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We present a frequency-domain reduced-order model (ROM) for the aligned-spin effective-one-
body model for binary black holes (BBHs) SEOBNRv4HM that includes the spherical-harmonics modes
ðl; jmjÞ ¼ ð2; 1Þ; ð3; 3Þ; ð4; 4Þ; ð5; 5Þ beyond the dominant ðl; jmjÞ ¼ ð2; 2Þmode. These higher modes are
crucial to accurately represent the waveform emitted from asymmetric BBHs. We discuss a
decomposition of the waveform, extending other methods in the literature, that allows us to
accurately and efficiently capture the morphology of higher mode waveforms. We show that the
ROM is very accurate with median (maximum) values of the unfaithfulness against SEOBNRv4HM

lower than 0.001%ð0.03%Þ for total masses in ½2.8; 100�M⊙. For a total mass of M ¼ 300 M⊙,
the median (maximum) value of the unfaithfulness increases up to 0.004%ð0.17%Þ. This is still at
least an order of magnitude lower than the estimated accuracy of SEOBNRv4HM compared to
numerical relativity simulations. The ROM is 2 orders of magnitude faster in generating a waveform
compared to SEOBNRv4HM. Data analysis applications typically require Oð106–108Þ waveform
evaluations for which SEOBNRv4HM is in general too slow. The ROM is therefore crucial to
allow the SEOBNRv4HM waveform to be used in searches and Bayesian parameter inference. We
present a targeted parameter estimation study that shows the improvements in measuring binary
parameters when using waveforms that includes higher modes and compare against three other
waveform models.

DOI: 10.1103/PhysRevD.101.124040

I. INTRODUCTION

In the past five years, gravitational wave (GW) obser-
vations [1–3] have opened up a new window to the
Universe. In the first two observing runs of the advanced
LIGO [4] and Virgo [5] detectors, ten confident detections
of binary black holes (BBHs) and one binary neutron star
were made [3], and tens of detection candidates [6] have
been identified so far in the third observing run of this
network, among them another confident detection of a
binary neutron star system [7]. Both the detection and
inference of binary parameters for these compact binaries
rely heavily on our knowledge of the gravitational wave-
form emitted in these coalescences as encapsulated in

parametrized models of GWs. The construction of sto-
chastic template banks and the Bayesian inference of
binary parameters routinely require tens to hundreds of
millions of waveform evaluations [8–11]. At the same
time, the phasing of the GWs needs to be tracked to an
accuracy better than a fraction of a wave cycle to avoid
missing events or mismeasuring binary parameters.
Therefore, waveform models need to be fast and accurate
to extract the binary properties imprinted in the emit-
ted GWs.
Inspiral-merger-ringdown models of GWs from coalesc-

ing black hole (BH) binaries have traditionally been
constructed in the effective-one-body (EOB) [12–27] or
phenomenological [28–37] approaches, and, more recently,
models for numerical relativity (NR) or EOB waveforms
constructed with surrogate modeling techniques have come
to prominence [23,38–46]. EOB models incorporate physi-
cal descriptions of the inspiral, merger, and ringdown parts
of BBH coalescences. Post-Newtonian (PN) solutions for
the inspiral are re-summed and connected with an analytic
description of the merger waveform which is tuned to data
from NR simulations [47–55]. EOB models are posed as an
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initial value problem for a complicated system of ordinary
differential equations (ODEs) describing the approximated1

dynamics of a compact binary. The emitted GWs are then
computed from this orbital dynamics. EOB models have
provided accurate and generic descriptions of the GWs for
the signals observed so far by LIGO and Virgo detectors.
However, observations with third-generation detector net-
works may require much more accurate waveform models
[56]. The integration of the ODEs requires small time steps
to obtain an accurate solution. Especially for the long
waveforms produced by low mass compact binaries this
can take on the order of hours, and thus be too slow for
practical data analysis applications.2

Surrogate or reduced-order modeling techniques [38–43,
45,58,59] provide established methods for accelerating
slow waveforms while retaining very high accuracy.
These techniques have been successfully applied to EOB
[23,38–40,45] and NR [41–44,46] waveforms. They work
by decomposing waveforms from a training set in ortho-
normal bases on sparse grids in time or frequency and
interpolating or fitting the resulting waveform data pieces
over the binary parameter space. The result is a smooth,
accurate (as tested against an independent validation set),
and fast to evaluate (compared to the original waveform
data) GW model. These surrogate models have proven
invaluable for GW data analysis.
In this paper, we present a reduced-order model

(ROM) for GWs from coalescing binaries with spins
aligned with the orbital angular momentum which include
the most important higher harmonics of the waveform in
addition to the dominant ðl:mÞ ¼ ð2;�2Þ spherical har-
monic mode, as described by the SEOBNRv4HM model
[25]. Higher harmonics in the expansion of the gravita-
tional waveform become important for asymmetric
and massive compact binaries [60–65]. The model
we construct here, SEOBNRv4HM_ROM, includes the
ðl; jmjÞ ¼ ð2; 1Þ; ð3; 3Þ; ð4; 4Þ; ð5; 5Þ modes. We show that
SEOBNRV4HM_ROM has a mismatch less thanOð0.1%Þwith
SEOBNRv4HM and that it accelerates waveform evaluation
by a factor 100–200.
While SEOBNRv4HM and SEOBNRv4HM_ROM include the

contribution of higher harmonics in the waveform, they
lack a description of spin precession and eccentricity. In
the EOB waveform family, the effect of spin precession
has been taken into account in Refs. [20,24] and
only recently in Ref. [27] for the case of waveforms with
higher harmonics. A surrogate for the latter waveform
model is currently under development (see Ref. [66]). For
the phenomenological and the numerical relativity surro-
gate families, similar models including the effect of

precession and higher harmonics have been described
in Refs. [36,43,44,46,67]. Waveforms emitted from binary
systems in an eccentric orbit have not been studied
extensively. So far, only a few inspiral-merger-ringdown
eccentric waveform models have been constructed for
nonspinning [68,69] and aligned-spin binaries [70,71].
This paper is organized as follows. In Sec. II, we give a

brief description of the time-domain SEOBNRv4HM model.
In Sec. III, we discuss various techniques we use to build
the ROM, notably waveform conditioning in Sec. III A. We
continue with a summary of the basis construction and
decomposition in Sec. III B and tensor product interpola-
tion in Sec. III C. Domain decomposition in frequency and
in parameter space is discussed in Secs. III D and III F,
respectively. We summarize how we connect the ROMwith
PN solutions at low frequency in Sec. III E. We present
results in Sec. IV, where we demonstrate the accuracy of the
ROM in Sec. IVA and its computational efficiency in
Sec. IV B. We showcase a parameter estimation application
in Sec. IV C. Finally, we conclude in Sec. V.

II. SEOBNRv4HM MODEL

The gravitational wave signal emitted by a coalescing
binary black hole is usually divided into three different
regimes: inspiral, merger, and ringdown. During the
inspiral, the two black holes move at a relative speed v
that is small compared to the speed of light c; therefore, the
solution to the two-body problem can be found using a
perturbative expansion in the small parameter v=c, the so-
called PN expansion [72]. At some point, during the
evolution of the binary system, the parameter v=c ceases
to be small, and the PN expansion is not valid anymore.
This happens roughly at the innermost stable circular orbit
and demarcates the end of the inspiral and the beginning of
the merger regime. The signal in this regime can only be
computed using NR simulations that solve Einstein’s
equations for a BBH system, fully numerically. Finally,
in the ringdown regime, the perturbed black hole formed
after the merger of the binary emits gravitational waves at
frequencies that can be computed within the black hole
perturbation theory formalism [73].
The EOB formalism, first introduced by Buonanno and

Damour in Refs. [12,13], provides a natural framework to
combine these three regimes and produce a complete
waveform with inspiral, merger, and ringdown. Within
the EOB formalism, the PN conservative dynamics of a
BBH system during the inspiral is resummed in terms of
the dynamics of a test particle with an effective mass
and spin around a deformed Kerr metric. This improved
conservative dynamics is combined with a resummed
energy flux [74–76] to produce an inspiral waveform that
is close to NR solutions. To improve the agreement with
NR waveforms, the EOB conservative dynamics is also
calibrated using information from NR simulations [18,19].
In the EOB waveform, the merger and ringdown part is

1The full dynamics of a binary system is obtained by solving
Einstein’s equations which are partial differential equations.

