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In this paper, we explore momentum space approach to computing scalar amplitudes in anti–de Sitter
(AdS) space. We show that the algorithm derived by Arkani-Hamed, Benincasa, and Postnikov for
cosmological wave functions can be straightforwardly adopted for AdS transition amplitudes in momentum
space, allowing one to bypass bulk point integrations. We demonstrate the utility of this approach in AdS
by presenting several explicit results both at tree and loop level.
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I. INTRODUCTION

In the last decade, there has been a resurrection in the
study of scattering amplitudes and conformal correlation
functions. Such undertakings have extricated rich structures
of quantum field theory and quantum gravity. In particular,
we now have considerable evidence that scattering ampli-
tudes in quantum gravity can be computed from the
correlation functions in one lower dimensions. Such a
correspondence is known as the holographic duality [1–3]
and its most concrete formalism in given by AdS=CFT
where the bulk geometry is anti–de Sitter space and the
conformal correlation functions live at the boundary. This
correspondence has led to major insights into the nature of
quantum gravity as well as gauge theory.
Besides yielding useful insights, holographic correlators

have been discovered to have rich mathematical structures
[4–32]. However, momentum-space methods, our usual
modus operandi of doing computation in quantum field
theory, is still not yet fully studied for CFTs (see for a
partial list of progress [33–58]). We also now know that the
usual scattering amplitudes arise from the flat space limit of
the holographic Conformal Field Theory (CFT) correlators.
Hence it is useful to generalize the tools that have been
developed for the usual scattering amplitudes in flat space
to holographic correlators. A modest step in this direction is
taken in [59] where it is shown that tree level gauge theory
Witten diagrams for transition amplitudes, reduce to

surprisingly simple expressions when expressed in momen-
tum space.1 In a similar vein, momentum space approach to
transition amplitudes also simplifies the computation of
graviton exchange diagrams, which was demonstrated in
[60] with explicit higher point tree level results.
The momentum space formalism for AdS calculations

can be upgraded with a new algorithm developed by
Arkani-Hamed, Benincasa, and Postnikov in [61] where
they investigate the wave function of the Universe in de
Sitter background. Indeed, it was realized in [62] that the
computation of gluonWitten diagrams in AdS4 can actually
use the same combinatorial relations developed in [61]
if it is written in momentum space. This correspondence
allowed the authors to compute any tree level gluon
exchange diagram algebraically, without having to do
any explicit bulk integrations.
In this paper, we would like to extend this marriage

between Arkani-Hamed et al.’s algorithm and AdS momen-
tum space beyond AdS4 gluons. We will show that
conformally coupled scalars in any AdSdþ1 can be com-
puted algorithmically, both at tree and loop level, and we
will demonstrate this with explicit results for variousWitten
diagrams. Besides its formal usage, the AdS transition
amplitudes can be useful in the computation of the wave
function at late times from which one can compute de Sitter
correlators [63,64]. The growing interest in cosmology has
generated a great deal of excitement in the study of late time
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1Transition amplitudes are generalizations of vacuum-corre-
lators such that one replaces some of the bulk to boundary
propagators of the relevant Witten diagram with normalizable
modes [37]. Such a replacement roughly creates the effect of
changing the boundary conditions at past and future horizons of
the relevant Poincaré patch, creating past and future states for the
correlator (hence the name transition amplitude).
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de Sitter correlators [38,50,65–84] and we believe that
the analogous calculations of momentum space AdS
amplitudes can assist in the study of the shape of non-
Gaussianities.
Here is the organization of the paper. In Sec. II, we

discuss scalars in curved spacetime and present the review
of momentum space toolkit in anti–de Sitter space. We also
demonstrate the standard nonalgorithmic approach of
momentum space formalism by computing Witten dia-
grams for minimally coupled scalars. In Sec. III, we switch
to conformally coupled scalars, discuss how the algorith-
mic approach works, and provide explicit results both at
tree and loop levels. Finally, we conclude with a brief
discussion and future directions.

II. PRELIMINARIES

A. Scalars in curved spacetime

A free scalar ϕ in flat space satisfies the Klein-Gordon
equation which reads as

ð□ −m2ÞΦ ¼ 0 ð2:1Þ

where m is the mass parameter of the field. In curved
spacetime, this equation becomes

ð□ − ðm2 þ ξRÞÞΦ ¼ 0 ð2:2Þ

where R is the Ricci scalar and ξ is a coefficient determin-
ing the interaction between scalar and the background. In
the case of AdSdþ1, this equation follows from the action

Squadratic ¼ −
1

2

Z
ddþ1x

ffiffiffi
g

p ðgμνð∂μΦÞð∂νΦÞ

þ ðm2 þ ξRÞΦ2Þ ð2:3Þ

where g ¼ j det gμνj and we stick to mostly positive metric
convention throughout the paper.
The scalar in curved spacetime has been extensively

analyzed in the literature; however, the analysis usually
focus on two specific values of ξ: minimally coupled
scalar with ξ → 0, and conformally coupled scalar with
ξ → ξc for

ξc ≡ d − 1

4d
: ð2:4Þ

The popularity of minimally coupled scalar follows from
the fact that ξ ¼ 0 simplifies the Lagrangian. The appeal of
conformally coupled scalar, however, cannot be immedi-
ately seen unless one goes to local Minkowski frame where
the potential term takes the form [85]

VðxÞ ∼ ½m2 þ ðξ − ξcÞR� ð2:5Þ

One sees that if (in addition to ξ ¼ ξc) one imposes m ¼ 0,
the potential vanishes, leading the theory to enjoy con-
formal symmetry. Indeed, even though all pairs ðm; ξÞ ¼
ðm; ξcÞ fall into the class of conformally coupled scalars,
only ðm; ξÞ ¼ ð0; ξcÞ case is invariant under conformal
transformations [86].
Tuning the parameters ðm; ξÞ ¼ ð0; ξcÞ is necessary for

the theory to enjoy conformal symmetry but it is not
sufficient: we also need to check if the interaction
Lagrangian spoils this symmetry. As a prerequisite con-
dition of scale invariance we restrict to interactions of the
form O≡Oðgμν; ∂μ;ΦÞ which transforms as O → λκO as
gμν → λ2gμν for constant λ.
In this paper, we focus on nonderivative interactions for

which the action takes the form

S ¼ −
Z

ddþ1x
ffiffiffi
g

p �
1

2
ðgμνð∂μΦÞð∂νΦÞ

þ ðm2 þ ξRÞΦ2Þ þ λn
n!

