ2Þ;

ðB10Þ

where Ẽu ¼ En þ iΓu is the complex frequency of the
quasibound state and Δ̃uu0 is defined in the same way as
Δuu0 in Eq. (4.10) except with Ẽu in place of Eu. Having
carefully resummed the leading polynomial growth to all
orders, this solution is valid at late times t ≫ 1=Γu while
still being organized as a perturbative expansion in the
small parameter V=γ.
This resummed solution also brings with it a new

prediction. Let us denote the fastest-growing mode by
u⋆ and its growth rate by Γ⋆. The sum over u0 in Eq. (B10),
which quantifies the leading effects due to mode mixing,
then tells us that all modes satisfying Vuu⋆ ≠ 0 will grow at
the same rate Γ⋆ at late times, even if they were initially
decaying.13 While this is a nontrivial result for the system
of equations under study, it is irrelevant in the case of a
scalar cloud around a binary black hole because even the
shortest e-folding time 1=Γ⋆ is always orders of magnitude
greater than the orbital decay time scale 1=ΓGW. It would
therefore be interesting to explore if there are other open
systems that could survive long enough to exhibit this
universal growth rate at late times.

APPENDIX C: SCALAR-WAVE FLUX

Multiple instances in Sec. V call for the evaluation
of the power radiated to infinity in scalar waves. For the
sake of efficiency, we derive here a general formula for the
energy flux when it is sourced by a single bound state û or a
single ingoing radiation mode ŵ. In either of these cases,
the components of the induced multipoles take on the
general form12With the benefit of hindsight, this master equation can be

seen to follow more easily from substituting the ansatz ϕðxÞ ∝P
u½cuðtÞψuðxÞe−iEnt þ c:c:� directly into Eq. (2.6). However,

doing so obscures the fact that the bound states alone are not a
complete solution to the problem. As we discussed in Sec. VA,
the production of outgoing radiation is inevitable in this system.

13This phenomenon occurs when the OðV=γÞ terms dominate
over the first term in Eq. (B10). Nonetheless, our perturbative
expansion is still valid because the OððV=γÞ2Þ terms remain
subleading.
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Oð0Þ
lmðtÞ ¼ olme−iωmt − ð−1Þmo�l;−meiω−mt: ðC1Þ

When compared to Eq. (3.22), we see that the complex
coefficients olm and the real frequencies ωm are given by

olm¼ 1ffiffiffiffiffi
2μ

p Y�
lmðdÞY l̂m̂ðdÞBll̂

ð2lþ1Þ!! Rn̂ l̂ðm̂Ω−En̂Þcð0Þû ; ðC2aÞ

ωm ¼ En̂ þ ðm − m̂ÞΩ ðC2bÞ

for the case of a single bound state û≡ ðn̂; l̂; m̂Þ. If instead
we considered a single ingoing radiation mode ŵ≡
ðω̂; l̂; m̂Þ with I>

w given by Eq. (5.19), we would have

olm ¼ Y�
lmðdÞY l̂ m̂ðdÞBll̂

ð2lþ 1Þ!! Rl̂ðk̂Þðm̂Ω − ω̂Þ2Φŵ; ðC3aÞ

ωm ¼ ω̂þ ðm − m̂ÞΩ: ðC3bÞ

Substituting the general form for Oð0Þ
lmðtÞ in Eq. (C1) into

Eq. (5.2), the first-order correction to the outgoing ampli-
tude reads

Að1Þ
w ¼ slðζÞklþ1½2πδðω − ωmÞolm

− ð−1Þm2πδðωþ ω−mÞo�l;−m�: ðC4Þ

Because the energy flux is quadratic in the scalar field
[cf. Eq. (5.7)], there are contributions at first and second

