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We study spherically symmetric magnetically charged generic singular black hole solutions of general
relativity coupled to nonlinear electrodynamics. For characteristic values of the generic spacetime
parameters and the parameter characterizing the ratio of the gravitational and electromagnetic forces
acting on an electrically charged particle we study the circular orbits and related epicyclic motion and its
frequencies. We demonstrate that the equatorial circular orbits are forbidden in such situations, but off-
equatorial circular orbits are possible. We give dependence of the stable circular orbit on the spacetime
parameters and intensity of the electromagnetic interaction of the charged particles with magnetically
charged black holes. We study the possible resonance phenomena of the epicyclic frequencies and the
orbital frequency of the electrically charged particles in order to fit the data of the twin high-frequency
quasiperiodic oscillations of x rays observed in microquasars. Moreover, the dynamics of magnetized
particles around the magnetically charged generic black hole have also been explored and it is shown that as
increasing magnetic charge and magnetic moment parameters, the innermost stable circular orbit (ISCO)
radius decreases and disappears at some value of the magnetic moment parameter, inversely proportional to
the magnetic charge of black hole. As an astrophysical application we treated the magnetar PSR J1745–
2900 orbiting around Sagittarius (Sgr) A* as a magnetized particle and showed that the magnetic charge of
black hole can mimic black hole spin up to a=M ¼ 0.865694 at ν ¼ 2, and the spin parameter can mimic
the magnetic charge parameter up to q=M ¼ 0.578575 at ν ¼ 1, providing exactly the same value of the
ISCO radius. Finally, we predict that no magnetar with the surface magnetic field of the order of
1014–1015 G can follow stable orbits, but it is possible to observe ordinary neutron stars as recycled radio
pulsars in the close environment of Sgr A*.
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I. INTRODUCTION

One of the fundamental problems of classical theories of
gravity, particularly of general relativity (GR), is the
presence of physical singularity at the center of black
holes [1]. The problem is even stronger, if the physical
singularity is not hidden behind the event horizon, i.e., in

the case of the so-called naked singularities. The Kerr
(Kerr-Newman) geometry describing the most general
axially symmetric black holes can describe a rotating
Kerr (Kerr-Newman) naked singularity if its dimensionless
rotation parameter J2

M2 > 1 (or in addition with its electric

charge Q there is condition J2

M2 þ Q2

M2 > 1) [2–4]; the rotating
singularity could be avoided in the framework of super-
spinars related to the string theory and implying a variety of
extraordinary physical phenomena [5–10]. A spherical

Reissner-Nordstrom naked singularity exists if Q2

M2 > 1

[11]. A similar situation occurs in the case of the presence
of the cosmological constant [12–17]. On the other hand, a
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realistic astrophysical scenario of spherically symmetric
gravitational collapse can also cause formation of a naked
singularity [18–21]. Several ways of avoiding the singu-
larity problem have been suggested by different authors in
various ways: conformal gravity models [22–27], quantum
corrections [28,29], dark energy star–gravastar models
[30–33] and others. Study of the particle motion around
blackholes invarious alternative theories of gravity, or around
magnetized black holes, can be found, e.g., in [34–53].
A special way of avoiding physical singularity due to

combination of general relativity with a nonlinear electro-
dynamics (NED) is widely discussed [54–58]. The particle
motion in the Bardeen and Ayon-Beato-Garcia back-
grounds, of both the black hole and no-horizon type, has
been studied in [59,60]. The rotating regular black holes of
these types were also considered [57,58]. Properties of the
rotating regular black holes have been studied in Ref. [61].
One of the interesting models of NED predicts so-called

generic regular black holes [62,63]. The generic regular
black holes are generally well defined for magnetically
charged cases [63,64]. The class of generic regular black
holes contains as subclasses the Bardeen regular black
holes, the Hayward regular black holes, and the very
important case of the Maxwellian regular black holes
giving the proper Maxwell weak field limit of the NED
theory that seems to be the only acceptable version of the
NEDmodels due to the properties of the optical phenomena
related to the Keplerian accretion disks [65–68].
It is of course interesting to study properties of the

generic black holes containing the physical singularity and
compare the differences to the regular generic black holes.
In our preceding paper we have analyzed the structure of
the geometry of the singular generic black holes proposed
in Ref. [63] and tested the motion of uncharged particles in
their field [69]. In the present paper we continue our study
considering the charged particle motion around generic
singular magnetically charged black holes, concentrating
on the off-equatorial circular orbits that are a special
signature of the influence of the black hole magnetic
charge; we study also the epicyclic motion of charged
particles around the off-equatorial circular orbits.
The observationally most important features of the

orbital motion of test particles around black holes are
frequencies of the geodesic epicyclic oscillations near the
innermost stable circular orbit (ISCO) that are close to the
observed values of high-frequency quasiperiodic oscilla-
tions (HF QPOs) [70–72]. There have been many attempts
to model the observed QPOs of the x-ray power density in
microquasars, particularly, hot-spot models, disc-seismic
models, warped disk models and different types of reso-
nance models [73–76]. Up to now there is no unique
mechanism explaining the observed phenomena in all the
microquasars [77]. However, modifications due to electro-
magnetic interaction of orbiting charge particles with
magnetized black holes [52,78,79], or oscillating string

loops [73,80], enable us to overcome difficulties of HF
QPO models based on the geodesic epicyclic motion. Since
the astrophysical black holes are surrounded by magnetic
fields (stellar, galactic, etc.) this model is well motivated.
The magnetic fields around black holes and their effect on
charged particle motion and energetic processes have been
widely studied in [49,50,81–96] within the framework of
general relativity and modified/alternative theories of
gravity.
The magnetic field of astrophysical compact object is

responsible for observational phenomena of the high
energy processes in their close environment that can be
used to test the gravity theories in the strong field regime
through the study of the charged and magnetized particle
motion. The magnetic field structure around black holes
immersed in external asymptotically uniform magnetic
field was first studied in [81]. The electromagnetic pro-
perties and charged particle dynamics around compact
gravitational objects have been studied in Refs. [34–36,
45,47–51,53,82–84,87–89,92,97–99]. On the other hand
the magnetized particle dynamics around black holes in the
presence of external magnetic field have been explored in
Refs. [39,90,91,93–95,100–105]. Here we investigate the
motion of electrically charged and magnetized particles
with nonzero magnetic dipole moment in the gravitational
and electromagnetic field of magnetically charged generic
black holes in GR coupled to NED.
The paper is organized as follows. We start with the

review of the spacetime of the generic black holes governed
by general relativity coupled with nonlinear electrodynam-
ics in Sec. II. The charged particle motion around charged
black holes is considered in Sec. III. The Sections IVand V
are devoted to the study of the charged particle epicyclic
motion; its frequencies are used in models of twin HF
QPOs and applied for the data obtained in three selected
microquasars. Section VI is devoted to magnetized particle
motion around magnetically charged black holes in GR
coupled to NED. Section VII provides various astrophysi-
cal applications for the obtained results, in particular,
practical tools to get constrains to black hole parameters
through observed particle dynamics in close to environment
of SgrA*.We conclude our results in Sec. VIII. Throughout
the paper we use the geometrical units where G ¼ 1 ¼ c
and spacelike signature (−1, 1, 1, 1). The greek indexes run
from 0 to 1.

