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We find new static, spherically symmetric, and asymptotically flat vacuum solutions without horizon in
Starobinsky’s quadratic fðRÞ gravity. We systematically classify these solutions by an asymptotic analysis
around the origin and find seven different integer Frobenius families. We numerically solve the exact
equations of motion by a double-shooting method and specify boundary conditions by matching the
numerical solution to the analytic solution of the linearized field equations in the weak field regime. We
find that all integer Frobenius families can be connected to asymptotically flat solutions and trace out lines
in the parameter space, allowing to ultimately relate all free parameters to the total mass at infinity.
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I. INTRODUCTION

Theories incorporating geometric modifications of gen-
eral relativity (GR) are highly relevant in the context of
quantum gravity and cosmology. In particular, fðRÞ mod-
ifications of GR give rise to phenomenologically vital
cosmological models for the early and late time acceler-
ation of the Universe [1–3], of which Starobinsky’s
quadratic fðRÞ ¼ Rþ R2 model of inflation [4] is the
most relevant one and favored by CMB data [5]. The higher
derivative structure of fðRÞ gravity leads to an additional
scalar degree of freedom, the scalaron, made manifest in
the classically equivalent scalar-tensor representation. In
[6,7], it was shown that this classical equivalence also
extends to the quantum level in a similar way as the on shell
quantum equivalence between different field parametriza-
tions in scalar-tensor theories found in [8]. In contrast to
higher-derivative theories such as quadratic gravity (QG),
the degeneracy structure of fðRÞ gravity ensures the
absence of the Ostrogradski instability [9–12].
In order to investigate the construction of modified

theories of gravity, it is important to compare the struc-
ture of solutions to that of GR. In general, as for GR,
analytical solutions are only available for a high degree of
symmetry. However, in contrast to GR, in general no
uniqueness theorems are available in higher derivative
theories of gravity; see e.g., [13] and references therein.
Nevertheless, in quadratic gravity (QG) there is a “trace no-
hair theorem” [14], which implies that static asymptotically
flat vacuum solutions with a horizon must have vanishing
Ricci scalar R. Therefore, in the search for black hole
solutions, the R2 term does not contribute to the equations
of motion, and the black hole analysis in QG effectively

reduces to that in Einstein-Weyl gravity (EWG) [15–21]. In
contrast, we do not search for black hole solutions, but
instead focus on solutions without a horizon. Solutions
without a horizon but a singular geometry feature naked
singularities and might have interesting implications for
the quantum information paradox [22] and might serve as
candidates for dark matter [23].
In this paper, we systematically investigate and classify

static, spherically symmetric and asymptotically flat
vacuum solutions in Starobinsky’s quadratic fðRÞ theory
by a combined analytic and numerical approach. We first
analytically perform the asymptotic analyses in the near
origin regime and in the linearized weak field regime and
then connect the two asymptotic regimes by numerically
solving the full nonlinear field equations by a “double-
shooting” algorithm. In particular, we do not make any
additional simplifying assumptions about the curvature or
the metric functions in the spherically symmetric ansatz of
the line element, which allows us to screen the full space of
solutions.

II. STAROBINSKY’S QUADRATIC f(R) MODEL

The fðRÞ action in four spacetime dimensions reads

S½g� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
fðRÞ: ð1Þ

Derivatives of f with respect to R are denoted by
fn ≔ ∂nfðRÞ=∂Rn, and the equations of motion (EOM)
of fðRÞ gravity read Eμν ¼ 0 with the extremal tensor,

Eμν ≔ ðgμν□ −∇μ∇νÞf1 þ Rμνf1 −
1

2
gμνf: ð2Þ

The trace of the extremal tensor is defined as*christian.steinwachs@physik.uni-freiburg.de
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E ≔ gμνEμν ¼ 3□f1 þ Rf1 − 2f: ð3Þ

The invariance of the action (1) under diffeomorphisms
implies the generalized Bianchi identity,