order in Að1Þ
w . Written out explicitly, the total energy lost to

scalar radiation isZ
dt _ESW ¼

X
w

θðk2Þω
k
ð2ReI�

wA
ð1Þ
w þ jAð1Þ

w j2Þ: ðC5Þ

First order.—Let us begin by evaluating the term in

Eq. (C5) that is linear in Að1Þ
w . Using Eq. (C4), the power

loss at first order isZ
dt _Eð1Þ

SW ¼ 2Re
X
w

θðk2ÞslðζÞ½2πδðω − ωmÞolm

− ð−1Þm2πδðωþ ω−mÞo�l;−m�I�
wωkl: ðC6Þ

To proceed, we deduce from the definition of slðζÞ in
Eq. (5.2b) that slð−ζÞ ¼ s�lðζÞeπζ when ζ ∈ R (k2 > 0).
Combined with the freedom to relabel ω → −ω and
m → −m as they are being integrated and summed over,
respectively, we findZ

dt _Eð1Þ
SW ¼ 2Re

X
w

θðk2Þ2πδðω − ωmÞ½I�
ωlmslðζÞolm

þ eπζð−1ÞlþmI�
−ωl−ms

�
lðζÞo�lm�ωkl: ðC7Þ

The identity in Eq. (5.5) may now be used to show
that the terms in square brackets are complex conjugates
of one another, and thus this expression further sim-
plifies toZ

dt _Eð1Þ
SW ¼ 4Re

X
w

θðk2Þ2πδðω − ωmÞolmslðζÞωklI�
w:

ðC8Þ

Of course, this general result is valid only for induced
multipoles sourced by a single bound state û or a single
ingoing radiation mode ŵ. If the former, we would have

I�
w ¼ 0 ∀ w, meaning Að1Þ

w contributes linearly to the
energy flux only if it interferes with ingoing radiation.
Performing the sum over w in Eq. (C8), we pick up a single
nonvanishing contribution at the frequency ωm̂ ≡ ω̂, which
yields

_Eð1Þ
SW ¼ 4Re sl̂ðζ̂Þω̂k̂l̂ol̂ m̂Φ�

ŵ: ðC9Þ

In obtaining this result, notice that the delta function 2πδð0Þ
contained implicitly in I�

ω̂ l̂ m̂
cancels against the integral

over all time,
R
dt≡ 2πδð0Þ.

Second order.—In the absence of ingoing radiation,
the leading contribution to the energy flux is quadratic
in Að1Þ

w . Taking the absolute square of Eq. (C4), one
finds

jAð1Þ
w j2 ¼ SlðζÞk2ðlþ1Þð2πÞ2½δðω − ωmÞδð0Þjolmj2

þ δðωþ ω−mÞδð0Þjol;−mj2�: ðC10Þ

To arrive at this result, we use the fact that the cross
terms proportional to δðω − ωmÞδðωþ ω−mÞ may be
discarded because they have nonoverlapping support.14

It then follows that

_Eð2Þ
SW ¼ 1

2πδð0Þ
X
w

θðk2Þω
k
jAð1Þ

w j2 ðC11Þ

¼
X
w

θðk2ÞSlðζÞωk2lþ1jolmj2

× ½2πδðω − ωmÞ þ 2πδðωþ ωmÞ�; ðC12Þ

after also using the freedom to relabel m → −m. To
simplify this result one step further, we note that the
product ωk2lþ1 is invariant under the transformation
ω → −ω, whereas ζ changes sign; hence, we may easily
perform the integral over ω to obtain

14The frequencies generally satisfy the condition ωm ≠ −ω−m
except when m̂Ω − En̂ ¼ 0 or m̂Ω − ω̂ ¼ 0, in which case the
coefficient olm vanishes.
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_Eð2Þ
SW ¼

X
l;m

θðk2mÞ½SlðζmÞ þ Slð−ζmÞ�jolmj2ωmk2lþ1
m ;

ðC13Þ
where km ≡ kðωmÞ and likewise ζm ≡ ζðωmÞ.
Ingoing flux.—The ratio of _ESW to _Ein

SW is often a useful
measure. For a single ingoing mode ŵ, the latter is given by
substituting Eq. (5.19) into Eq. (5.7b). After neglecting
cross terms that involve products of delta functions with
nonoverlapping support, the end result is

_Ein
SW ¼ ω̂

k̂
jΦŵj2ð1þ e−2πζ̂Þ; ðC14Þ

where the exponential arises from the identity in Eq. (5.5).

