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In the present article, we study the orbital resonance that corresponds to an extended object
approximated up to the dipole order term in Kerr spacetime. We start with the Mathisson-Papapetrou
equations under the linear spin approximation and primarily concentrate on two particular events: first,
when the orbits are nearly circular and executing a small oscillation about the equatorial plane and second, a
generic trajectory confined on the equatorial plane. While in the first case, all three fundamental
frequencies, namely, radial Ωr, angular Ωθ, and azimuthal Ωϕ can be commensurate with each other and
give rise to the resonance phenomenon, the later is only accompanied with the resonance between Ωr and
Ωϕ as we set θ ¼ π=2. We provide a detailed derivation in locating the prograde resonant orbits in either of
these cases and also study the role played by the spin of the black hole. The implications related to spin-spin
interactions between the object and black hole are also demonstrated.
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I. INTRODUCTION

In the strong field regime where the effects of gravity are
inescapable, the motion of test particles can be attributed to
many nontrivial consequences such as precession, spiraling
of orbits, resonance, chaos, and so on [1–6]. Even if these
investigations related to the trajectories of test particles are
not present-day concerns but rather contained with exten-
sive literature spanned over last several years [7,8], there
are relevant studies with possible observational aspects yet
to be explored [9,10]. Regarding the observational impli-
cations, there are proposed mission such as The Laser
Interferometer Space Antenna (LISA) which aims to probe
extreme mass ratio binaries in the near future as well [11–
13]. However, any attempt to explain the phenomenon that
involves incomparable masses would require one to grasp
the theoretical structure of particle trajectories as well.
While in many cases, it is appropriate to consider that the
lighter companion as a point test particle that moves along a
geodesic trajectory, the addition of higher order moments
may introduce larger accuracy in estimating any measur-
able quantities. These higher order moments can originate
from the nontrivial internal structure of the body repre-
sented by its energy-momentum tensor Tμν while their
dynamics can be derived from the conservation equation
∇μTμν ¼ 0. By expanding Tμν about a reference point
located inside the object, say zμðtÞ, the zeroth order term of

the conservation equation would produce the geodesic
equation while the first order introduces the Mathisson-
Papapetrou equations accordingly [14,15]. The next order
contribution arise from the quadrupole moment and would
be given by the Mathisson-Papapetrou-Dixon equations
[16–18]. However, in the present article, we only consider
the first order correction to the geodesic equations as
introduced by the nonzero spin or dipole moment of the
particle Sμν given as [15]

Sμν ¼
Z

rμT0νd3x −
Z

rνT0μd3x; ð1Þ

with both μ and ν running from 0 to 3. The scaled energy-
momentum tensor T0μ ¼ ffiffiffiffiffiffi−gp

T0μ, with g being the deter-
minant of the metric, is integrated over the spacelike
hypersurface represented by t ¼ constant slices. The dipole
moment is computed about a reference point zμðtÞwhile the
distance between zμðtÞ and any given mass point is given
by rμ which contains no time component according to the
definition.
From a theoretical standpoint, the astrophysical objects

are likely to have a finite size and therefore it is appropriate
to consider additional moments such as dipole, quadrupole,
and so on. While particles with only mass monopole are
named as monopole particles, the addition of dipole and
quadrupole moment would introduce a pole-dipole, i.e., a
spinning particle, and a pole-dipole-quadrupole particle,
respectively. However, in the present context we shall only
discuss some aspects of pole-dipole or spinning particles
and not consider the quadrupole moment. The motion of a
spinning particle constitutes an interesting problem and has
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been studied extensively in literature [19–22]. With the
pioneering work by Papapetrou in 1951 [15], the early
contributions from Mathisson [14], Ehlers and Rudolph
[23] and Dixon [24] are also worth mentioning. In recent
times, there have also been significant studies regarding
several aspects of spinning particles and their nontrivial
features [25–37]. For an excellent overview on the subject,
we refer our readers to Refs. [38–40]. In one way, it
emerges as an engaging theoretical implication with pos-
sible usefulness in explaining the motion of objects with
nontrivial internal structure and also paves the way for an
extreme mass ratio inspiral in general [41].
In the present article, we aim to study the resonant orbits

for a spinning particle in the Kerr background, and for
computational convenience, we restrict our discussions to
two major aspects: first, the resonance between different
small oscillation frequencies corresponding to nearly cir-
cular orbits close to the equatorial plane and second, the
resonance between radial and azimuthal frequencies con-
sidering the trajectories are completely confined on the
equatorial plane of the black hole. In the former, it is
possible to encounter the resonance in between radial Ωr
and angular Ωθ as well as azimuthal Ωϕ frequencies, while
in the later, it is only betweenΩr andΩϕ. Out of these three
frequencies, the radial and angular are known as libration
frequencies, while the later Ωϕ can be thought of as a
rotational frequency. The correspondence between these
frequencies would lead to the occurrence of resonance
phenomenon in astrophysical scenarios. In particular,
whenever the ratio of any of these frequencies becomes
a rational fraction, the orbits become resonant. For exam-
ple, with the rϕ resonance, the principle equation is given
as Ωr=Ωϕ ¼ n=m, where both n and m are a rational
number with no common divisor.
With the above motivation, let us now introduce the

physical notion of resonance in astrophysical scenarios and
also highlight its importance in the present context as well.
Apart from astrophysical settings, the events like resonance
are usually encountered in vibrations of strings and coupled
oscillations [42]. For example, in case of a forced vibrating
oscillator, the resonance becomes dominant whenever the
natural frequency of the system becomes nearly equal to
the frequency of the forced oscillation. Similar to this, the
weakly coupled oscillators can also undergo resonance
phases whenever their individual frequencies are compa-
rable to each other. On the other hand, any external pertur-
bation may introduce nonintegrability in the Hamiltonian
and the system may encounter chaos. However, for a
sufficiently small perturbation, the system may remain
nearly integrable and the notion of a separability constant
(also known as a Carter constant in the black hole
spacetime) may still approximately exist [43–45]. In the
case of a spinning particle with Tulczyjew-Dixon supple-
mentary condition, the Carter-like constant can be defined
as far as the OðS2Þ terms are neglected [30,46–48].
However, for other supplementary conditions, the spin of

the particle may introduce chaos in the system [49,50].
Nonetheless, as the present analysis only considers the
Tulczyjew-Dixon condition, the system can be considered
integrable within the linear spin approximation. This would
allow us to obtain the resonant orbits similar to the case
of geodesic trajectories as given in Ref. [5]. It is of
significant interest to locate the resonant orbits as it is
likely that these orbits will witness the breakdown of phase
space tori for the first time if the system undergoes any
chaos [51–54].
Earlier in literature, several implications related to

resonance activities were addressed in various aspects
[55–57]. As already mentioned, the orbital dynamics in
a Kerr black hole depends on three fundamental frequen-
cies relating three spatial components and therefore, there
could exists different types of resonant orbits. The rθ
resonant orbits are studied in Ref. [5] whereas the θϕ
and rϕ resonances are addressed in Refs. [57,56] respec-
tively. In Refs. [56,57], the black hole kicks are also
studied for an extreme mass ratio inspiral considering
the lighter companion follows a geodesic orbit. For an
investigation related to the resonance in between the spin
precession frequencies and orbital frequencies of a spinning
particle, we refer our readers to Ref. [58] for a better
understanding. However, as far as the analysis in the
present article is concerned, we would only consider the
resonance between orbital fundamental frequencies of a
spinning particle and the effect of the spin precession
frequency is excluded.
The rest of the paper is organized as follows. In Sec. II,

the basic governing equations of a spinning particle are
introduced along with various implications such as spin
supplementary condition and conserved quantities. These
equations are exactly solved on the equatorial plane of the
Kerr black hole and the effective radial potential is also
obtained for further calculations. Following this in Sec. III,
we introduce the machinery to obtain the fundamental
frequencies and orbital resonance for any trajectory in a
black hole’s spacetime. In particular, we studied two
different events corresponding to a spinning object: first,
the small oscillation frequencies for a particle orbiting in
nearly circular orbits close to the equatorial orbits and
second, a general motion confined on θ ¼ π=2 ¼ constant
plane. Section IV is devoted to exploring the resonance
phenomenon related to the first case while in Sec. V, the
rϕ resonances are elaborately studied. In the later, the
approximation technique, namely the Sochnev method, is
employed to evaluate the integrals on the equatorial plane
of the black hole. We conclude the article with a brief
remark in Sec. VI.