2A faster method has been proposed, restricted to systems with
spins aligned with the orbital angular momentum [57].
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built using a phenomenological fit produced using infor-
mations from NR waveforms and black hole perturbation
theory [23,77]. NR-tuned versions of EOB models are
usually referred to as EOBNR.
In this paper, we focus on the SEOBNRv4HM [25] model,

an extension of SEOBNRv4 [23] that includes the modes
ðl; jmjÞ ¼ ð2; 1Þ; ð3; 3Þ; ð4; 4Þ; ð5; 5Þ in the waveform in
addition to the ðl; jmjÞ ¼ ð2; 2Þ mode already present in
SEOBNRv4. This model assumes spins aligned or antialigned
with the direction perpendicular to the orbital plane L̂N , and
we define the dimensionless spin parameter for BH i as
χi ¼ S⃗i · L̂N=m2

i , where S⃗i are the BHs’ spins and mi are
their masses. SEOBNRv4HM has been validated against
several NR waveforms in the mass ratio–aligned spin
parameter space in the region q≡m1=m2 ∈ ½1; 10�, χ1;2 ∈
½−1; 1� yielding typical mismatches of Oð≤ 1%Þ for total
masses in the range ½20; 200�M⊙.

III. TECHNIQUES FOR BUILDING THE ROM

In this section, we describe the construction of our ROM,
from the preparation of the waveforms to the reduced basis
and interpolation techniques. We use techniques developed
for previous ROM models [23,39,40], which we general-
ized to the higher-harmonics case.
We start with a general discussion of how to prepare and

decompose waveform data for higher mode waveforms in
Sec. III A. In particular, we discuss time-domain condi-
tioning in Sec. III A 1, stationary phase approximation in
Sec. III A 2, the orbital carrier phase in Sec. III A 3, the
introduction of coorbital modes in Sec. III A 4, and scaling
of frequencies in Sec. III A 5. We summarize basis con-
struction in Sec. III B and tensor product interpolation in
Sec. III C. We also explain how we decompose the model in
both frequency range patches (see Sec. III D) and parameter
space patches (see Sec. III F). Hybridization with inspiral
waveforms is discussed in Sec. III E.

A. Preparation and decomposition
of waveform data

The waveform polarizations hþ, h× are decomposed in
spin-weighted spherical harmonics as

hþ − ih× ¼
X
l≥2

Xl
m¼−l

−2Yl;mhlm: ð3:1Þ

The hlm are called the harmonics or simply the modes of
the gravitational wave, with h22 and h2;−2 the dominant
harmonics corresponding to quadrupolar radiation. These
modes hlm are affected by convention choices: first, by the
choice of polarization vectors defining hþ, h× and, second,
by the definition chosen for the source frame in which the
waveform is described. For nonprecessing systems, the z
axis of the source frame is taken to be the normal to the

orbital plane, with a residual freedom in choosing the origin
of phase. One can take two points of view for the definition
of phase: either fix the definition of the source frame (for
instance, imposing that the initial separation vector is along
x) and call “phase” the azimuthal angle of the observer in
the source frame or fix the direction to the observer [for
instance, in the plane ðx; zÞ] and call “phase” the binary’s
orbital phase at a given time. We can also consider the
definition of the origin of time as part of the source frame
definition.
During the inspiral, the individual harmonics obey a

simple overall scaling with the orbital phase as

hlm ∝ exp ½−imϕorb�; ð3:2Þ

but this scaling does not apply postmerger where the modes
are driven by their respective ringdown frequencies.
There are several challenges regarding the condition-

ing of higher-harmonics waveforms for the purpose of
reduced-order modeling. We recall that one relies on two
kinds of interpolation here: one is the interpolation of
waveform pieces along the tracking parameter, either time
or frequency, used to compress data; the other is the
interpolation across the parameter space (masses and
spins) used in the internals of the ROM, either of wave-
form quantities directly (as in Refs. [38,41–46] in the
empirical interpolation formalism) or, as in our case, of
reduced basis projection coefficients [23,39,40]. Both
these interpolations require smoothness, and discrete
jumps can cause significant (and nonlocal) errors.
As a result, zero crossings in the subdominant harmonics

hlm (as noticed in Refs. [25,78]) cause difficulties for the
usual amplitude/phase representation: if the envelope of a
mode crosses zero with a positively defined amplitude, the
phase jumps by π, a discontinuity that will harm the
interpolation performed when reconstructing the wave-
form. Among other advantages, this is alleviated by the
procedure used in Refs. [42,46] of modeling the waveform
in a coorbital frame where the dominant phasing of
Eq. (3.2) has been scaled out, so that a more robust
real/imaginary representation can be chosen instead; here,
we will use the same kind of coorbital quantities, but built
in the Fourier domain.
The natural 2π degeneracy in phase also requires care

when interpolating across parameter space. Discrete 2π
phase jumps leave the waveforms themselves invariant,
but can break the interpolation in between waveforms.
This issue is particularly relevant when dealing with
numerical Fourier transforms of time-domain waveforms:
when phase unwrapping the output of the discrete Fourier
transform starting from f ¼ 0, numerical noise causes the
2π interval to be essentially random. In Refs. [23,39,40], a
linear fit of the Fourier-domain phase was removed. Here,
we will keep time and phase alignment information
throughout the conditioning procedure, so instead, we
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will impose a given 2π range for the phase at a reference
point, corresponding to the time of alignment.
Other difficulties are caused by the relative alignment

of the different harmonics. Dividing the phase of the
dominant h22 mode by 2, whether in the time or
frequency domain, comes with an ambiguity of π then
propagated as mπ to the other modes. Such an ambi-
guity is not necessarily a problem if the phase alignment
is done as a last step when generating the waveform (as
is the case in the IMRPhenomHM model [34]); giving up
the geometric interpretation of the source-frame defi-
nition, it is sufficient that a ½0; 2π� range in the phase
input by the user corresponds to a ½0; 2π� range in
geometric phase. It becomes a problem, however, when
we need to interpolate across parameter space to build a
ROM. In particular, when working from the Fourier-
domain waveform alone, we do not have access to the
orbital phase (as read from trajectories) to lift these kind
of degeneracies. Here, we will make sure that the
alignment is performed in the time domain before taking
Fourier transforms, and we will further introduce an
artificial carrier signal to have access to a proxy of the
orbital phase in the Fourier domain.
We detail below our conditioning procedure, chosen to

circumvent these issues.