II. GENERIC BLACK HOLES

We consider the black hole solutions of general relativity
coupled to NED with the Lagrangian density introduced in
[62] in the form

L ¼ 4μ

α

ðαFÞνþ3
4

½1þ ðαFÞν4�1þμ
ν

;
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where the Faraday scalar F ¼ FμνFμν. The parameter α > 0

describes the strength of the nonlinear effect, μ > 0
characterizes the degree of nonlinearity and ν > 0 is a free
parameter governing character of the electromagnetic field
in a concrete solution. In this case the NED theory is well
defined for the generic black hole solutions with a magnetic
charge when the Faraday scalar F > 0 [64,106].
The spherically symmetric generic black hole spacetime

metric has a Schwarzschild-like form and in the standard
Schwarzschild coordinates its line element has the form
[62,106]

ds2 ¼ −
�
1 −

2mðrÞ
r

�
dt2 þ

�
1 −

2mðrÞ
r

�
−1
dr2

þ r2dθ2 þ r2sin2θdϕ2; ð1Þ

where the mass function mðrÞ takes the form [62,63]

mðrÞ ¼ M −
q3

α

�
1 −

rμ

ðrν þ qνÞμ=ν
�
: ð2Þ

The magnetic charge related to this solution can be
expressed as [61–63]

Qm ¼ q2ffiffiffiffiffiffi
2α

p : ð3Þ

The parameter q is the integration constant related to the
magnetic charge; for our purpose we suppose q > 0 [62].
The electromagnetic field potential of the nonrotating
magnetically charged generic black holes reads

Aα ¼ ð0; 0; 0; Qm cos θÞ: ð4Þ

Recall that values of the parameter ν fix the type of the
generic black hole; for ν ¼ 1 we have the black holes of the
Maxwellian type, for ν ¼ 2 of the Bardeen type, and for
ν ¼ 3 of the Hayward type (for details see [67,107]).
The Arnowitt-Deser-Misner (ADM) mass of this solu-

tion is defined by

MADM ¼ M þMem;

with

Mem ¼ q3

α

being the electromagnetically induced gravitational mass.
Note that the generic regular black holes (having no
physical singularities at the center r ¼ 0) appear when
we assume

M ¼ Mem; ð5Þ

with condition μ ≥ 3 [62]. Requirement (5) with (2) leads
to the mass function governing the regular solutions

mðrÞ ¼ Mrμ

ðrν þ qνÞμ=ν : ð6Þ

Recall that the regular solutions are allowed only for the
parameter μ ≥ 3.
In our recent study we consider the metric of generic

singular magnetically charged black holes (1) with the mass
function (2). We do not consider the condition (5) gov-
erning the regular (nonsingular) black holes. Due to the
studies in [65–67,108] it is obvious that the astrophysically
relevant cases occur for the parameter ν ¼ 1 and corre-
spond to the so-called Maxwellian NED black holes.
Therefore, we will prefer these spacetimes in our study.
For simplicity we use the dimensionless radius

r=M → r, dimensionless charge parameter q=M → q and
dimensionless parameter α=M2 → α; equivalently, we
put M ¼ 1.
The position of the black hole horizon is determined by

the condition

fðrÞ ¼ −gttðrÞ ¼ 1 −
2mðrÞ

r
¼ 0: ð7Þ

The existence and behavior of the horizon(s) of the generic
black holes and other properties of the generic geometry
were studied in [69]. We use results of this paper—we deal
with objects having at least one horizon, i.e., black holes.

III. CHARGED PARTICLE MOTION IN THE
FIELD OF GENERIC BLACK HOLES

We use the Hamiltonian formalism [109] to describe dy-
namics of electrically charged particles with charge qp≠0

in vicinity of the singular generic magnetically charged
black holes. The Hamiltonian H in this case takes the form

H ¼ 1

2
gαβðπα − qpAαÞðπβ − qpAβÞ þ

m2

2
; ð8Þ

while the Hamilton equations of motion read

dxα

dλ
¼ ∂H

∂πα ;
dπα
dλ

¼ −
∂H
∂xα ; ð9Þ

where m is mass of test particle, πα is canonical four-
momentum, qp is charge of test particle and affine
parameter λ is related to the proper time τ by relation
λ ¼ τ=m.
Due to symmetries of the spherically symmetric generic

singular background given by the metric (1) combined with
the magnetic monopole field, one can find conserved
quantities of the charged particle motion: the specific
energy and the specific axial angular momentum—they
read, respectively,
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E ¼ E
m

¼ −
πt
m

¼ −gttut;

L ¼ l
m

¼ πϕ
m

¼ gϕϕuϕ þ q̄pAϕ; ð10Þ

where we introduced the specific electric charge of the
particle q̄p ¼ qp=m. Using the conserved quantities (10),
the Hamiltonian (8) can be separated into dynamical and
potential parts

H ¼ Hdyn þHpot; ð11Þ
where

Hdyn ¼
1

2
ðgrrp2

r þ gθθp2
θÞ; ð12Þ

Hpot ¼
m2

2
ðgttE2 þ gϕϕðL − q̄pAϕÞ2 þ 1Þ: ð13Þ

A. Effective potential of the motion
and off-equatorial circular orbits

The energetic boundary of the charged particle motion is
determined by Eqs. (8) and (10)–(13) due to the conditions
of the simultaneous turning points of the radial and
latitudinal motion pr ¼ pθ ¼ 0 that enable introduction
of the effective potential determined by the relation
E ¼ Veffðr; θÞ, where the effective potential Veffðr; θÞ is
given in the form

Veffðr; θÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt½gϕϕðL − q̄pAϕÞ2 þ 1�

q
: ð14Þ

The effective potential describes influence of gravity and
central force potentials given by the angular momentum
and the electromagnetic potential energy. Positive angular
momentum L > 0 corresponds to counterclockwise
revolved particle.

Introducing the parameter e governing the relation of the
electromagnetic and gravitational interaction

e ¼ qpQmGM

mc4
; ð15Þ

where we have momentarily introduced for completeness
also the gravitational constant G and light velocity c. This
parameter e governs the charged particle motion—we
distinguish the plus (e > 0) and minus (e < 0) electro-
magnetic interactions. The effective potential (14) then can
be rewritten as

Veffðr; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

2mðrÞ
r

��ðL − e cos θÞ2
r2sin2θ

þ 1

�s
; ð16Þ

where mðrÞ is the mass function (2) governing the singular
generic black holes.
The examples of the behavior of the effective potential

Veffðr; θÞ are given for the positively and negatively valued
parameter e in Fig. 1. Obviously, there exists an important
symmetry of the effective potential with respect to the sign
of the parameter e—the charged particle dynamics is of the
same character if we change the sign of the gravomagnetic
parameter e and θ → π − θ. We can read it directly from the
relation giving the effective potential (16) [see the term
ðL − e cos θÞ2]. In Fig. 2 we present the θ ¼ const sections
and the r ¼ const sections of the effective potentials. These
figures clearly demonstrate that the effective potential is not
symmetric relative to the equatorial plane θ ¼ π=2 due to
the electromagnetic interaction of the electrically charged
particle with the magnetic monopole charge of the black
hole, i.e., the existence of e parameter. For neutral particles,
this asymmetry disappears. The behavior of the effective
potential thus clearly demonstrates very important conse-
quence of the electromagnetic interaction in the case of our

FIG. 1. Effective potential of charged particles in field of generic black hole with parameters α ¼ 0.3, q ¼ 0.5, μ ¼ 3, ν ¼ 1 and
L ¼ 3. On the left is parameter e ¼ −1 and on the right is e ¼ 1.
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study, namely the nonexistence of the circular equatorial
motion. However, we immediately see from the figures that
there exist off-equatorial circular orbits that are stable
against the perturbations in the radial direction, however,
they could be both stable or unstable relative to the
perturbation in the radial direction.
The radius of the circular orbit rco at a fixed latitude θ is

given by the solution of the relations dVeffðr; θÞ=dr ¼ 0
that can be expressed in the form

½q3ð2 − 2rμðqν þ rνÞ−μ
νÞ þ αðr − 2Þ�ðL − e cosðθÞÞ2

þ ðqν þ rνÞ−μþν
ν ½ðe cotðθÞ − L cscðθÞÞ2 þ r2�

× ðq3 − αÞðqν þ rνÞμþν
ν − q3rμ½rν − ðμ − 1Þqν� ¼ 0:

ð17Þ

In the following we concentrate our attention to the case of
the simplest Maxwellian NED black holes (with ν ¼ 1 and

μ ¼ 3) that give the correct form of the NED in the limit of
weak electromagnetic field, as only these versions could
overcome the test of proper modeling the optical phenom-
ena related to the Keplerian accretion disks [67].

