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Teleparallel gravity (TG) describes gravitation as a torsional- rather than curvature-based effect. As in
curvature-based constructions of gravity, several different formulations can be proposed, one of which is
the teleparallel equivalent of general relativity (TEGR) which is dynamically equivalent to GR. In this
work, we explore the evolution of a spatially homogeneous collapsing stellar body in the context of two
important modifications to TEGR, namely fðTÞ gravity, which is the TG analog of fðRÞ gravity, and a
nonminimal coupling with a scalar field which has become popular in TG for its effects in cosmology.
We explore the role of geodesic deviation to study the congruence of nearby particles in lieu of the
Raychaudhuri equation. We find fðTÞmodels that satisfy the null energy condition and describe interesting
collapse profiles. In the case of a nonminimally coupled scalar field, we also find potential collapse models
with intriguing scalar field evolution profiles.
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I. INTRODUCTION

The ΛCDM cosmological model is demonstrated by
overwhelming observational evidence in describing the
evolution of the Universe at all scales [1,2] which is
achieved by the inclusion of matter beyond the standard
model of particle physics. This appears as dark matter,
which stabilizes galactic structures [3,4] in the form of cold
dark matter particles, and dark energy, which is represented
by the cosmological constant [5,6] and produces late-time
accelerated cosmic expansion [7,8]. On the other hand,
despite great efforts, there continue to remain outstanding
internal problems in the cosmological constant [9], as well
as no direct observations of dark matter particles [10].
In addition to these issues, the effectiveness of the

ΛCDM model has also been called into question in recent
years. Primarily, the core critique is rooted in the so-called
H0 tension problem which quantifies the inconsistency
between the measured [11,12] and predicted [13,14]
values of H0 between early- and late-time observations.
Measurements made on the tip of the red giant branch
(Carnegie-Chicago Hubble program) have reported a lower
tension [15], but ultimately the problem may be clarified by
future observations from more exotic sources such as
gravitational wave astronomy with observatories such as
the Laser Interferometer Space Antenna mission [16,17]

which have already shown an ability to tackle these
measurements [18,19].
At its core, the ΛCDM model is made up of modifica-

tions to the matter section. However, modifications to the
gravitational section may also provide a suitable explan-
ation to some of the outstanding problems in modern
cosmology. This has come in several forms with modifi-
cations to general relativity (GR) (see Refs. [2,20], and
references therein) being the main flavor in which exotic
gravity enters cosmology such as in extended theories of
gravity [20–22]. Collectively, these models of gravity are
borne out of GR through the common mechanism by which
gravitation is expressed, i.e., the curvature associated with
the Levi-Civita connection [1]. While the metric quantifies
the amount of geometric deformation that gravity produces,
it is the connection which selects curvature as the property
over which this is expressed [23,24]. This is not the only
choice in this regard; while retaining the metricity con-
dition, torsion has become an increasingly popular choice
for constructing cosmologically motivated theories of
gravity [25–27].
Teleparallel gravity (TG) embodies the collection of

theories of gravity in which gravity is expressed as geo-
metric torsion through the Weitzenböck connection [28].
This connection is torsionful and curvatureless, whereas the
Levi-Civita connection is curvatureful and torsionless. All
curvature quantities calculated using the Weitzenböck
connection (instead of the Levi-Civita connection) natu-
rally vanish irrespective of the metric components.
Immediately, we can confront the Einstein-Hilbert action
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whose Lagrangian is simply the Ricci scalar R
∘
(overcircles

represent quantities calculated with the Levi-Civita con-
nection), which produces the GR field equations. The
identical dynamical equations can be arrived at in TG by
replacing this Lagrangian with its so-called torsion scalar,
T, counterpart. This is the so-called teleparallel equivalent
of general relativity (TEGR) and differs from GR only at
the level of Lagrangian by a total divergence quantity B
(boundary term).
In TEGR, the boundary term encapsulates the fourth-order

corrections which appear in the action to result in a covariant
theory (due to the second-order derivatives in the Einstein-
Hilbert action). The impact of this feature is that extensions to
TEGRwill have a meaningful difference to their Levi-Civita
connection counterparts. Principally this will mean that TG
will have a broader range of modified theories in which the
dynamical equations are second order rather than the limits
imposed by the Lovelock theorem in theories of gravity
based on the Levi-Civita connection [29–31]. As an aside,
TG also has several interesting properties such as its likeness
to Yang-Mills theory [25] giving it an added particle physics
dimension, its possible definition of a gravitational energy-
momentum tensor [32,33], and that it does not require the
introduction of a Gibbons-Hawking-York boundary term in
order to produce a well-defined Hamiltonian formulation
[26] making it more regular than GR. Moreover, TG can be
constructed without the necessity of the weak equivalence
principle [34] unlike GR.
Keeping to the same reasoning as fðRÞ gravity [20–22],

TEGR can be arbitrarily generalized to produce fðTÞ
gravity [35–40]. Due to the weakened Lovelock theorem
in TG, this will be a generally second-order theory of

gravity which is a notable difference to its fðR∘ Þ gravity
analog. fðTÞ gravity has shown a number of promising
results in recent years, in terms of cosmology [26,41,42],
galactic physics [43] as well as in solar system scale
phenomenology [44–47]. However, to fully embrace the

possibility of limiting to fðR∘ Þ cosmological models, we
must consider the fuller fðT; BÞ theory of gravity [48–54],
in which fðR∘ Þ ¼ fð−T þ BÞ. fðT; BÞ gravity is an inter-
esting theory due to the decoupling between the second-
order torsion scalar and fourth-order boundary term con-
tributions. On the other hand, extensions of TG in which
matter is nonminimally coupled have also gained in
popularity in recent years [55–62]. These have produced
interesting results in cosmology and for compact objects.
In this work, we consider the geodesic deviation of

test particles in these modifications of TG. This kind of
study can be very informative for investigating particular
models in these extensions of TEGR. We also study the
Raychaudhuri equation with a focus on the energy con-
ditions that result from these models. Finally, we apply the
results of this work to the homogeneous collapse of stellar
matter. The paper is broken into the following sections.