1. Time-domain conditioning

In building this ROM, we will carry along time and
phase alignment information all the way to the final
Fourier-domain waveforms. This is in contrast to pre-
vious Fourier-domain waveform models (SEOBNRv4_ROM
and IMRPhenoMD) where the time and phase are
adjusted after generating the waveform, as will be
described below.
Individual harmonics are decomposed as an amplitude3

and phase, following

hlmðtÞ ¼ almðtÞ exp ½−iϕlmðtÞ�; ð3:3Þ

with the scaling

ϕlm ¼ mϕorb þ Δϕlm: ð3:4Þ

In the early inspiral regime, for low frequencies, the
phases Δϕlm are approximately constant. We choose the
same polarization convention as in Ref. [79], for which
we have

Δϕ22 → 0;

Δϕ21 →
π

2
;

Δϕ33 → −
π

2
;

Δϕ44 → π;

Δϕ55 →
π

2
; ð3:5Þ

in the low-frequency limit. When getting closer to merger,
deviations from Eq. (3.5) become more important. In the
notations of the EOB factorized waveforms [16,17], these
phase deviations come from the phases eiδlm and tail
factors Tlm (see Eqs. (14) and (21) in Ref. [17]), and from
nonquasicircular corrections close to merger (see Eq. (22)
in Ref. [17]).
We choose the source frame convention for our model by

imposing that its direction x is along the separation vector
between the two black holes nðtalignÞ, with an arbitrary
time of alignment in the late inspiral talign ¼ −1000M (with
t ¼ 0 being defined as the amplitude peak of h22). In
practice, rather than using nðtalignÞ, we simply impose

ϕ22ðtalignÞ ¼ 0; ð3:6Þ
and we use the orbital phase ϕorb as read from the EOB
dynamics to resolve the π ambiguity and impose ϕorb ≃ 0
rather than ϕorb ≃ π. These alignment properties will be
reproduced, up to small numerical errors, by the recon-
structed ROM waveforms.

2. Stationary phase approximation

As wewill use it to guide our conditioning procedure, we
recall here the stationary phase approximation (SPA) for
waveforms with higher harmonics. First, we introduce the
Fourier transform for a time-domain signal h as

h̃ðfÞ ¼
Z

dte2iπfthðtÞ: ð3:7Þ

Note the sign difference in the exponential with respect to
the more usual definition (used in particular in Ligo
Algorithm Library (LAL) [80]). This choice is made for
convenience, as it will ensure that Fourier-domain modes
h̃lm with m > 0 and m < 0 have support at positive and
negative frequencies, respectively. One can come back
to the LAL Fourier convention by the simple map
f ↔ −f, which for real signals hðtÞ ∈ R translates
as h̃LALðfÞ ¼ h̃�ðfÞ.
Let us first consider a generic signal with an amplitude

and phase as hðtÞ ¼ aðtÞe−iϕðtÞ and define ω≡ _ϕ. The
SPA is applicable under the assumptions j _a=ðaωÞj ≪ 1,
j _ω=ω2j ≪ 1 and jð _a=aÞ2= _ωj ≪ 1, that are well verified in
the inspiral. Defining a time-to-frequency correspondence
tðfÞ implicitly by

3In general, it would be preferable to consider alm as a slowly
varying envelope rather than a positive amplitude, in particular
allowing it to change sign, as we expect zero crossings of certain
subdominant modes like h21.
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ωðtðfÞÞ ¼ 2πf; ð3:8Þ

the Fourier transform of the signal is then h̃SPAðfÞ ¼
ASPAðfÞe−iΨSPAðfÞ with

ASPAðfÞ ¼ aðtðfÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

_ωðtðfÞÞ

s
; ð3:9aÞ

ΨSPAðfÞ ¼ ϕðtðfÞÞ − 2πftðfÞ þ π

4
: ð3:9bÞ

Applying this to the individual hlm modes (3.3),
treating the Δϕlm as constants, defining ωlm ¼ _ϕlm≃
mωorb, each mode will have a separate time-to-frequency
correspondence,

ωlmðtlmðfÞÞ ¼ 2πf; ð3:10Þ

and the phase

ΨSPA
lm ðfÞ¼mϕorbðtlmðfÞÞ−2πftlmðfÞþΔϕlmþπ

4
:

ð3:11Þ

This is the Fourier-domain equivalent to the time-
domain relation (3.4). We note useful relations between
different mode numbers. The various tlmðfÞ functions are
related by

tlm
�
mf
2

�
¼ t22ðfÞ; ð3:12Þ

while the phases satisfy

0 ¼ 2Ψlm

�
mf
2

�
−mΨ22ðfÞ − 2Δϕlm

þmΔϕ22 − ð2 −mÞ π
4
: ð3:13Þ

This last relation holds regardless of the time and phase
alignment of the waveform: as either a phase change
δϕlm ¼ mδϕ or a time change δΨlmðfÞ ¼ −2πfδt would
leave 2Ψlmðmf=2Þ −mΨ22ðfÞ invariant. It is sensitive,
however, to the quantities Δϕlm (that we treat here as
constants in the early inspiral), which depend on the
choice of polarization convention.
Finally, we recall that we can build a time-to-frequency

correspondence directly from the Fourier-domain wave-
form as

tðfÞ≡ −
1

2π

dΨ
df

: ð3:14Þ

Note that this definition of time is, strictly speaking, only
accurate in the inspiral phase, where the SPA applies and

the two definitions (3.14) and (3.8) coincide. However, it
can be used as a proxy for time everywhere, as we can
evaluate (3.14) for any frequency4 f.

3. Orbital carrier

To carry over information about the alignment of the
respective mode from the time domain to the Fourier
domain, we find it convenient to introduce a fictitious
carrier signal kðtÞ, which evolves with the orbital phase
instead of twice the orbital phase as the h22 mode does,

kðtÞ≡ a22ðtÞ exp
�
−i

ϕ22ðtÞ
2

�
: ð3:15Þ

The choice made here of keeping the same amplitude as the
h22 mode is quite arbitrary but will ensure that it decays in
the ringdown, giving us a smooth Fourier transform for this
carrier. Note that this construction is artificial, as the carrier
does not correspond to any physical signal.
As mentioned before, the carrier half-phase ϕ22=2 comes

with a π degeneracy. We can alleviate this by forcing the
carrier phase to be within π of the orbital phase, as read
from the EOB dynamics, at the time of alignment. This is,
in fact, our main motivation for building this carrier in the
time domain; it allows us to avoid the issues listed above,
with all the conditioning being ultimately tied to the orbital
phase, a quantity that is smooth across parameter space.
The Fourier transform of the carrier signal introduced in

(3.15) is decomposed as an amplitude and phase as

k̃ðfÞ ¼ AkðfÞ exp ½−iΨkðfÞ�; ð3:16Þ

where Ak ¼ jk̃j will be discarded in the rest of the con-
ditioning. When the SPA applies, we have approximately

ΨkðfÞ ≃ΨSPA
k ðfÞ ¼ ϕorbðtkðfÞÞ − 2πftkðfÞ þ π

4
; ð3:17Þ

with tkðfÞ defined like in (3.8) as

ωorbðtkðfÞÞ ¼ 2πf: ð3:18Þ

Since k̃ðfÞ is computed via a FFT, nothing forbids
arbitrary jumps of 2π of the phases between different
points in parameter space. We use the relation above to
remove this 2π ambiguity in Ψk. At the frequency falign
such that tðfalignÞ ¼ talign, we impose����ΨkðfalignÞ −

�
ϕorbðtalignÞ − 2πfaligntalign þ

π

4

����� < π:

ð3:19Þ

4The converse is not true: since tðfÞ is not monotonic at high
frequencies, building an unambiguous mapping fðtÞ is only
possible in the inspiral.
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In this way, Ψk is directly tied to ϕorb that is smooth
in parameter space in our time-domain conditioning
procedure.
We will factor out the Fourier-domain phase of the

carrier, build a ROM for the carrier separately, and then
factor in the modeled carrier phase when reconstructing the
waveform.