∇μEμν ¼ 0: ð4Þ
The fourth-order nature of the field equations implies that
in addition to the massless spin-two graviton, fðRÞ gravity
propagates the massive spin-zero scalaron. We consider the
Starobinsky model defined by (1) with

fðRÞ ¼ M2
P

2

�
Rþ R2

6M2
S

�
: ð5Þ

The two mass scales (in natural units c ¼ ℏ ¼ 1) are set by
the reduced Planck massMP ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
and the scalaron

mass M2
S ≥ 0. The inequality ensures that the scalaron is

not a tachyon and MS ¼ 0 corresponds to the induced
gravity limit MP → 0 of (5) resulting in the scale invariant
R2 model. In case of a scalaron-driven inflationary phase of
the early Universe,MS is constrained by cosmic microwave
background (CMB) data [5],

MS ≈ 10−5MP ≈ 1013 GeV: ð6Þ

III. STATIC SPHERICALLY SYMMETRIC
METRIC ANSATZ

In Schwarzschild coordinates ðt; r; ϑ;ϕÞ, the static and
spherically symmetric line element is parametrized as

ds2 ¼ −BðrÞdt2 þ AðrÞdr2 þ r2dΩ2
ð2Þ: ð7Þ

Here, dΩ2
ð2Þ ¼ dϑ2 þ sin2ϑdϕ2 is the line element of the

unit two-sphere, and AðrÞ and BðrÞ are arbitrary functions
of the radius r. Only two of the nonzero components Ett,
Err, Eϑϑ and Eϕϕ are independent due to the redundancy
Eϕϕ ¼ sin2 ϑEϑϑ and the generalized Bianchi identity (4).
We work with the EOMs Ett ¼ 0 and Err ¼ 0, which have
the functional dependencies,

EttðB4; B3; B2; B1; B; A3; A2; A1; A; r;MSÞ ¼ 0; ð8Þ

ErrðB3; B2; B1; B; A2; A1; A; r;MSÞ ¼ 0: ð9Þ

The nth derivatives of B and A with respect to r are denoted
by Bn and An. The explicit expressions for Ett and Err are
provided in (A1) and (A2). In the form (8), (9), the
differential order of this system is not transparent. From
(2), one might expect that the differential order of (8) and
(9) is four. While correct in the present case, the general
situation is more complicated, as (8), (9) is not a system of
ordinary differential equations (ODE) but a system of
differential-algebraic equations (DAE), which involves

algebraic constraints. The DAE structure is made manifest
be rewriting (8), (9) as system of first order equations. The
differential order D of a DAE with M first-order ODEs, N
constraints and differential index I is [24],

D ¼ M − ðI − 1ÞN: ð10Þ

The differential index I is defined as the minimum number
of differentiations required to write the DAEs as ODEs. For
the EOMs (8), (9), we find M ¼ 7, N ¼ 1 and I ¼ 4.
Hence, D ¼ 4 and a general solution of (8), (9) will
generically depend on four integration constants.
Following the treatment of [16] in the context of QG, for

the numerical analysis it is more convenient to work with a
system of two second-order EOMs,

EttðB2; B1; B; A1; A; r;MSÞ ¼ 0; ð11Þ

ErrðB2; B1; B; A2; A1; A; r;MSÞ ¼ 0: ð12Þ

The Ett and Err equations are defined as1

Ett ≔ Ett − XErr − Y∂rErr; ð13Þ

Err ≔ Err − Z∂rEtt: ð14Þ

With a1 ≔ r∂r lnA, b1 ≔ r∂r lnB, b2 ≔ r∂rb1, we have

X ≔ −
B
A

�
1þ 24 − 2ð2þ a1Þð4þ b1Þ

ð4þ b1Þ2
�
; ð15Þ

Y ≔ −2Br½Að4þ b1Þ�−1; ð16Þ

Z ≔ ½Aðb1 þ 4Þ3r�f6B½2b1ð−AM2
Sr

2 þ b1 þ b2 þ 2Þ
þ 4ðb2 − 2AM2

Sr
2Þ − a1ðb1 þ 4Þb1 þ b31�g−1: ð17Þ

The explicit expressions for Ett and Ett are presented in
(A3) and (A4).

