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The lensing at large deflection angles caused by a Schwarzschild black hole for the case of a nonminimal
coupling between gravitation and electromagnetism is examined. We show that photons follow an effective
geometry, which displays an effective photon sphere. For the case in which the source, lens and observer
are aligned, so that relativistic Einstein rings are formed, the dependence of the angular separation δθ
between the first and second ring with the relevant coupling parameter is calculated. We argue that such a
separation, which may be measured by telescopes that will be operative in the near future, may set an upper
and a lower limit for the coupling parameter.
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I. INTRODUCTION

The bending of light rays by a Schwarzschild black
hole in the case in which the rays have an impact parameter
close to r ¼ 3M (corresponding to the photon sphere of
the black hole) is an example of lensing at large deflection
angles.1 Such a situation was studied first in [2],2

reexamined in [4–7], and analyzed using a new lens equation
for the deflection angle in [8]. It was shown in the latter
reference that, considering the case where the observer,
lens and source are aligned, an infinite sequence of
relativistic Einstein rings is obtained. In the misaligned
case, an infinite sequence of relativistic images (also called
higher-order images) is produced on both sides of the
optical axis, as well as the primary and the secondary
images [8]. The relativistic images are very much demag-
nified, even in the case the source, the lens, and the observer
are perfectly or highly aligned [9], although in the latter
case the magnification is somewhat larger than the former.
The analysis of lensing at large deflection angles was
extended in [10], where the influence on the position of the
relativistic images due to changes in the angular source
position as well as the lens-source and lens-observer
distances was studied. The strong lensing effect has been
since then studied in a variety of systems, such as different
types of black holes (see for instance [11–16], and worm-
holes [17]), among others.

It is important to stress that the above-mentioned results
were obtained under the assumption of a minimal coupling
between electromagnetism and gravity. However, more
general couplings of the electromagnetic field to gravitation
are possible, as reviewed in [18–20].3 Among the multiple
consequences of a nonminimal coupling (NMC), we can
mention the following. The influence of such a coupling on
the dispersion relation for waves was studied in [22]. Exact
pp-wave solutions for gravity and electromagnetism in the
NMC case were obtained in [23]. Black holes solutions for
such a system were presented in [24], and reconsidered
along with soliton solutions in [25], and in [26,27] with
couplings of the type fðRÞFμνFμν, while Einstein-Rosen
bridges were obtained in [28]. A static nonminimally
coupled test magnetic field around a Schwarzschild black
hole was analyzed in [29]. In a cosmological setting,
nonminimal couplings between EM and gravity were
applied to Bianchi I models with a magnetic field in
[30], while the influence of nonminimal couplings on
the propagation of photons in the early universe was
studied in [31].
Since, as discussed in [32], a possible NMC would not

be probed by cosmological propagation of light or solar
system tests of general relativity, we shall explore here
the consequences of a NMC between gravitation and
electromagnetism in the lensing at large deflection angles.
In particular, we shall study the propagation of nonmini-
mally coupled photons in the eikonal approximation in
Schwarzschild’s geometry. For those photons with impact
parameter close to the effective photon sphere, we shall
obtain the dependence of the angular separation of the
relativistic Einstein rings (formed when the observer, the
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1As opposed to lensing at small deflection angles (which may

lead to multiple images) described in the weak gravitational field
regime (sometimes called “strong lensing”), see for instance [1].

2See also [3].

3For the generalization of the nonminimal coupling to include
an axion see [21].
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lens, and the source are aligned) with the parameter
corresponding to the NMC. In Sec. II, the theoretical
formulation that leads to an effective geometry for the
photons, due to the NMC between gravitation and elec-
tromagnetism, is presented. In Sec. III, we examine the
effective potential, and show how the position of the
effective photon sphere depends of the coupling parameter.
In Sec. IV the dependence with the coupling parameter of
the main quantities related to lensing at large deflection
angles: the deflection angle α, the closest distance of
approach R0, and the angle θ of the image with respect
to the optic axis is exhibited. Finally we present the plot of
the angular separation of the first two rings as a function of
the coupling. We draw our final remarks in Sec. V.