4. Fourier-domain coorbital modes and
waveform building blocks

Next, we build coorbital modes by scaling out the
Fourier-domain phase of the carrier following

h̃clmðfÞ ¼ h̃lmðfÞ exp ½imΨkðf=mÞ�: ð3:20Þ

These modes are built so as to factor out the main
contribution to the phase of the Fourier-domain modes,
to leave the coorbital modes h̃clm with an approximately
constant phase in the inspiral regime. Namely, for the
inspiral regime, where the SPA is valid, tkðfÞ ¼ tlmðmfÞ,
and applying (3.11) and (3.17) gives

ΨlmðfÞ ≃mΨk

�
f
m

�
þ Δϕlm þ ð1 −mÞ π

4
: ð3:21Þ

Note that our Fourier-domain construction is approximate,
and these “coorbital” quantities h̃clm do not correspond
exactly to a coorbital frame defined in the time domain as in
Refs. [42,46].
We stress that these modes are not strictly coorbital, in

the sense that they are not built from a time-domain
coorbital frame built from the orbital phase. Indeed, the
definition (3.20) is rooted in the Fourier domain, and its
physical meaning is unclear in the high-frequency range
where the SPA does not apply anymore.
Thus, the basic building blocks for the ROM will be:
(i) Ψk ¼ −Arg½k̃�, the Fourier-domain carrier phase;
(ii) Reðh̃clmÞ, the real part of the coorbital modes;
(iii) Imðh̃clmÞ, the imaginary part of the coorbital modes.

Conversely, to rebuild the modes h̃lm from these waveform
pieces, it is enough to factor in the carrier phase as in (3.20).

5. Scaling of frequencies using ringdown frequency

One of the prerequisites of our ROM procedure is to
represent the waveform on a common frequency grid.
However, the frequency range covered varies with physical
parameters, notably spin. In SEOBNRv4_ROM, this was
alleviated by extending waveforms to higher frequencies.
Here, we choose to apply a scaling to the frequencies of the
waveform building blocks, depending on the ringdown
frequency. For every mode ðl; mÞ and the carrier, we define

ylm ¼ 2π

ωQNM
lm

Mf; ð3:22aÞ

yk ¼
4π

ωQNM
22

Mf; ð3:22bÞ

where ωQNM
lm is the quasinormal mode frequency and

varies for different waveforms as it depends on the spin
of the remnant black hole. We will then use for all
waveforms a common grid of this rescaled parameter y.
Given this scaling, we have to carefully adjust the starting
frequency of the waveforms of our training set so that the
frequency range of the carrier phase Ψk covers all modes
after undoing the scaling. The maximal values of ylm, yk
where we cut the data are ðymax

22 ; ymax
21 ; ymax

33 ; ymax
44 ; ymax

55 Þ ¼
ð1.7; 1.7; 1.55; 1.35; 1.25Þ and ymax

k ¼ 2.5. This technique
is only used for building the high-frequency ROM (see
Sec. III F); for the low-frequency ROM, the ringdown
frequency is irrelevant, and the scaling would induce an
additional cost in generating the waveforms of the train-
ing set.

B. SVD decomposition

We decompose all waveform data pieces defined in
Sec. III A 4 into respective singular value decomposition
(SVD) bases and subsequently interpolate the projection
coefficients in each SVD basis over the parameter space, as
discussed in Sec. III C. This method follows earlier work in
Refs. [23,39,40].
We start with a waveform data piece Xðfi; θ⃗Þ, given on a

discrete grid in frequency ffigmi¼1 and on a regular grid of

points θ⃗ in the three-dimensional binary parameter space in
mass-ratio q and aligned BH spins χi, ðq; χ1; χ2Þ. We flatten
the parameter grid and arrange the data in matrix form
Xij ¼ Xðfi; θjÞ ∈ Rm×n, where n is the total number of
input waveforms.
We then resample the data in a log-spaced frequency grid

of 300 points. The number of points used for resampling is
based on previous studies (see Refs. [23,40]). We compute
the SVD [81,82] X ¼ VΣUT and obtain an orthonormal
basis for the column space of the matrix X in the first
r ¼ rankðXÞ columns of V. The SVD provides us with a
decomposition of the range space of X, rangeðXÞ¼
spanfv1;…;vrg, where the vj are the left singular vectors
of X.
Given the basis BX ¼ V, we expand the waveform data

pieces xjðfiÞ that make up the columns of X in this basis
and can write the expansion xj ≈

P
cXðθjÞ · BX with

projection coefficient matrix cX ¼ BT
X · X. To construct a

waveform model, we need to predict the coefficients cX at a
desired parameter space point θ�. To do that, we need to fit
or interpolate cX over the parameter space. This is dis-
cussed in Sec. III C.

C. Tensor-product spline interpolation

In the following, we describe how we obtain projec-
tion coefficients at arbitrary parameter space points. In
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low-dimensional spaces, we can afford to use dense grids
built from the Cartesian product of one-dimensional sets of
points. We choose cubic splines as the univariate inter-
polants and obtain a tensor-product interpolant (TPI)
[39,59,83] for a three-dimensional coefficient tensor cijk,
which can be written as

I⊗½c�ðq; χ1; χ2Þ ¼
X
ijk

cijkðΨi ⊗ Ψj ⊗ ΨkÞðq; χ1; χ2Þ:

ð3:23Þ

Here, the Ψ are B-spline basis functions [84] of order 3 for
the chosen one-dimensional sets of parameter space points
in each dimension. We use “not-a-knot” boundary con-
ditions to avoid having to specify derivatives at the domain
boundaries. We built the model using TPI, a CYTHON/C

package [83] to provide tensor product spline interpolation
in PYTHON, and later implemented the model in LAL [80].

D. Patching in geometric frequency

Here, we discuss dividing the waveform domain in
geometric frequency into separate subdomains, where we
build a separate ROMs. In Sec. III F, we will instead discuss
how to tackle nonuniform resolution requirements over the
binary parameter space.

In the early inspiral waveforms, modes tend to be well
approximated by the PN expansion, and an accurate ROM
can be built from a relatively small training set. In contrast,
the high geometric frequency part of the waveform modes
encapsulates the late inspiral, merger, and ringdown part of
the signal, which is more complex and nonlinear, and this is
also the regime where EOB waveforms are tuned against
NR where they are available. Building an accurate ROM
for the high geometric frequency part of the waveform
modes consequently requires a higher density of training
set waveforms.
Therefore, it is natural to treat the low and high geo-

metric frequency parts of the waveform separately, follow-
ing the construction of previous ROMs [40]. This allows us
to make the training set for the low geometric frequency
part of the waveforms significantly smaller and reduce the
computational cost of the training. Waveforms for low mass
binaries are the most costly waveforms to generate. The
cost is exacerbated due to the presence of higher modes
with jmj > 2, since they require a lower starting orbital
frequency to cover the same gravitational wave frequency
range as the dominant mode.
In Fig. 1, we show the subdivision into low and high

geometric frequency subdomains. The low-frequency sub-
domain is connected with PN waveforms modes in the
early inspiral, as discussed in Sec. III E. We generated the
SEOBNRv4HM waveforms at a sufficiently low frequency (at
15 Hz and a total mass of 5 M⊙ to allow for some tapering)
to have the complete set of higher harmonics included in
SEOBNRv4HM present at a frequency Mf ¼ 0.0005 � 5=2≈
0.0012, where the low geometric frequency subdomain
starts. We choose the geometric transition frequency
between the low- and high-frequency subdomains to be
Mf ¼ 0.003 �m, using the natural inspiral scaling of the
frequency of the waveform modes with m.. For the high-
frequency subdomain, we generated waveforms, choosing
the starting frequency as described in Sec. III A 5, ensuring
the generated waveforms after undoing the scaling (3.22a)
will cover this transition frequency. The complete wave-
form modes are then generated by blending together the
low- and high-frequency parts at the frequency using a
variant of the Planck taper function described in Ref. [85].