IV. SOLUTIONS IN STAROBINSKY’S MODEL

Even the reduced system of Eqs. (11) and (12) is too
complicated to be solved analytically. An obvious strategy
is to make additional assumptions, such as e.g., a constant
scalar curvature R ¼ R0, a particular relation between B
and A, or a specific ansatz for the functions B and A. While
such assumptions lead to strong simplifications and, in
some cases, admit exact analytical solutions, they do not
provide a general strategy to systematically explore the
space of solutions. In this paper, we do not make any
additional simplifying assumptions, but instead classify

1Modulo possible singularities due to zeros in the denomi-
nators of X, Y and Z, the systems (8), (9) and (11), (12) are
equivalent.
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different solutions according to their asymptotic behavior at
small and large radii and then connect these two regimes by
solving the system (11), (12) numerically. Various special
radii r, corresponding to relevant regimes in the problem,
are listed in Table I.

A. Asymptotics at the origin

Following the strategy of [10], applied in the context of
QG in [15–17,19,21,22], the solutions can be systemati-
cally classified by expanding B and A in a Frobenius series
around r ¼ 0,

BðrÞ ¼ btðrt þ btþ1rtþ1 þ…Þ; ð18Þ

AðrÞ ¼ asrs þ asþ1rsþ1 þ…: ð19Þ

In (18), bt has been factored out, as it can be absorbed by
rescaling the time coordinate t → t̃ ¼ ffiffiffiffi

bt
p

t. Consistent
combinations of ðs; tÞ follow from the indicial equations,
which are derived by inserting (18), (19) into (11), (12). We
find three subcases,

s < 0∶ no solution; ð20Þ

s ¼ 0∶ t arbitrary; ð21Þ

s > 0∶ s ¼ ðt2 þ 2tþ 4Þðtþ 4Þ−1: ð22Þ

For s < 0, no solution exists. For s ¼ 0, the value of t is
unconstrained, and there are infinitely many solutions with
fixed a0 ¼ ð1þ t=2þ t2=4Þ. For s > 0 and s, t ∈ R, there
are infinitely many solutions of (22). For s > 0 and s,
t ∈ Z, there are only six different integer families ðs; tÞ
which satisfy (22).2 The numerical analysis shows that, in
contrast to the s > 0 families, the s ¼ 0 families cannot be
connected to asymptotically flat solutions of the full non-
linear equations, except for t ¼ 0. Therefore, there are a
total of seven asymptotically flat, integer Frobenius fam-
ilies ðs; tÞ summarized in Table II. In the limit r → 0 for
s ≠ 0, the leading r-dependence of the Kretschmann scalar

K ≔ RμνρσRμνρσ ∝ r−2ð2þsÞ implies that theses solutions
have a singular geometry.3

The vacuum solutions of GR are also solutions of (5). In
particular, Minkowski space (MS) is included in the (0,0)
family, while the Schwarzschild solution (SS) is included in
the ð1;−1Þ family.

B. Linearized solutions and asymptotic flatness

The linearized EOMs in the weak field regime r ≥ rL are
derived by inserting the decomposition,

BðrÞ ¼ 1þ VðrÞ; AðrÞ ¼ 1þWðrÞ; ð23Þ

into (11), (12) and by keeping only terms linear in V or W.
The linearized EOMs have the analytic solution [10,25],

VðrÞ ¼ Cþ C2

r
þ

X
σ¼−;þ

Cσ
0e

σMSr

r
; ð24Þ

WðrÞ ¼ −
C2

r
þ

X
σ¼−;þ

Cσ
0e

σMSr

r
ð1 − σMSrÞ: ð25Þ

The four integration constants C, C2, and C�
0 agree with the

result D ¼ 4 found by the DAE analysis (10).4 Asymptotic
flatness of the geometry requires

lim
r→∞

BðrÞ ¼ 1; lim
r→∞

AðrÞ ¼ 1: ð26Þ

The limits (26), in turn, require the constant C and the
constant Cþ

0 of the rising scalaron Yukawa potential to
vanish, reducing the number of free parameters to two,