First the Raychaudhuri equation is reviewed in Sec. II while
TG is briefly discussed in Sec. III. In Sec. IV, we explore a
collapsing stellar mass distribution and the associated
energy conditions for the models being investigated, while
we do this again for a particularly interesting nonminimally
coupled scalar-tensor model in Sec. V. Finally in Sec. VI
we discuss the main results and conclusions from this work.
In all that follows, Latin indices are used to refer to tangent
space coordinates, while Greek indices refer to general
manifold coordinates.

II. THE RAYCHAUDHURI EQUATIONS

TheRaychaudhuri equation [63] offers an efficient avenue
by which the tendency for nearby geodesics to converge in a
gravitational system can be concisely described. One of the
most notable impacts of this scheme was in the focusing
theorem. Geodesic focusing [64] is a natural consequence of
the Raychaudhuri equation and is a core element of the
Hawking-Penrose singularity theorems in GR.
In this way, the Raychaudhuri equation essentially impli-

cates the idea that a singularity can simply be a by-product of
symmetries present in the matter distribution under consid-
eration. The equation is a geometrical relationwhich governs
the dynamics of mean separation between a congruence of
curves. The equation and its generalizations have found
significant application in gravitational physics, for instance,
validation of singularity theorems, gravitational lensing,
cracking of self-gravitating compact objects, and derivation
of the equations of thermodynamics of spacetime.
In a gravitational system, the proper acceleration repre-

sented by d2xμ=dτ2 is an observer-dependent quantity and
not covariant and so may vanish for some observers and not
for others. For this reason, one must take the acceleration as

aμ ¼ uα;βuβ ¼
D2xμ

Dτ2
¼ d2xμ

dτ2
þ Γμ

νσuνuσ ð1Þ

for it to be covariant in nature, where D represents a
covariant derivative and uν ¼ dxμ=dτ represents the four-
velocity of a particle in the system. For a congruence of
curves xμðτ; λÞ, where λ parametrizes the paths that satisfy
Eq. (1), the four-velocity uμðτ; λÞ can be interpreted as one
of the tangent fields together with nμ ¼ dxμ=dλðτ; λÞ [65].
The Raychaudhuri equation is derived by considering

points on infinitely close geodesics corresponding to the
parametrization values λ and λþ δλ. Within this determi-
nation, the trace expansion, rotation tensor and shear are,
respectively, defined as

θ ¼ uμ;μ; ð2Þ

ωαβ ¼ ∇½μuν� − _u½μuν�; ð3Þ

σαβ ¼ ∇ðαuβÞ −
1

3
θhαβ − _uðαuνÞ; ð4Þ

SOUMYA CHAKRABARTI and JACKSON LEVI SAID PHYS. REV. D 101, 124044 (2020)

124044-2



where the projection tensor is defined as hμν ¼ gμν − uμuν.
In this scenario, the expansion scalar is defined as the
fractional rate of change of volume of a matter distribution
measured by a comoving observer. If this derivative is
negative along some worldline, then the matter distribution
must be collapsing. The shear and the rotation tensor
measures the distortion and rotation of an initially spherical
matter distribution.
Now, considering the congruence of timelike geodesics

leads to the Raychaudhuri equation which reads as [1,63]

dθ
dτ

¼ −
1

3
θ2 þ∇αaα − σαβσ

αβ þ ωαβω
αβ − R

∘
αβuαuβ; ð5Þ

where R
∘
αβ is the Ricci tensor (determined with the Levi-

Civita connection). It is important to note that the appear-
ance of the Levi-Civita connection in the Raychaudhuri
equation does not emerge from it being the connection for
GR but due to the way that the equation is derived. For this
reason, the Ricci tensor continues to be derived using the
Levi-Civita connection within TG. Moreover, the general
theorems regarding Riemann manifolds continue to hold
and so the appearance of the standard gravity Ricci tensor
does not cause any consistency conflicts within this regime.
The evolution equation for the expansion of a congru-

ence of null geodesics defined by a null vector field kμ

(kμkμ ¼ 0) has a similar form as the Raychaudhuri equation
in Eq. (5), but with a factor 1=2 rather than 1=3 and
−Rμνkμkν instead of −Rμνuμuν as the last term. Thus, it
reads as

dθ
dτ

¼ −
1

2
θ2 − σμνσ

μν þ ωμνω
μν − Rμνkμkν; ð6Þ

where the kinematical quantities θ, σμν and ωμν are now
clearly associated with the congruence of null geodesics.
An important point to be emphasized is that Eqs. (5) and (6)
are purely geometric statements, and as such they make no
reference to any theory of gravitation in that they are
general results for Riemann manifolds and thus would be
applicable to all other connection constructs within this
framework.

III. TELEPARALLEL GRAVITY
AND ITS EXTENSIONS

TG is a novel reformulation of gravitation in that the
curvature associated with the manifestation of gravity is
exchanged with torsion [26,27,66] through the replacement
of the Levi-Civita connection Γ

∘ σ
μν with the so-called

Weitzenböck connection expressed through [25,28]