E. Hybridization with TaylorF2

Here, we describe how we carry out the hybridization of
the ROM waveform with the TaylorF2 inspiral waveform.
After evaluating the ROM waveform for all modes, we

generate the TaylorF2 amplitude and phase for the (2,2) mode
from the lowest frequency necessary to be able to start all
inspiral modes at a user-specified frequency. We blend the
TaylorF2 and ROM amplitude and phase for the (2,2) mode
using the same Planck taper function used to connect high-
and low-frequency ROM. We can obtain the higher mode
PN inspiral waveforms by rescaling the (2,2) amplitude and
phase. For the phase, we follow Eqs. (3.21) and (3.5) to

FIG. 1. The complete ROM for each waveform mode is build
by hybridizing a low- and high-frequency ROM. The x axis
shows the geometric frequency rescaled for each mode ðl; mÞ as
Mf=m, following the natural inspiral scaling of the frequency of
the waveform modes with m. The low-frequency subdomain
(black shaded region) starts at a geometric frequency ofMf=m ¼
0.00025 and transitions to the high-frequency subdomain at
Mf=m ¼ 0.003.
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compute the carrier phase from the TaylorF2 (2,2) phase and
rescale it to obtain the phase for each mode. We then align
the inspiral phase with the ROM phase for each mode and
blend them together on a common frequency grid. For the
amplitude, we rescale the TaylorF2 (2,2) amplitude according
to the PN amplitudes given in Ref. [86], Eqs. (12a)–(12t).

F. Patching in parameter space

As already noted for the previous ROMs of EOBNR
waveforms (see Refs. [23,39,40]), model features often
require more resolution in particular parts of the parameter
space. However, regular grids do not allow for local
refinement in ðq; χ1; χ2Þ. Therefore, we partition the binary
parameter space into subdomains on which resolution
requirements can be satisfied with a particular regular
grid choice.
The low-frequency ROM does not need any special

treatment and was built using waveforms placed on a
Cartesian grid with 64 points in q and 12 points in χ1;2 as
shown in Fig. 2. Here, the one-dimensional grids in χ1 and
χ2 were chosen to be identical. The grids for q and χ1;2 are
the same as the ones used for SEOBNRv4_ROM (see Sec. VII
in Ref. [23]), except that we limit the grid to q ¼ 50.
On the other hand, as already noted in Refs. [23,40],

modeling the nonlinear merger and ringdown part of the
waveform in the high geometric frequency ROM requires a
higher resolution when approaching large positive values
of the primary spin. Therefore, we build two different
high-frequency ROMs based on the value of the primary’s
spin, with one ROM having a finer grid in the region
of high χ1. The inclusion of higher modes in the

SEOBNRv4HM_ROM model also requires additional resolu-
tion near equal mass. The modes with odd m vanish by
symmetry on the line q ¼ 1 and χ1 ¼ χ2, and their behavior
in the vicinity is nontrivial to model (see Refs. [25,78]).
Therefore, we build two different high geometric frequency
ROMs in mass ratio, one of which is covering the region
q → 1 with a finer grid. In total, we then have four high-
frequency ROMs to correctly model the merger and ring-
down part of the signal.
The two-dimensional (2D) projection of the grid in

ðq; χ1Þ for these four ROMs is shown in Fig. 3. Since
no special choice is made for the grid in χ2, we have
omitted plotting the grid in this dimension. We set domain
boundaries at q ¼ 3 and χ1 ¼ 0.8 for these four ROMs. In
Table I, we collect information on how the four patches are
placed in parameter space and the number of grid points in
each dimension.

FIG. 2. Location in parameter space ðq; χ1; χ2Þ of the wave-
forms used to build the inspiral ROM. For this ROM, both spin
components use the same grid.

FIG. 3. Location in the parameter space ðq; χ1Þ of the wave-
forms used to build the high-frequency ROM. The dashed red
lines in the plot are the boundaries of the different patches, at
χ1 ¼ 0.8 and q ¼ 3.

TABLE I. The grids for the high-frequency ROMs on the four
patches in parameter space shown in Fig. 3. The physical domain
covered by each patch is defined by a Cartesian product of
intervals in binary parameters ðq; χ1; χ2Þ. We also indicate the
number of grid points in each parameter per patch.

Patch Intervals in ðq; χ1; χ2Þ Points per interval

Patch 1 [1, 3] ∪ ½−1; 0.8� ∪ ½−1; 1� 24 × 24 × 24
Patch 2 [1, 3] ∪ (0.8, 1] ∪ ½−1; 1� 24 × 17 × 24
Patch 3 [3, 50] ∪ ½−1; 0.8� ∪ ½−1; 1� 31 × 24 × 24
Patch 4 [3, 50] ∪ [0.8, 1] ∪ ½−1; 1� 30 × 19 × 24
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IV. RESULTS

In this section, we discuss the accuracy and the
increase in efficiency of SEOBNRv4HM_ROM compared to
SEOBNRv4HM. Finally, we also perform a parameter esti-
mation study to demonstrate the potential of this model in
data analysis applications.

A. Accuracy of the model

We start by defining the faithfulness function, used to
assess the closeness between two waveforms when higher-
order modes are included. We then use this faithfulness
measure to determine how accurately the ROM reproduces
SEOBNRv4HM waveforms.

1. Definition of faithfulness

A GW signal emitted by a spinning, nonprecessing,
and noneccentric BBH is characterized by 11 parameters in
the detector frame. These parameters are the BH masses
m1 and m2, the (constant) projection of the spins in the
direction perpendicular to the orbital plane χ1 and χ2,
the angular position of the line of sight measured in
the source’s frame ðι;φ0Þ, the sky location of the source
in the detector frame ðθ;ϕÞ, the luminosity distanceDL, the
time of arrival tc of the signal, and finally the polarization
angle ψ . The detector response can be written as

h≡ Fþðθ;ϕ;ψÞhþðι;φ0; DL; ξ; tc; tÞ
þ F×ðθ;ϕ;ψÞh×ðι;φ0; DL; ξ; tc; tÞ; ð4:1Þ

where masses and spins are combined in the vector
ξ≡ ðm1; m2; χ1; χ2Þ and the functions Fþðθ;ϕ;ψÞ and
F×ðθ;ϕ;ψÞ are the antenna patterns [87,88]. This equation
can be rewritten as

h ¼ Aðθ;ϕÞ½cos κðθ;ϕ;ψÞhþðι;φ0; DL; ξ; tc; tÞ
þ sin κðθ;ϕ;ψÞh×ðι;ϕ; DL; ξ; tc; tÞ�; ð4:2Þ

with κðθ;ϕ;ψÞ being the effective polarization [61] defined
in the range ½0; 2πÞ as

eiκðθ;ϕ;ψÞ ¼ Fþðθ;ϕ;ψÞ þ iF×ðθ;ϕ;ψÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2þðθ;ϕ;ψÞ þ F2

×ðθ;ϕ;ψÞ
p ; ð4:3Þ

where the function Aðθ;ϕÞ is an overall amplitude and is
defined as

Aðθ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2þðθ;ϕ;ψÞ þ F2

×ðθ;ϕ;ψÞ
q

: ð4:4Þ

Given a GW signal hs (SEOBNRv4HM in our case) and a
template waveform ht (SEOBNRv4HM_ROM in this context),
we define the faithfulness (or match) as [25,61,89]

F ðιs;φ0s; κsÞ≡ max
tc;φ0 t;κt

2
64 ðhs; htÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhs; hsÞðht; htÞ
p

�����
ιs¼ιt
ξs¼ξt

3
75; ð4:5Þ

where parameters with the subscript “s” (“t”) refer to the
signal (template) waveform. The expression above does not
depend on Aðθ;ϕÞ; therefore, the only dependence on
ðθ;ϕ;ψÞ is encoded in κðθ;ϕ;ψÞ. For the faithfulness
calculation, we optimize over the phases φ0t and κt and the
time of arrival tc because they are not interesting from
an astrophysical perspective. We use the standard definition
of the inner product between two waveforms (see
Refs. [87,88]),