II. NONMINIMAL COUPLING AND THE
EFFECTIVE GEOMETRY

Let Sp be the action for a photon in a gravitational field.
The equation of motion for the electromagnetic field is then
written as

δSp

δAμ
¼ 0 ð1Þ

where Aμ is the potential 4-vector connected to the Faraday
tensor Fμν ¼ Aν;μ − Aμ;ν and the commas denote usual
partial differentiation. The minimally coupled part of Sp is
given by the Maxwell Lagragian:

S0 ¼ −
1

4

Z ffiffiffiffiffiffi
−g

p
FμνFμνd4x: ð2Þ

The nonminimally coupled sector is described by the action

S1 ¼
Z ffiffiffiffiffiffi

−g
p ðγ1RFμνFμν þ γ2RμνFμ

βFνβ

þ γ3RμνβσFμνFβσÞd4x; ð3Þ

where γi (i ¼ 1, 2, 3) are coupling coefficients, Rμνβσ is the
Riemann tensor, Rμν ≡ Rα

μαν, R≡ gμνRμν and ∇μ is the
covariant derivative built with the Christoffel symbols.
Therefore, assuming that Sp ¼ S0 þ S1, the equations of
motion for the electromagnetic field can be rewritten as

∇μFμν þ δS1

δAν
¼ 0: ð4Þ

The corresponding equations of motion are4:

∇μFμν þ 2∇μ½2γ1RFμν þ γ2ðRμ
βFβν − Rν

βFβμÞ
þ 2γ3Rμν

βσFβσ� ¼ 0: ð5Þ

Restricting to vacuum spacetimes which satisfy Einstein’s
field equations Rμν ¼ 0, equation (5) reads

∇μFμν þ 4γ3∇μðRμν
βσFβσÞ ¼ 0: ð6Þ

The electromagnetic tensor obeys also the Bianchi identity:

∇αFμν þ∇μFνα þ∇νFαμ ¼ 0; ð7Þ

To study the lensing of rays governed by Eqs. (6) and (7) in
a Schwarzschild spacetime, we shall use the eikonal
approximation, in which the test electromagnetic field is
given by

Fμν ¼ fμνeiθ; ð8Þ

where the phase θ is a very rapidly varying function (on
scales much lower than the curvature scale, and much
higher than the Compton wavelength of the electron)
compared to the amplitude fμν. By defining kμ ≔ θ;μ,
Eq. (6) yields

kμfμν þ 4γ3kμRμν
βσfβσ ¼ 0: ð9Þ

On the other hand, we obtain from the Bianchi identities (7),

kαfμν þ kμfνα þ kνfαμ ¼ 0: ð10Þ

Contracting Eq. (10) with kα and using Eq. (7) we obtain

k2fμν þ 4γ3kαðkμRα
νβσ − kνRα

μβσÞfβσ ¼ 0: ð11Þ

From the Schwarzschild metric given in standard coordinates
xα ¼ ðt; r; θ;ϕÞ,

ds2 ¼
�
1 −

2M
r

�
dt2 −

�
1 −

2M
r

�
−1
dr2

− r2ðdθ2 þ sin2θdϕ2Þ; ð12Þ

an orthonormal tetrad as the base of 1-forms

ΘA ≔ eAαdxα ð13Þ

can be defined, where

eAα → diag

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
; 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
; r; r sin θ

�
: ð14Þ

Hence the line element can be written as

ds2 ¼ ηABΘAΘB; ð15Þ
4These equations (with fixed values for the γs) can be obtained

by considering QED vacuum polarization effects [33].
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where ηAB is the usual Minkowski metric of the tangent
space. Let QAB and ΩAB be two bivectors defined as

QAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttgrr

p
ðeAteBr − eAreBtÞ; ð16Þ

ΩAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gθθgϕϕ

q
ðeAθeBϕ − eAϕeBθÞ; ð17Þ

so that the Riemann tensor can be written as

Rα
νβσ ¼

M
r3

½δαβgνσ − δασgνβ

þ 3ðQα
νQβσ −Qα

νΩβσÞ�; ð18Þ

where Qαβ ≡QABeAαeBβ and Ωαβ ≡WABeAαeBβ, with
eAαeAβ ≡ δαβ. Substituting Eq. (18) in Eq. (11) we obtain