Γσ
μν ≔ eaσ∂μeaν þ eaσωa

bμebν; ð7Þ

where eaρ is the tetrad field (eaμ being the transpose)
and ωa

bμ the spin connection (overcircles are used on all

quantities calculated with the Levi-Civita connection). In
fact, there exists a trinity of possible ways to express
gravity through geometry with the third being based on
nonmetricity rather than curvature or torsion [23]. In all
these cases there exists a limit in which these formulations
limit to GR in that they produce the identical dynamical
equations (despite having different actions due to the
appearance of a boundary term).
The Weitzenböck connection is the most general linear

affine connection that is both curvatureless and satisfies the
metricity condition [66]. The exact expression of the
Weitzenböck connection depends on the tetrad eaρ and
the inertial spin connection ωa

bμ. The tetrad acts as a
soldering agent between the general manifold and the
tangent (inertial) space which are represented by Greek
and Latin indices, respectively. The spin connection sus-
tains the invariance of the field equations under local
Lorentz transformations (LLTs) [67]. The spin connection
is a crucial ingredient which must appear in the field
equations due to use of tetrads since they have one inertial
index rather than being an extra degree of freedom of the
theory. Together the tetrad and spin connection describe
spacetime in TG in the sameway that the metric tensor does
so in GR and are thus the fundamental dynamical object of
the theory.
Considering the full breadth of possible LLTs (boosts

and rotations), Λa
b, the tetrads are transformed on the

tangent space by

e0aμ ¼ Λa
bebμ; ð8Þ

whereas the spin connection transformed as [68]

ωa
bμ ¼ Λa

c∂μΛb
c; ð9Þ

which together preserve the LLTs of the theory as a whole.
On the other hand, there also exist so-called good tetrads
which organically produce vanishing spin connection
components [69,70]. However, given the LLTof the theory,
all consistent tetrad and spin connection pairs will be
dynamically equivalent in terms of the field equations they
produce.
In TG, the tetrad embodies the effect of gravity in a similar

way as the metric tensor expresses geometric deformation in
curvature-based theories of gravity [26,27]. For consistency,
the tetrads observe the relations [25]

eaμebμ ¼ δab; eaμeaν ¼ δνμ; ð10Þ

which form the orthogonality conditions of the tetrad fields.
Since the effect of tetrads is to connect the general manifold
and its Minkowski space, this can be used to transform
between these spaces. One example of this is with the
Minkowski metric which transforms as
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gμν ¼ eaμebνηab; ηab ¼ eaμebνgμν: ð11Þ

The position dependence of these relations is being sup-
pressed for brevity’s sake.
TG is fundamentally distinct from curvature-based

descriptions of gravity in that the exchange of the Levi-
Civita with its analog Weitzenböck connection means that
all measures of curvature (such as the Riemann tensor and
Ricci scalar) will organically vanish for the torsional case
[66]. Thus, TG requires a wholly different formulation on
which to quantify the effect of gravity. In this setting,
torsion is measured through the torsion tensor which is
represented as an antisymmetric operation [70]

Tσ
μν ≔ 2Γσ ½μν�; ð12Þ

which also serves as the field strength of gravitation
[square brackets represent the antisymmetric operator
A½μν� ¼ 1

2
ðAμν − AνμÞ]. The torsion tensor transforms cova-

riantly under both diffeomorphisms and LLTs and observes
the antisymmetry Tσ

μν ¼ −Tσ
νμ.

The torsion tensor, analogous to the Riemann tensor, is a
measure of torsion for a gravitational field. However, other
important and useful quantities exist in TG. The contorsion
tensor is one such quantity measure; this is determined as
the difference between the Levi-Civita and Weitzenböck
connections [26,71]

Kσ
μν ≔ Γσ

μν − Γ
∘
σ
μν ¼

1

2
ðTμ

σ
ν þ Tν

σ
μ − Tσ

μνÞ: ð13Þ

The contorsion tensor is crucial to relating TG with its
curvature-based analogs. Along a similar vein, the so-called
superpotential is another TG tensor of central importance
which is defined as [25]

S μν
a ≔

1

2
ðKμν

a − haνTαμ
α þ haμTαν

αÞ: ð14Þ

The superpotential may play a critical role in reformulating
TG as a gauge current for a gravitational energy-
momentum tensor [72,73]. Also, the superpotential
observes the antisymmetry Saμν ¼ −Saνμ.
Contracting the torsion and the superpotential tensors

produces the torsion scalar through [27]

T ≔ SaμνTa
μν; ð15Þ

which is determined solely by the Weitzenböck connection,
in the same way that the Ricci scalar is determined by the
Levi-Civita connection. Interestingly, it coincidentally
turns out that the Ricci and torsion scalars are equal up
to a total divergence term [48,55]

R ¼ R
∘ þ T −

2

e
∂μðeTσ

σ
μÞ ¼ 0; ð16Þ

where R is the Ricci scalar as calculated with the
Weitzenböck connection which naturally vanishes. Thus,
it follows that

R
∘ ¼ −T þ 2

e
∂μðeTσ

σ
μÞ ≔ −T þ B; ð17Þ

where R
∘
is the Ricci scalar as determined using the Levi-

Civita connection and e is the determinant of the tetrad field,
e ¼ detðeaμÞ ¼ ffiffiffiffiffiffi−gp

. Here,B embodies the boundary term.
This equivalency alone guarantees that the variation of the
torsion and Ricci scalars produces the same dynamical
equations.Also, thismeans that the second- and fourth-order
contributions to the Ricci scalar can be decoupled from
each other in TG, which may have important consequences
for producing a more natural generalization of fðRÞ
gravity [2,20,21].
Another natural consequence of this equivalency is that

the TEGR action can be defined directly as [70]

STEGR ¼ −
1

2κ2

Z
d4xeT þ

Z
d4xeLm; ð18Þ

where κ2 ¼ 8πG and Lm represents the Lagrangian for
matter. Despite being described through the tetrad and spin
connection, TEGR will produce identical dynamical equa-
tions as GR, namely