II. MOTION OF A SPINNING PARTICLE IN A
GRAVITATIONAL FIELD

The motion of a spinning particle is described by the
Mathisson-Papapetrou equations
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DPa

dτ
¼ −

1

2
Ra
bcdU

bScd;
DSab

dτ
¼ PaUb − PbUa; ð2Þ

where Pa and Ua correspond to the four momentum
and four velocity of the particle respectively, Sab is the
spin tensor of the extended object relating to the dipole
moment, and Ra

bcd has the usual meaning of Riemann
curvature tensors corresponding to the background geo-
metry. Furthermore, it should be emphasized that the above
set contains a total of 10 equations while we have 14
(6 from the spin, 4 from the four velocity, and 4 from
the four momentum) unknowns to solve, and therefore,
additional conditions are required. These are called spin
supplementary condition s and in the present context, we
shall employ the Tulczyjew-Dixon condition SijPj ¼ 0 to
solve Mathisson-Papapetrou equations around the Kerr
black hole [59]. While a supplementary condition only
gives three independent constraints, the fourth comes from
the choice of the time parametrization [60]. In the present
article, we have employed the parametrization introduced
in Ref. [23] and later employed in Refs. [30,32]. This is
given as PiU i ¼ −μ, where μ is the conserved mass as
given by PiPi ¼ −μ2. Let us now introduce the notion of
spin vector Si for simplified computations; it is related with
the spin tensor as follows [30,32]:

Si ¼ 1

μ
ffiffiffiffiffiffi−gp ϵijklPjSkl; ð3Þ

where g is the determinant of the background metric. For
the particle confined on the equatorial plane, it is conven-
ient to assume that the spin vector follows Si ¼ ð0; 0; Sθ; 0Þ
which indicates that the spin is either parallel or antiparallel
to the black hole’s rotational axis.
In addition, the symmetries associated with the back-

ground geometry will give rise to the conserved quantities
such as energy and momentum. The compact expression
for any conserved quantity C related to a killing vector field
Ki can be written as

C ¼ KiPi −
1

2
SijKi;j; ð4Þ

where the contribution from the spin can be easily spotted
[61,62]. It should also be noted that the total spin per mass
of the particle, i.e., S2 ¼ ðSiSiÞ=μ2 is conserved along the
trajectory of the particle as it can be established from the
Tulczyjew-Dixon supplementary condition. With all this
machinery, one should be able to solve the Mathisson-
Papapetrou equations and also establish a relation between
the four velocity and four momentum of the particle. In the
present context, we only state the final results correspond-
ing to the components of four velocity of the particle while
the full derivations can be found in Ref. [32]. On the
equatorial plane, these equations are given as

ðΣsΛsU1Þ2 ¼ Rs ¼ P2
s − Δ

�
Σ2
s

r2
þ fJz − ðaþ SÞEg2

�
;

ðΣsΛsU0Þ ¼ a

�
1þ 3S2

rΣs

�
fJz − ðaþ SÞEg þ r2 þ a2

Δ
Ps;

ðΣsΛsU3Þ ¼
�
1þ 3S2

rΣs

�
fJz − ðaþ SÞEg þ a

Δ
Ps; ð5Þ

where a andM are angular momentum and mass parameter
of the black hole respectively, and E and Jz are given as
energy and momentum per mass of the particle. In the
above, we assume (0,1,2,3) are ðt; r; θ;ϕÞ respectively. The
expressions for Ps and Σs are given as

Ps ¼ E

�
r2 þ a2 þ aSþ aSM

r

�
−
�
aþMS

r

�
Jz;

Σs ¼ r2ð1 −MS2=r3Þ; Δ ¼ r2 þ a2 − 2Mr;

Λs ¼ 1 −
3MS2r
Σ3
s

fJz − ðaþ SÞEg2: ð6Þ

For S > 0, the spin is parallel to the z axis, and antiparallel
for S < 0. In addition, to guarantee that the timelike
constraint U iU i < 0 is always valid, we have the following
condition to hold:

r5ð1 −MS2=r3Þ4
− 3MS2ð2þMS2=r3ÞfJz − Eðaþ SÞg2 > 0: ð7Þ

Needless to say, the above condition further constrains the
motion of the particle, and, especially close to the horizon,
it becomes more dominant [35].

III. RESONANCE PHENOMENON AND
FUNDAMENTAL FREQUENCIES

The general condition for resonance can be written in
terms of the fundamental frequencies, such that

αΩr þ βΩθ þ γΩϕ ¼ 0; ð8Þ

where α, β, and γ are rational numbers without any
common divisors. For a limiting case on the equatorial
plane, Ωr and Ωϕ would be of particular interest, while Ωθ

has no meaning. On the other hand, for circular orbits,Ωr is
not particularly relevant and Ωθ and Ωϕ play the key role in
the orbital dynamics. In the present context, we shall be
interested in following investigations:

(i) The quasiperiodic oscillations for spinning particles
and the locations of resonant orbits from the con-
dition given by Eq. (8).

(ii) Location of resonant orbits on the equatorial plane
following the condition αΩr þ γΩϕ ¼ 0which is the
rϕ resonance.

RESONANT ORBITS FOR A SPINNING PARTICLE IN KERR … PHYS. REV. D 101, 124047 (2020)

124047-3



In the first case, we consider that the particle is following a
nearly circular orbit, and also executing small oscillation
about the equatorial plane. The detailed calculations to
obtain the fundamental frequencies are given by Hinderer
et al. in Ref. [63], and we explicitly employ them in our
purpose. We study the resonance phenomenon related to
these frequencies in Sec. IV. However, as already men-
tioned, the present analysis is valid only at OðSÞ, i.e.,
jSj ≪ 1, which is exactly the appropriate regime to describe
an extreme mass ratio system through the Mathisson-
Papapetrou equations [24].
In the case of a generic elliptical orbit, we may intro-

duce the following expressions for radial and azimuthal
frequencies:

Ωr ¼
2π

Tr
; and Ωϕ ¼ Δϕ

Tr
; ð9Þ

where Tr ¼ 2
R rp
ra ðdtdrÞdr andΔϕ ¼ 2

R rp
ra ðdϕdrÞdr, and ra and

rp are the apastron and periastron radii respectively [64,65].
In this case, the rϕ resonance would be governed by the
equation

mΩr − nΩϕ ¼ 0; ð10Þ

wherem and n are two integers constrained as n ≤ m. More
conveniently, the above equation can be written as

mπ − n
Z

ra

rp

dϕ
dr

dr ¼ 0: ð11Þ

The second term in the above expression can be written as

dϕ
dr

¼
�
dϕ
dτ

��
dr
dτ

�
−1
; ð12Þ

with τ being the proper time. By comparing with the para-
metrization given in Sec. II, there seems to exist an apparent
contradiction. However, it can be further explained as
follows: given that the parametrization PiU i ¼ −μ is valid,
the affine parameter is given by σ—which may not be the
proper time. Therefore, U i is a tangent to the curve, but not
the four velocity. In particular, the Mathisson-Papapetrou
equations can now be written as

DPa

dσ
¼ −

1

2
Ra
bcd

�
dxb

dσ

�
Scd;

DSab

dσ
¼ Pa

�
dxb

dσ

�
− Pb

�
dxa

dσ

�
: ð13Þ

However, with the relation

d
dσ

¼ dτ
dσ

d
dτ

ð14Þ

being introduced, the above equation can be casted again as
Eq. (2), provided that ðdτ=dσÞ is nonzero. Therefore, the
time parametrization given in Sec. II can be employed to
describe usual dynamics of a spinning particle. Moreover,
in the present context, we have only considered terms up to
linear order in spin, and therefore, the parametrization with
respect to both τ and σ would have the same result. Coming
back to Eq. (12), it can be further simplified by introducing
the orbit equations in terms of energy, angular momentum,
spin, and the radial coordinate r. However, it is evident that
the quantity dr=dτ is proportional to the radial potential,
which in fact vanishes at the turning points ra and rp. This
constitutes a serious problem while integrating the function
that blows up in the upper and lower limits. We shall use
approximate technique, namely the Sochnov method, to
deal with such scenarios.