B. Stable circular orbits

An innermost stable circular orbit (ISCO) with its spe-
cific angular momentum LISCO comes from the simulta-
neous solution of the equations dVeffðr; θÞ=dr ¼ 0 and
d2Veffðr; θÞ=dr2 ¼ 0. The ISCO position in the
Schwarzschild spacetime is at rISCO ¼ 6M, in the generic
magnetically charged black hole spacetimes, the ISCO
position of uncharged particles depends on all metric
parameters and it is possible to have stable circular orbits
at radius lower than r ¼ 6M [69]. For example, in the generic
black hole spacetime with parameters α ¼ 0.3, q ¼ 0.5,
μ ¼ 3, ν ¼ 1 the ISCO is located at rISCO ¼ 4.46M.
In the present paper where we study motion of electri-

cally charged particles, also the e parameter representing

FIG. 2. The effective potential of charged particles in field of generic black hole with parameters α ¼ 0.3, q ¼ 0.5, μ ¼ 3, ν ¼ 1,
e ¼ −1 and L ¼ 3. On the left are curves with fixed θ ¼ 0.5; 1.57; 2.5 (blue, orange, green) and on the right are curves with fixed
r ¼ 4; 8; 13 (blue, orange, green).

FIG. 3. The behavior of stable circular orbits rco with parameters μ ¼ 3, ν ¼ 1, θ ¼ π=2, e ¼ 1 and L ¼ 3 with respect to the
parameter q with α ¼ 0.3 on the left panel and with respect to the parameter α with q ¼ 0.5 on the right panel.
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the relative intensity of the electromagnetic interaction as
compared to the gravitational interaction enters the play.
The effect of the α and q parameters on the stable circular
orbit is examined in Fig. 3—we can see the repulsive
effects of the q parameter and the attractive effects of the α
parameter on the stable circular orbit.
The ISCO represents a limit on the existence of stable

circular orbits and their position rco. It can be seen from
Fig. 4 that the stable circular orbits do not exist (for specific
L) for all values of the latitudinal coordinate θ—this
statement holds for both options of the e parameter (plus
and minus). Figure 5 illustrates increasing of radius of the
stable circular orbit with increasing value of the specific
angular momentum for both positive and negative values of
the parameter e.
In Fig. 6 we present an example of stable circular orbit

from three perspectives: the first and the second panel show

the motion in the Cartesian coordinates in the X-Yand X-Z
planes, the third panel ignores the rotational motion of the
particle and represents only the motion in the radial and
latitudinal directions converted to the Cartesian X-Z plane.
We will continue to use this motion representation concept
in the present paper. It can be immediately seen from
Figure 6 that such an orbit is circular, but even if it is
launched from the equatorial plane, it is not constrained by
this plane, but its trajectory is tilted circle. This is caused by
the presence of a magnetic field and can be observed, for
example, when the charged particle moves around a
Schwarzschild black hole immersed in an external mag-
netic monopole field.
The effective potential of the charged particle depends

also on latitudinal coordinate θ. Stationary points in
latitudinal direction are found by solution dVeffðr; θÞ=
dθ ¼ 0. Considering the Maxwellian generic black holes
with μ ¼ 3 and ν ¼ 1 and assuming the region above the
black hole event horizon, we arrive at the relation

−2ðL2 þ e2Þ cosðθÞ þ eL½cosð2θÞ þ 3� ¼ 0: ð18Þ

The extremum (minimum) of the effective potential at θstat
is independent of the radial coordinate (this is also
indicated at right panel of Fig. 2) and it is also independent
of the parameters α and q, being dependent only on the
specific angular momentum (and parameter e). The analytic
solution can be written as

θstat ¼
8<
:

arctan
� ffiffiffiffiffiffiffiffiffiffi

e2−L2
p

e

�
; if L < jej:

arctan
� ffiffiffiffiffiffiffiffiffiffi

L2−e2
p

L

�
; if L > jej:

ð19Þ

Since the arctan function acquires π=2 only at infinity, it is
clear that the stationary solutions corresponding to the
circular orbits cannot be found in the equatorial plane.
From the numerical analysis, it was found that the ISCO

position does not depend on θ coordinate, but only the
LISCO value changes with θ. This dependence is denoted by
dashed line in Fig. 7.
If we are interested in stable circular orbits, ISCO

determines the lowest specific angular momentum LISCO.
Thus, new limitations on L values appear. If the specific
angular momentum at the θstat is less than LISCO the stable
circular orbit does not exist at this θ. This restriction with
the dependence of θstatðLÞ is presented at Fig. 7. Any value
of L in shaded region does not satisfy condition for stable
circular orbit. Values of θstat where the stable circular orbit
is possible are denoted at Fig. 7 in between two black solid
parallel lines.
The main result coming from Fig. 7 is that there exists

circular orbits parallel to the equatorial plane (_θ ¼ 0)
outside the equatorial plane. Moreover, around the generic
magnetically charged black holes the electrically charged

FIG. 5. The behavior of stable circular orbits rco with respect to
L with parameters α ¼ 0.3, q ¼ 0.5, μ ¼ 3, ν ¼ 1 and θ ¼ π=3.
The blue curve is for parameter e ¼ −1 and orange is for e ¼ 1.
A black dashed curve indicates this dependency for a neutral
particle and a thin black line indicates the ISCO.

FIG. 4. The behavior of stable circular orbits rco with respect to
θ with parameters α ¼ 0.3, q ¼ 0.5, μ ¼ 3, ν ¼ 1 andL ¼ 3. The
blue curve is for parameter e ¼ −1 and orange is for e ¼ 1.
A black dashed curve indicates this dependency for a neutral
particle and a thin black line indicates the ISCO.
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particle motion is not allowed in the equatorial plane, i.e.,
with constant θ ¼ π=2.
The situation near the poles is different. The reason why

limiting function on L due to ISCO value is cut off near
the poles relates to the fact that the effective potential has
only a maximum for all L—the standard concept of ISCO
is missing, only unstable orbits can exist. This is evident
from Fig. 8 where for the given e and various L the
effective potentials are drawn for almost pole regions and
regions where standard ISCOs can be found. Notice the
existence of maxima of the effective potential at the almost
pole region, and the fact that the height of the effective
potential maximum is not monotonically varying with
increasing L.
Finally, in Fig. 9 we present the dependence of the

position of the stable circular orbit of rco on the stationary
θ, i.e., the positions where there are stable circular orbits
parallel to the equatorial plane.