G
∘
μν ≡ e−1eaμgνρ∂σðeSaρσÞ − SbσνTb

σμ

þ 1

4
Tgμν − eaμωb

aσSbνσ ¼ κ2Ψμν; ð19Þ

where Ψμν is the energy-momentum tensor [1] given by

Ψa
μ ≔ δLm=δeaμ and G

∘
μν is the Einstein tensor calculated

with the Levi-Civita connection. Also, it is important to
point out that, while the Weitzenböck connection is used in
the gravity sector, the Levi-Civita connection continues to
feature in the coupling prescription of matter [25,27].
Taking the same path of modification as in fðR∘ Þ

gravity, the TEGR Lagrangian can be generalized to fðTÞ
gravity [35–39], namely LfðTÞ¼efðTÞ. By taking a varia-
tion with the tetrad, this results in field equations

e−1∂νðeeaρSρμνÞfT − eaλTρ
νλSρνμfT þ 1

4
eaμfðTÞ

þ eaρSρμνfTT∂νðTÞ
þ ebλωb

aνSλνμfT ¼ κ2eaρΨρ
μ; ð20Þ

which can be contracted with the tetrad or metric tensor
depending on whether the index in question is a tangent
space or general manifold label. These field equations
are generically second order in nature [26], as well as a
number of other similarities to GR such as their associated
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gravitational waves exhibiting identical polarizations
[52,74]. However, to incorporate a framework on which

to compare results with their fðR∘ Þ gravity analog, we must
consider fðT; BÞ gravity [48–53,53,54,75] in which the
decoupled second- and fourth-order contributions appear in
the torsion scalar and boundary term, respectively. In these

cases, the limit to fðR∘ Þ gravity occurs for the consideration
fðT; BÞ ¼ fð−T þ BÞ ¼ fðR∘ Þ gravity. Another interesting
avenue on which to construct modified teleparallel theories
of gravity is to consider nonminimal couplings with matter
[55–62]. Given the organically lower-order nature of the
torsion scalar means that such modification to gravity may
produce novel observational consequences.
In what follows, we choose frames where the spin

connection is allowed to vanish. Since a frame always exists
where this is possible, we do not overly limit the applicability
of this work. Also, we take units where κ2 ¼ 1.
We now focus on the fðTÞ field equations written in

Eq. (20) which can be written using only general manifold
indices to give

e−1gμσeaν∂γðeeaρSρσγÞfT − Tρ
γνSργσgσμfT

þ 1

4
gμνfðTÞ þ gσμSνσγfTT∂γT ¼ Ψμν; ð21Þ

which follows by raising the inertial index with an inverse
tetrad. This gives a trace equation

e−1eaσ∂γðeeaρSρσγÞfT − TfT þ fðTÞ
þ SσσγfTT∂γT ¼ Ψ: ð22Þ

Using the TEGR field equations in Eq. (19), we can
also write these field equations down using the standard
Einstein tensor as

G
∘
μνfT þ

1

4
gμνðfðTÞ−TfTÞþgσμSνσγfTT∂γT¼Ψμν; ð23Þ

which has an interesting trace equation

fðTÞ − ðR∘ þ TÞfT þ SσσγfTT∂γT ¼ Ψ; ð24Þ

where the term in parentheses turns out to be R
∘ þ T ¼ B

using Eq. (17).
Given the Einstein tensor definition, namely G

∘
μν ≔

R
∘
μν − 1

2
gμνR

∘
, the Ricci tensor dependency on the fðTÞ

Lagrangian can be expressed as

R
∘
μν ¼

1

2
gμνð−T þ BÞ

þ 1

fT

�
Ψμν −

1

4
gμνðfðTÞ − TfTÞ

− gσμSνσγfTT∂γT

�
; ð25Þ

which can now be used with the Raychaudhuri equations
in Eq. (6) to determine the effect of fðTÞ gravity on the
congruence of null geodesics.

IV. A COLLAPSING SPHERICAL STAR
IN f ðTÞ GRAVITY

We consider a spatially homogeneous collapsing stellar
distribution whose interior is described by the metric

ds2 ¼ dt2 − aðtÞ2½dx2 þ dy2 þ dz2�; ð26Þ

where aðtÞ is the physical radius of the collapsing system.
The tetrad choice eaμ ¼ diagð1; aðtÞ; aðtÞ; aðtÞÞ is compat-
ible with a vanishing spin connection [68]. On the other
hand, we take the energy-momentum contribution to be that
of a perfect fluid described by

Ψμν ¼ðρþpÞuμuν−pgμν with uμ ¼ð1;0;0;0Þ; ð27Þ

where kμ ¼ ð1; a; 0; 0Þ for the null vector field in Eq. (6), p
is the fluid pressure and ρ its energy density. Thus, the
Raychaudhuri equation can be written as

dθ
dτ

¼−
θ2

3
−

1

2fT
ðρþ3pþf−TfT −72H2 _HfTTÞ; ð28Þ

which describes the congruence of neighboring particle
geodesics and where H ¼ _a=a and dots refer to derivatives
with respect to time t. The field equations can then be
written as

ρ ¼ 6H2fT þ f
2
; ð29Þ

ðρþ pÞ ¼ 24H2 _HfTT − 2 _HfT: ð30Þ

Using Eqs. (29) in Eq. (28), and putting θ ¼ 3 _a
a, we write

dθ
dτ

¼ 3 _H ¼ −
3ðρþ pÞ

2ð2TfTT þ fTÞ
: ð31Þ

Equation (31) governs the evolution of the timelike
congruence, depending on the positivity or negativity of dθdτ.
A negative dθ

dτ indicates a throughout collapsing system until
θ reaches −∞, indicating a zero proper volume singularity.
However, if dθdτ changes signature to positive over the course
of its evolution, then a collapse of the congruence is halted
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and the geodesics start to move away from each other.
Therefore, the formation of a zero proper volume singu-
larity may be avoided. The onus of avoiding a singularity
therefore lies on the behavior of the rhs of Eq. (31).
If we assume that both the energy density ρ and the