ða; bÞ≡ 4Re
Z

fhigh

flow

df
ãðfÞb̃�ðfÞ
SnðfÞ

; ð4:6Þ

where ~ denotes the Fourier transform, * indicates the
complex conjugate, and SnðfÞ is the one-sided power
spectral density (PSD) of the detector noise. For this
computation, we use the Advanced LIGO “zero-detuned
high-power” design sensitivity curve [90]. The integral is
computed between the frequencies flow ¼ 20 Hz and
fhigh ¼ 3 kHz. The same definition of faithfulness has been
used to determine the agreement between SEOBNRv4HM

and numerical relativity waveforms (see Ref. [25]).5

Since the faithfulness given in Eq. (4.5) depends on the
signal parameters ðιs;φ0s; κsÞ, wewill summarize the results
using the maximum and the average unfaithfulness (or
mismatch) ½1 − F ðιs;φ0s; κsÞ� over these parameters,
namely [61,89,92],

Umax ≡ max
ιs;φ0s;κs

ð1 − F Þ≡ 1 − min
ιs;φ0s;κs

F ðιs;φ0s; κsÞ; ð4:7Þ

Ū ≡ h1 − F iιs;φ0s;κs

≡ 1 −
1

8π2

Z
2π

0

dκs

Z
1

−1
dðcos ιsÞ

Z
2π

0

dφ0sF ðιs;φ0s; κsÞ:

ð4:8Þ

2. Faithfulness against SEOBNRv4HM

To avoid biases in data analysis applications when
using the ROM instead of SEOBNRv4HM, it is important
to verify that the additional modeling error introduced in
the construction of the ROM is negligible compared to the
inaccuracy of the SEOBNRv4HM waveforms with respect
to the NR simulations. Since the typical unfaithfulness

5In Ref. [25], we used an old version of the Advanced LIGO
zero-detuned high-power design sensitivity curve (in Ref. [91]).
We have checked that the difference in the faithfulness calcu-
lation when using the new version of the sensitivity curve was
negligible. For this reason, here we report the calculations
performed with the new curve described in Ref. [90].
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between SEOBNRv4HM and NR waveforms is Oð1%Þ
(see Figs. (11) and (12) in Ref. [25]), it is therefore natural
to require the unfaithfulness between SEOBNRv4HM and
SEOBNRv4HM_ROM to be Oð0.1%Þ or less. To that end,
we have generated 10,000 SEOBNRv4HM waveforms with
random (uniformly distributed) values of ðq; χ1; χ2Þ and
computed their match against the same waveforms pro-
duced with SEOBNRv4HM_ROM.
We summarize these results in Fig. 4, where we show a

histogram with the unfaithfulness Ū computed between the
ROM and SEOBNRv4HM waveforms for different values of
the total mass. For each total mass, we report in Table II the
median and maximum values of these unfaithfulness
distributions.
The median of these mismatch distributions is weakly

dependent on the total mass, and it is always less than or
equal to 0.002%, while their maximum value is always less
than or equal to 0.08%. In Fig. 5, we display the
distribution of mismatches shown in Fig. 4 as a function
of ðq; χ1Þ and for different values of the total mass. The
largest mismatches between the ROM and SEOBNRv4HM are

obtained for M ¼ 300.0 M⊙ and large negative χ1, as it is
clear from Figs. 4 and 5 (bottom right panel). ROM GW
modes are generated up to a maximum frequency (in
geometric units) that scales with the inverse of the total
mass of the system. For large total masses, the lack of signal
above this maximum frequency is the main source of
inaccuracy of the ROM. This maximum frequency for each
mode is proportional to its least damped quasinormal mode
frequency as described in Eq. (3.22a). The mismatch is
larger for large negative spins because the least damped
quasinormal mode frequency decreases in this region
of the parameter space. We highlight that in this region
the ROM waveforms still have mismatches ≲0.1% against
SEOBNRv4HM waveforms as demanded at the beginning of
this section. The results described above do not change
substantially when considering the distribution of Umax

instead of Ū. In Table III, we report the median and
maximum values of these distributions.
For total masses M ≤ 20 M⊙, it is more convenient to

summarize the results of the faithfulness calculations as a
histogram with a fixed m2 instead of the total mass. In
Fig. 6, we show the Ū distribution when fixing m2 ¼
1.4 M⊙ and varying m1 in the interval 1.4 M⊙ ≤ m1 ≤
18.6 M⊙ such that the total mass of the system is always
M ≤ 20 M⊙. The median of this distribution is 0.0003%,
while its maximum is 0.01%. In Fig. 7, we report the Ū
distribution in Fig. 6 as a function of ðm1; χ1Þ. The accuracy
of the ROM in this case degrades for large values of m1

and large positive spins, but it is still well within the
requirements. Also, in this case, the results are not very
different when looking at the Umax distribution for which
the median is still 0.0003%, while the maximum increases
to 0.02%.
These analyses demonstrate that the modeling error

introduced by the ROM is negligible with respect to the
difference between SEOBNRv4HM and NR waveforms. For
this reason, the mismatch of the ROM against the NR
waveforms is essentially the same as SEOBNRv4HM (see
Figs. 11 and 12 in Ref. [25] and Fig. 6 in Ref. [44]6).

B. Computational performance

In this section, we discuss the computational perfor-
mance of the ROM in terms of wall time for generating a
waveform. We first compare the ROM to SEOBNRv4HM

and then to other waveform models that include higher-
order modes.

FIG. 4. Histograms of the unfaithfulness Ū (in percent) between
SEOBNRv4HM and ROM waveforms for different values of the
total mass.

TABLE II. Median and maximum values of the Ū distributions
in Fig. 4 for different values of the total mass.

Total mass ðM⊙Þ 20 50 100 300

Med
ðq;χ1;χ2Þ

Ūð%Þ 0.001 0.001 0.001 0.002

Max
ðq;χ1;χ2Þ

Ūð%Þ 0.01 0.02 0.01 0.08

6The NR surrogate NRHyBsur3dq8 has a typical unfaithfulness
against the NR simulations of Oð10−3%Þ, which is negligible
with respect to the unfaithfulness between the NR simulations
and the model SEOBNRv4HM (that is ofOð1%Þ). Therefore, in this
case, we can consider the NRHyBsur3dq8 waveform equivalent to
an NR waveform. We make the same assumption in the parameter
estimation study in Sec. IV C.
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1. Speedup with respect to SEOBNRv4HM

The speedup of the ROM with respect to SEOBNRv4HM

is computed by the ratio of the wall times of the two
models for generating a frequency-domain waveform at
the same parameters. Since SEOBNRv4HM is a time-domain

model, we first generate the waveform in the time domain
at a sample rate of 16384 Hz and then compute its Fourier
transform. The ROM waveform is already in the fre-
quency domain, and it is generated using the sampling
interval set to 1=T, where T is the duration in seconds of
the associated time-domain waveform. The maximum
frequency of the SEOBNRv4HM_ROM waveform is set
to 8192 Hz.
In Fig. 8, we show this speedup as a function of the total

mass and for different values of the mass ratio. The speedup
is of order 100. It increases with mass ratio and decreases
with total mass. The maximum speedup is found around a
total mass of 50 M⊙. Since the spins have only a limited
effect on the waveform duration, the speedup depends only
weakly on them.

FIG. 5. Unfaithfulness Ū between the ROM and SEOBNRv4HM as a function of ðq; χ1Þ and for different values of the total
mass. For M ¼ 20 M⊙ there are no data in the region q > 19 because for these system m2 would have an unphysical
subsolar mass.

TABLE III. Median and maximum values of the Umax distri-
butions for different values of the total mass.