FIG. 6. The trajectories (solid curves) and movement restrictions (dashed curves) from different perspective with parameters α ¼ 0.3,
q ¼ 0.5, μ ¼ 3, ν ¼ 1, e ¼ 1 and with initial conditions L ¼ LISCO ≐ 2.9, E ≐ 0.9, r0 ¼ rISCO ¼ 4.5, θ0 ¼ π=2. The left panel shows
the movement in the X-Y plane, the middle panel shows the movement in the X-Z plane, and the right panel neglects the movement in
the ϕ direction and shows again the movement in the X-Z plane.

FIG. 7. The behavior of θstat with respect to L with parameters
α ¼ 0.3, q ¼ 0.5, μ ¼ 3, ν ¼ 1. The blue curve is for parameter
e ¼ 1, orange is for e ¼ −1 and green one just show π=2. The
black dashed line shows LISCO at given θ. The black thin parallel
solid lines indicates span of θ with possible stable circular orbit.

FIG. 8. The effective potential of charged particles in field of generic black hole with parameters α ¼ 0.3, q ¼ 0.5, μ ¼ 3, ν ¼ 1,
e ¼ 1 and L: L ¼ 0 (blue), L ¼ 0.8 (orange), L ¼ 1.6 (green) and L ¼ 2.4 (red). A left panel denotes θ ¼ 0.001 and a right panel
denotes θ ¼ 0.5.
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C. Influence of the metric parameters
on the charged particle orbits

We shortly demonstrate behavior of the epicyclic motion
around circular orbits in dependence on the characteristic
spacetime parameter ν governing type of the spacetime.
At Fig. 10 typical trajectories in the generic black hole
spacetimes for a few metric parameters fixed are presented.
These are compared with the related trajectories around a
Schwarzschild black hole immersed into the magnetic
monopole field. It is obvious that for motion in the
backgrounds with increasing parameter ν the related
charged particle orbits become closer and closer to the
orbits around the Schwarzschild black hole immersed into
the magnetic monopole field. We can conclude that the
most profound differences in the charged particle motion in
comparison to the Schwarzschild case are related to the

Maxwellian NED magnetically charged black holes
(ν ¼ 1). These differences are suppressed for the case of
the Bardeen black holes (ν ¼ 2), and almost fully sup-
pressed in the case of Hayward black holes (ν ¼ 3).

IV. EPICYCLIC MOTION AND ITS FREQUENCIES

As mentioned in the previous chapter, we can find
charged particles following the off-equatorial circular
motion parallel to the equatorial plane. If such a particle
is displaced from its equilibrium position at a stable circular
orbit, corresponding to the minimum of the effective
potential, it starts epicyclic motion around its equilibrium
position. For small perturbations, the displacement coor-
dinates r ¼ rco þ δr and θ ¼ θstat þ δθ are governed by
equations for linear harmonic oscillations in both the radial
and latitudinal directions

δ̈rþ ω2
rδr ¼ 0; δ̈θ þ ω2

θδθ ¼ 0; ð20Þ
where the dot denotes derivative with respect to the proper
time of the particle τ and ωr and ωθ denote the frequencies
of the epicyclic oscillation as measured by a local observer.
The third frequency, ωϕ, corresponds to the frequency of
the orbital motion and is obtained from (10). Using the
motion constant related to the circular orbit, the spacetime
metric parameters and the gravomagnetic parameter e, we
can express the epicyclic and orbital frequencies in the form

ω2
r ¼

1

grr

∂2Hpot

∂r2 ; ω2
θ ¼

1

gθθ

∂2Hpot

∂θ2 ;

ωϕ ¼ 1

gθθ
ðL − q̄pAϕÞ: ð21Þ

We consider epicyclic frequencies around stationary orbits,
i.e., at rco and θstat. Using (1), (2), (8), (10)–(13) and L as a
solution (18) in (21)with parameters μ ¼ 3 and ν ¼ 1weget

ω2
r ¼

1

2

	
1−

2

rco

�
q3

α

�
r3co

ðqþ rcoÞ3
− 1

�
þ 1

�
�
4αE2

ð2q4ðq2 þ 3qrco þ 3r2coÞ þ αðrco − 2Þðqþ rcoÞ3Þ3
× ð−6q8r2coðqþ rcoÞð2q3 þ 6q2rco þ 6qr2co þ 3r3coÞ þ αq4ðqþ rcoÞ4ðq4 þ 5q3rco þ 9qr3co þ 2ð5qþ 6Þqr2co þ 9r4coÞ

− α2ðqþ rcoÞ9Þ þ
6e2tan2ðθstatÞ

r4co

�
;

ωθ ¼
e

cosðθstatÞr2co
; ωϕ ¼

e
cosðθstatÞr2co

: ð22Þ

Notice that in this case the latitudinal epicyclic frequency
coincides with the orbital frequency, as in the standard
spherically symmetric Schwarzschild spacetime.
From the observational point of view, more relevant

frequencies are those measured by static distant observers,
denoted as fr, fθ and fϕ. The transformation between the

frequencies fa and the angular frequencies ωa, where
a ¼ fr; θ;ϕg is (in the physical units)

fa ¼
1

2π

c3

GM
ωa

−gttE
: ð23Þ

FIG. 9. The position of stable circular orbits rco at stationary θ
for α ¼ 0.3, q ¼ 0.5, μ ¼ 3, ν ¼ 1 and appropriate L coming
from (19). A blue curve is for e ¼ 1 and an orange curve for
e ¼ −1. A black line denotes ISCO position.
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The epicyclic frequencies are the same for both the positive
and negative values of parameter e and are therefore only
given for e ¼ 1 in left panel of Fig. 11, where they are
compared to epicyclic frequencies for the Schwarzschild
black hole immersed into the magnetic monopole field. The
epicyclic frequencies fθ and fϕ in the magnetically charged
spacetimes are again identical (the blue and red dashed
lines overlap), as they are in the Schwarzschild case (black
dashed), but not equal to the Schwarzschild ones. The
difference between the epicyclic frequencies in generic

black hole case and the case of a Schwarzschild black hole
immersed into the monopole magnetic field decreases
with the distance from the black hole and vanishes at
the r → ∞ limit. Large differences arise (especially for
the radial epicyclic frequency fr) at radii close to the
Schwarzchild ISCO at r ¼ 6M. Another difference corre-
sponds to the shift of the ISCO location in the generic black
hole spacetime under consideration to r ¼ 4.46M and the
curves in the generic case prolonged to this radius. On the
right panel of Fig. 11 the ratios of the epicyclic frequencies

FIG. 10. The trajectories (solid curve) and movement restrictions (dashed curve) with parameters α ¼ 0.3, q ¼ 0.5, ν ¼ 1, e ¼ −1 and
values μ: μ ¼ 2 (blue), μ ¼ 4 (orange), μ ¼ 6 (green) and ν: ν ¼ 1, 2, 3. The black curve describes the motion of a charged particle in
Schwarzschild geometry immersed into the magnetic monopole field.
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in the Schwarzschild and the generic black hole spacetimes
are presented.

V. CHARGED PARTICLE OSCILLATIONS
AT RESONANCE FREQUENCY RATIO 3∶2

AND THE MASS-LIMIT OF MICROQUASARS

Great hopes of understanding the phenomena at strong
gravity regime are placed in the observation of HF QPOs
detected in many low-mass x-ray binaries (LMXB) formed
by a black hole or a neutron star. In these LMXB systems,
HF QPOs are sometimes observed in pairs of upper and
lower frequencies (fU, fL) of twin peaks in the Fourier
power spectra. It is interesting that in the so-called micro-
quasars, LMXB containing black hole, the twin HF QPOs
occurs at fixed frequencies, often in the ratio 3∶2 [110].