IV. NEARLY CIRCULAR AND EQUATORIAL
ORBITS AND RESONANCE CONDITIONS

Let us now consider the nearly circular and equatorial
orbits for spinning particles and determine the small
oscillation frequencies accordingly. For this purpose we
shall assume the spin vector has the form S ¼ ð0; 0; Sθ; 0Þ
and the four velocity can be written as U i ¼ ðU0; 0; 0;U3Þ.
In addition, we shall approximately write the frequencies
up to the linear order in spin while neglecting all the higher
order terms.

A. Fundamental frequencies Ωr, Ωθ, and Ωϕ

We now introduce the fundamental frequencies as given
in Ref. [63]. Given that we are only considering the terms
linear in spin, the frequencies for both corotating and
counterrotating orbits take the following form:

Ω2
r

Ω2
ϕ

¼ ðrc − 6MÞrc − 3a2 � 8a
ffiffiffiffiffiffiffiffiffi
Mrc

p
r2c

þ 6Sð� ffiffiffiffiffiffiffiffiffi
Mrc

p
− aÞ½ðrc − 3MÞ ffiffiffiffi

rc
p � 2a

ffiffiffiffiffi
M

p �
r7=2c

þOðS2Þ; ð15Þ

Ωϕ

Ωθ
¼ rcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3a2 ∓ 4a
ffiffiffiffiffiffiffiffiffi
Mrc

p þ r2c
p −

3aSf�2a
ffiffiffiffiffi
M

p þ ðrc − 3MÞ ffiffiffiffi
rc

p gffiffiffiffi
rc

p f3a2 ∓ 4a
ffiffiffiffiffiffiffiffiffi
Mrc

p þ r2cg3=2
þOðS2Þ; ð16Þ

Ωϕ ¼
ffiffiffiffiffi
M

p

r3=2c � a
ffiffiffiffiffi
M

p ; ð17Þ
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where rc is the radius of the circular orbit about which the
spinning particle is executing small oscillation and upper
and lower sign corresponds to corotating and counter-
rotating orbits respectively. In the next section, we employ
the above frequencies to obtain the resonant orbits for a
spinning particle.

B. Locations of the resonant orbits

Having described various frequencies corresponding to
the small oscillation of a spinning particle, we can now
demonstrate the resonant orbits depending on their spin
parameters and a black hole’s angular momentum. In
Fig. 1, the corotating resonant orbits are depicted as a

(a) (b)

(c)

FIG. 1. Location of corotating resonant orbits for different spin parameters and a black hole’s momentum. Here, we have used
Eqs. (15), (16), and (17) to obtain images. Distinguishing features related to various resonances are also depicted for different orders.
The blue, red, and brown colors are related to 1∶2, 2∶3, and 5∶7 resonance order respectively. In the inset of each plot, we have plotted
the closeup curve for 1∶2 resonance. (a) rθ resonant orbits are shown as a function of the black hole’s momentum while the spin of the
particle takes different values. (b) rϕ resonance for different spins of the extended object. (c) θϕ resonance is depicted as a function of
the black hole’s momentum.
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function of the black hole’s momentum while the spin
parameter takes different values. The significance of the
resonant orders are also demonstrated for rθ, rϕ, and θϕ
resonances in Figs. 1(a)–1(c) respectively. Given a larger
order, the orbits move away from the horizon and as it is
shown in Fig. 1, this is true for each of the resonance
frequencies. Furthermore, it should also be emphasized that
both rθ and rϕ follow an identical behavior while the θϕ
consists with a stark contrast from them. While in case of
the rθ and rϕ resonances, the orbits begin to move closer to

the event horizon as one increases the black hole’s
momentum, nearly opposite phenomena happens for θϕ.
This is related to the fact that a larger momentum of the
black hole drags the prograde orbits close to its horizon
while the opposite is true for retrograde orbits. Because of
the presence of r in both rθ and rϕ resonances, this nature
is largely influential in either of these cases. But in case of
θϕ resonance, this is no longer valid and the orbits behaves
quite differently from rθ and θϕ resonances. Similarly, the
resonant orbits for the counterrotating trajectories are given

(a) (b)

(c)

FIG. 2. Counterrotating resonant orbits as a function of the black hole’s angular momentum and different spin of the extended object.
As expected, with the increase of the black hole’s momentum, the orbits move away from the horizon. (a) rθ resonance in
counterrotating orbits for different spin parameters. (b) rϕ resonance as a function of the black hole’s angular momentum. (c) ϕθ
resonant orbits for different spins of the secondary object.
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in Fig. 2. Interestingly, θϕ resonance has now becomes ϕθ.
Mathematically, this is straightforward to understand from
the relation given in Eq. (16), which stands as follows for
the spinless case:

Ωϕ

Ωθ
¼ rcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3a2 ∓ 4a
ffiffiffiffiffiffiffiffiffi
Mrc

p þ r2c
p : ð18Þ

For the upper sign or corotating case, it is possible to
find Ωθ < Ωϕ, while in the counterrotating case, Ωθ is
always greater than Ωϕ. Therefore, in order to retain the
convention used in Eq. (11), we employ ϕθ resonance for
the counterrotating case. In the case of a spinning particle
within the linear approximation, the above explanation
remains the same.
With this, we finish our discussions regarding the

resonance phenomenon between the small oscillations
frequencies for a spinning particle with its spin approxi-
mated up to the linear order term. In the upcoming section,
we consider the rϕ resonance corresponding to a generic
trajectory confined on the equatorial plane of a Kerr
black hole.

V. MOTION ON THE EQUATORIAL PLANE:
THE rϕ RESONANCE

With the introduction to resonant orbits for a spinning
particle orbiting in nearly circular trajectories close to the
equatorial plane, we grasp the basic mechanism to locate
them as a function of the radial distance r. However, to
address any general motion it is presumed that orbits are
neither nearly circular nor close to the equatorial plane and
a universal prescription is required to study them. In the
case of geodesics, these are well studied in literature since
Carter discovered the existence of a fourth conserved
quantity and concluded that the geodesic trajectories
are completely integrable in the Kerr background [43].
However, in the case of a spinning particle, general off-
equatorial orbits can be nontrivial to obtain; recent studies
on these aspects can be found in Refs. [46,47]. Nonetheless
for orbits confined on the equatorial plane, the Mathisson-
Papapetrou equations can be exactly solved and thereby the
resonance between the radial Ωr and azimuthal Ωϕ fre-
quency can be well determined. The primary equation
governing this resonance phenomena is given as mΩr −
nΩϕ ¼ 0 and stated in Eq. (11). From the solutions of

Mathisson-Papapetrou equations, we can express dϕ
dr as

dϕ
dr

¼ U3

U1
¼ 1ffiffiffiffiffi

Rs
p

��
1þ 3MS2

rΣs

�
fJz − ðaþ SÞEgþ a

Δ
Ps

�
;

ð19Þ
where U1 and U3 are radial and azimuthal velocity
respectively and the quantities Ps, Rs, Σs have been defined
in Eq. (6).