Φn

�
: ð2:6Þ

We can check the trace of stress tensor Tμν to see when it is
zero. Indeed, via

Tμν ¼
−2ffiffiffi
g

p δS
δgμν

ð2:7Þ

we obtain

Tμν ¼ ð∂αΦÞð∂βΦÞ
�
δαμδ

β
ν −

1

2
gμνgαβ

�
− ξ½∂μ∂ν − gμν□�Φ2

−
1

2
Φ2½ðm2 þ ξRÞgμν − 2ξRμν� −

λn
n!

Φngμν ð2:8Þ

where we used

δFðRÞ ¼ ðF0ðRÞRμν − ½∇μ∇ν − gμν□�F0ðRÞÞδgμν; ð2:9Þ

for whose derivation with a nice explanation we suggest the
lecture notes of Matthias Blau, available at http://www.blau
.itp.unibe.ch/newlecturesGR.pdf.2

2This equation is actually true only if there are no contributions
at the boundary as its derivation uses integration by parts and
assumes that total derivative terms do not contribute. Strictly
speaking, this is not correct for AdS. However, boundary
conditions actually kill the additional piece unless the variation
of the action on the boundary contains the derivative of the
variation of the boundary metric for which one then needs to add
an appropriate boundary term to cancel the additional variation,
see [87] in the case of Einstein gravity. We will avoid such
subtleties (and refer the reader to [88,89] and references therein)
so a rigorous minded reader should see our calculations not as a
derivation but as a motivation for why only certain interactions
can enjoy full conformal symmetry.
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The trace of stress tensor then reads as

gμνTμν ¼ 2dðξ − ξcÞgμνð∂μΦÞð∂νΦÞ

þ 2dξΦ
�
□Φ −

�
dþ 1

d − 1
m2 þ ξcR

�
Φ

−
λn
n!

ξc
ξ

2ðdþ 1Þ
d − 1

Φn−1
�

ð2:10Þ

We see the first term dies only if ξ ¼ ξc. We can then
kill the second term with equation of motion if m ¼ 0 and
n ¼ nc for

nc ≡ 2ðdþ 1Þ
d − 1

; ð2:11Þ

e.g., nc ¼ 4 for AdS4. We thus arrived at the well-known
conclusion: the action in Eq. (2.6) enjoys conformal
symmetry only if fm; ξ; ng ¼ f0; ξc; ncg.
We can derive this result from another, and slightly

simpler, approach. We first specialize to the AdS with the
Poincaré metric and the Ricci scalar

ds2 ¼ dz2 þ ηijdxidxj

ðz=ρÞ2 ; R ¼ −
dðdþ 1Þ

ρ2
ð2:12Þ

where we take AdS radius ρ ¼ 1 in the rest of the paper.3

We then consider a Weyl transformation which maps AdS
to flat space:

gμν → g0μν ≡ z2gμν ð2:13aÞ

Φ → ϕ≡ z−
d−1
2 Φ ð2:13bÞ

where we used the engineering scaling dimension for the
scalar field. Under this transformation, quadratic part which
is invariant under conformal transformations map to the
free scalar in flat space

1

2

ffiffiffi
g

p
gμνð∂μΦÞð∂νΦÞ þ 1

2
ξ

ffiffiffi
g

p
RΦ2 →

1

2
ð∂μϕÞð∂μϕÞ

ð2:14aÞ

whereas the interaction part maps as

ffiffiffi
g

p λn
n!

Φn → z
d−1
2
ðn−ncÞ λn

n!
ϕn ð2:14bÞ

We immediately see that we need n ¼ nc if we require
the flat space interaction to be conformally invariant
as well.

B. Review of momentum space toolkit in AdS

In this section, we will review the basics of our
framework and specifics regarding the scalars. For similar
reviews in the context of gauge fields and gravitons, see
[59,60,62].
We will be working with the Poincaré patch of Eq. (2.12)

and take the Fourier transform of xi. We will leave z as it is
though: the coordinates fz; kig are what we call the
momentum space in this paper. This is in the same spirit
of the treatment in [33,35,37].
In momentum space, equation of motion in Eq. (2.2)

becomes

ðz1þd∂zz1−d∂z − z2kiki − μ2ÞΦðz; kiÞ ¼ 0 ð2:15Þ

where we define the effective mass square

μ2 ≡m2 þ ξR ð2:16Þ

The general solution to this differential equation for
timelike momenta kiki < 0 reads as:4

ΦðzÞ ∼ c1zd=2JνðkzÞ þ c2zd=2YνðkzÞ ð2:17Þ

where we define

ν≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4μ2

p
2

ð2:18Þ

and where k≡ ffiffiffiffiffiffiffiffiffiffi
jkikij

p
.5,6

For spacelike momenta, the regularity in the AdS can
only be achieved for the particular combination which sums
up to the Bessel function of the second kind, i.e.,

ΦkðzÞ ∼ zd=2KνðkzÞ ð2:19Þ

3Our notation is such that z is the radial coordinate and the
transverse coordinates xi approach to the boundary coordinate as
z → 0.

4Here, JnðxÞ (YnðxÞ) is the Bessel function of the first (second)
kind.

5We specifically chose the letter ν to denote
ffiffiffiffiffiffiffiffiffiffiffi
d2þ4μ2

p
2

as this
term up to an overall i is the pole of the spectral representation of
the bulk to bulk propagator, usually denoted as �iν in the
literature [90], where there are two poles due to the shadow
symmetry.