V∞ðrÞ ≔ C2

r
þ C−

0 e
−MSr

r
; ð27Þ

W∞ðrÞ ≔ −
C2

r
þ C−

0 e
−MSr

r
ð1þMSrÞ: ð28Þ

TABLE I. Various regimes and scales for different SS radii r.
The Frobenius expansion of AðrÞ and BðrÞ is defined in (18) and
(19). The functions WðrÞ and VðrÞ are defined below in (23).

r ¼ 0 Spatial origin of SS coordinates ðt; r; ϑ;ϕÞ
0 ≤ r ≤ rF Frobenius regime AðrÞ ∼ rs, BðrÞ ∼ rt

rS ¼ M−1
S Compton wavelength of the scalaron

rL ≤ r ≤ ∞ Linearized regime jWðrÞj ≪ 1, jVðrÞj ≪ 1
r ¼ ∞ Asymptotic flatness Að∞Þ ¼ Bð∞Þ ∼ 1

TABLE II. First row: integer ðs; tÞ Frobenius families. Second
row: leading r scaling of the Kretschmann scalar K for r → 0.

ðs; tÞ (0,0) ð1;−1Þ (1,0) (2,2) ð2;−2Þ ð7;−3Þ (7,8)

limr→0K const r−6 r−6 r−8 r−8 r−18 r−18

2In QG, only the (0,0), ð−1; 1Þ and (2,2) families were
found [16].

3The (0,0) family is special. Extracting the Frobenius coef-
ficients in (18), (19) up to Oðr8Þ, leads to two solutions
limr→0K ¼ ð2M4

S=3Þ½4 þ ã2ð1 þ ã2Þ ∓ 2ð4 þ ã2ð2 þ ã2ÞÞ1=2�
with ã2 ≔ 6a2=M2

S a free parameter. For ã2 ¼ 0, the minus sign
(corresponding to Minkowski space) implies limr→0K ¼ 0.

4The same DAE analyses in QG and EWG lead to D ¼ 6 and
D ¼ 4, matching the number of integration constants of the
linearized equations, i.e., twice the number of propagating
particles.
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Matching (27) with the Newtonian potential at r → ∞,

lim
r→∞

V∞ðrÞ ¼ −2
GNM∞

T

r
; ð29Þ

relates C2 with the total mass M∞
T at infinity. In terms of

Planck units, this implies C2 ¼ −16πM∞
T . In contrast, C−

0

cannot be directly related to an observable at infinity and
a priori remains an undetermined parameter.

C. Numerical algorithm

We connect the asymptotics of the solutions A and B in
the Frobenius regime with those in the linearized regime,
by numerically solving the full nonlinear equations (14).
This is a boundary problem which is difficult to solve—
even numerically. Therefore, we use a double-shooting
algorithm. We first formulate the problem as initial value
problem (IVP) with “asymptotic initial conditions” gen-
erated by matching the full numerical solution to the
linearized solution at large radii rI ≥ rL,

BðrIÞ ¼ 1þ V∞ðrIÞ; B1ðrÞjrI ¼ V∞
1 ðrÞjrI ; ð30Þ

AðrIÞ ¼ 1þW∞ðrIÞ; A1ðrÞjrI ¼ W∞
1 ðrÞjrI : ð31Þ

For fixed MS, the IVP only depends on the two parameters
C−
0 and C2. Fixing C−

0 and C2, we integrate the system
inwards from the initial radius rI to the final radius rE at
which the solutions A and B are dominated by the leading
term of the Frobenius series. Matching the numerical
solutions A and B at 0 < rE ≤ rF to (18) and (19), the
numerical values ðsN; tNÞ are extracted from the slope of a
linear log-log fit with constants cB and cA,

lnBðrEÞ ¼ cB þ tN ln rE þ…; ð32Þ

lnAðrEÞ ¼ cA þ sN ln rE þ…: ð33Þ

In this way, for each pair of initial values ðC2; C−
0 Þ, a pair

of numerical values ðsN; tNÞ is found. Repeating this
procedure by scanning over the ðC2; C−