In the upcoming sections, we shall explicitly employ the
above expression to locate the rϕ resonance orbits in both
Schwarzschild and Kerr geometries. However before study-
ing any resonance phenomena, it is advisable to notice that
the radial velocity U1 identically vanishes in the turning
points ðra; rpÞ and as a result the integral in Eq. (11) would
diverge. Therefore to compute the integral we may use an
approximate technique and in the present context, Sochnev
method can be extremely useful [66] (we also refer to
Ref. [65] where this is used in the case of a spinning
particle). For convenience, the basic design of the Sochnev
method is given below.
Let us consider an irrational function given as

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1C2…:Cm

p
ð20Þ

and we desire to approximate it for our convenience. In the
above, C1, C2;…Cm are positive numbers. The first step of
the Sochnev method [66] dictates that the value of C would
fall within the upper limit a1 and lower limit b1 which are
given by the following expressions:

a1 ¼
C1 þ C2 þ � � � ::Cm

2
; b1 ¼

C1C2…Cm

am−1
1

;

and b1 < C < a1; ð21Þ

while more accuracy can be achieved with next order
terms. The final expression of the sequence ðan; bnÞ can be
written as

anþ1 ¼
ðm − 1Þan þ bn

m
; bnþ1 ¼

ðanÞm−1bn
ðanþ1Þm−1 ; ð22Þ

and for large n, it is expected both an and bn would
generate extremely accurate values of C. However, in the
present context we often neglect the higher order n terms
and truncate our series at ða1; b1Þ. Due to the nonzero spin
terms the expressions become largely cumbersome to probe
higher order terms with n > 1.

A. In the Schwarzschild black hole

Let us now describe the rϕ resonance in the static and
spherically symmetric Schwarzschild black hole and later
on we discuss the Kerr geometry. For convenience, we start
with the geodesic trajectories and then address the motion
of a spinning particle.

1. Geodesic limit

Due to the spherical symmetry, geodesic trajectories in
Schwarzschild spacetime are vastly simplified and easily
obtainable in comparison to the rotating case. To study the
resonance phenomena in the Schwarzschild background,
we set θ ¼ π=2without losing any generality and obtain the
radial potential as follows:
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r4ðU1Þ2 ¼ VðrÞ ¼ E2r4 − r2L2
z þ 2MrL2

z − ðr2 − 2MrÞr2;
ð23Þ

where E and Lz are given as the conserved energy and
momentum associated with the timelike and spacelike

symmetries of the geometry respectively. As we mentioned
earlier, at r ¼ ra and r ¼ rp the radial potential identically
vanishes, i.e., VðraÞ ¼ VðrpÞ ¼ 0, and we can arrive at the
expressions for E and Lz in terms of ra and rp. These are
given by

E2
geo ¼

ðra þ rpÞð2M − raÞð2M − rpÞ
rarpðra þ rpÞ − 2Mðr2a þ r2p þ rarpÞ

and L2
zgeo ¼

2Mr2ar2p
rarpðra þ rpÞ − 2Mðr2a þ r2p þ rarpÞ

: ð24Þ

Substituting these expression in the potential given by Eq. (23) we arrive at

VðrÞ ¼ −
2Mðr − raÞðr − rpÞðr − 0Þðr − rcÞfrarp − 2Mðra þ rpÞg

rarpðra þ rpÞ − 2Mðr2a þ r2p þ rarpÞ
; ð25Þ

where we have rc ¼ 2Mrarp
rarp−2MðraþrpÞ and the solutions follow

ra > rp > rc. From the expression, rp > rc, we arrive at

p − 4M
2Mð1þ eÞ > 1 ⇒ p > 2Mð3þ eÞ: ð26Þ

Furthermore, with the expressions for square of momentum
given in Eq. (24), we require L2

zgeo > 0. Therefore from the
denominator, we gather

rarpðra þ rpÞ > 2Mðr2a þ r2p þ rarpÞ; ð27Þ

and from Eq. (25), we arrive at

ðr − raÞðr − rpÞðr − rcÞfrarp − 2Mðra þ rpÞg < 0: ð28Þ

By using Eq. (26), one can establish rarp − 2Mðraþ
rpÞ > 0, and the above equation is automatically satisfied.
Moreover, Eq. (27) can be further simplified by using ra ¼
p=ð1 − eÞ and rp ¼ p=ð1þ eÞ, and we arrive at

2p2½p −Mð3þ e2Þ�
ð1 − e2Þ2 > 0; ð29Þ

and for p > Mð3þ e2Þ, it is always satisfied. Therefore,
the final constraint on the semilatus varies between p ¼
6M (for circular orbit) and p ¼ 8M (highest eccentric
orbit e ¼ 1).

2. Spinning particle

For a nonvanishing spin of the particle, the rescaled
potential can be written as

VsðrÞ ¼ r4Rs ¼ r4½ðE2 − 1Þr4 þ 2Mr3 − r2J2z

þ 2rJzfMJz þ ESðr − 3MÞg�; ð30Þ

and by setting S ¼ 0, we get back the potential for a
geodesic. Furthermore, it should be emphasized that the
above equation contains terms only linear in S while the
higher order terms are ignored for a convenient computa-
tion. Naturally, one could ask whether the above potential
gives the correct location for circular orbits or not. This
could be easily verified as we already have the exact
expression for radial potential for a spinning particle, given
in Eqs. (5) and (6). It can be shown that within the small
spin approximation, i.e., jSj ≪ 1, the above potential
provides the locations of circular orbits within an infini-
tesimal mismatch from the exact derivation. For example,
given a spin of S ¼ 0.1M and energy E ¼ 1, the location of
the circular orbits mismatch within Oð10−3Þ. With that
spirit, we employ the above linearized expression and it
simplifies our computations. We shall now concentrate on
obtaining the expressions for energy and momentum
assuming an ansatz of the form Esbh ¼ Egeo þ SEs and
Jsbh ¼ Lzgeo þ SJs is valid. With the prior knowledge about
both Egeo and Lgeo [67], we can solve VsðraÞ ¼ VsðrpÞ ¼ 0

and obtain Es and Js in terms of ra and rp. Both E and Js
are given as follows:

Js ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2M − raÞð2M − rpÞðra þ rpÞ

p ½rarpðra þ rpÞ − 3Mðr2a þ rarp þ r2pÞ�
½rarpðra þ rpÞ − 2Mðr2a þ rarp þ r2pÞ�3=2

;

Es ¼
−M

ffiffiffiffiffiffiffi
2M

p
rarp

½rarpðra þ rpÞ − 2Mðr2a þ rarp þ r2pÞ�3=2
: ð31Þ
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Further employing the above relations into the potential given up to the linear order in spin, we arrive at

VsðrÞ ¼
2Mr5a0ðr − raÞðr − rpÞ

½rarpðra þ rpÞ − 2Mðr2a þ r2p þ rarpÞ�2
�
rþ b0

a0

�
; ð32Þ

where a0 and b0 are given by

a0 ¼ −½rarp − 2Mðra þ rpÞ�frarpðra þ rpÞ − 2Mðr2a þ r2p þ rarpÞg
− Srarpf2Mðra − 2MÞðrp − 2MÞðra þ rpÞg1=2;

b0 ¼ 2Mrarpfrarpðra þ rpÞ − 2Mðr2a þ r2p þ rarpÞg
− Srarpðra þ rpÞf2Mðra − 2MÞðrp − 2MÞðra þ rpÞg1=2: ð33Þ

It should be noted that even if the number of solutions
remains identical with the geodesic case, there now exists
explicit spin dependence in one of the solutions rs ¼
−b0ða0Þ−1. Finally, the potential can be compactly written
in the form of

VrðsÞ ¼
2Ma0r4ðr − 0Þðr − raÞðr − rpÞðr − rsÞ
½rarpðra þ rpÞ − 2Mðr2a þ r2p þ rarpÞ�2