It was found in [70] that the high-frequency peaks are
very similar to the orbital frequencies of the marginally
stable orbit that determines the inner edge of the Keplerian
disk orbiting the central object. Consequently, it can be
assumed that HF QPOs arise in areas of strong gravity.
The observation of twin HF QPO frequencies for GRO

1655-40, XTE 1550-564 and GRS 1915þ 105 gives the
above-mentioned upper and lower frequency ratio

fU∶fL ¼ 3∶2: ð24Þ

One can identify directly the frequencies fU, fL with the
frequencies fθ, fr. This identification corresponds to the
most relevant case of the epicyclic resonance model
[71,72].

FIG. 11. On the left panel, the epicyclic frequencies in generic spacetime with parameters α ¼ 0.3, q ¼ 0.5, μ ¼ 3, ν ¼ 1 and e ¼ 1
and mass of central objectM ¼ 10 M⊙. The blue curve describes fϕ frequency, (red-dashed) curve describes fθ frequency (both curves
coincide) and orange curve describes fr frequency. The black dashed line plots the epicyclic frequencies fθ and fϕ (which are identical)
and the black dotted line plots the frequency fr in a Schwarzschild spacetime immersed into the magnetic monopole field. On the right
panel is a ratio of epicyclic frequencies in Schwarzschild’s spacetime and in generic spacetime. The blue curve is ratio of fθ (and also
fϕ) and the orange curve is ratio of fr.

FIG. 12. The upper frequency-mass relations in generic spacetime with parameters α ¼ 0.3, q ¼ 0.5, μ ¼ 3, ν ¼ 1 and e ¼ 1. On the
left panel the parameter μ is varied: μ ¼ 3 (blue), μ ¼ 4 (orange), μ ¼ 5 (green) and μ ¼ 6 (red). On the middle panel the parameter q is
varied: q ¼ 0.3 (blue), q ¼ 0.4 (orange), q ¼ 0.5 (green) and q ¼ 0.6 (red). On the right panel the parameter α is varied: α ¼ 0.2 (blue),
α ¼ 0.3 (orange), α ¼ 0.4 (green) and α ¼ 0.5 (red).

JAROSLAV VRBA et al. PHYS. REV. D 101, 124039 (2020)

124039-10



Now we plan to show the influence of the μ, q and α
parameters on the relation of the upper HF QPO fre-
quency and mass of the central object with respect to real
astronomical observational data. The μ and q parameters
appear to increase the upper frequency relative to the
mass of the central object, while the α parameter
decreases this frequency as shown in Fig. 12. The q
parameter has the strongest impact, however, it is impor-
tant to note that one cannot increase the q parameter
indefinitely if one wants to deal with the black hole (an
object having at least one horizon). There is no analytical
expression for the marginal q, but numerical results for
several metric parameter variations can be found in [69].
The best fits of parameter μ, q and α of upper frequency-
mass relations on the observation data for GRO 1655-40,
XTE 1550-564 and GRS 1915þ 105 are presented
in Fig. 13.

VI. MAGNETIZED PARTICLE MOTION AROUND
MAGNETICALLY CHARGED BLACK HOLES IN

GR COUPLED TO NED

In this section, we plan to study the dynamics of
magnetized particles around the generic magnetically
charged black holes.
Using potential (4) one may immediately obtain the

nonzero component of the electromagnetic field tensor by
the relation Fμν ¼ Aν;μ − Aμ;ν in the standard form

Fθϕ ¼ −Qm sin θ: ð25Þ

We calculate the orthonormal components of the mag-
netic field measured by zero angular momentum observer
(ZAMO) in the black hole spacetime (1) using the relation

Bα ¼ 1

2
ηαβσμFβσwμ; ð26Þ

where wμ is velocity of the observer who measure the
magnetic field, ηαβσγ is the pseudotensorial form of the
Levi-Civita symbol ϵαβσγ with the relations

ηαβσγ ¼
ffiffiffiffiffiffi
−g

p
ϵαβσγ ηαβσγ ¼ −

1ffiffiffiffiffiffi−gp ϵαβσγ; ð27Þ

and g ¼ detjgμνj ¼ −r4sin2θ for spacetime metric (1) and

ϵαβσγ ¼
8<
:

þ1; for even permutations

−1; for odd permutations

0; for the other combinations

; ð28Þ

than

Br̂ ¼ Qm

r2
: ð29Þ

Equation (29) implies that the radial component of the
magnetic field around magnetically charged black holes is
not affected by the spacetime curvature and looks like the
standard Newtonian expression.
One way to test spacetime around compact objects is

though study of test particle motion. In order to explore
properties of magnetically charged black holes, we aimed
to describe the motion of magnetized particles around the
generic black hole using the following Hamilton Jacobi
equation [100]:

gμν
∂S
∂xμ

∂S
∂xν ¼ −ðm −

1

2
DμνFμνÞ2; ð30Þ

with the term DμνF μν which characterizes the interaction
between the magnetized particle and the magnetic field
generated by the NED field. Assuming the structure of the
magnetized particle’s magnetic moment/field is dipolar, the
polarization tensor Dαβ subjects to the following condition:

Dαβ ¼ ηαβσνuσμν; Dαβuβ ¼ 0; ð31Þ

where μν and uμ is the four-vector of dipole moment and
velocity of the magnetized particle. It is possible to
determine the interaction term of the Hamilton-Jacobi
equation (30) using the standard relation between the
electromagnetic field tensor Fαβ and components of electric
Eα and magnetic Bα fields

FIG. 13. The best fits of upper frequency-mass relations in
generic spacetime with parameters ν ¼ 1 and e ¼ 1. The blue
curve is for parameters α ¼ 0.3, q ¼ 0.6 and μ ¼ 3, the orange
curve is for parameters α ¼ 0.2, q ¼ 0.5 and μ ¼ 5, the green
curve is for parameters α ¼ 0.2, q ¼ 0.5 and μ ¼ 6 and the red
curve is for parameters α ¼ 0.3, q ¼ 0.6 and μ ¼ 4.
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Fαβ ¼ wαEβ − wβEα − ηαβσγwσBγ: ð32Þ

Taking into account the condition given in (31) and
nonzero components of the electromagnetic field tensor we
have

DαβFαβ ¼ 2μαBα ¼ 2μα̂Bα̂ ð33Þ

where μα̂ and Bα̂ are measurable values of the proper
magnetic dipole moment of the magnetized particle and the
magnetic field generated in the presence of NED by the
observer in ZAMO framework.
In the study of the dynamics of the magnetized particle

around the generic black hole, we will let the direction of
the magnetic dipole moment of the magnetized particle to
be parallel to the equatorial plane as well as to the magnetic
field of the generic black hole. The components then are
μi ¼ ðμr; 0; 0Þ, the other configurations of magnetic dipole
moment components cannot provide the magnetized par-
ticle with a stable equilibrium. In fact, in the equilibrium of
the minimum energy of the magnetic interactions the
direction of magnetic field lines and magnetic dipole
moment of the magnetized particle have to be the same.
Moreover, the second part of the condition (31) allows us to
study the particle motion in ZAMO framework and the
choice of the observer velocity may help to avoid a relative
motion problem. The magnitude of the constant magnetic
moment is constant and is maintained during the motion.
One may rewrite the interaction using (33) and (25) in the
following form:

DαβFαβ ¼
2μQm

r2
; ð34Þ

where μ ¼ jμj ¼
ffiffiffiffiffiffiffiffi
μîμ

î
q

is the norm of the magnetic dipole

moment of the magnetized particle.
Since, the axial symmetric configuration of the proper

magnetic field of the generic black hole coupled the NED
does not break the spacetime symmetries and, therefore,
there are still two conserved quantities: energy pt ¼ −E
and angular momentum pϕ ¼ l. Then it is possible to
rewrite the expression for the action of the magnetized
particle so that one can separate variables in the Hamilton-
Jacobi equation (30) as

S ¼ −Etþ lϕþ SrðrÞ: ð35Þ

The radial motion of a magnetized particle at the equatorial
plane, where θ ¼ π=2, with pθ ¼ 0, using (33), (30) and
the action (35) gives the following form:

_r2 ¼ E2 − Veffðr;L;BÞ: ð36Þ

The effective potential has the form

Veffðr;L;B; qÞ ¼ fðrÞ
��

1 −
B
r2

�
2

þ L2

r2

�
ð37Þ

where the relation

B ¼ μ

mM
Qm ¼ β

q2ffiffiffiffiffiffi
2α

p

is a magnetic interaction parameter which is responsible for
the interaction between magnetized particles and the proper
magnetic field of the generic black hole and β ¼ μ=ðmMÞ
is dimensionless parameter that characterizes the magnet-
ized particle and the central black hole parameters are
always positive for the system when magnetized neutron
star is treated as test magnetized particle orbiting around a
supermassive black hole

β ¼ BNSR3
NS

2mNSMSMBH

≃ 0.18

�
BNS

1012 G

��
RNS

106 cm

��
mNS

M⊙

�
−1
�
MSMBH

106 M⊙

�
−1
:

ð38Þ
The circular stable orbits of the magnetized particle

around the central object can be defined by the standard
conditions as

FIG. 14. The radial dependence of the specific angular mo-
mentum for circular orbits for the different values of magnetic
charge parameter and the parameter β.
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V 0
eff ¼ 0; V 00

eff ≥ 0: ð39Þ

Specific angular momentum and energy of the magnetized
particle along the circular orbits can be expressed by the
following expressions:

L2 ¼ −
ðr2 − BÞðrðr2 − BÞf0ðrÞ þ 4BfðrÞÞ

r2ðrf0ðrÞ − 2fðrÞÞ ð40Þ

E2 ¼ 2fðrÞ2ðB2 − r4Þ
r4ðrf0ðrÞ − 2fðrÞÞ : ð41Þ

Figure 14 shows the radial dependence of the specific
angular momentum of a magnetized particle around
the generic black hole. One can see from this figure that
the increase of the magnetic charge of the black hole (the
parameter β) decreases (increases) the minimum value of
the specific angular momentum of the magnetized particle.
Moreover, as the increase of both magnetic charge param-
eter and the parameter β the distance where the specific
angular momentum is minimum decreases.
The radial dependence of the specific energy of the

magnetized particle for the different values of the parameter
β and the magnetic charge parameter is shown in Fig. 15.
One can see from Fig. 15 that with the increase of the

parameters q and β ISCO radius shifts towards the central
black hole and the minimum values of the specific energy
decreases.
One can easily obtain equation for ISCO taking into

account the conditions (39) for the effective potential (37)
in the following form:

2r2ðB2 − r4Þf0ðrÞ2 þ 8B2fðrÞ2 þ rfðrÞ
× ½rðr4 − B2Þf00ðrÞ þ ð3r4 − 7B2Þf0ðrÞ� ≥ 0: ð42Þ

Since, it is hard to analytically solve Eq. (42) with respect
to the radial coordinate we can only analyze the ISCO
profiles presenting them in plot form.
The dependence of ISCO radius on the magnetic charge

parameter for the different values of the parameters β and ν
is presented in Fig. 16, where μ ¼ 3, α ¼ 0.3. One can see
from the figures the increase of the parameter β increases
the rate of decreasing of ISCO radius and the comparison of
the cases ν ¼ 1 and ν ¼ 2 shows that effect of the
parameter β is stronger at ν ¼ 2 than at ν ¼ 1.
Figure 17 demonstrates dependence of ISCO radius on

the parameter β for the different values of magnetic charge

FIG. 15. The radial dependence of the specific energy for
circular orbits for the different values of magnetic charge
parameter and the parameter β.

FIG. 16. ISCO radius of a magnetized particle around the
generic regular black holes for the value of the parameter ν ¼ 1
and ν ¼ 2.
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parameter q and the parameter ν, at the values of the
parameters μ ¼ 3 and α ¼ 0.3. One may observe that ISCO
radius decreases with increase of both the magnetic charge
parameter q and the parameter β. Our numerical calcu-
lations show that at the maximum value of the magnetic
charge parameter, ISCO disappears for the magnetized
particle, for any values of the β parameter. Moreover there
is an upper limit for the parameter β for the existence of
ISCO radius at q < qmax and the upper limit value for the
parameter β decreases with the increase of the magnetic
charge parameter q. It is meant that the magnetized particle
orbit become unstable due to interaction between the
magnetic field and magnetic moment of the particle.

VII. ASTROPHYSICAL APPLICATIONS

Testing various theories of gravity in the strong field
regime considering dynamics of test particles is always
actual and can help to explore nature of gravitational and
electromagnetic fields around the central black hole and to
estimate the fundamental parameters of the black hole. One
of the observational properties of the test particle motion is
the behavior of ISCO and phenomena concerning QPOs. If
we have multiple gravity models, observational data (such

as ISCO positions or effects associated with QPOs) are not
able to clearly distinguish which model’s effects dominate.
Thus, it may be the case that different characteristics of
these models have a similar effect on the behaviors of test
particle dynamics. The problem that the astronomical
observations do not care about which model of gravity
plays important role in the observations of ISCO position
and frequencies of QPOs, which means two different
theories of gravity can give the same values of ISCO
radius or QPO frequencies and mimic each other. In order
to distinguish the effects of the parameters of different
theories of gravity one can compare the observational
parameters of dynamics of the test particles. We aimed
to study how the generic black hole effects can mimic a
rotation of Kerr black hole. Analysis of solution for ISCO
radius of magnetized particles around the generic black
holes and test particles around Kerr black hole and the
magnetized particles around Schwarzschild black hole
immersed in an external magnetic field can help to find
out how the generic black holes magnetic charge parameter
mimics the effects of the spin of Kerr black hole.
ISCO radius of the test particles for retrograde and

prograde orbits around Kerr BH can be expressed as [111]

risco ¼ 3þ Z2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − Z1Þð3þ Z1 þ 2Z2Þ

p
; ð43Þ

with

Z1 ¼ 1þ ð ffiffiffiffiffiffiffiffiffiffiffi
1þ a3

p þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − a3

p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

3
p

;

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2 þ Z2

1

q
:

We plan to perform the above-mentioned study of ISCO
analyzing considering the motion of the magnetar SRG
(PSR) J1745–2900 orbiting around the Sgr A* as appro-
ximated test magnetized particle with the parameters
β ¼ 10 assuming the Sgr A* black holes as (i) Kerr black
hole with spin parameter a, (ii) generic black hole and
(iii) Schwarzschild black hole immersed in the magnetic
field one by one.
For the system of the magnetar called SRG (PSR)

J1745–2900 orbiting around supermassive black hole
Sgr A* with mass M ≈ 3.8 × 106 M⊙, discovered in
2013 in radio band [112], the value of the parameter β
for the magnetar can be easily estimated based on the
observational data analysis in [112] that shows the mag-
netic dipole moment of the magnetar μ ≈ 1.6 × 1032 G ·
cm3 and mass m ≈ 1.5 M⊙ as

β ¼ μPSR J1745−2900
mPSR J1745−2900MSgrA�

≈ 10.2: ð44Þ

Figure 18 presents profiles of ISCO radius of a mag-
netized particles around: Kerr black hole; Schwarzschild
black hole immersed in the external magnetic field and the

FIG. 17. ISCO radius of a magnetized particle around the
generic regular black holes for the value of the parameter ν ¼ 1
and ν ¼ 2.
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generic black hole at their proper parameters a=M ∈ ð0; 1Þ,
q ∈ ð0; qmaxðνÞÞ and β ∈ ð0; 1Þ, respectively. One may see
that ISCO radius can be the same for the different ap-
proaches, arising indistinguishable nature of the black
holes.