0 Þ parameter space,
we only store those values of ðC2; C−

0 Þ for which the
numerical values ðsN; tNÞ coincide with the ðs; tÞ values of
one of the integer Frobenius families up to a tolerance
maxfΔs;Δtg < δS ¼ 10−3, with the fractional differences
Δs ≔ ðs − sNÞ=s and Δt ≔ ðt − tNÞ=t, between the corre-
sponding numerical values ðsN; tNÞ and the integer
Frobenius values ðs; tÞ.
By construction of the shooting algorithm, the numerical

solutions A and B are only strictly valid up to rI. Despite the
fact that MS parametrically enters the EOMs (11), (12),
from the point of view of the initial conditions (27), (28),
the value of rI is tied to the value of MS, which we choose
according to the CMB constraints (6), i.e., in Planck units

MS ¼ 10−5. For a given rI, different “confidence regions”
in ðC2; C−

0 Þ space correspond to different tolerance values
maxfjV∞ðrIÞj; jW∞ðrIÞjg < δL, which quantify how well
the linearized approximation is satisfied at rI. While a large
rI would be desirable as it allows for larger values of
ðC2; C−

0 Þ within the same confidence interval, it is compu-
tationally expensive. For the numerical analysis, we choose
rI ¼ 10 (in Planck units). Likewise, choosing rE too small,
the singularity of the EOMs at r ¼ 0 might cause the
solution to diverge already for r > rE, while choosing rE
too large might result in a poor fit (32), (33). We choose the
default value rE ¼ 10−4, but if the quality of the fit falls
below a tolerance δF, the code dynamically adjusts by
automatically lowering the value of rE.
We performed various consistency checks. First, we

repeated the Frobenius analysis also in Kundt coordinates
(as done in [19,21] for QG) and found the same integer
Frobenius families as in SS coordinates. Second, as a
check of our numerical implementation, we applied our
algorithm to the model of QG and found good agreement
with the numerical results obtained in [17]. Third, we
checked that the numerical solutions of the reduced
system (11), (12) also satisfy the original system (8),
(9), by resubstituting them into the original system.
Fourth, we checked that for all (including noninteger)
numerically found values ðsN; tNÞ, the Frobenius con-
straint (22) is satisfied with a tolerance not exceed-
ing js − ðt2 þ 2tþ 4Þðtþ 4Þ−1j < δC ¼ 10−3.5

V. RESULTS

We find that all integer Frobenius families can be
connected to asymptotically flat solutions and lead to the
“phase-diagram” Fig. 1.
Except for the (0,0) family, which appears as a single

point at the origin in Fig. 1, all integer Frobenius families
trace out lines in parameters space, which emanate in the
vicinity of the origin and expand outwards to larger
ðC2; C−

0 Þ values without intersecting. While Minkowski
space is contained in the (0,0) family, the Schwarzschild
solution, which is formally part of the ð1;−1Þ family, is not
contained in the numerically found solutions because it has
a horizon.6

According to Table II, all integer Frobenius families
[except the (0,0) family] have a singular geometry. By
construction, none of the found solution has a horizon, such

5The numerically extracted ðs; tÞ values, all satisfying (22),
vary smoothly under variation of ðC2; C−

0 Þ, implying that non-
integer families are qualitatively not different from integer ones.

6Numerically, we could neither find solution with s < 0,
confirming the expected result from (20), nor could we find
any of the ð0; tÞ except for the (0,0) family, suggesting that the
ð0; tÞ, t ≠ 0 families cannot be connected to asymptotically flat
solutions. The (0,0) family appears as a single point in Fig. 1, as
to all orders (18), (19) depends on a single Frobenius parameter.
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that the corresponding solutions all feature a naked singu-
larity at the origin.7

Since, according to (29), C2 is connected to the total
mass at infinity, positivity of M∞

T requires C2 to be
negative. The physical significance of the negative mass
families ð1;−1Þ, (1,0) and ð2;−2Þ remains unclear, but we
focus on the positive mass families (2,2), ð7;−3Þ and (7,8)
which lie in the negative C2 half-plane of Fig. 1.
In contrast to C2, the parameter C−