; ð34Þ

and identical to the geodesic case, we require to have
VrðsÞ > 0. This condition along with the bound rp < r <
ra would give rp > rs and a0 < 0. However, either of these
constraints would depend on the numerical value of the
spin parameter and therefore while obtaining the resonant
orbits, we will employ it explicitly.
With the above mentioned points kept in mind, we now

determine U3ðU1Þ−1 from Eq. (19) and in the linear spin
approximation, this is given as

dϕ
dr

¼ ðJz − ESÞfrarpðra þ rpÞ − 2Mðr2a þ r2p þ rarpÞg
½2Ma0ðr − 0Þðr − raÞðr − rpÞðr − rsÞ�1=2

:

ð35Þ

By substituting it in Eq. (11), we arrive at the following
expression which describes the rϕ resonance for a given
particle:

mπ − n
Z

ra

rp

�
dϕ
dr

�
dr ¼ mπ − nIs ¼ 0: ð36Þ

In the discussions given below, we employ the Sochenev
formalism that was earlier introduced in Sec. V and com-
pute Is approximately. However for a convenient and sim-
plified computation, we confine our discussions only with
the first order approximation, i.e., we assume ðC1C2Þ1=2 ≈
2−1ðC1 þ C2Þ is valid throughout our calculations.
In order to obtain an approximate value for the above

integral, we start with

Z
ra

rp

dϕ
dr

dr ¼ N
Z

ra

rp

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0ðr − 0Þðr − raÞðr − rpÞðr − rsÞ

p ;

ð37Þ

where N ¼ ð2MÞ−1=2ðJz − ESÞfrarpðra þ rpÞ − 2Mðr2a þ
r2p þ rarpÞg and a0 is already defined earlier. Let us
now introduce a coordinate transformation given as r ¼
2−1½ðra þ rpÞ þ xðra − rpÞ� and with that, we arrive at

Is ¼
Z

ra

rp

�
dϕ
dr

�
dr ¼

Z
1

−1

�
dϕ
dx

�
dx: ð38Þ

Finally we have

dϕ
dx

¼ ra − rp
2

dϕ
dr

¼ ra − rp
2

N

f−a0 ðra−rpÞ2
4

ð1 − x2Þðr − 0Þðr − rsÞg1=2
;

ð39Þ

and after further simplification, we write it as follows:

dϕ
dx

¼ N

f−a0ð1 − x2Þðr − 0Þðr − rsÞg1=2
; ð40Þ

¼ Nf−a0
ðra þ rpÞ

2

ðra þ rp − 2rsÞ
2

× ð1 − x2Þð1þ K0xÞð1þ KsxÞg−1=2: ð41Þ

With hNi given by

hNi ¼ 2Nf−a0ðra þ rpÞðra þ rp − 2rsÞg−1=2; ð42Þ

the above can be written in a more compact form as

dϕ
dx

¼ hNi
fð1 − x2Þð1þ K0xÞð1þ KsxÞg1=2

; ð43Þ
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where we have, K0 ¼ ra−rp
raþrp

and Ks ¼ ra−rp
raþrp−2rs

.

Furthermore, to ease our computations, we introduce
the expression

Z
1

−1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
ð1þ KxÞ

dx ¼ πffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − K2

p ; ð44Þ

which is only valid with K < 1. We can use the same
technique in our case by writing

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ K0xÞð1þ KsxÞ
p

≈
ð1þ K0þKs

2
Þ ¼ 1þ Kx and therefore, the final expression

becomes

Is ¼
Z

1

−1

dϕ
dx

dx ¼ πhNiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − K2

p : ð45Þ

With the above relation and by using Eq. (36), the
resonance condition takes the form

m − n
hNiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − K2

p ¼ 0: ð46Þ

We shall now employ the above condition and locate the
resonant orbits for a spinning particle moving around a
Schwarzschild black hole. In Fig. 3, we demonstrate the
same for both 2∶3 [Fig. 3(a)] as well as 1∶2 [Fig. 3(b)]
resonance condition.

B. In the Kerr black hole

Having described the resonance phenomena in
Schwarzschild background, we shall continue our discus-
sions in the Kerr spacetime and as expected, in rotating

geometry the motion of a spinning particle is additionally
complicated. Therefore before delving into the details of a
spinning particle, we start with the geodesic case and then
address the extended object in both linearized Kerr and full
Kerr spacetime.

1. Geodesic limit

To locate the resonant orbits for a geodesic, we need to
employ the following relation:

dϕ
dr

¼ U3

U1

¼ r2fLz − aEþ a
Δ ½Eðr2 þ a2Þ − aLz�g

fr4½Eðr2 þ a2Þ − aLz�2 − Δ½r6 þ ðLz − aEÞ2r4�g1=2 ;

ð47Þ

in Eq. (11). With a more simplified form, the above can be
written as

dϕ
dr

¼ fLz − aEþ a
Δ ½Eðr2 þ a2Þ − aLz�g

f½Eðr2 þ a2Þ − aLz�2 − Δ½r2 þ ðLz − aEÞ2�g1=2

¼ fLz − aEþ a
Δ ½Eðr2 þ a2Þ − aLz�g
fVðrÞg1=2 ; ð48Þ

and the potential takes the form

VðrÞ ¼ ½Eðr2 þ a2Þ − aLz�2 − Δ½r2 þ ðLz − aEÞ2�: ð49Þ

By further simplification, we arrive at

(a) (b)

FIG. 3. Various rϕ resonant orbits in a Schwarzschild spacetime for both spinning and nonspinning trajectories. In the inset, we show a
closeup of a particular segment to show the difference for various spin parameters. (a) Orbits for 2∶3 resonance is given for both
spinning and nonspinning particles. For a negative spin parameter of the particle, the resonant orbits appear at a larger range of p while
for positive spin the opposite phenomenon appears. (b) Orbits for 1∶2 resonance are given in a Schwarzschild back- ground. The
distinguishing features for both positive and negative values of spin are given explicitly.
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VðrÞ ¼ r½E2r3 − ðL2
z − a2E2Þrþ 2MðLz − aEÞ2

− ðr2 − 2Mrþ a2Þr�
¼ −αðr − 0Þðr − raÞðr − rpÞðr − r1Þ; ð50Þ

with α ¼ 1 − E2. From the above equation, we can now
match the coefficients of r3, r2, and r from each side. These
would reproduce three independent equations and we can
solve for energy, momentum, and r1 in terms of ra and rp.
Finally, we have

E2 ¼ 1 −
2M

ra þ rp þ r1
and

L2
z ¼

2M
ra þ rp þ r1

frarp þ r1ðra þ rpÞ − a2g; ð51Þ

and the solution r1 can be evaluated from the other
condition

4aMELz ¼ 2Ma2E2 þ 2ML2
z − ð1 − E2Þr1rarp: ð52Þ

By solving the above equation numerically for a given
eccentricity e and semilatus rectum p, we obtain r1 and
therefore, determine both energy and momentum corre-
sponding to the orbit. Henceforth, for any provided ra
and rp we can obtain the conserved quantities required to
specify the geodesic trajectory. The reader should be
reminded that Eq. (52) is a quadratic of r1 and these two
solutions represent either prograde or retrograde orbits. Like
we mentioned earlier, as we are interested in the prograde
orbit, we would suppress the retrograde part and continue
our analysis with that motivation. Nonetheless, a similar

study can be carried out in the case of retrograde orbits too.
The next task is to compute the integral given in Eq. (11) and
locate the resonant orbits for an arbitrary order and this is
carried out in the Appendix for both spinning and non-
spinning trajectories. In Fig. 4, we have shown the resonant
orbits for a geodesic moving in a spacetime with different
rotation parameters a. For smaller values of a, the resonant
orbits lie away from the black hole horizon and the nature
remains similar to the Schwarzschild case. With the increase
of resonance order, i.e.,mþ n, the orbits keep moving away
from the horizon but are contained with identical properties
as given in Fig. 4(a). However for larger momentum, the
peak seems to disappear and the Gaussian nature changes to
linear curve. This is explicitly shown in Fig. 4(b).