6The scaling dimension of the dual operator in the boundary
CFT is Δ ¼ d

2
þ ν in our notation. We would like to caution the

reader that many papers in literature calls mass m what we
defined as the effective mass μ, hence the well-known formula
ΔðΔ − dÞ ¼ m2, which becomes ΔðΔ − dÞ ¼ μ2 in our notation.
As we choose to distinguish mass m and effective mass μ, it is
completely consistent in our definition when we say massless
conformally coupled scalar as m ¼ 0 despite μ2 ¼ 1−d2

4
≠ 0.

STUDY OF MOMENTUM SPACE SCALAR AMPLITUDES IN ADS … PHYS. REV. D 101, 124043 (2020)

124043-3



Note that this is always possible due to the identity7

KνðzÞ ¼
πiν

2
ðiJνðizÞ − YνðizÞÞ: ð2:21Þ

Below, we will focus on massless minimally coupled
scalarsΦðmÞ

k and massless conformally coupled scalarsΦðcÞ
k

for which the relevant bulk to boundary propagators read as

ΦðmÞ
k ðzÞ ∼ zd=2Kd=2ðkzÞ ð2:22aÞ

ΦðcÞ
k ðzÞ ∼ zd=2K1=2ðkzÞ ð2:22bÞ

where we use the fact that Ricci scalar R ¼ −dðdþ 1Þ
in AdS.
We can similarly calculate the bulk to bulk propagators.

We are looking for the solutions to the equation

ðz1þd∂zz1−d∂z − z2kiki − μ2ÞGΦðz; z0; kiÞ ¼ iδðz − z0Þzdþ1:

ð2:23Þ

We observe that

ð∂zz1−d∂z − z1−dkiki − z−1−dμ2Þ

×

�
−
ipzd=2z0d=2JνðpzÞJνðpz0Þ

kiki þ p2

�
¼ iz1−d=2z0d=2pJνðpzÞJνðpz0Þ ð2:24Þ

and since we also have the identity

Z
∞

0

pJνðpzÞJνðpz0Þdp ¼ δðz − z0Þ
z

ð2:25Þ

we find the propagator:

GΦðz; z0; kiÞ ¼
Z

∞

0

−ipdp
kiki þ p2 − iϵ

ðzd=2JνðpzÞÞðz0d=2Jνðpz0ÞÞ: ð2:26Þ

In particular, ν → 1=2ðd=2Þ gives the propagator for
conformally (minimally) coupled scalar as we noted above.
One can now go ahead and write the expression for

Witten diagrams. At tree level, the amplitude for a diagram
of m external legs and n bulk propagators reads as

Wm;n ∼
Z

∞

0

dz1…dznþ1Φk1ðzi1Þ…ΦkmðzimÞ

×GΦðzj1 ; zj2 ; q1Þ…GΦðzjn ; zjn ; qnÞ
Ynþ1

t¼1

ρtðztÞ

ð2:27Þ

for the interaction coefficient ρnðznÞ at nth vertex, where
zi1 ;…; zim ∈ fz1;…; znþ1g and zj1 ;…; zjr ∈ fz1;…;
znþ1g, and where qi are norms of linear combinations of
vectors ki depending on the topology.
As an example, we can consider the topology in Fig. 1

for minimally coupled scalars; the relevant amplitude
would read as

W ∼
Z

∞

0

dz1dz2Φ
ðmÞ
k1

ðz1ÞΦðmÞ
k2

ðz1ÞΦðmÞ
k3

ðz2ÞΦðmÞ
k4

× ðz2ÞΦðmÞ
k5

ðz2ÞGϕðz1; z2; k12Þλ3λ4 ð2:28Þ

where we are following the notation of [59] for addition of
k—vectors.8

We can use Eq. (2.26) and exchange the order of
integrations, writing Eq. (2.27) in a different form:

7This is only true for z > 0. For generic z, the relevant identity reads as

KνðzÞ ¼
(
iνðð− logðzÞ þ logðizÞÞJνðizÞ − 1

2
πYνðizÞÞ for ν ∈ Z

1
2
π cscðπνÞðcosðπνÞðizÞνz−ν − ðizÞ−νzνÞJνðizÞ − 1

2
πðizÞνz−νYνðizÞ for ν ∉ Z

ð2:20Þ

8Explicitly:

ki11i12…i1n1 i21i22…i2n2 …im1im2…imnm j1j2…jp ≔
Xm
a¼1

����X
na

b¼1

kiab

����þXp
c¼1

jkjc j; ð2:29aÞ

and

ki1i2…in ≔ ki1 þ ki2 þ � � � þ kin : ð2:29bÞ

For example, k12345 ≡ jk1 þ k2j þ jk3j þ jk4 þ k5j and k12 ≡ k1 þ k2.
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Wm;n ∼
Z

∞

0

dp1…dpn
−ip1

p2
1 þ q21 − iϵ

…
−ipn

p2
n þ q2n − iϵ

× B1ðki; piÞ…Bnþ1ðki; piÞ
Ynþ1

t¼1

ρt ð2:30Þ

where B is what we will call bulk-point integrated expres-
sion. Note that we integrated (if any) z—dependent parts of
the interaction coefficients as well.