0 cannot directly be
related to an observable at infinity. However, the phase
diagram Fig. 1 shows that for each integer Frobenius
family, C−

0 can uniquely be expressed as a function of
C2 and therefore as a function of M∞

T . Within the reliable
C2 intervals of each family, the function C−

0 ðC2Þ is well
described by a quadratic fit shown in Fig. 2 for the positive
mass families. This implies that all solutions in the integer
Frobenius families are completely characterized by two
ðs; tÞ values and by one single physical parameter M∞

T .
In the numerical analysis we assumed MS ¼ 10−5 and

rI ¼ 10, such that, even for radii r ≥ rL well within the
linearized regime, we can expand the exponential in (27),

V∞ðrÞ ¼ C2 þ C−
0

r
þ OðMSrÞ; r ≤ rS; ð34Þ

which implies the constraint ðC2 þ C−
0 Þ=rI < δL. Using the

quadratic fits obtained in Fig. 2 with the identification

C2 ¼ −16M∞
T , we encounter the interesting situation that

even in the linearized regime, the “effective quasilocal
mass” C2 þ C−

0 might vanish or become negative, render-
ing the weak field potential V∞ðrÞ repulsive. For the (2,2)
family, we obtain in this way,

V∞ðrÞ ≈ −
16πM∞

T

r
ð1.76 − 0.56M∞

T Þ; ð35Þ
which has a zero at M∞

T ≈ π and even becomes negative
for larger values of M∞

T . This scalaron-induced “mass

FIG. 1. All integer Frobenius families trace out a line in the
ðC2; C−

0 Þ parameter space, except for the (0,0) family, which leads
to a (not visible) single point at the origin. The colored areas
correspond to (inwards to outwards) δL < f0.1; 0.2; 0.3g quanti-
fying the quality of the linearized approximation at rI ¼ 10. The
boundary δL ¼ 0.3 is not visible. Numerical difficulties prevent
generating (7,8) points beyond C2 < −0.6.

FIG. 2. Quadratic fits of the positive mass families (the color
coding is the same as in Fig. 1). Upper diagram: quadratic fit
C−
0 ¼ 0.76C2 − 0.59C2

2 of the (2,2) line in Fig. 1, valid for
−1.2 < C2 < 0 for which δL < 0.2. Central diagram: quadratic
fit C−

0 ¼ 0.17þ 0.99C2 þ 34.45C2
2 of the ð7;−3Þ line in Fig. 1,

valid for −0.22 < C2 < 0 for which δL < 0.2. Lower diagram:
quadratic fit C−

0 ¼ 0.24C2 þ 0.09C2
2 of the (7,8) line in Fig. 1,

valid for −0.6 < C2 < 0 for which δL < 0.2.

7In the shooting algorithm solutions with horizons are dis-
carded as they would diverge at some rH > rE such that the
numerical integration would fail before a successful fit of ðsN; tNÞ
could be obtained. In any case, the uniqueness theorem for
Starobinsky’s model guarantees that the SS is the only spherically
symmetric, asymptotically flat vacuum solution with a horizon
[26]. Nevertheless, by adapting the shooting algorithm, making it
capable of detecting a horizon, we numerically “confirm” this, as,
similar to the findings in [17], the only positive mass solution
with horizon we found is the SS solution lying on the negative C2

axis in Fig. 1.
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screening mechanism” for r < rS might have interesting
implications for the solutions, as e.g., avoiding a repulsive
potential would imply a constraint on the total mass at
infinity M∞

T < π, which, however, in the present case for
M∞

T ¼ π lies outside the region of validity of the quadratic
fit of the (2,2) family as −16π2 ¼ C2 ≪ −1.2, cf. Fig. 2.
Similar considerations for the ð7;−3Þ and (7,8) families
would imply an antiscreening.
Summarizing, we found new static, spherically sym-

metric and asymptotically flat vacuum solutions of
Starobinsky’s quadratic fðRÞ model which feature naked
singularities. The phase diagram Fig. 1 might be interpreted
as “Frobenius no-hair theorem” as all solutions in the seven
integer Frobenius families labeled by the two Frobenius

indices ðs; tÞ are characterized by one single physical
parameter—the total mass at infinity M∞