isotropic pressure p are positive in nature, the evolution
of the congruence and the predictability of the collapse
depends entirely on the nature of ð2TfTT þ fTÞ, i.e.,
explicitly dependent on the choice of fðTÞ one makes.
If ð2TfTT þ fTÞ > 0, the congruence is collapsing,
and if ð2TfTT þ fTÞ < 0, the congruence is expanding.
Therefore the predictability of a collapsing stellar distri-
bution in fðTÞ theories depends on the choice of fðTÞ as a
congruence of timelike geodesics would suggest. Using
the definition of the torsion scalar in Eq. (15), it follows
that T ¼ −6H2, throughout which one can write the rhs of
Eq. (31) in terms of f ¼ fðHÞ which simplifies this
equation into

dθ
dτ

¼ 3 _H ¼ 18ðρþ pÞ
fHH

: ð32Þ

Thus, the evolution of the congruence depends on the
nature of fHH. If fH is a decreasing function of H, the
geodesics are imploding toward one another until a
singularity is formed. If during the evolution fH becomes
an increasing function of H, the collapse halts and the
geodesics start to move apart from each other.
Positivity of both the energy density and pressure implies

that ðρþ pÞ > 0, which is the usual null energy condition
(NEC) in the context of GR. In the context of an fðTÞ
theory the NEC can be written from Eq. (6) as

R
∘
μνkμkν ≥ 0: ð33Þ

The NEC is a general result of Riemann manifolds rather
than GR which is why it continues to be expressed in terms
of the standard gravity Ricci tensor. It is for this reason that
it retains its dependence on the Levi-Civita connection
rather than the Weitzenöck connection. This form of the
NEC statement is essentially a coordinate-invariant way for
an unfixed geometrical theory of gravitation. For a general
fðTÞ gravity this can be written as

1

fT
ðρþ p − 24H2 _HfTTÞ ≥ 0; ð34Þ

where the positivity of both the energy density and pressure
helps one to ensure that the NEC is also satisfied through-
out the evolution. In the following works, we plot the lhs of
the NEC in a simple example to discuss the evolution of the
matter distribution for a simple collapsing exact solution.
It is quite natural in a study of gravitational collapse to
plot the NEC as a function of time as was first done in
the vintage paper of Kolassis, Santos and Tsoubelis [76].

The idea is to write the lhs of NEC as a function of time for
different collapsing shells labeled by different values of
radial distance r. In case of a spatially homogeneous metric
as in our case, this makes the lhs of NEC a function of time
(see also [77]).
Since we are completely avoiding the rigorous avenue

of finding an exact solution, more analysis relies heavily
on the amount of information that can be extracted from
the Raychaudhuri equation (31). There are a few different
ways of analyzing further; for instance, one can choose a
certain behavior of dθ

dτ and solve the resulting equation.
As the simplest possible example, let us assume that
ð2TfTT þ fTÞ ¼ δ, where δ is a constant. This can be
solved straightaway to write

fðTÞ ¼ δT þ 2C1T1=2 þ C2: ð35Þ

Thus, depending on a positive or a negative δ, a timelike
congruence under the scope of an fðTÞ theory [Eq. (35)]
avoids a formation of zero proper volume singularity or not.
The second method is to choose a particular viable fðTÞ

model from the literature and explore what constraints the
Raychaudhuri equation enforces upon the model parame-
ters. To this end, we choose two popular models of fðTÞ
gravity. For a power law fðTÞ theory [37,41]

fðTÞ ¼ T þ αð−TÞn: ð36Þ

From Eqs. (31) and (36), we find the relation governing
collapsing or expanding nature of the geodesic congruence.
An initially collapsing congruence remains collapsing if

1 − ½2αnðn − 1Þ þ αn�ð−TÞn−1 > 0; ð37Þ

and it changes nature from collapsing to expanding if

1 − ½2αnðn − 1Þ þ αn�ð−TÞn−1 < 0: ð38Þ

Similarly, for an exponential fðTÞ model, given by [38]

fðTÞ ¼ T þ αT0½1 − e−p
ffiffiffiffiffiffiffiffi
T=T0

p
�; ð39Þ

we find the relation governing collapsing or expanding
nature of the geodesic congruence using Eq. (31). If

1 −
αp2

2
e−p

ffiffiffiffiffiffiffiffi
T=T0

p
> 0; ð40Þ

the congruence is collapsing toward a formation of singu-
larity. If, during the course of its evolution, the lhs of the
above equation changes signature and satisfies

1 −
αp2

2
e−p

ffiffiffiffiffiffiffiffi
T=T0

p
< 0; ð41Þ
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the congruence becomes expanding, completely avoiding
any formation of zero proper volume.
To elaborate a little more rigorously, we also try to

explore from a different point of view and propose that an
initially collapsing congruence can be described by a
spatially homogeneous metric with a scale factor

aðtÞ ¼ δ1eαfðtÞ þ δ2e−αfðtÞ: ð42Þ

The form in Eq. (42) defines a kind of parametrization
and we argue that this form can give a general evolution of
all the possible outcomes of an initially collapsing stellar
distribution for different forms of the function fðtÞ and for
different values of the parameters δ1, δ2 and α. fðtÞ is a
continuous and differentiable function of time, which can
be exactly determined by writing an exact solution, if
possible, from the modified field equations. However,
finding an exact solution of the field equations may be
extremely nontrivial and not part of the purpose of this
work. We mean to comment on the restrictions one must
impose on the function fðtÞ and the parameters such that
different time evolution paths are described. Using Eq. (42)
in Eq. (31) we can write

dθ
dτ

¼ 3

�
αf̈

�
1 −

4δ1δ2
a2

�
1=2

þ 4δ1δ2α
2 _f2

a2

�
: ð43Þ

Any chance of a bounce of the initially collapsing star
depends on the existence of zeros of the rhs of Eq. (43).
There may be one or more of such zeros where the
evolution changes nature to expanding from collapsing
and vice versa. Depending on the number of zeros, an
initially collapsing star can continue to collapse, it can
bounce after a finite time, or it can suffer a multiple of
collapse-and-bounce segments and eventually become
oscillatory in nature [see Fig. 1 for graphical representa-
tions for different choices of fðtÞ]. Putting dθ

dτ ¼ 0 in
Eq. (43) therefore yields a “critical condition” written as

f̈ ¼ − _f2
4αδ1δ2

ða2 − 4δ1δ2Þ1=2
: ð44Þ

We can summarize the possible outcomes of the collapse
from the critical condition Eq. (44) as follows.
(1) The value of f̈ crossing the limit of − _f2 4αδ1δ2

ða2−4δ1δ2Þ1=2 is
a signature of change from collapse to a probable
expansion or dispersal or vice versa for a collapsing
star parametrized by Eq. (42).