C. Example: Minimally coupled scalars in AdS4

In this section we will calculate some amplitudes for tree
level Witten diagrams using the procedure advocated in the
previous section; specifically, with

ϕkðzÞ≡
ffiffiffi
2

π

r
ðkzÞ3=2K3=2ðkzÞ

Gϕðz; z0; kiÞ≡
Z

∞

0

−ipdp
kiki þ p2 − iϵ

× ðz3=2J3=2ðpzÞÞðz03=2J3=2ðpz0ÞÞ ð2:31Þ

where we choose a particular normalization for the bulk to
boundary propagator consistent with the literature.9

Apart from its physical significance, we focus on AdS4
also because Bessel functions simplify for half integer
arguments; hence the calculations are relatively easier for
AdS2þ2n. This motivation was also used in previous similar
work [59,60,62], where the calculation of graviton ampli-
tudes in [60] is actually quite similar to the computation at
hand. Specially, one can write the graviton propagators in
AdSdþ1 as

hijðz; kiÞ ¼
ϵij
z2

ϕkðzÞ

Ggraviton
ab;cd ðz; z0; kiÞ ¼

i
ðzz0Þ2 D

k
ab;cdGϕðz; z0; kiÞ ð2:32Þ

where Dk
ab;cd is a differential operator whose details are

irrelevant for us. However, one important remark is that
these differential operators commute with the rest of the
calculation, thus for a Witten diagram with n bulk to bulk
propagators we schematically have

Agraviton ¼ ðϵi; ViÞa11a12…a14a21…an4
Yn
j¼1

D
pj
aj1aj2;aj3aj4M;

ð2:33Þ

where ðϵi; ViÞ stand for the collection of the vertex factors
and polarization vectors, pj is the sum of some bulk to
boundary momenta depending on the topology of the
diagram, and M is the scalar factor of the amplitude.
This scalar factor for graviton amplitude is almost the same
expression with the amplitude for the same Witten diagram
with graviton legs replaced by minimally coupled scalars.
The only difference between the amplitude for minimally
coupled scalars and graviton scalar factor is due to the
different overall exponent of z in bulk point integration.10,11

We now proceed with calculation of bulk point inte-
grated expressions. Specifically, we define

KKKðk1; k2; k3Þ≡
Z

∞

0

dz
z4

ϕk1ðzÞϕk2ðzÞϕk3ðzÞ ð2:34aÞ

KKJ ðk1; k2; pÞ≡
Z

∞

0

dz
z4

ϕk1ðzÞϕk2ðzÞðz3=2J3=2ðpzÞÞ

ð2:34bÞ

KJJ ðk; p1; p2Þ≡
Z

∞

0

dz
z4

ϕkðzÞðz3=2J3=2ðp1zÞÞ

× ðz3=2J3=2ðp2zÞÞ ð2:34cÞ

KKKJ ðk1; k2; k3; pÞ≡
Z

∞

0

dz
z4

ϕk1ðzÞϕk2ðzÞϕk3

× ðzÞðz3=2J3=2ðpzÞÞ: ð2:34dÞ

We can define similar expressions for more complicated
interactions, but we will restrict to the first few simplest
tree level Witten diagrams. By regularizing the integrations
we find

FIG. 1. A five point tree level Witten diagram, labeled as W5;1
below.

9An overall k—dependent scaling of bulk to boundary
propagators, i.e. ϕkðzÞ → fðkÞϕkðzÞ, is immaterial for our
purposes in this paper, hence we refer this as a normalization
and fix it with a convenient factor. However, this normalization is
actually tightly constrained by scaling dimensions of the dual
operators at the boundary CFT.

10Of course, the vertex coefficients are also different but that is
an overall factor which can be easily accounted for.

11There are two cases where z—factors coincidentally match:
minimally coupled scalars with two-derivative-cubic interaction
(polynomial quartic interaction) have exactly the same z—factor
with cubic (quartic) graviton interaction. We will not be making
use of that correspondence though, as we are only interested in
polynomial scalar interactions and as we do not know of any
explicit result in the literature for momentum space Witten
diagrams of pure quartic graviton interactions.
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KKKðk1; k2; k3Þ ¼
1

9
ðk1 þ k2 þ k3Þ3 − k1k2k3 þ

1

3
ðk31 þ k32 þ k33Þð− log ðk1 þ k2 þ k3Þ − γ þ 1Þ ð2:35aÞ

KKJ ðk1; k2; pÞ ¼
ffiffi
2
π

q
ðk31 þ k32Þðtan−1ð p

k1þk2
Þ − p

k1þk2
Þ

3p3=2 −
p3=2ð3 log ððk1 þ k2Þ2 þ p2Þ þ 6γ − 8Þ

9
ffiffiffiffiffiffi
2π

p ð2:35bÞ

KJJ ðk; p1; p2Þ ¼
k3 tanh−1ð 2p1p2

k2þp2
1
þp2

2

Þ − 2kp1p2 þ ðp3
2 − p3

1Þ tan−1ðp1−p2

k Þ þ ðp3
1 þ p3

2Þ tan−1ðp1þp2

k Þ
3πðp1p2Þ3=2

ð2:35cÞ

KKKJ ðk1; k2; k3; pÞ ¼
ffiffi
2
π

q
ðk31 þ k32 þ k33Þ tan−1ð p

k1þk2þk3
Þ

3p3=2 −
p3=2ð3 log ððk1 þ k2 þ k3Þ2 þ p2Þ þ 6γ − 8Þ

9
ffiffiffiffiffiffi
2π

p

−

ffiffiffiffiffiffi
2

πp

s �
k1k2k3ðk1 þ k2 þ k3Þ
ðk1 þ k2 þ k3Þ2 þ p2

þ k31 þ k32 þ k33 − 3k1k2k3
3ðk1 þ k2 þ k3Þ

�
ð2:35dÞ

where γ is the Euler-gamma number.
We can now use the prescription of Eq. (2.30) to write down the amplitudes for various Witten diagrams:

W3;0ðkiÞ ¼ −iλ3KKKðk1; k2; k3Þ ð2:36aÞ

W4;1ðkiÞ ¼ −λ23

Z
∞

0

dp
−ip

p2 þ k212 − iϵ
KKJ ðk1; k2; pÞKKJ ðk3; k4; pÞ ð2:36bÞ

W5;1ðkiÞ ¼ −λ3λ4
Z

∞

0

dp
−ip

p2 þ k212 − iϵ
KKJ ðk1; k2; pÞKKKJ ðk3; k4; k5; pÞ ð2:36cÞ

W5;2ðkiÞ ¼ iλ33

Z
∞

0

dp1dp2

−ip1

p2
1 þ k212 − iϵ

−ip2

p2
2 þ k245 − iϵ

×KKJ ðk1; k2; p1ÞKJJ ðk3; p1; p2ÞKKJ ðk4; k5; p2Þ ð2:36dÞ

W6;1ðkiÞ ¼ −λ24

Z
∞

0

dp
−ip

p2 þ k2123 − iϵ
KKKJ ðk1; k2; k3; pÞKKKJ ðk4; k5; k6; pÞ ð2:36eÞ

Clearly, these are hard, albeit doable, integrals.12 However, we will not dwell on these integrals for two reasons: the first
reason is the simplicity of the computation of conformally coupled scalars compared to that of minimally coupled scalars.
This is a fortunate observation because conformally coupled scalars can potentially be used as seed diagrams from which
minimally coupled scalar can be computed as well [91].13 And that is what we are turning to in the next section.

III. CONFORMALLY COUPLED SCALARS

A. An algorithmic approach for conformally invariant scalars

In Sec. II Awe used a Weyl transformation to deduce which interaction terms preserve conformal invariance by going to
the flat space and checking the form of interaction coefficient. However, we can use that Weyl transformation for
computation purposes as well. Indeed, for conformally coupled scalars,14 the Lagrangian in Eq. (2.6) simplifies to

12One of the key points of [59] where the authors computed similar integrals for gluon exchange is that one can use residue theorem to
significantly simplify such formidable integrals. Unfortunately, the integrands in Eq. (2.36) do not fall off at infinity hence residue
theorem is no longer a simple option.

13In addition to those motivations, we also would like to note the claim of [92] that massive scalars in curved background may lie on
the lightcone in the local Minkowski frame unless they are conformally coupled, leading to causal pathologies, indicating that any
massive scalar needs to be conformally coupled.

14In the rest of the paper we mean ξ ¼ ξc and m ¼ 0 when we say conformally coupled scalar.
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S ¼ −
Z

ddxdz

�
1

2
ð∂iϕÞ2 þ

1

2
ð∂zϕÞ2 þ

λnðzÞ
n!

ϕn

�
ð3:1Þ

under the transformation in Eq. (2.13). Here, we defined

λnðzÞ≡ λnz
d−1
2
ðn−ncÞ ð3:2Þ

where i ¼ 1;…; d run for the boundary coordinates with
the boundary metric ηij. From Eqs. (2.13b), (2.22b), (2.26),
we can immediately write down the propagators:15

ϕkðzÞ ¼
ffiffiffiffiffiffiffi
2kz
π

r
K1=2ðkzÞ ð3:3aÞ

Gϕðz; z0; kiÞ ¼
Z

∞

0

−ipdp
kiki þ p2 − iϵ

× ðz1=2J1=2ðpzÞÞðz01=2J1=2ðpz0ÞÞ ð3:3bÞ

from which we can deduce the bulk point integrations:

Bn;xðk; pÞ≡
Z

∞

0

dzz
d−1
2
ðn−ncÞ

Yx
i¼1

Yn−x
j¼1

ϕkiðzÞðz
1
2J1

2
ðpjzÞÞ:

ð3:4Þ

Carrying out such integrals once and for all and then
using those results in various different Witten diagrams is
part of the strategies that were employed in [59,60] as we

demonstrated in the case of minimally coupled scalars in
Sec. II C. However, one can do better than calculating these
integrals generically and using them case by case: we can
directly find an algebraic algorithm and bypass all inte-
grations, both the bulk-point z—integrations and propaga-
tor p—integrations.
Such an algorithm is discussed in [62] where the

authors refer to the additive property of vertices, enabling
them to work at the level of truncated diagrams and
compute amplitudes directly via algebraic means. This is
possible, as they argue, because the gluon propagators
in AdS4 are simply exponentials and there is a nice
cancellation between the volume factor z−d−1 and the
vertex factor z4 in AdS4. We see that the propagators of
conformally coupled scalars in flat space precisely match
gluons in AdS4 and bulk point expressions have exactly
same z—powers if n ¼ nc as can be seen from Eq. (3.4).
So we arrive at the conclusion that one can reduce the
integrations to algebraic calculations for scalars with
conformal symmetry in any dimension, analogous to
gluons in AdS4.

16,17

Let us quickly review the algorithm to compute the
Witten diagram amplitude of the form

FIG. 2. Various tree level Witten diagrams that will be of interest below. From left to right, we label them as W3;0, W4;1, W5;2, W6;1,
W8;2, W10;1, W14;2, and W6;3.

15As we explained in footnote 9, we treat the overall k—
dependence as normalization which we chose for the conformally
coupled scalars in a consistent fashion with the similar work in
[35,36,62].

16One can in fact still use the algorithm for conformally
coupled scalars with n ≠ nc with appropriate modification. We
will discuss this in next section.

17This result is hardly surprising as the algorithm used in
[62] is in fact derived by Arkani-Hamed et al. in [61] for
conformally coupled scalars in dS. However the authors
actually use the modified version of the algorithm that we
will see in Sec. III B, hence they are not really trading all
relevant integrations by an algebraic calculation. On the
contrary, we will get rid of all integrals in this section,
analogous to the case of gluons in AdS4.
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Wm;n ≡
Z

∞

0

dp1…dpn
−ip1

p2
1 þ q21 − iϵ

…

×
−ipn

p2
n þ q2n − iϵ

Bnc;x1ðki; piÞ…

× Bnc;xnþ1
ðki; piÞ

Ynþ1

t¼1

ð−iρtÞ ð3:5Þ

which is the expression for the diagram ofm external legs n
bulk propagators (dependence on external legs is implicit
in B).
We note that the aforementioned additive property of the

vertices, which follows from ϕk1ðzÞϕk2ðzÞ ¼ ϕk1þk2ðzÞ,
means that we can change the number of external legs
as we wish as long as the sum of norms of the momenta
flowing to vertices stay the same, up to the change in the
coupling coefficients. Hence, we will work with the
truncated diagram of the amplitude