A. Generic black hole vs Kerr black hole

In this subsection we study the motion of magnetized
and nonmagnetized particles around the generic and Kerr
black holes, respectively and show how the magnetic
charge parameter of the black hole mimics spin of Kerr
black hole and gives the same ISCO radius.
Figure 19 illustrates the relation between rotation param-

eter of Kerr black hole and magnetic charge parameter of
the generic black hole for the same ISCO radius. One can
see that when the parameter ν ¼ 1 the magnetic charge
parameter can mimic the spin parameter up to amax ¼ 1, for
the particle with β ¼ 10 the spin parameter a ¼ 0.865694,

but for neutral (nonmagnetized) particles, it is up to
a ¼ 0.224659. When the parameter ν ¼ 2 the spin param-
eter can mimic the charge parameter up to q ¼ qmax ¼
0.697848 and for particles with β ¼ 10 the magnetic charge
parameter up to q ¼ 0.578575, but for β ¼ 0, it is up
to q ¼ 0.634811.

B. Generic black hole vs Schwarzschild
black hole in magnetic field

In this subsection, we will compare the motion of
magnetized particles around generic black hole and
Schwarzschild black hole immersed in an external uniform
magnetic field, focusing on how the magnetic charge
parameter can mimic the effect of external magnetic field
parameter giving the same ISCO radius for the magnetized
particle. The dynamics of magnetized particles around
Schwarzschild black hole in the external magnetic field
have been investigated in [100] in detail. One can estimate
the magnetic coupling parameter as

B ¼ 2μB0

m
¼ BNSR3

NSBext

mNS

for a pulsar orbiting around a supermassive black hole. This
value of the interaction parameter for the magnetar SRG
(PSR) J1745–29 orbiting around Sgr A* is

BPSR J1745−2900 ≃ 0.716

�
Bext

10 G

�
: ð45Þ

In previous works [102,104] we have shown that
magnetized particle orbits cannot be stable at B ≥ 1. We
will study the magnetars ISCO in field Sgr A*, for B < 1
(Bext ≲ 14 G). This indicates that a magnetar with the
surface magnetic field at the order of Bsurf > 1014 G cannot
be in stable orbits around the central supermassive black
hole when the external magnetic field is more than the order
of 10 G. Since the expected magnetic field near Sgr A* is
around 100 G, the magnetic coupling parameter for the
magnetar (SGR) PSR J1745-2900 isB ≃ 7.16 and one may
predict that we observe a pulsar with the surface magnetic
field less than 1012 G. Nonobservability of radio pulsars
and magnetars on the central part of our galaxy in close
vicinity of SgrA* can be caused by either their nonexist-
ence in the region close to ISCO or scattering of radio
signals broadening them and leads to pulsar’s signal
disappearance. The detailed analysis performed here shows
that the interaction of ambient magnetic field with magnet-
ar’s (pulsar’s) magnetic moment is so strong that magnet-
ar’s orbit in close vicinity of SgrA* becomes very unstable
and unlikely to search magnetars there. The only oppor-
tunity is to look for the radio pulsars with low surface
magnetic field in that area.
Figure 20 demonstrates relations between magnetic

coupling parameter and magnetic charge parameter of

FIG. 18. ISCO radius of a magnetized particle around the
generic magnetically charged regular black hole, Kerr black hole
and Schwarzschild black hole immersed in the external magnetic
field for the values of the parameter ν ¼ 1 and ν ¼ 2.

FIG. 19. Relations between spin parameter and magnetic
charge parameter giving the same ISCO radius for the different
values of the magnetic coupling parameter and the parameter ν at
μ ¼ 3 and β ¼ 10.
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the generic black hole and we see that for β ¼ 10 and the
parameter ν ¼ 1 and ν ¼ 2 themagnetic coupling parameter
can mimic the magnetic charge parameter of the black hole
in the range q ∈ ð0.144324; 0.4368Þ and q ∈ ð0.165447;
0.574278Þ, respectively. This analysis allows us to
distinguish the magnetized particles orbiting around
Schwarzschild black hole in the presence of the external
magnetic field from the magnetized particle orbiting around
the magnetically charged generic black hole.

VIII. CONCLUSION

In this work we have investigated the motion of electri-
cally charged particles in the singular generic magnetically
charged black hole spacetime (1) with mass function (2),
found as solution of the Einstein field equations coupled to
nonlinear electrodynamics, continuing thus the work [69],
where we have investigated the motion of photons and
neutral particles in the same spacetime.
We introduced this spacetime and its main characteristics

in Sec. II. It is also important to recall we mainly focused on
generic spacetime with parameters μ ¼ 3 and ν ¼ 1, unless
otherwise stated.
In Sec. III were introduced Hamiltonian, the equations

governing the motion of charged particles and the effective
potential and we investigated these equations and effective
potential to get important information about specifications
of the charged particle motion in this spacetime. The first
significant feature of the effective potential is the existence
of some symmetry in parameters e (15) and θ. If we change
a sign in e we get the same effective potential if θ → π − θ.
In other words, charged particles with a positive e behave
on the “north” (θ ∈< 0; π=2 >) as well as particles with a
negative e on the “south” (θ ∈< π=2; π >) and vice versa,
as one can see in Fig. 1.
We examined the stationary points of the effective

potential in both variables, r (stable circular orbit) and θ

(motion parallel to the equatorial plane). We found that
while a stable circular orbit depends on θ (see Fig. 4), L
(see Fig. 5) and other spacetime parameters, stationary
points in the θ direction depend only on L (19) (see Fig. 7).
It can be seen from Fig. 4 that not every θ has a stable
circular orbit.
Concerning the stationary points for θ, whose L value is

greater than theLISCO, we see the limitation shown in Fig. 7
by the gray area enclosed by a black dashed line. There do
not exist stable circular orbits in this area. In Figure 7, we
also see the indicated range of θ (in between two thin lines),
in which there are stationary θ with the possible existence
of the stable circular orbit. It is interesting [which also
follows from (19)] that there is no stationary θ in the
equatorial plane.
It can be seen from Fig. 9 that the position of the stable

circular orbit moves away from the ISCO position as θ
approaches the equatorial plane and the nearest stable
circular orbits are at about θ ¼ 2π=5 for e ¼ 1 and θ ¼
3π=5 for e ¼ −1.
We also investigated an influence of other spacetime