2. Spinning particle: In the slowly
rotating Kerr black hole

With the discussions presented above for geodesic
trajectories, we shall now consider the case with spinning
particles and locate their resonance orbits. However before
dealing with the Kerr spacetime that consists with the
multipole structure of arbitrary order, we first consider only
the dipole current moment and approach it analytically to
obtain the expressions for energy and momentum. In the
usual Boyer-Lindquist coordinates, the resultant metric
takes the following form:

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2

þ r2ðdθ2 þ sin2θdϕ2Þ − 4Masin2θ
r

dϕdt; ð53Þ

(a) (b)

FIG. 4. Various rϕ resonant orbits in the Kerr spacetime for nonspinning trajectories. (a) Resonant orbits are given for a ¼ 0∶1M.
With the increase in eccentricity, the semilatus rectum increases and reaches a maximum value at p ¼ pmax while further increase in
eccentricity decreases p as well. (b) Resonant orbits for a geodesic while the background is given by a Kerr geometry with a ¼ 0∶9M.
The nature of the plot changes drastically from (a).
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with a and M given as the angular momentum per mass and mass of the spacetime respectively. For the above metric, we
obtain the radial potential written up to the terms linear in S as

VsðrÞ ¼ r3½rfE2r4 − J2zr2 þ 2MrJ2z − 4aMrEJz − ðr2 − 2MrÞr2g
þ Sð2EJzr3 − 6EMJzr2 þ 2aMJ2z þ 6MaE2r2Þ�; ð54Þ

and after further simplifications, we arrive at the following expression:

VsðrÞ ¼ r3½rfðE2 − 1Þr4 þ 2Mr3 − r2J2z þ 2rðMJ2z þ EJzSðr − 3MÞ þ 3aME2S − 2aMEJzÞg þ 2aMSJ2z �: ð55Þ

We shall now assume E ¼ Esbh þ aEs and Jz ¼ Jsbh þ aJs and solve for Es and Js from the equations VsðraÞ ¼
VsðrpÞ ¼ 0. Such assumptions would ensure that only the terms linear to a are considered, while higher order terms, i.e.,
Oða2Þ and beyond, are neglected. In order to deal with larger momentum of the black hole, we carry out a numerical
analysis in the next section. Due to the complexity of the forms of both Es and Js, they are not explicitly written in the
present paper. By substituting them in Eq. (55), we can write down the potential VsðrÞ as

VsðrÞ ¼ r3½Vsbh
s ðrÞ þ aVkerr

s ðrÞ�; ð56Þ

where Vsbh
s ðrÞ and Vkerr

s ðrÞ can be written as

Vsbh
s ðrÞ ¼ 2Mr2ðr − raÞðr − rpÞ

X3
½X2ð2Mfrarp þ rðra þ rpÞg − rrarpÞ − rarpðrþ ra þ rpÞY1=2XS�;

Vkerr
s ðrÞ ¼ 2Mðr − raÞðr − rpÞFðrÞ

X3
; ð57Þ

and FðrÞ, X , and Y have the following expressions:

FðrÞ ¼ −2r2rarpXYðrþ ra þ rpÞ þ r2½ð2Mfrarp þ rðra þ rpÞg − rrarpÞX2 − rarpðrþ ra þ rpÞXYS�;
X ¼ rarpðra þ rpÞ − 2Mðr2a þ rarp þ r2pÞ;Y ¼ 2Mð2M − raÞð2M − rpÞðra þ rpÞ: ð58Þ

Therefore, the complete form of the potential can be written as

VsðrÞ ¼
2Mr3ðr − raÞðr − rpÞ

X3
½FðrÞ þ r2X2ð2Mfrarp þ rðra þ rpÞgÞ − r2rarpðrþ ra þ rpÞY1=2XS�;

¼ 2Mr3ðr − raÞðr − rpÞ
X3

½α0ðr − r1Þðr − r2Þðr − r3Þ�;
¼ −αr3ðr − raÞðr − rpÞðr − r1Þðr − r2Þðr − r3Þ; ð59Þ

where α ¼ −2Mα0=X3. In principle, one can solve for r1, r2, and r3 for different values of ra and rp. This way, we can
obtain the resonant orbits for a spinning particle while neglecting the higher spin contribution, i.e., Oða2Þ, from the black
hole. In the next discussion, we consider the Kerr black hole and numerically present the resonant orbits for a particle
with spin.

3. Spinning particle: The Kerr spacetime

In this case, the radial potential within the linear spin approximation can be written as

VsðrÞ ¼ r4½E2r4 − ðL2
z − a2E2Þr2 þ 2MrðLz − aEÞ2 − ðr2 − 2Mrþ a2Þr2�

þ Sr3f2a3ME2 − 4a2MEJz þ 2aMJ2z þ 6aE2Mr2 þ 2EJzr3 − 6EJzMr2g
¼ r3½rfE2r4 − ðL2

z − a2E2Þr2 þ 2MrðLz − aEÞ2 − ðr2 − 2Mrþ a2Þr2g
þ Sf2a3ME2 − 4a2MEJz þ 2aMJ2z þ 6aE2Mr2 þ 2EJzr3 − 6EJzMr2g�

¼ −αsr3ðr − r1Þðr − r2Þðr − raÞðr − rpÞðr − r3Þ; ð60Þ
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and we now estimate each solution by equating the left- and
right-hand sides. Therefore, we arrive at the following set of
equations:
(1) From coefficient of r5, we have αs ¼ 1 − E2.
(2) From coefficient of r4, we manage to have

r1 þ r2 þ ra þ rp þ r3 ¼
2M
αs

: ð61Þ

(3) From coefficient of r3, we have

a2ðE2 − 1Þ − J2z þ 2EJzS

¼ −αfrarp þ r1r2 þ ðra þ rpÞðr1 þ r2Þ
þ r3ðr1 þ r2 þ ra þ rpÞg: ð62Þ

(4) From coefficient of r2, we obtain

2Ma2E2 − 4aMEJz þ 2MJ2z þ 6aE2MS − 6EMSJz

¼ αsfrarpr3 þ ðr1 þ r2Þðrarp þ r3ðra þ rpÞÞ:
þ r1r2ðr3 þ ra þ rpÞg: ð63Þ

(5) From coefficient of r, we determine

r2r3rarp þ r1r3rarp þ r1r2frarp þ r3ðra þ rpÞg
¼ 0: ð64Þ

(6) From the coefficient of r0, we get

ð2ME2a3 − 4MEJza2 þ 2MaJ2zÞS ¼ r1r2r3rarpαs:

ð65Þ

With rþ ¼ r1 þ r2 and r× ¼ r1r2, we can further compute
E from Eq. (61),

E2 ¼ 1 −
2M

rþ þ ra þ rp þ r3
: ð66Þ

From Eq. (64), we can further compute r3 as

r3 ¼ −
r×rarp

r×ðra þ rpÞ þ rarprþ
: ð67Þ

To obtain Jz, we can introduce the expression X� ¼
2Ma2× Eq. (62) � Eq. (65) and with the þ sign, we
arrive at

J2z ¼ aða− SÞðrþ þ ra þ rp þ r3Þ−1f2a2M½r3ðra þ rpÞ
þ rarp þ r× þ rþðra þ rp þ r3Þ�− 2Ma4 − r×r3rarp

þ a3Sðra þ rp þ r3 þ rþ − 2MÞg: ð68Þ

Along with the expressions X− and Eq. (63), we can
numerically solve for both r1 and r2 for given values of e
and p. Therefore, whenever provided with ra and rp, we
can compute energy and momentum corresponding to a
spinning particle confined on the equatorial plane of the
Kerr black hole. The next task is to determine the integral
given in Eq. (11) and for a general Kerr spcatime, this is
given in the Appendix. For convenience, we carry out the
calculations within the linear framework of the spin
parameter, while a general treatment shall be carried out
elsewhere. In Figs. 5 and 6 we have shown resonant orbits
for different orders of resonance while the angular momen-
tum of the Kerr black hole varies accordingly. For a particle

(a) (b)

FIG. 5. rϕ resonant orbits for particles with spin S ¼ 10−4M. The influence of different angular momentum of the black hole is also
depicted. (a) Resonant orbits for a spinning particle in a black hole with angular momentum a ¼ 0∶099M. (b) Resonant orbits while the
black hole has an angular momentum of a ¼ 0∶9M.
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with spin S ¼ 10−4M, various resonant orbits for a ¼
0.099M and a ¼ 0.9M are given in Figs. 5(a) and 5(b)
respectively. The studies related to spin S ¼ −10−4M are
shown in Fig. 6 for different resonance and the black hole’s
momentum.