Total mass ðM⊙Þ 20 50 100 300

Med
ðq;χ1;χ2Þ

Umaxð%Þ 0.001 0.001 0.001 0.004

Max
ðq;χ1;χ2Þ

Umaxð%Þ 0.01 0.02 0.03 0.17
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2. Wall time comparison

We now perform a comparison of the wall time for
generating a waveform between SEOBNRv4HM_ROM and
two waveform models that also include higher-order
modes, namely, IMRPhenomHM [34] and NRHyBsur3dq8 [44].
As in Sec. IV B 1, we define wall time as the time to
produce a frequency-domain waveform at the same param-
eters. Since NRHyBsur3dq8 is a time-domain model, we first

generate the waveform in the time domain at a sample
rate of 16,384Hz and thenwe compute its Fourier transform.
For IMRPhenomHM and SEOBNRv4HM_ROM, the waveforms
are generated in the frequency domain with a maximum
frequency of 8192Hz and a sampling interval of 1=T, where
T is the duration in seconds of the associated time-domain
waveform. The waveform models SEOBNRv4HM_ROM,
IMRPhenomHM, and NRHyBsur3dq8 include a different numbers
of modes in the waveform, respectively, 5 ½ðl; jmjÞ ¼
ð2;2Þ;ð2;1Þ;ð3;3Þ;ð4;4Þ;ð5;5Þ�, 6 ½ðl; jmjÞ ¼ ð2; 2Þ; ð2; 1Þ;
ð3; 3Þ; ð3; 2Þ; ð4; 4Þ; ð4; 3Þ�, and 11 ½ðl; jmjÞ ¼ ð2;2Þ; ð2; 1Þ;
ð2; 0Þ; ð3;3Þ; ð3;2Þ; ð3;1Þ; ð3;0Þ; ð4;4Þ; ð4;3Þ; ð4;2Þ; ð5;5Þ�
modes. Since the total wall time is an increasing function
of the number of modes, we also compute wall times
normalized by the number of modes to factor out this effect.
In Fig. 9, we show the wall time for generating a waveform
with the different models as a function of the total mass
for q ¼ 8. SEOBNRv4HM_ROM has wall times of Oð10Þ ms
and is roughly ten times faster than IMRPhenomHM or
NRHyBsur3dq8. When normalizing the wall time to the
number of modes, SEOBNRv4HM_ROM is still about ten times
faster than IMRPhenomHM, but only ∼3 times faster than
NRHyBsur3dq8.

C. Parameter estimation study

In this section, we use the SEOBNRv4HM_ROM model in a
parameter estimation application. For this purpose, we
create twomock signals (or injections) with the same binary
parameters, using either SEOBNRv4HM or NRHyBsur3dq8 to
generate the waveform. We then use SEOBNRv4HM_ROM;
SEOBNRv4_ROM; and, as a comparison between waveform

FIG. 6. Histogram of the unfaithfulness Ū between the ROM
and SEOBNRv4HM. The SEOBNRv4HM waveforms used in the
match calculations have m2 fixed to 1.4 M⊙ and m1 uniformly
distributed in the range 1.4 M⊙ ≤ m1 ≤ 18.6 M⊙.

FIG. 7. Unfaithfulness Ū between the ROM and SEOBNRv4HM
as a function of ðm1; χ1Þ and with m2 ¼ 1.4 M⊙.

FIG. 8. Speedup of waveform generation of the ROM with
respect to SEOBNRv4HM as a function of the total mass and for
different values of mass ratio.
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models for the second case, IMRPhenomHM [34]7 and
NRHyBsur3dq8 to compute posterior distributions from the
mock signals. The analysis of the first mock signal will
demonstrate the improvements in measuring binary param-
eters when using a model with higher harmonics with
respect to a model including only the dominant ðl; jmjÞ ¼
ð2; 2Þ mode. The analysis of the second mock signal will
give us a sense of possible biases due to modeling errors in
the original SEOBNRv4HM model with respect to NR-surro-
gate waveforms, which are close to NR simulations. In
creating themock signals, we do not add detector noise. This
choice is made to avoid additional uncertainty and bias
introduced by a random noise realization. It is the natural
choice given that the goal of this parameter estimation
analysis is to check for possible biases due to inaccuracies in
waveform models.

1. Setup

We choose parameters for the mock signals in order to
emphasize the effect of higher modes in the waveform.
Since the contribution of higher-order modes in the emitted
GWs increases with the mass ratio, we use for the mock
signals q ¼ 8, the largest mass ratio available for the model

NRHyBsur3dq8. For the total mass, we use M ¼ 67.5 M⊙
such that the values of the component masses m1 ¼ 60 M⊙
and m2 ¼ 7.5 M⊙ are consistent with the masses of BBH
systems observed during O1 and O2 (see Refs. [3] and [94]).
The waveform models are restricted to nonprecessing spins,
andwe pick χ1z ¼ 0.5 and χ2z ¼ 0.3. Tomaximize the effect
of the higher modes, we inject the signal at edge-on
inclination ðι ¼ π=2Þ with respect to the observer. The
coalescence phase ϕc is chosen to be 1.2 radian, while the
polarization phase ψ is set to 0.7 rad. The signal has been
injected at Global Positioning System time (GPS)
1,249,852,257 s with a sky position defined by its right
ascension of 0.33 rad and its declination of−0.6 rad. Finally,
the distance of the mock signal is chosen by demanding a
network signal-to-noise ration (SNR) of 21.8 in the three
detectors (LIGO Hanford, LIGO Livingston, and Virgo)
when using the Advanced LIGO and Advanced Virgo
PSD at design sensitivity [90]. The resulting distance is
627 Mpc. We used PyCBC’s PYCBC_GENERATE_HWINJ [95] to
prepare the mock signal. To carry out Bayesian parameter
estimation, we used the Markov chain Monte Carlo code
LALInferenceMCMC [10,96]. We choose a uniform prior in
component masses in the range ½3; 100�M⊙. Aligned com-
ponent spins are assumed to be uniform in ½−1; 1�. The priors
on the other parameters are the standard ones described in
Appendix C.1 of Ref. [3].

2. Results

Let us first focus on the case in which the mock signal is
generated with SEOBNRv4HM. In Fig. 10, we summarize the
results of the parameter estimation analysis for some
relevant binary parameters. The top left panel shows the
marginalized 2D posterior for the component source-frame
masses, and the top right panel shows the marginalized 2D
posterior for the mass ratio q and the spin parameter
χeff ¼ ðm1χ1 þm2χ2Þ=ðm1 þm2Þ. In the bottom left
panel, we present the marginalized 2D posterior with
inclination ι and luminosity distance dL, and, finally, in
the bottom right panel, we report the matched filter SNR.
The star in the plots corresponds to the true value used
for the mock signal, while the 2D contours of the posterior
distributions represent 90% credible regions. The wave-
form templates used to infer binary parameters are
SEOBNRv4_ROM (blue curve) and SEOBNRv4HM_ROM (red
curve). It is clear from the plots that all the parameters
reported in Fig. 10 are more precisely measured when using
SEOBNRv4HM_ROM instead of SEOBNRv4_ROM. The posterior
volume represents the degeneracy of the gravitational wave
signal, and in the absence of detector noise, this degeneracy
is intrinsic to the waveforms. The inclusion of higher
harmonics in SEOBNRv4HM_ROM breaks the degeneracy
between the parameters q − χeff and ι −DL and allows
us to measure them more precisely. These results are
consistent with what was previously found in the literature
[65,97,98]. As expected, SEOBNRv4HM_ROM also measures
a larger matched filter SNR.