APPENDIX D: DIFFERENT MASS RATIOS

For a binary composed of spherical (sph) black holes, the
growth rate of the u≡ ðn;l; mÞ mode may be written as�

Γu

ΓGW

�
sph

¼ nlðνÞ
ν

���� YlmðdÞ
ð2lþ 1Þ!

����2 5πðnþ lÞ!
ðn − l − 1Þ!4n2lþ4

× v8lþ10f4lþ5
μ ðm − fμÞ ðD1Þ

in terms of the dimensionless parameters v, ν≔M1M2=M2,
and fμ ≔ μ=Ω. Similarly, the amplification factor for the
w≡ ðω;l; mÞ mode is

Zsph ¼ nlðνÞ
�

2SlðζÞ
1þ e−2πζ

����� YlmðdÞ
ð2lþ 1Þ!!

����2 32π4l
× v2lþ6ðf2ω − f2μÞlþ1=2ðm − fωÞ: ðD2Þ

In this case, the expression depends on the four dimension-
less quantities v, ν, fμ, and fω ≔ ω=Ω, and we note that
ζ ≡ −v3ðf2ω=f2μ − 1Þ−1=2. In both formulas, the effect of the
symmetric mass ratio ν enters via the same function

nlðνÞ≔8ν2½ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−4ν

p
Þ2l−2þð1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1−4ν

p
Þ2l−2�; ðD3Þ

which is normalized such that nlð1=4Þ ¼ 1.

The additional prefactor of 1=ν in Eq. (D1) causes the
ratio Γu=ΓGW to diverge in the limit ν → 0. This singularity
is unrelated to Γu and is due entirely to ΓGW. Physically, it is
reflecting the fact that the time scale over which the orbit
shrinks becomes infinite in the limit of a test particle around
a host black hole. It follows that Γu and Z are both
proportional to nlðνÞ; hence, our discussion will focus
purely on this function’s properties.
It presents three different classes of behavior depending

on the value of l. When l ¼ 0, the largest value of n0ðνÞ ¼
2–4ν in the domain ν ∈ ð0; 1=4� coincides with ν ¼ 0. This
behavior has a simple physical interpretation: for a binary
with fixed total mass M, a smaller symmetric mass ratio
leads to a larger combined area for the black hole’s
horizons. In other words, that n0ðνÞ is maximized when
ν ¼ 0 simply corroborates the fact that absorption is more
efficient when there is a larger horizon area. Note, however,
that the value of this function only changes by a factor of 2
in the domain ν ∈ ð0; 1=4�.
When l ¼ 1, one finds n1ðνÞ ¼ 16ν2, which is maxi-

mized when the binary’s components have equal masses
(ν ¼ 1=4). For l ≥ 2, this function always has a maximum
somewhere in the domain ν ∈ ð0; 1=4�. Numerically,
we find maxnlðνÞ ∼ expð1.4l − 2.0 logl − 1.5Þ when
l ≫ 1, which can be quite a large number. For instance,
maxn20ðνÞ ∼ 109.
What does this mean for the conclusions in the main

text? Given that n1ðνÞ is maximized for equal-mass
binaries, the growth rates for the l ¼ 1 modes (shown
in Fig. 2) and the amplification factors for the same modes
(shown in Fig. 3) are indeed the largest values possible
within the EFT’s regime of validity. For larger values of l,
carefully selecting an optimal value for ν can enhance the
growth rates and amplification factors relative to the equal-
mass case, but this enhancement grows exponentially with
l at best, which is still no match for the factorials in the
denominators of Eqs. (D1) and (D2). Consequently, the
general trend remains unchanged: the maximum value
that Γu or Z can attain decreases rapidly as we increase
μ or ω.
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