An ≡ i2nþ1Wm;nQ
n
t¼1 ρt

ð3:6Þ

which only depends on the topology of the truncated
diagram, independent of the details of external legs but
only the sum of norms of the incoming momenta.18 For
example, for19 A1ðka; kb; kaÞ, which is given in the first
diagram of Fig. 3, the amplitudes of the four and six point

diagrams shown in Fig. 2 for conformally coupled scalars
read as

W4;1ðkiÞ ¼ iλ23A1ðk12; k34; k12Þ
W6;1ðkiÞ ¼ iλ24A1ðk123; k456; k123Þ: ð3:7Þ

The algorithm for the computation of A is as follows.
The diagram is decomposed into subdiagrams by cutting all
internal lines. One then considers all possible orders in
which the lines are cut, and assigns partial amplitudes to
individual cases. The sum of these partial amplitudes give
the full amplitude of the initial diagram.
The partial amplitude for a diagram with its lines cut in a

particular order is the product of the amplitudes for all
subgraphs, which are in turn equal to the inverse of the sum
of all vertex norms within that subgraph and line norms
going out of that subgraph.
In Fig. 3 we illustrate the algorithm for A1 and A2. For

A1, we observe that there is only one partial amplitude
which yields remarkably simple results

W4;1ðkiÞ ¼
iλ23

k1234k1212k3412
;

W6;1ðkiÞ ¼
iλ24

k123456k123123k456123
ð3:8Þ

For A2, we have two partial amplitudes where the sum
simplifies quite nicely, yielding

W5;2ðkiÞ ¼ −iλ33A2ðk12; k3; k45; k12; k45Þ

¼ −iλ33
k1212334545

k12345k1212k34512k12345k4545k12345
ð3:9Þ

FIG. 3. Diagrammatic illustration of the algorithm.

18We introduced an additional in factor for convenience; this
way, our truncated amplitudes are exactly samewith those of [62]
in which i factors are included in the projectors Π instead of the
scalar part of the propagator.

19In Figs. 3 and 5, we use the diagrammatic notation for
truncated amplitudes in the same sense they are used in [62]: they
correspond to Witten diagrams with bulk to boundary propa-
gators stripped off.
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We stated above that this algorithm is valid if n ¼ nc. By
imposing n ∈ Z in Eq. (2.11), we see that there are only
three cases with conformally invariant interactions:
AdS3;4;6 with ϕ6;4;3 interaction. As the algorithm we
provided is independent of the spacetime dimension, we
can use it for all truncated diagrams; below we list some
results for various Witten diagrams: one should understand
the relevant dimension for which the amplitude is valid
from the form of the interaction, i.e., results with 4—point
interactions are valid for AdS4 only.20

W10;1ðkiÞ ¼ iλ26A1ðk12345; k6789ð10Þ; k12345Þ ð3:10aÞ

W8;2ðkiÞ ¼ −iλ34A2ðk123; k48; k567; k123; k567Þ ð3:10bÞ

W14;2ðkiÞ ¼ −iλ36A2ðk34567; k1289; kð10Þð11Þð12Þð13Þð14Þ; k34567;
kð10Þð11Þð12Þð13Þð14ÞÞ ð3:10cÞ

where

A1ðq1; q2; q3Þ ¼
1

ðq1 þ q2Þðq1 þ q3Þðq2 þ q3Þ
ð3:11aÞ

A2ðq1; q2; q3; q4; q5Þ ¼
ðq1 þ 2q2 þ q3 þ q4 þ q5Þ

ðq1 þ q2 þ q3Þðq1 þ q4Þðq2 þ q3 þ q4Þðq2 þ q4 þ q5Þðq3 þ q5Þðq1 þ q2 þ q5Þ
ð3:11bÞ

We remind the reader of our notation given in Eq. (2.29).
For example, kð10Þð11Þð12Þð13Þð14Þ above stands for
k10 þ k11 þ k12 þ k13 þ k14.
We would like to note that the method is not restricted to

comblike diagrams, and can be used for other topologies as
well. For example, for star diagram in Fig. 2, the algorithm
yields

W6;3 ¼ ðI þ 34 ↔ 56Þ þ

0
B@

12 → 34

34 → 56

56 → 12

1
CAþ

0
B@

12 → 56

56 → 34

34 → 12

1
CA

ð3:12Þ

where

I ¼ iλ33
k123456k1212k123456k12 34 56k3434k125634k5656

ð3:13Þ

whose step by step computation can be found in [62].

B. Generalized algorithm for all
conformally coupled scalars

There are not so many theories of interacting scalars with
full conformal symmetry; in fact, the Eq. (2.11) tightly
constraints the possibilities into three cases: AdS3 with ϕ6,
AdS4 with ϕ4, and AdS6 with ϕ3 as we stated in previous
section. However, we can extend our algorithm to all
conformally coupled scalars which are not necessarily
invariant under conformal transformations.

The restriction to conformally invariant scalars followed
from the requirement to get rid of the additional z—factors
in the bulk point integration in Eq. (3.4): we could use the
algorithm if we were to expand additional z—factors in
terms of ϕkðzÞ. From Eq. (3.3a), we observe that this is
indeed possible if we expand the interaction coefficients
via Laplace transform, i.e.21

λ̃nðωÞ≡
Z

γþi∞

γ−i∞
eωzλnðzÞ

dz
2πi

;

λnðzÞ ¼
Z

∞

0

e−ωzλ̃nðωÞdω ¼
Z

∞

0

ϕωðzÞλ̃nðωÞdω: ð3:14Þ

Thus, we can rewrite Eq. (2.27) as

Wm;n ¼
Z

∞

0

dω1…dωnþ1

Ynþ1

t¼1

ρ̃tðωtÞW̃m;n ð3:15Þ

where ρ̃m is the appropriate λ̃nðωmÞ at mth vertex. Here, we
defined

W̃m;n ≡
Z

∞

0

dz1…dznþ1Gϕðzj1 ; zj2 ; q1Þ…Gϕðzjn ; zjn ; qnÞ

× ϕk1ðzi1Þ…ϕkmðzimÞϕω1
ðz1Þ…ϕωnþ1

ðznþ1Þ
ð3:16Þ

which exactly has the required form hence can be computed
by mere algebraic means as we reviewed in the previous
section.
Clearly, this modified algorithm is not as efficient as the

original one because we still have to compute integrals to
get the tree-level AdS amplitudes. However, for a Witten20We provide the results without dwelling on the relevance of

the specific models. In particular, one can see ϕ3 potential in
AdS6 as a mere toy model due to the Z2 odd potential yielding a
Hamiltonian unbounded from below.