VI. CONCLUDING REMARKS

In the present article we have studied the trajectories of a
spinning particle and discussed their orbital resonance in
the Kerr background. We typically explore two particular
events: first, the resonance in between small oscillation
frequencies, and second, rϕ resonance on the equatorial
plane of the Kerr black hole. In the case of a spinning
particle, the off-equatorial trajectories are not easily deriv-
able and can hardly be written in a convenient analytical
form. Therefore, in the present context, we have only
considered the rϕ resonance and were mostly concerned
with locating the resonant orbits for different spin param-
eters. We confined our discussions for a pole-dipole
particle, i.e., a particle with nonzero dipole moment while
all the higher order moments are set to zero. In addition, the
entire study is only valid for a linearized spin parameter and
any contributions that appear at OðS2Þ and higher are
ignored for convenience. The key findings of the present
article can be summarized as follows.
The first part of the paper deals with the nearly circular

orbits hobbling around the equatorial plane, for an extended
object around the Kerr black hole. In the presence of
nonvanishing spin, the expressions for small oscillation
frequencies would change and therefore, the locations of
resonant orbits would also shift. For our study, we

employed the analytical expressions for frequencies given
by Hinderer et al. in Ref. [63] and obtained the locations of
the resonant orbits for different angular momentum of the
black hole. In the case of corotating orbits, we discussed all
three resonance phenomena, i.e., rθ, rϕ, and θϕ, given in
Figs. 1(a)–1(c) respectively, for various spin parameters of
the secondary object. On the other hand, the resonant orbits
for the counterrotating case is demonstrated in Fig. 2. The
rθ, rϕ, and ϕθ resonances are shown in Figs. 2(a)–2(c),
respectively. In order to preserve the convention given in
Eq. (11), we address the resonance between θ and ϕ to be
ϕθ, rather than θϕ. As expected, within the linear spin
approximation, the difference in location between geodesic
and spinning particle is infinitesimal.
The second part deals with the rϕ resonance considering

the trajectories are completely confined on the equatorial
plane. We locate the resonant orbits for different values of
the black hole’s momentum as well as the particle’s spin.
When the angular momentum of the black hole is small, the
resonant orbits have a weak dependency on the eccentricity
e. It is explicitly demonstrated in Figs. 5(a) and 6(a).
However, the e dependency increases as one increases the
value of angular momentum of the black hole as it is shown
in Figs. 5(b) and 6(b). The nature of resonant orbits are also
largely effected by the black hole rotation as depicted in
Figs. 5 and 6. For a small or no rotation of the black hole
[Figs. 3, 5(a), and 6(a)], the semilatus rectum steadily
increases with the eccentricity e and attains a maximum
value for a particular eccentricity say e ¼ emax. Further
increase in the eccentricity would result in the decrease of
the semilatus rectum p as shown in Figs. 3, 5(a), and 6(a).
On the other hand, for black holes with larger angular

(a) (b)

FIG. 6. rϕ resonant orbits for particles with spin S ¼ −10−4M. The influence of different angular momentum of the black hole is also
depicted. (a) Resonant orbits for a spinning particle in a black hole with angular momentum a ¼ 0∶099M. (b) Resonant orbits while the
black hole has an angular momentum of a ¼ 0∶9M.
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momentum, p steadily increases with the eccentricity
e and attains the highest value as e approaches unity.
Furthermore, the orbits shift towards the event horizon as
one either increases the momentum of the black hole or
decreases the order of resonance.
Finally, it should be emphasized that the change in

locations for different spin parameters within the linear
approximation is infinitesimally small and nearly indistin-
guishable. Therefore, it would be important to investigate
for large spin parameters of the secondary object. However,
the immediate followup of the present work would be to
consider the rθ resonance which requires a numerical
framework.
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APPENDIX: DETAIL CALCULATIONS TO
OBTAIN THE RESONANT ORBITS

In the Kerr black hole, we obtain

U3

U1
¼ dϕ

dr
¼ r2fJz − ðaþ SÞEg þ aPsr2

Δ
½VsðrÞ�1=2

; ðA1Þ

with VsðrÞ ¼−αsr3ðr− r1Þðr− r2Þðr− raÞðr− rpÞðr− r3Þ.
We can split the above integration into two parts, the first
one is G and second one is R and these are given as

G ¼ r2fJz − ðaþ SÞEg
½VsðrÞ�1=2

¼ rfJz − ðaþ SÞEg
½−αsðr − 0Þðr − r1Þðr − r2Þðr − raÞðr − rpÞðr − r3Þ�1=2

;

R ¼ ar2Ps

Δ½VsðrÞ�1=2
¼ afEr3 þ arðaþ S − JzÞ þMSða − JzÞg

ðr − rþHÞðr − r−HÞ½−αsðr − 0Þðr − r1Þðr − r2Þðr − raÞðr − rpÞðr − r3Þ�1=2
; ðA2Þ

where rþH and r−H are given as the outer and inner horizon respectively. Furthermore, with the substitution [65]

r ¼ ðra þ rpÞ þ xðra − rpÞ
2

; ðA3Þ

we arrive at the following expression:

dϕ
dx

¼ ra − rp
2

dϕ
dr

¼ ra − rp
2

ðGx þRxÞ: ðA4Þ

The G becomes Gx and given as

Gx ¼
rxfJz − ðaþ SÞEg

½−αsðrx − 0Þðrx − r1Þðrx − r2Þðrx − raÞðrx − rpÞðrx − r3Þ�1=2
: ðA5Þ

By using the fact,

rx − ri ¼
ra þ rp − 2ri

2
ð1þ KixÞ; ðA6Þ

with Ki ¼ ra−rp
raþrp−2ri

where i runs from 0 to 3 and r0 ¼ 0, the above equation reads as

Gx ¼
1

2
ðra þ rpÞð1þ K0xÞfJz − ðaþ SÞEgf2−6αsð1 − x2Þð1þ K0xÞð1þ K1xÞð1þ K2xÞð1þ K3xÞ

× ðra þ rpÞðra − rpÞ2ðra þ rp − 2r1Þðra þ rp − 2r2Þðra þ rp − 2r3Þg−1=2;

¼ Nkð1þ K0xÞfJz − ðaþ SÞEgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1 − x2Þð1þ K0xÞð1þ K1xÞð1þ K2xÞð1þ K3xÞ�

p : ðA7Þ
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In the above, we assume

Nk ¼
4ðra þ rpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½αðra þ rpÞðra − rpÞ2ðra þ rp − 2r1Þðra þ rp − 2r2Þðra þ rp − 2r3Þ�
q ¼ 2hNki

ra − rp
; ðA8Þ

with

hNki ¼
2ðra þ rpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½αsðra þ rpÞðra þ rp − 2r1Þðra þ rp − 2r2Þðra þ rp − 2r3Þ�

p : ðA9Þ

Therefore, we can finally write

Gx ¼
2hNki
ra − rp

ð1þ K0xÞfJz − ðaþ SÞEgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1 − x2Þð1þ K0xÞð1þ K1xÞð1þ K2xÞð1þ K3xÞ�

p : ðA10Þ

The other part can be written as

Rx ¼
afEr3x þ arxðaþ S − JzÞ þMSða − JzÞg

ðrx − rþHÞðrx − r−HÞ½−αsðrx − 0Þðrx − r1Þðrx − r2Þðrx − raÞðrx − rpÞðrx − r3Þ�1=2
;