parameters on rco and found that the stable circular orbit is
pushed out with increasing charge parameter q, on the other
hand, the stable circular orbit is pushed inward with
increasing parameter α, see Figure 3.
At the end of Sec. III, we compared particle trajectories

for various μ and ν with trajectories in spacetime of
Schwarzschild black hole immersed into the magnetic
monopole field, Fig. 10. Comparing these trajectories
shows that for ν ≥ 2, the particle trajectories are almost
the same as in Schwarzschild’s spacetime immersed into
the magnetic monopole field and parameter μ does not have
strong affect.
In Sec. IV we focused on the behavior of epicyclic

frequencies. We studied how they behave and found that
epicyclic frequencies do not depend on the sign of e and that
the epicyclic frequencies in the θ and ϕ directions are
identical. We also compared these frequencies with the
results for spacetime of Schwarzschild black hole immersed
into the magnetic monopole field. This is shown in Fig. 11
(the comparison is on the left panel and the ratio is on the
right panel). If we ignore the fact that the ISCO in generic
spacetime is closer to the center than in the Schwarzschild
one andwe are able to find epicyclic frequencies closer to the
black hole, it is clear from the right panel of Fig. 11 that at
r ¼ 6M the epicyclic frequencies in Schwarzschild’s space-
time immersed into the magnetic monopole field in θ and ϕ
direction are approximately 15% larger than in generic
spacetime and with increasing r this gap decreases.
Conversely, epicyclic frequencies in the r direction are
much larger in generic spacetime around r ¼ 6M. With the
increasing r, these differences are eliminated.
Moreover, we have studied the dynamics of magnetized

particles around the magnetically charged generic black
hole at the equatorial plane. Analysis of ISCO radius of the

FIG. 20. Relations between magnetic coupling parameter and
magnetic charge parameter giving the same ISCO radius for the
different values of the magnetic coupling parameter and the
parameter ν at μ ¼ 3 and β ¼ 10.
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magnetized particle shows that the radius decreases with
increase of the magnetic charge parameter and the newly
introduced interaction parameter β, and the ISCO disap-
pears at q ≥ qmaxðνÞ at some values of the upper limit for
the parameter β. As an astrophysical application of the
limits given by ISCO we give the mimic cases of degen-
eracy of the magnetic charge parameter with the magnetic
interaction and the black hole spin parameters. Our study
shows that the effect of parameter q can totally coincide
with the effect of spin parameter a, one may distinguish the
parameters when q ≥ 0.578575 for the magnetized object
with β ¼ 10 (here we treated the magnetar PSR J1745 −
2900 as magnetized particle) at ν ¼ 1, however, for the
case ν ¼ 2 the black hole spin parameter cannot mimic
the magnetic charge parameter q for the same ISCO
radius when a > 0.224659 for nonmagnetized (neutral)
particles and the particle with β ¼ 10 at a > 0.865694.
The comparison of effects of the charge parameter and
magnetic interaction parameter B shows that for the
magnetar with β ¼ 10 and the parameters ν ¼ 1 and
ν ¼ 2, the magnetic coupling parameter B can mimic
the magnetic charge parameter of the black hole in
the range q ∈ ð0.144324; 0.4368Þ and q ∈ ð0.165447;

0.574278Þ, respectively, in the range 0 ≤ jBj ≤ 1.
Finally, we analyzed the existence of radio pulsars and
magnetars around SgrA* and predicted that one may
observe radio pulsars with the surface magnetic field
108 ÷ 1012 G in stable orbits as recycled pulsars around
SgrA* and magnetars with the surface magnetic field more
that 1014 G cannot exist at close distances due to instability
caused by magnetic interaction while magnetic field in the
vicinity of SgrA* is about 100 G.
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[51] J. Kovář, P. Slaný, C. Cremaschini, Z. Stuchlík, V. Karas,

and A. Trova, Phys. Rev. D 90, 044029 (2014).
[52] A. Tursunov, Z. Stuchlík, and M. Kološ, Phys. Rev. D 93,

084012 (2016).
[53] M. Kološ, A. Tursunov, and Z. Stuchlík, Eur. Phys. J. C.

77, 860 (2017).
[54] J. Bardeen, in Proceedings of GR5, Tbilisi, USSR, edited

by C. DeWitt and B. DeWitt (Gordon and Breach,
New York, 1968), p. 174.

[55] E. Ayón-Beato and A. García, Phys. Rev. Lett. 80, 5056
(1998).

[56] K. A. Bronnikov, Phys. Rev. D 63, 044005 (2001).
[57] C. Bambi and L. Modesto, Phys. Lett. B 721, 329 (2013).
[58] B. Toshmatov, B. Ahmedov, A. Abdujabbarov, and Z.

Stuchlík, Phys. Rev. D 89, 104017 (2014).
[59] Z. Stuchlík and J. Schee, Int. J. Mod. Phys. D 24, 1550020

(2015).
[60] J. Schee and Z. Stuchlík, J. Cosmol. Astropart. Phys. 06

(2015) 048.
[61] B. Toshmatov, Z. Stuchlík, and B. Ahmedov, Phys. Rev. D

95, 084037 (2017).

[62] Z.-Y. Fan and X. Wang, Phys. Rev. D 94, 124027 (2016).
[63] B. Toshmatov, Z. Stuchlík, and B. Ahmedov, Phys. Rev. D

98, 028501 (2018).
[64] K. A. Bronnikov, Phys. Rev. D 96, 128501 (2017).
[65] J. Schee and Z. Stuchlík, Astrophys. J. 874, 12 (2019).
[66] J. Schee and Z. Stuchlík, Eur. Phys. J. C 79, 988 (2019).
[67] Z. Stuchlík, J. Schee, and D. Ovchinnikov, Astrophys. J.

887, 145 (2019).
[68] J. Rayimbaev, M. Figueroa, Z. Stuchlík, and B. Juraev,

Phys. Rev. D 101, 104045 (2020).
[69] J. Vrba, A. Abdujabbarov, A. Tursunov, B. Ahmedov, and

Z. Stuchlík, Eur. Phys. J. C 79, 778 (2019).
[70] G. Török, M. A. Abramowicz, W. Kluźniak, and Z.

Stuchlík, Astron. Astrophys. 436, 1 (2005).
[71] G. Török, A. Kotrlová, E. Šrámková, and Z. Stuchlík,

Astron. Astrophys. 531, A59 (2011).
[72] Z. Stuchlík, A. Kotrlová, and G. Török, Astron. Astrophys.

552, A10 (2013).
[73] Z. Stuchlík and M. Kološ, Mon. Not. R. Astron. Soc 451,

2575 (2015).
[74] Z. Stuchlík and M. Kološ, Astron. Astrophys. 586, A130

(2016).
[75] Z. Stuchlík and M. Kološ, Astrophys. J. 825, 13 (2016).
[76] L. Rezzolla, S. Yoshida, T. J. Maccarone, and O. Zanotti,

Mon. Not. R. Astron. Soc 344, L37 (2003).
[77] A. Kotrlová, G. Török, E. Šrámková, and Z. Stuchlík,

Astron. Astrophys. 572, A79 (2014).
[78] R. Pánis, M. Kološ, and Z. Stuchlík, Eur. Phys. J. C 79, 479

(2019).
[79] Z. Stuchlík, M. Kološ, J. Kovář, P. Slaný, and A. Tursunov,
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[85] J. Kovář, Z. Stuchlík, and V. Karas, Classical Quantum

Gravity 25, 095011 (2008).
[86] O. Kopáček, V. Karas, J. Kovář, and Z. Stuchlík, As-
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