�
1þ 8Mγ3

r3

�
k2fμν þ

12Mγ3
r3

kα½kμðQα
νQβσ −Ωα

νΩβσÞ

− kνðQα
μQβσ −Ωα

μΩβσÞ�fβσ ¼ 0: ð19Þ

Defining the scalars

q ≔ Qαβfαβ and ω ≔ Ωαβfαβ; ð20Þ

together with the vectors

lμ ≔ kαQαμ and mμ ≔ kαΩαμ; ð21Þ

Eq. (19) turns into

k2fμν þ
Δ
2
½qðkμlν − kνlμÞ − ωðkμmν − kνmμÞ� ¼ 0; ð22Þ

where

Δ ¼ 24Mγ3
r3 þ 8Mγ3

: ð23Þ

By contracting Eq. (22) with Qμν we obtain

ðk2 þ l2ΔÞq ¼ 0; ð24Þ

where l2 ≡ lμlμ. Since q ≠ 0, the modified light cone
follows from k2 þ l2Δ ¼ 0 [33], or

ð1 − ΔÞðktkt þ krkrÞ þ kθkθ þ kϕkϕ ¼ 0: ð25Þ

The latter leads to the effective geometry g̃μν (see [34] for a
review), in such a way that the line element for the light rays
in the nonminimally coupled case is given by5

ds̃2 ¼ g̃μνdxμdxν ¼
�
1 −

1

R

�
ð1 − ΔÞdT2

−
�
1 −

1

R

�
−1
ð1 − ΔÞdR2 − R2ðdθ2 þ sin θdϕ2Þ;

ð26Þ

with

T ¼ t
2M

; R ¼ r
2M

; Δ ¼ 3Γ3

R3 þ Γ3

; ð27Þ

and Γ3 ≡ γ3=M2. Notice that the zero of 1 − Δ, given by
Re ¼ ð2Γ3Þ1=2 is such that Re ≪ 1, since we expect
that Γ3 ≪ 1.

III. THE EFFECTIVE POTENTIAL

Let us consider a photon which follows a null geodesic in
the effective metric defined by Eq. (26). The first integral of
the equations of motion reads

fðRÞ
�
dT
dλ

�
2

−
1

gðRÞ
�
dR
dλ

�
2

− R2

�
dθ
dλ

�
2

− R2sin2θ

�
dϕ
dλ

�
2

¼ 0; ð28Þ

where λ is an affine parameter and

fðRÞ ¼
�
1 −

1

R

�
ð1 − ΔÞ; ð29Þ

gðRÞ ¼
�
1 −

1

R

�
ð1 − ΔÞ−1: ð30Þ

The symmetries of the background metric guarantee the
existence of two constants of motion, namely E and J ,
given by

E ¼ fðRÞ dT
dλ

and J ¼ R2
dϕ
dλ

: ð31Þ

Therefore, the above first integral can be rewritten as

fðRÞ
gðRÞ

�
dR
dλ

�
2

þ VeffðRÞ ¼ E2: ð32Þ

where

VeffðRÞ≡ fðRÞJ
2

R2
ð33Þ

is the effective potential, the maximum of which defines the
photon sphere Rp. Feeding Eq. (33) with Eq. (29), it is
straightforward to see that the solutions of5A similar expression was obtained in [32].
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dVeff

dR

����
Rp

¼ 0 ð34Þ

are given by

Γ3� ¼
"
ð12 − 11RpÞ � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24þ Rpð17Rp − 40Þp

4ð2Rp − 3Þ

#
R3
p:

ð35Þ

It follows that

lim
Rp→1

Γ3þ ¼ −1 and lim
Rp→1

Γ3− ¼ 1

2
: ð36Þ

We shall consider here only the “þ” branch, since the “−”
branch does not allow small values of Γ3.
For −1 < Γ3 < 1=2 the effective potential Veff looks

like one in the Γ3 ¼ 0 case. In particular, it exhibits
only one global maximum Rpþ, which is the effective
photon sphere. In order to simplify our notation, instead
of Rpþ we will denote the global maximum just Rp in the
following. The variation of Rp with Γ3 is shown
in Fig. 1.