(2) Since _f and f̈ are real functions of time, the rhs of
Eq. (44) must also be real. If any one of δ1 or δ2 is
negative, ða2 − 4δ1δ2Þ1=2 is always real and aðtÞ can
evolve on to a zero proper volume, forming a zero
proper volume singularity.

(3) However, if δ1 and δ2 are both positive, the rhs
of Eq. (44) is real if and only if ða2 − 4δ1δ2Þ > 0.

This predicts a different outcome of the collapse
and notes its sensitivity on the choice of initial
parameters. In such a case, the minimum allowed
value of aðtÞ is acritical ¼ 2δ1=21 δ1=22 . Beyond this
critical radius no more shrinking of the congruence
is allowed and a bounce or dispersal must take place.
Thus, the effective modification of GR due to the
nonconservation of energy-momentum distribution
opens up more possibilities regarding the end
state of gravitational collapse as compared to stan-
dard GR.

As an example, we present a particular exact solution of
the field equations in Eq. (29) for fðTÞ ¼ T þ αð−TÞ2.
This is a special case of a more general theory given by
fðTÞ ¼ T þ αð−TÞn. For a perfect fluid given by p ¼ ωρ
describing the collapsing fluid distribution, manipulating
the field equations we write

_Hf48αH2 − 2þ 24αH2g − 6ð1þ ωÞH2ð1 − 12αH2Þ
þ 3H2ð1þ ωÞ − 18ð1þ ωÞαH4 ¼ 0: ð45Þ

During the final phases of the collapse, _a → ∞ and
a → 0; therefore H ≫ 1

α. In this limit the above equation
can be written as

_H ¼ −
3

4
ð1þ ωÞH2 þ 1

24α
ð1þ ωÞ: ð46Þ

A first integral of the above equation can be calculated as

_a ¼ −
�
a0a−m þ ð1þ ωÞa2

24αðmþ 2Þ
�

1=2

: ð47Þ

a0 is a parameter related to the initial value of _a and
m ¼ 3

2
ð1þ ωÞ − 2. As a simple example we solve the first

integral equation for ω ¼ 1, which implies m ¼ 1. For this
we write the evolution of the radius of two-sphere as

aðtÞ ¼ eð6C−tÞ=6
ffiffi
α

p

22=3
½e3C= ffiffi

α
p

− 36a0αet=2
ffiffi
α

p �2=3: ð48Þ

In Fig. 1 we plot the evolution as a function of time. The
graph on top of the figure shows a plot for a0 > 0. It is clear
to note that the collapsing fluid reaches a zero proper
volume at a finite future. The time of formation of this zero
proper volume singularity may vary depending on the
choice of the functional form of the theory, i.e., α; however,
the qualitative behavior remains the same. In the graph
below, the evolution is shown for a0 < 0. It is clear that
there is no formation of zero proper volume singularity in
this case, as the collapsing fluid bounces indefinitely after
reaching a minimum cutoff volume. The parameter a0 is a
critical parameter of the system whose signature determines
the fate of the collapsing system. Using the equation for
the NEC, as in Eq. (34), we check if the collapsing fluid
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satisfies the NEC. This essentially ensures a positive energy
density and that the speed of energy flow of matter is less
than the speed of light.
In Fig. 2, we plot the NEC as a function of time, using

the exact solution in Eq. (48), for two different initial
conditions leading to collapse (top graph) and bounce
(bottom graph). While the NEC is perfectly satisfied for a
collapse to zero proper volume singularity, usually an
indefinite bounce is associated with a violation of NEC.
Eventually the bounce leads to a complete dispersal of all
the matter distribution inside, as shown in the bottom
graph, when ρþ p ∼ 0. This collapse and dispersal is
extremely suggestive of a critical behavior in the system.

V. NONMINIMAL TELEPARALLEL GRAVITY

In this section we take a modified teleparallel action
where we introduce a nonminimal coupling with a scalar
field as follows:

S¼
Z
d4xe

�
T
2κ2

þ1

2
ð∂μϕ∂μϕþξTϕ2Þ−VðϕÞþLm

�
: ð49Þ

Minimally coupled scalar fields are also popular in the
context of TG and such models have been studied quite
extensively in the context of cosmic acceleration and
reconstruction [31,55,78–83]. However, it is already estab-
lished that a minimally coupled scalar field endowed with

an interaction potential essentially serves as a fluid dis-
tribution and will therefore do no significant change in
outcome as far as the Raychaudhuri equation is concerned.
A nonminimal coupling, on the other hand, inspires an
analogy of scalar-geometry interaction in the strong gravity
limit. Although in the nonminimal case one could use a
generalized function of the torsion scalar, we keep the
standard T for simplicity. We also note that the action in
Eq. (49) with the torsion formulation of GR is similar to the
standard nonminimal quintessence models of cosmology
where the scalar field couples to the Ricci scalar.
Variation of action in Eq. (49) with respect to the tetrad

fields yields the equation of motion�
2

κ2
þ 2ξϕ2

��
e−1∂μðeeρASρμνÞ − eλAT

ρ
μλSρνμ −

1

4
eνAT

�

− eνA

�
1

2
∂μϕ∂μϕ − VðϕÞ

�
þ eμA∂νϕ∂μϕ

þ 4ξeρASρ
μνϕð∂μϕÞ ¼ eρAΨρ

ν: ð50Þ
We now impose the spatially homogeneous geometry of the
form (26) and write the field equations as

H2 ¼ κ2

3
ðρϕ þ ρmÞ; ð51Þ

_H ¼ −
κ2

2
ðρϕ þ pϕ þ ρm þ pmÞ; ð52Þ

FIG. 2. Evolution of the NEC as given in Eq. (34). (i) The top
curve shows the evolution for collapse, i.e., α ¼ 0.01, C ¼ 1 and
a0 ¼ 100; (ii) the bottom curve shows the evolution for bounce,
i.e., α ¼ 0.01, C ¼ 1 and a0 ¼ −100.