T . Besides the
condition of positive total mass at infinity, we found a
mass (anti)screening mechanism, which depends on the
Frobenius family and the scalaron massMS, and might lead
to additional constraints on the Frobenius solutions. The
implications of the naked singularity solutions in the
context of the black hole information paradox requires a
more detailed study involving the analysis of the shape of
different solutions within a given Frobenius family. We
hope to address this question in a forthcoming work.
Finally, it would be interesting to apply the presented
methods to other relevant fðRÞ models and modifications
of GR.

APPENDIX: EXPLICIT FORM OF EOMS

The explicit expressions for the coefficients Ett and Err of (2), which enter the EOMs (8) and (9), read

Ett ¼ M2
P

96M2
Sr

4A5B3
fA3½16B4ð3M2

Sr
3A1 þ 5Þ − 4r2B2ð4rB1f11B2 þ 3rB3g þ 4B2

1 þ 9r2B2
2Þ

þ 4r3BB2
1ð26B1 þ 29rB2Þ − 49r4B4

1 þ 16r3ð4B3 þ rB4ÞB3� − 2rA2B½4rB2ðrf½6A2 þ rA3�B1

þ 4rA2B2g − 2A1fB1 − rð8B2 þ 3rB3ÞgÞ − 6r2BB1ð2B1f5A1 þ rA2g þ 9rA1B2Þ þ 29r3A1B3
1

þ 16B3ðrfA2 þ rA3g − 2A1Þ� þ r2AB2A1½4rBðB1f28A1 þ 13rA2g þ 19rA1B2Þ
− 57r2A1B2

1 þ 16B2ð5A1 þ 13rA2Þ� − 56r3B3A3
1½rB1 þ 4B� þ 16A5B4½3M2

Sr
2 þ 1�

− 48A4B4½M2
Sr

2 þ 2�g; ðA1Þ

Err ¼ M2
P

96M2
Sr

4A3B4
f2r2AB½rB1 þ 4B�½2BðB1ð4A1 þ rA2Þ þ 2rA1B2Þ − 3rA1B2

1 þ 8B2A2�

− 7r2B2A2
1½rB1 þ 4B�2 þ 48A3B3½M2

Sr
3B1 þ BðM2

Sr
2 − 2Þ� þ A2½−32rB3ðrf2B2 þ rB3g − 2B1Þ

þ 4r2B2ð−2rB1frB3 − 6B2g þ 16B2
1 þ r2B2

2Þ þ 4r3BB2
1ð3rB2 − 4B1Þ − 7r4B4

1 þ 112B4�
− 16A4B4½3M2

Sr
2 þ 1�g: ðA2Þ

The explicit expressions for the coefficients Ett and Err, which enter the EOMs (11) and (12), read

Ett ¼ M2
P

8M2
Sr

4A4B2frB1 þ 4Bg2
× fA2½−4r2B3ðB2

1fM2
Sr

3A1 þ 4g þ 8rB1B2 þ 2r2B2
2Þ þ 8rB4B1ðrf2 −M2

Sr
2gA1 þ 2Þ þ 32B5ðrfM2

Sr
2

þ 2gA1 þ 1Þ − 4B2ðr5B1B2
2 − 4r3B3

1Þ þ 2r4BB3
1ðB1 þ 2rB2Þ − r5B5

1� − 2rABA1½rB1 þ 4B�½−2r2BB1ðB1

þ rB2Þ þ r3B3
1 þ 8B3� þ r2B2A2

1½2B − rB1�½rB1 þ 4B�2 − 4A3B2½2r2BB1ðf3M2
Sr

2 þ 2gB1 −M2
Sr

3B2Þ
− 8B2ðrfM2

Sr
2 − 1gB1 þM2

Sr
4B2Þ þM2

Sr
5B3

1 þ 8B3ðM2
Sr

2 þ 2Þ� þ 16A4B4½rð2M2
Sr

2 þ 1ÞB1

þ 2BðM2
Sr

2 þ 1Þ�g; ðA3Þ

HERNANDÉZ-LORENZO and STEINWACHS PHYS. REV. D 101, 124046 (2020)