21Here γ is an arbitrary positive constant chosen so that the
contour of integration lies to the right of all singularities in λnðzÞ.
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diagram of n vertices, we are replacing 2n − 1 integra-
tions22 with n integrations whose integrand is computed
algebraically; so this approach becomes rewarding espe-
cially as we consider higher order amplitudes.23

Apart from introducing a uniform treatment for all
conformally coupled scalars, generalizing the algorithm
as above can reveal algebraic and recursive relations
between various Witten diagrams. In fact, this way of
rewriting an amplitude is already done in [61] where they
write the cosmological wave function ψ̃ for conformally
coupled scalar as an integral over the modified wave
function ψ which follows from the Fourier expansion of
the coupling coefficient λ.24 For the utility of such a
representation in terms of algebraic and recursive means
and relations with polytopes, we refer the reader to
their paper.
As an example, we can consider ϕ3 interaction in AdS4.

We can immediately read off W̃ from Eqs. (3.7) and (3.9)
by including additional ωj dependencies:

W̃4;1ðki;ωjÞ ¼ iλ23A1ðk12 þ ω1; k34 þ ω2; k12Þ
W̃5;2ðki;ωjÞ ¼ −iλ33A2ðk12 þ ω1; k3 þ ω2;

k45 þ ω3; k12; k45Þ ð3:17Þ

The amplitude for the relevant Witten diagrams become

W4;1¼
Z

∞

0

dω1dω2W̃4;1; W5;2 ¼
Z

∞

0

dω1dω2dω3W̃5;2:

ð3:18Þ

Here we used the fact that the interaction coefficient is −iλ3
z

whose numerator is taken into account in the calculation of
W̃, hence

λ3ðzÞ ¼ z−1 ⇒ λ̃3ðωÞ ¼ 1: ð3:19Þ

Utilizing softwares for symbolic computations, such as
Mathematica, we can calculate such integrals relatively
easily. For example, W4;1 reads as

W4;1 ¼ −
iλ2

4k12

�
2Li2

�
k1234

k12 − k12

�
− 2Li2

�
k1234
k1212

�

þ log2
�

1

k12 − k12

�
þ log2ðk1212Þ

þ 2 log

�
k12 − k34
k1212

�
log

�
k1212
k1234

�

− 2 logðk1212Þ logðk3412Þ

þ 2 logðk1234Þ log
�

k3412
k12 − k12

�
þ π2

�
: ð3:20Þ

One can compute other tree level expressions Wm;n in a
similar fashion.

C. Extension to loops

The algorithm we presented in Sec. III A, and its
extension in Sec. III B readily applies to loops as well.
In [61], such calculations are already done in the context of
cosmological wave functions; here, we will illustrate the
algorithm in the simplest case of one loop (see Fig. 4) with
two vertices and use it to calculate 1 loop corrections to
scalar amplitudes in AdS.25

The application of the algorithm in case of loops is
same with that of tree level diagrams: we decompose
the amplitude into sum of partial amplitudes where the
expression for each partial amplitude follows from the
vertex momenta inside the diagrams and the propagators
going out of the diagrams. As we can see in Fig. 5, there are
two partial amplitudes for one loop two vertex diagram. We
multiply the corresponding expressions for each subdia-
gram in the denominator; we listed them from outward to
inward: the first value, ðka þ kbÞ, corresponds to the big
circle, and the last ones correspond to small pink circles. In
the end, the final expression takes a rather compact form in
our notation: ðkabkaabkabbÞ−1ðk−1aaba þ k−1babbÞ.
If we were dealing with a tree-level expression, we

were done: we could simply translate from this truncated
amplitude to a Witten diagram via Eq. (3.6). However, ka

FIG. 4. One loop correction to the propagator and four point
interaction in AdS.

22n − 1 p—integrations for the bulk to bulk propagators
and n z—integrations as bulk-point integrations.

23One might object that this naive counting of integrals
is misleading as we also need to compute λ̃nðωÞ, the inverse
Laplace transform of λnðzÞ. However, λnðzÞ has a pure
power law dependence for both polynomial and derivative
interactions, hence its inverse Laplace transform is quite trivial,
i.e. λ̃nðωÞ ¼ ω−1−k

Γð−kÞ for λnðzÞ ¼ zk.
24Our W and W̃ are analogous to their ψ̃ and ψ respectively.

Likewise, their Eq. (2.9) is the analog of our (2.38).

25We refer the reader to [93] for analysis of similar loop
diagrams of conformally coupled scalars dual to vacuum corre-
lator instead of transition amplitudes.
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and kb depends on the loop amplitude and one needs to
integrate it as well.
Let us illustrate this in case of loop correction to a two

point function, the first diagram in Fig. 4, where we are
assuming ϕ3 interaction in AdS6.