FIG. 1. Evolution of the radius of two-sphere as given in
Eq. (48). (i) Top curve: α ¼ 0.01, C ¼ 1 and a0 ¼ 100; (ii) bot-
tom curve: α ¼ 0.01, C ¼ 1 and a0 ¼ −100.
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where the scalar field energy density and pressure are
given, respectively, by

ρϕ ¼ 1

2
_ϕ2 þ VðϕÞ − 3ξH2ϕ2; ð53Þ

pϕ ¼ 1

2
_ϕ2 − VðϕÞ þ 4ξHϕ _ϕþ ξð3H2 þ 2 _HÞϕ2: ð54Þ

Using Eqs. (53) and (54) in Eq. (28), putting θ ¼ 3 _a
a, we

write the modified Raychaudhuri equation as

dθ
dτ

¼ 3 _H ¼ −
3ðρm þ pm þ _ϕ2 þ 4ξH _ϕϕÞ

2ð1þ ξϕ2Þ : ð55Þ

Equation (55) governs the evolution of the timelike
congruence, depending on the signature of dθdτ. A negative dθ

dτ
indicates a collapsing system until θ reaches −∞, where a
zero proper volume singularity forms. However, if dθ

dτ
changes signature and becomes positive over the course
of its evolution, then the collapse of the congruence halts
and the geodesics start to move away from each other.
Similar to the last section, the onus of avoiding a singularity
therefore lies on the behavior of the rhs of Eq. (55).
If we assume that both the energy density ρ and the

isotropic pressure p are positive in nature, the nature of the
evolution and the predictability depends on the nature of ξ
and _ϕ. Moreover, _ϕ2 is always positive. If the scalar field
increases as a function of time, _ϕ > 0 as well. Thus,
depending on the signature of ξ the congruence behaves
accordingly; for instance, if ξ < 0 such that 2ð1þξϕ2Þ<0

but 3ðρm þ pm þ _ϕ2 þ 4ξH _ϕϕÞ > 0, somewhere during
the collapse, _H ¼ dθ

dτ > 0, which means a formation of
singularity is avoided. Otherwise there is a formation of
zero proper volume singularity.
For a general coupling function ξ0ξðϕÞ replacing the

nonminimal coupling ξϕ2 in the action, one may generalize
the Raychaudhuri equation to write the condition in
Eq. (55) as

dθ
dτ

¼ −
3ðρm þ pm þ _ϕ2 þ 2ξ0H _ϕ dξ

dϕÞ
2ð1þ ξ0ξðϕÞÞ

: ð56Þ

As an example we present a particular exact solution of
the system given by the field equations in Eqs. (51) and (52)
and the scalar field evolution equation given by

ϕ̈þ 3H _ϕþ 6ξH2ϕþ dV
dϕ

¼ 0: ð57Þ

We solve Eq. (57) by using a theorem on the invertibility
of these equations [84]. The property involves point
transforming the equations into an integrable form and is
derived from the symmetry analysis of a general classical

anharmonic oscillator equation system. The general equa-
tion is written as

ϕ̈þ f1ðtÞ _ϕþ f2ðtÞϕþ f3ðtÞϕn ¼ 0: ð58Þ

f1, f2 and f3 are unknown functions of some variable,
of t at this point, and n is a constant. A transformation
of this equation into an integrable form requires a pair of
point transformations and the condition n ∉ f−3;−1; 0; 1g
to be satisfied. Moreover, the coefficients must satisfy the
condition

1

ðnþ 3Þ
1

f3ðtÞ
d2f3
dt2

−
ðnþ 4Þ
ðnþ 3Þ2

�
1

f3ðtÞ
df3
dt

�
2

þ ðn − 1Þ
ðnþ 3Þ2

�
1

f3ðtÞ
df3
dt

�
f1ðtÞ þ

2

ðnþ 3Þ
df1
dt

þ 2ðnþ 1Þ
ðnþ 3Þ2 f

2
1ðtÞ ¼ f2ðtÞ: ð59Þ

The point transformations are written as

ΦðTÞ ¼ CϕðtÞf1=ðnþ3Þ
3 ðtÞe2=ðnþ3Þ

R
t f1ðxÞdx; ð60Þ

Tðϕ; tÞ ¼ Cð1−nÞ=2
Z

t
f2=ðnþ3Þ
3 ðξÞeðð1−nÞ=ðnþ3ÞÞ

R
ξ f1ðxÞdxdξ;

ð61Þ

whereC is a constant.Using this property, we solve the scalar
field evolution equation assuming its integrability at the
outset. However, this assumption by no means produces
unphysical solutions. The scope of this approach has been
discussed at length quite recently, in the context of simple
scalar field collapse, scalar-Gauss-bonnet gravity and cos-
mological reconstruction of modified theories of gravity.
We assume the potential to be a sum of quadratic and

quartic terms of the scalar field, written as

VðϕÞ ¼ 1

2
m2ϕ2 −

αm2

24f2
ϕ4; ð62Þ

which is extremely suggestive of a Higgs potential or an
axion dark matter potential. Using the exact form of the
potential, the scalar evolution equation takes the form of