124046-6



Err ¼ −
M2

P

96M2
SA

3B4r5f2M2
SA

2r½4Bþ rB1�B2 þ rA1B1½4Bþ rB1�Bþ A½r2B3
1 − 8B2B1 − 2Brð2Bþ rB1ÞB2�g

× f32M2
SA

6r2½3M2
Sr

2 þ 1�½4Bþ rB1�B6 þ 16A5½8ð−3M4
Sr

4 þ 10M2
Sr

2 þ 8ÞB3 þ 2rðf−15M4
Sr

4 þ 2M2
Sr

2

þ 12gB1 − 2rf5M2
Sr

2 þ 1gB2ÞB2 − 2r2B1ðM2
SB2r3 þ f3M4

Sr
4 þ 1gB1ÞB − r3ð5M2

Sr
2 þ 3ÞB3

1�B4

þ r3A3
1½16B − rB1�½4Bþ rB1�3B3 − Ar2A1½4Bþ rB1�2½32ð2A1 þ rA2ÞB3 þ 4rð2B1f9A1 þ rA2g

þ 5rA1B2ÞB2 − 2r2A1B1ðB1 þ 2rB2ÞB − r3A1B3
1�B2 − 2A4½−7M2

SB
5
1r

7 þ 8BB3
1ð2M2

Sr
3B2

− fM2
Sr

2 þ 2gB1Þr4 þ 4B2B1ð−M2
SB

2
2r

4 þ 6M2
SB1B2r3 þ f54M2

Sr
2 þ 4gB2

1Þr3 þ 8B3ð−2M2
SB

2
2r

4

− 34M2
SB1B2r3 − f8M2

Sr
2 þ ½3M2

Sr
3 þ r�A1 − 12gB2

1Þr2 þ 16B4ðf3M2
Sr

2 − 2ð3M2
Sr

3 þ rÞA1 þ 56gB1

þ 2rf6 − 5M2
Sr

2gB2Þrþ 64B5ð11M2
Sr

2 þ 16Þ�B2 þ A2r½4Bþ rB1�½32ðA1frð11M2
Sr

2 þ 8ÞA1 − 8g
þ 4rA2ÞB5 þ 16rðB1fA1½rð5M2

Sr
2 þ 4ÞA1 − 3� þ 10rA2g þ 2rf2rA2 − A1gB2ÞB4 − 2ð16A1B2

2r
4

− 8B1A2B2r4 þ A1fM2
Sr

3A1 − 48gB2
1r

2ÞB3 − 4r4B1ð2A2B2
1 − 10A1B2B1 þ rA1B2

2ÞB2 − 4r4A1B3
1ð7B1

þ 2rB2ÞBþ 5r5A1B5
1�Bþ A3½−256ðf3M2

Sr
2 þ 2gA2r2 − 4A1r − 4ÞB7 þ 64rðB1fr½ð6 − 9M2

Sr
2ÞA1

− 2rð3M2
Sr

2 þ 2ÞA2� þ 22g þ rfrð3M2
Sr

2 þ 2ÞA1 þ 7gB2ÞB6 þ 16r2B1ðr2f3M2
Sr

2 þ 2gA1B2

− B1fr½ð39M2
Sr

2 þ 22ÞA1 þ rð3M2
Sr

2 þ 2ÞA2� − 14gÞB5 − 8r3ðf3r½3M2
Sr

2 þ 4�A1 − 26gB3
1 þ 8rB2B2

1

þ 4r2B2
2B1 − 2r3B3

2ÞB4 þ 4r4B2
1ð3fM2

SA1r3 þ 16gB2
1 þ 40rB2B1 − 2r2B2

2ÞB3 þ 4r5B3
1ð−14B2

1 þ 7rB2B1

þ 3r2B2
2ÞB2 − 2r6B5

1ð7B1 þ 6rB2ÞBþ 3r7B7
1�g: ðA4Þ
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