26 In this simple case the
integrand becomes

Integrand ¼ 1

2kðkþ jlj þ jkþ ljÞ2

×

�
1

2kþ 2jlj þ
1

2kþ 2jkþ lj
�

ð3:21Þ

which is to be integrated over l ∈ R5. As the integration
domain is invariant under successive applications of l → −l
and l → l þ k, which interchanges first and second term
above, we can write the truncated amplitude as

ALðk; k; kÞ ¼
Z

d5l
1

2kðkþ jlj þ jkþ ljÞ2ðkþ jljÞ
ð3:22Þ

which reads in spherical coordinates after the Wick rotation
as

ALðk; k; kÞ

¼ −
iS3
2k

Z
π

0

sin θdθ

×
Z

∞

0

l4dl
1

ðkþ lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l2 þ 2kl cos θ

p
Þ2ðkþ lÞ

ð3:23Þ

where Sn ¼ 2π
nþ1
2

Γðnþ1
2
Þ is the volume of n—sphere. We can carry

out the θ—integration immediately, yielding

ALðk;k;kÞ¼−
iS3
2k

Z
∞

0

dl
l3ð− kþl

jk−ljþkþlþ logð 2ðkþlÞ
jk−ljþkþlÞþ 1

2
Þ

kðkþ lÞ :

ð3:24Þ

Clearly, this is a divergent integral. By regularizing it with a
hard cutoff Λ,27 we find

ALðk; k; kÞ ¼ −
iπ2

72

�
18Λ2

k
þ 96k log

�
Λ
k

�

þ ð39 − 6π2Þk − 72Λ
�
: ð3:25Þ

In the general case of ϕnþ2 interaction in AdSdþ1,
we have

ka ¼ jk1j þ � � � þ jknj þ ω1

kb ¼ jknþ1j þ � � � þ jk2nj þ ω2

ka ¼ jlj
kb ¼ jl þ k1 þ � � � þ knj ð3:26Þ

which means kaaba ↔ kbabb under the successive applica-
tions of l → −l and l → l þ k1 þ � � � þ kn under which the
integration is invariant. Therefore, we have

FIG. 5. The application of the algorithm to one loop two vertex diagram.

26As we saw in section, d ¼ 5 is the only case for which ϕ3

interaction can be calculated without additional ω-integrations,
which we would like to avoid to give the simplest example as the
illustration.

27We thank Aaron Hillman for pointing out that one may need
to choose z—dependent hard cutoff Λ as energy scales vary with
the bulk radius, and we believe that choosing Λ=z should yield a
more uniform energy cutoff. Nevertheless, our calculation should
be fine for the purpose of illustrating the usage of algorithm with
the loops.
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ALðka; kb; k1 þ � � � þ knÞ ¼ −
2iSd−2

k12…ð2nÞ þ ω1 þ ω2

Z
π

0

sin θdθ
Z

∞

0

ld−1dl
1

k12…ð2nÞ þ ω1 þ ω2 þ 2l

×
1

k12…n þ ω1 þ lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ k212…n þ 2lk12…n cos θ

q
×

1

kðnþ1Þðnþ2Þ…ð2nÞ þ ω2 þ lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ k212…n þ 2lk12…n cos θ

q ð3:27Þ

whose θ integration can be immediately carried out:

ALðka; kb; k1 þ � � � þ knÞ ¼ −
4iπ

d−1
2

Γðd−1
2
Þ ×

Z
∞

0

dl
ld−2ððka þ lÞ logð kaþ2lþk12…n

kaþjl−k12…njþlÞ − ðkb þ lÞ logð kbþ2lþk12…n

jl−k12…njþkbþlÞÞ
k12…nðka − kbÞðka þ kbÞðka þ kb þ 2lÞ : ð3:28Þ

Despite the term ka − kb in the denominator, the integrand above is actually continuous at ka ¼ kb.
We were not able to compute the integration above for generic d, however, it is quite doable once we restrict to a specific

d; for example,

ALðka;kb;k1þ �� �þ knÞjd¼3 ¼−
iπ

kaþ kb

�
logð2Þþ kb logðkaþk12…n

Λ Þ− ka logðkbþk12…n

Λ Þ
ka− kb

�

−
iπ

2k12…n

�
Li2

�
−
kaþ k12…n

kb − k12…n

�
þLi2

�
−
kbþ k12…n

ka − k12…n

�
þ log ðkaþ k12…nÞ log ðkbþ k12…nÞ

− log ðkaþ k12…nÞ log ðkb − k12…nÞ− logðka − k12…nÞ logðkbþ k12…nÞ

þ 1

6
ð3log2ðka − k12…nÞþ 3log2ðkb− k12…nÞþ π2Þ

�
: ð3:29Þ

Note that one still needs to integrate this resultwith respect to
ω1 and ω2 by including appropriate λ̃ðωiÞ factors. However,
we know that ϕ4 interaction in AdS4 is actually conformally
invariant so we do not need ω integrations if we focus on ϕ4

interaction. Indeed, we can directly write the full Witten
expression for the second diagram in Fig. 4 as28

W ¼ λ24A
Lðk1 þ k2; k3 þ k4; k1 þ k2Þ ð3:30Þ

IV. CONCLUSION

In this paper, we have explored momentum space
approach to computing amplitudes for scalars propagating
in anti–de Sitter space. Adopting the algorithm provided in
[61] for cosmological wave functions, we compute both
tree and loop level examples of AdS transition amplitudes.
Our momentum space formalism provides a systematic

and complementary study of scalars in AdS. We are inter-
ested in using this formalism to computing higher point
scalar loop amplitudes, which we leave to a future study.

Likewise, this formalism can be utilized for computation of
spinning loops. Unlike scalars, computing gluon and grav-
iton loops in general dimensions is complicated, but one can
get nice results if one focuses on specific dimensions [94].
There are several promising avenues for further explo-

rations. We believe that there should be a natural polytopic
interpretation to the results that we have developed, parallel
to the interpretation in [61]. It is also interesting whether the
weight-shifting operators developed in [50] in the context
of cosmology can be generalized into our formalism,
allowing us to relate spinning momentum space amplitudes
to scalar momentum space amplitudes.29 Lastly, momen-
tum space approach has been used to construct crossing
symmetric basis for CFT correlators [44,45]. Our approach
could be useful in such explorations as well.
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