IV. STRONG FIELD LENSING: MINIMAL VS
NONMINIMAL COUPLING

We have seen in the previous section that the effective
geometry given by Eq. (26) generates a modified light cone
on which photons in the eikonal approximation propagate.
Standard calculations (see for instance [35]) using the
metric (26) instead of the Schwarzschild metric lead to the
following expression for the deflection angle:

α ¼ 2

Z
∞

r0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

p
dr

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

r2
0

ð1 − 2M
r0
Þ ð1−Δ0Þ
ð1−ΔÞ − ð1 − 2M

r Þ
q − π; ð37Þ

with impact parameter

J ¼ r0

��
1 −

2M
r0

�
ð1 − Δ0Þ

�
−1
2

; ð38Þ

as shown in Fig. 2. Here r0 is the closest distance of
approach. For the purpose of computation, it is useful to use
the rescaled coordinates introduced in Eq. (27). In this case,
the deflection angle α can be written as

α ¼ 2

Z
∞

R0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

p
dR

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

R2
0

ð1 − 1
R0
Þ ð1−Δ0Þ

ð1−ΔÞ − ð1 − 1
RÞ

q − π; ð39Þ

and

J ¼ 2MR0

��
1 −

1

R0

�
ð1 − Δ0Þ�−1

2: ð40Þ

FIG. 1. Rp as a function of Γ3.

FIG. 2. Lens diagram. α is the Einstein deflection angle, β and θ
are the angular position of the source and of its image with respect
to the optic axis—defined by the line joining the observer O and
the lens L. LA and LB—which furnish the impact parameter J—
are perpendicular lines to SD and OI, respectively. Finally, while
DLS is the lens-source distance, DS and DL are the distances of
the source and the lens to the observer.
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All the formulas given here reduce to the minimally
coupled case when Δ ¼ 0.6

In this paper we are going to consider a simple lens
equation for asymptotically flat spacetimes originally
introduced by K. S. Virbhadra and G. F. R. Ellis [8].7

The lens diagram is depicted in Fig. 3. Let α be the
Einstein deflection angle. If β and θ are the angles of the
source and its image with respect to the optic axis—defined
by the line joining the observer O and the lens L—the lens
equation reads

tan β ¼ tan θ − σ; ð41Þ

where it is assumed that both O and S are located far from
the lens, in asymptotically flat regions, and

σ ¼ DLS

DS
½tan θ þ tan ðα − θÞ�: ð42Þ

Furthermore, from the lens diagram we obtain that

J ¼ DL sin θ: ð43Þ

In order to better understand the gravitational lensing due
to the nonminimal coupling, it is useful to bear in mind the

results of the minimally coupled case [8]. It is well-known
that for rays traveling through regions in which a spheri-
cally symmetric field gravitational field is weak an Einstein
ring is formed when the source, lens and observer are
aligned. Otherwise, a pair of images—usually called
primary and secondary—of opposite parities is formed.
Photons traveling close to the photon sphere (i.e., in the
strong field regime), may go around the lens once, twice or
many times. When the source, lens and observer are
aligned, an infinite number of relativistic Einstein rings
are formed due to the bending of light rays larger than
2π. For the case of misaligned components, an infinite
sequence of relativistic images on both sides of the optic
axis is obtained. We shall restrict here to the case in which
the source, lens and observer are aligned in order to infer
how the NMC affects the strong lensing. To compare our
results with those in the literature, we assume that the lens
is the supermassive black hole at the center of our Galaxy
[8], so that the parameters are: DL ¼ 8.5 kpc, M ¼ 2.8×
106 M⊙, DS ¼ 2DLS, where M⊙ is the solar mass.
To evaluate the position of the relativistic Einstein rings

we follow two different numerical procedures. The first one
consists of the following steps:

(1.i) A finite number of pairs ðΓ3; RpÞ is evaluated from
Eq. (35), in the domain −1 ≤ Γ3 ≤ 0.5;

(1.ii) For each value of Γ3 a finite number of values of
R0, defined by R0ðjÞ ¼ Rp þ jϵ is generated, where ϵ
is a sufficiently small increment and j an integer;

(1.iii) Given R0ðjÞ in (1.ii), we evaluate from Eq. (39)
the corresponding values of α (for a fixed Γ3).