¼ a
Δ
Er3x þ aðaþ S − JzÞrx þMSða − JzÞf2−6αsð1 − x2Þð1þ K0xÞð1þ K1xÞð1þ K2xÞð1þ K3xÞ

× ðra þ rpÞðra − rpÞ2ðra þ rp − 2r1Þðra þ rp − 2r2Þðra þ rp − 2r3Þg−1=2;

¼ 2

ra − rp

4a × 4

ðra þ rp − 2rþHÞðra þ rp − 2r−HÞð1þ Kþ
HxÞð1þ K−

HxÞ

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αsðra þ rpÞðra þ rp − 2r1Þðra þ rp − 2r2Þðra þ rp − 2r3Þ
p

×
Er3x þ aðaþ S − JzÞrx þMSða − JzÞ

ð1þ Kþ
HxÞð1þ K−

HxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1þ K0xÞð1þ K1xÞð1þ K2xÞð1þ K3xÞ

p ;

¼ 2hN̄ki
ra − rp

Eð1 − K0xÞ3ðra þ rpÞ3 þ 4aðaþ S − JzÞðra þ rpÞð1 − K0xÞ þ 8MSða − JzÞ
8ð1þ Kþ

HxÞð1þ K−
HxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1þ K0xÞð1þ K1xÞð1þ K2xÞð1þ K3xÞ

p ; ðA11Þ

where we assume

hNki ¼
4a × 4

ðra þ rp − 2rþHÞðra þ rp − 2r−HÞð1þ Kþ
HxÞð1þ K−

HxÞ

×
Er3x þ aðaþ S − JzÞrx þMSða − JzÞ

ð1þ Kþ
HxÞð1þ K−

HxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1þ K0xÞð1þ K1xÞð1þ K2xÞð1þ K3xÞ

p : ðA12Þ

The final equation can now be written as

dϕ
dx

¼ hNki
ð1þ K0xÞfJz − ðaþ SÞEgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ð1 − x2Þð1þ K0xÞð1þ K1xÞð1þ K2xÞð1þ K3xÞ�
p

þ hNki
Eð1 − K0xÞ3ðra þ rpÞ3 þ 4aðaþ S − JzÞðra þ rpÞð1 − K0xÞ þ 8MSða − JzÞ
8ð1þ Kþ

HxÞð1þ K−
HxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1þ K0xÞð1þ K1xÞð1þ K2xÞð1þ K3xÞ

p : ðA13Þ

By employing the fact,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ K0xÞð1þ K1xÞ

p ¼ 1þ ðK0þK1Þ
2

x ¼ 1þ K̄1x and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ K2xÞð1þ K3xÞ

p ¼ 1þ K̄2x, the
above equation can be written as
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dϕ
dx

¼ hNki
ð1þ K0xÞfJz − ðaþ SÞEgffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
ð1þ K̄1xÞð1þ K̄2xÞ

þ hNki
Eð1 − K0xÞ3ðra þ rpÞ3 þ 4aðaþ S − JzÞðra þ rpÞð1 − K0xÞ þ 8MSða − JzÞ

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þ

p
ð1þ Kþ

HxÞð1þ K−
HxÞð1þ K̄1xÞð1þ K̄2xÞ

: ðA14Þ

We further write

1

ð1þ K̄1xÞð1þ K̄2xÞ
¼ 1

K̄2 − K̄1

�
K̄2

1þ K̄2x
−

K̄1

1þ K̄1x

�
; ðA15Þ

and also

1

ð1þ Kþ
HxÞð1þ K−

HxÞð1þ K̄1xÞð1þ K̄2xÞ
¼ A

1þ Kþ
Hx

þ B
1þ K−

Hx
þ C
1þ K̄1x

þ D
1þ K̄2x

; ðA16Þ

with A, B, C and D has the following expressions:

A ¼ ðKþ
HÞ3

ðKþ
H − K−

HÞðKþ
H − K̄1ÞðKþ

H − K̄2Þ
; B ¼ ðK−

HÞ3
ðK−

H − Kþ
HÞðK−

H − K̄1ÞðK−
H − K̄2Þ

;

C ¼ ðK̄1Þ3
ðK̄1 − Kþ

HÞðK̄1 − K−
HÞðK̄1 − K̄2Þ

; D ¼ ðK̄2Þ3
ðK̄2 − Kþ

HÞðK̄2 − K−
HÞðK̄2 − K̄1Þ

: ðA17Þ

With all the above machinery employed, we arrive at the following expression:

dϕ
dx

¼ hNki
fJz − ðaþ SÞEg

K̄2 − K̄1

�
K̄2ð1þ K0xÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
ð1þ K̄2xÞ

−
K̄1ð1þ K0xÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
ð1þ K̄1xÞ

�

þ hNki
8

fEðra þ rpÞ3
�

Að1 − K0xÞ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þ

p
ð1þ Kþ

HxÞ
þ Bð1 − K0xÞ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − x2Þ
p

ð1þ K−
HxÞ

þ Cð1 − K0xÞ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þ

p
ð1þ K̄1xÞ

þ Dð1 − K0xÞ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þ

p
ð1þ K̄2xÞ

��
þ hNkiaðaþ S − JzÞðra þ rpÞ

2

×

�
Að1 − K0xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − x2Þ
p

ð1þ Kþ
HxÞ

þ Bð1 − K0xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þ

p
ð1þ K−

HxÞ
þ Cð1 − K0xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − x2Þ
p

ð1þ K̄1xÞ
þ Dð1 − K0xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − x2Þ
p

ð1þ K̄2xÞ

�

þMSða − JzÞhNki
�

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þ

p
ð1þ Kþ

HxÞ
þ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − x2Þ
p

ð1þ K−
HxÞ

þ Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þ

p
ð1þ K̄1xÞ

þ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þ

p
ð1þ K̄2xÞ

�
: ðA18Þ

Now we have to do the calculation
R
1
−1 ðdϕdxÞdx and to do so, we have used the following equations:

I1ðKÞ ¼
Z

1

−1

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
ð1þ KxÞ

¼ πffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − K2

p ;

I2ðKÞ ¼
Z

1

−1

ð1þ K0xÞdxffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
ð1þ KxÞ

¼ π

K

�
K − K0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − K2

p þ K0

�
;

I3ðKÞ ¼
Z

1

−1

ð1þ K0xÞ3dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
ð1þ KxÞ

¼ π

K3

�ðK − K0Þ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − K2

p −
�
ðK − K0Þ3 −

K2ðK3
0 þ 2KÞ
2

��
: ðA19Þ
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With the above information, we can write the final equation as follows:

Z
1

−1

dϕ
dx

dx ¼ hNki
fJz − ðaþ SÞEg

K̄2 − K̄1

fK̄2I2ðK̄2Þ − K̄1I2ðK̄1Þg

þ hNki
8

fEðra þ rpÞ3½AI3ðKþ
HÞ þ BI3ðK−

HÞ þ CI3ðK̄1Þ þDI3ðK̄2Þ�g

þ hNkiaðaþ S − JzÞðra þ rpÞ
2

fAI2ðKþ
HÞ þ BI2ðK−

HÞ þ CI2ðK̄1Þ þDI2ðK̄2Þg
þMSða − JzÞhNkifAI1ðKþ

HÞ þ BI1ðK−
HÞ þ CI1ðK̄1Þ þDI1ðK̄2Þg: ðA20Þ
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