IMRPHENOMHM
NRHYBSUR3dq8

FIG. 9. Wall time comparison between different spin-aligned
waveform models with higher-order modes as a function of the
total mass and for q ¼ 8. The dashed lines indicate the wall time
normalized by the number of modes included in the model,
respectively 5 modes for SEOBNRv4HM_ROM, 6 modes for
IMRPhenomHM, and 11 modes for NRHyBsur3dq8.

7A new version of the IMRPhenom waveform model with
higher-order modes became only very recently available (see
Refs. [37,93]), therefore we have not been able to include it in our
study. We defer comparisons with this model to future analysis.
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Let us now consider the case in which the mock signal is
represented by NRHyBsur3dq8. In Fig. 11, we show the
marginalized 2D posterior for the mass ratio q and the

spin parameter χeff (left panel) and the marginalized 2D
posterior with inclination ι and luminosity distance dL
(right panel) as measured by the waveform models

FIG. 10. 90% credible regions and histograms of posterior distributions for a q ¼ 8 BBH. The signal waveform is SEOBNRv4HM_ROM,
and the stars represent binary parameters used for the signal. The mock signals are recovered with SEOBNRv4_ROM and
SEOBNRv4HM_ROM waveform models. Top left: component masses in the source frame. Top right: mass-ratio and effective aligned
spin parameter. Bottom left: inclination angle and luminosity distance. Bottom right: matched filter SNR.

FIG. 11. 90% credible regions and histograms of posterior distributions for a q ¼ 8 BBH. The signal waveform is NRHyBsur3dq, and
the stars represent binary parameters used for the signal. The mock signals are recovered with SEOBNRv4_ROM, SEOBNRv4HM_ROM,
IMRPhenomHM, and NRHyBsur3dq8 waveform models. Left: mass ratio and effective aligned spin parameter. Right: inclination angle and
luminosity distance.
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SEOBNRv4HM_ROM (red curve), SEOBNRv4_ROM (blue
curve), IMRPhenomHM (green curve), and NRHyBsur3dq8

(orange curve). As before, the star in the plots corresponds
to the true value used for the mock signal, while the 2D
contours of the posterior distributions represent 90%
credible regions. From the plots in Fig. 11, it is clear
that, as before, SEOBNRv4HM_ROM recovers the binary
parameters more precisely than SEOBNRv4_ROM. It is
important to highlight that with SEOBNRv4HM_ROM the
binary parameters are recovered inside the 90% credible
regions. This means that for this quite asymmetric system
at a moderately high SNR of ∼20 the bias due to modeling
errors in the original SEOBNRv4HM model compared to NR
waveforms is negligible with respect to the statistical
uncertainty. In contrast, the marginal posterior distribu-
tions recovered for IMRPhenomHM are in general broader
compared to the ones recovered by SEOBNRv4HM_ROM, are
notably bimodal in mass ratio and effective spin, and
extend a lot farther along the line of q—χeff degeneracy. In
distance and inclination, the IMRPhenomHM posterior shows
little improvement over SEOBNRv4_ROM which does not
include higher harmonics. Finally, the marginal posteriors
for NRHyBsur3dq8 are quite similar in size to those for
SEOBNRv4HM_ROM, but better centered around the true
parameter values. This is as expected since the likelihood
should peak at the true parameter values when the signal
and template use the same waveform. The mock signal is
also sufficiently loud for the posteriors to be likelihood—
rather than prior—dominated, resulting in an unbiased
parameter recovery.
This study shows that using SEOBNRv4HM_ROM for

parameter estimation yields unbiased measurements of
the binary parameters at a moderately high SNR even in
a configuration where the effect of higher harmonics in the
waveform is large. We defer a more comprehensive
analysis to future studies.

V. CONCLUSION

In this paper, we have presented a fast and accurate
ROM or surrogate model for the time-domain SEOBNRv4HM

EOB waveform [25]. This model assumes spins aligned
with the orbital angular momentum of the binary and
includes the ðl; jmjÞ ¼ ð2; 1Þ; ð3; 3Þ; ð4; 4Þ; ð5; 5Þ spherical
harmonic modes beyond the dominant ðl; jmjÞ ¼ ð2; 2Þ
mode.
While the construction of this Fourier-domain ROM

broadly follows previous work [39,40], we have introduced
the following new features to accurately represent the
higher harmonics and make the model more flexible (see
Sec. III). While previous models used an amplitude/phase
decomposition of the Fourier-domain waveform, we here
define a carrier signal [see Eq. (3.15)] based on the time-
domain orbital phase. Subsequently, we extract the carrier
phasing from each Fourier-domain waveform mode [see
Eq. (3.20)]. This essentially makes the phase of modes

almost constant in the inspiral, defining what we here call
“coorbital modes.” This choice allows us to avoid zero
crossings in the subdominant harmonics which could
spoil the smoothness of the training data and make
accurate interpolation of the waveform data over param-
eter space very difficult. We perform alignment in the time
domain to keep track of the time of coalescence of the
training set waveforms, and this information is preserved
in the ROM. We use here an alternative approach to
dealing with the fact that the ringdown frequency varies
over the parameter space, but waveform data need to be
given on a common frequency grid to build a ROM. We
rescale the geometric frequency parameter so that the
ringdown is reached before a fixed termination frequency,
which demarcates the end of the frequency grid. We use
the inverse rescaling during the evaluation of the ROM.
We extend the ROM to arbitrarily low frequencies by
splicing it together with multipolar PN waveforms.
Therefore, it can in principle be used for arbitrarily light
compact binary systems. We decompose waveform input
data in orthonormal bases using the SVD and build a
model by constructing a tensor product spline over the
three-dimensional parameter space of mass ratio and the
two aligned spins of a binary. To increase model accuracy
and efficiency, we use domain decomposition in fre-
quency and in parameter space.
In Sec. IVA, we demonstrate that the ROM has a

very high faithfulness (or match) with SEOBNRv4HM.
Maximizing over inclination, reference phase and effective
polarization of the source waveform [see Eq. (4.7)], the
maximum mismatch over the remaining source parameters
is below 0.03% for binaries with a total mass below
100 M⊙ and below 0.2% for binaries at 300 M⊙ (see
Table III). Even for this very conservative choice, the
mismatch is at least an order of magnitude lower than the
unfaithfulness of SEOBNRv4HM against NR simulations.
Therefore, the additional modeling error introduced in
building the ROM is strongly subdominant, and the
ROM very accurately represents the SEOBNRv4HM wave-
form model. In Sec. IV B, we show that our ROM
accelerates waveform evaluation by a factor 100–200
compared to SEOBNRv4HM and favorably compares against
other higher-mode waveform models for BBH systems,
being about an order of magnitude faster. We showcase
in Sec. IV C (see Figs. 10 and 11) that our ROM can
recover component masses and spins, and especially the
distance and inclination angle for a quite asymmetric and
spinning BBH with increased precision compared to the
SEOBNRv4_ROM waveform, which only models the domi-
nant mode. In addition, we show that the ROM accurately
recovers binary parameters, irrespective of whether the
source is represented by a SEOBNRv4HM or a NRHyBsur3dq8

waveform. Our ROM gives a significantly more accurate
parameter recovery compared to the phenomenological
IMRPhenomHM waveform and is close to the NRHybSur3dq
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NR-surrogate model, while being more versatile and
covering a significantly larger parameter space.
This ROM should prove a very useful tool for GW data

analysis to describe systems where the contribution of
higher harmonics is important in terms of additional signal-
to-noise ratio and discriminating power for detection and
parameter inference. We stress that the ROM is very fast
and reproduces the SEOBNRv4HM model with a great
accuracy over the widest range in parameter space of all
inspiral-merger-ringdown higher-mode models available to
date, from mass ratio 1 to 1∶50 where aligned spins can

take values in the full range allowed for Kerr BHs, up to
extremal spins.
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