ϕ̈þ 3H _ϕþ ð6ξH2 þm2Þϕ −
αm2

6f2
ϕ3 ¼ 0: ð63Þ

A quick comparison reveals the coefficients to be written as
f1 ¼ 3 _a

a, f2 ¼ ð6ξH2 þm2Þ, αm2

6f2 and n ¼ 3. Using this, the

integrability criterion produces the evolution equation for
the radius of the two-sphere as

GEODESIC CONGRUENCES AND A COLLAPSING STELLAR … PHYS. REV. D 101, 124044 (2020)

124044-9



ä
a
þ ð1 − 6ξÞ _a

2

a2
−m2 ¼ 0: ð64Þ

The first integral of the above equation can be written as

_a ¼ −
�
a0a2ð6ξ−1Þ þ

m2a2

2 − 6ξ

�
1=2

: ð65Þ

As a simple example, we solve the above equation for
ξ ¼ 1

12
. This produces the solution for the radius of the

two-sphere as

aðtÞ ¼ e−½
ffiffi
2

p
mð ffiffi

3
p

tþ3CÞ�=3

ð2mÞ4=3 ½e3
ffiffi
2

p
mC − 6a0m2e

ffiffi
6

p
mt�2=3: ð66Þ

In Fig. 3, we plot the evolution as a function of time. The
graph on top of the figure shows a plot for a0 > 0. It is clear
to note that the collapsing fluid reaches a zero proper
volume at a finite future. The time of formation of this zero
proper volume singularity may vary depending on the
choice of the functional form of the theory, i.e., α; however,
the qualitative behavior remains the same. In the graph
below, the evolution is shown for a0 < 0. It is clear that
there is no formation of zero proper volume singularity in
this case, as the collapsing fluid bounces indefinitely after
reaching a minimum cutoff volume. The parameter a0 is a
critical parameter of the system whose signature determines
the fate of the collapsing system.

We study numerically the evolution of the scalar field of
the scalar nonminimal coupling using the Klein-Gordon
equation as in Eq. (63). The evolution of the scalar field
with respect to time is given in Fig. 4. It is evident from the
figure that, when the sphere collapses onto a zero proper
volume, the scalar field diverges around the time of
formation of singularity as well. However, from the bottom
graph we note that the collapse and bounce of the sphere are
associated with a dispersal of the scalar field to zero value.
It may involve radiating or exploding away the strength of
scalar field during the indefinite bounce. Using the equa-
tion for the NEC, as in Eq. (34), we also check if the
collapsing fluid satisfies the NEC. This essentially ensures
a positive energy density and that the speed of energy flow
of matter is less than the speed of light.
In Fig. 5, we plot the NEC as a function of time, using

the exact solution in Eq. (66), for two different initial
conditions leading to collapse (top graph) and bounce
(bottom graph). While the NEC is perfectly satisfied for a
collapse to zero proper volume singularity, usually an
indefinite bounce is associated with a violation of NEC.
Eventually the bounce leads to a complete dispersal
of all the matter distribution inside, as shown in the
bottom graph, when ρþ p ∼ 0. This collapse and
dispersal is extremely suggestive of a critical behavior in
the system.

FIG. 3. Evolution of the radius of two-sphere as given in
Eq. (66). (i) Top curve: m ¼ 1, C ¼ 1 and a0 ¼ 1; (ii) bottom
curve: m ¼ 1, C ¼ 1 and a0 ¼ −1.

FIG. 4. Evolution of the scalar field from Eq. (63). (i) The top
curve shows the evolution of the scalar for collapse, i.e., m ¼ 1,
C ¼ 1 and a0 ¼ 1; (ii) the bottom curve shows the evolution of
the scalar for bounce, i.e., m ¼ 1, C ¼ 1 and a0 ¼ −1.
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VI. DISCUSSION AND CONCLUSION

In this work we explore TG within the context of stellar
collapse through the Raychaudhuri equation and the NEC.
TG explores the possibility of replacing the Levi-Civita
connection with its Weitzenböck analog. This has the effect
of producing a generically lower-order framework of
gravity in which the metric is exchanged with the tetrad
in terms of the fundamental dynamical object of the
theory. We use the relations between TG and standard
gravity to relate the components of the Ricci tensor

with their theory-dependent teleparallel analogs through
Eq. (25). The effect of this is that the Raychaudhuri
equation in Eq. (5) can be used to determine the congruence
of neighboring particle geodesics. The Raychaudhuri
equation is a general result for Riemann manifolds which
is why we can use it in this context. We then use the NEC to
determine which of these solutions indeed produces col-
lapsing models.
The scenario of a spatially homogeneous collapsing

stellar interior is investigated in Sec. IV within the fðTÞ
gravity extension to TEGR. Here, we assume the same

rationale as the widely popular fðR∘ Þ gravity framework. By
probing this scenario of TG with a perfect fluid, we find the
condition for stellar collapse, both in terms of the straight-
forward torsion scalar but also as a function of HðtÞ. Then
by using the NEC, we determine trial solutions that satisfy
this condition. As we show in this section, these models are
consistent with a number of literature proposals and
moreover are instrumental in determining general condi-
tions for collapse within fðTÞ gravity.
We again consider this scenario in Sec. V, but in this case

we take consider an interesting nonminimally coupled
scalar field which is added to the TEGR Lagrangian in
the action in Eq. (49). In this case, we need to also use a
very intriguing theorem within calculus on solutions of
anharmonic oscillator systems in Eq. (58). In this setup, we
can then find solutions to the evolution equations. In this
part of the work, we plot the NEC to determine when this is
satisfied in Fig. 5. Scalar-tensor theories are very interesting
in TG due to its organically lower-order nature which
produces a much wider range of models that remain second
order than their standard gravity analogs.
TG has been mainly studied in cosmology and so works

in stellar systems can reveal a lot about the physically
viable theories from cosmology. Collapse models provide
an intriguing test bed in which to perform these studies and
may elucidate several literature models within their strong
field regime.
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