The outcome of this first part is analogous to that of [38],
and furnishes the plot of α as a function of R0 for a fixed
value of Γ3 (cf. black curve in Fig. 4, built with Γ3 ¼ 0).
The second part of the procedure refers to the lens

equation and is rather more involved:
(2.i) Equations (40) and (43) are evaluated at the distance
of closest approach, namely the photon sphere, thus
obtaining

DL sin θp ≡ 2MRp

��
1 −

1

Rp

�
ð1 − ΔpÞ

�
−1
2

: ð44Þ

Feeding (44) with each pair ðΓ3; RpÞ from (1.i), the
corresponding θp is evaluated;

(2.ii) For each numerical value of Γ3 a finite number of
values of θ0, defined by θ0ðjÞ ¼ θp þ jϵ̃ is generated,
where ϵ̃ is a small increment and j an integer;

(2.iii) Inserting the θ0ðjÞ from (2.ii) in the lens equation

tan θ ¼ DLS

DS
½tan θ þ tan ðα − θÞ� ð45Þ

the corresponding αðjÞ are obtained;

FIG. 3. The deflection angle α as a function of R0 for Γ3 ¼ 0.
The black curve is obtained in the first part of our numerical
procedure (see text) where we use the integral in Eq. (39). The
gray curves are the product of the second part of our numerical
procedure, where we use the lens equation (45). The points
of intersections between the black and gray curves furnish
the angular deflections of the first and second relativistic
Einstein rings.

6In the weak field limit the integrand of (39) can be written as a
power series of M=r and M=r0. Following the standard calcu-
lation presented in [35], it can be shown that the correction due to
Γ3 is of the order of (M3=r3,M3=r30). Hence, it is negligible in the
weak field regime.

7The more general equation presented in [36,37] reduces to the
one used here for the case in which the observer, lens and source
are aligned.
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(2.iv) Using Eqs. (40) and (43) so that

DL sin θ0 ≡ 2MR0

��
1 −

1

R0

�
ð1 − Δ0Þ

�
−1
2

; ð46Þ

all the remaining R0ðjÞ corresponding to θ0ðjÞ are
evaluated.

As in the first part, this procedure allows to plot α as a
function of R0 for a fixed value of Γ3 (see gray curves in
Fig. 4). The points of intersection between the curve
generated in the first part and the curves generated in
the second part furnish the angular deflections of the first
and second relativistic Einstein rings, given respectively by
2π þ 33.80 μas and 4π þ 33.75 μas [8].
We shall show next how the nonminimal coupling

changes the values of α obtained for Γ3 ¼ 0. In Fig. 5
the effective deflection angle of the first (upper panel) and
second (lower panel) relativistic Einstein rings are shown
when the nonminimimal coupling is present. These plots
show that, depending on the sign of Γ3, the effective
deflection angle can be smaller or larger than that of the
minimally coupled case. For completeness, the distance of
closest approach R0 as a function of Γ3 is shown in Fig 6 for
both rings.
In Fig. 7 the angular position of the first (upper panel)

and second (lower panel) relativistic Einstein rings as a
function of Γ3 is displayed. At this stage it is useful to
distinguish such angles using a different notation: θ2πð4πÞ
denotes the angular position of the first (second) relativistic
Einstein ring, and define the separation

FIG. 5. The closest distance of approach R0 as a function of Γ3

for the first (black curve) and second (gray curve) relativistic
Einstein rings.

FIG. 4. Effective deflection angles as a function of the non-
minimal coupling parameter of the first (upper panel) and second
(lower panel) relativistic Einstein rings. The results for the
minimally coupled case are recovered when Γ3 ¼ 0 [8].

FIG. 6. The angular positions of the first (upper panel) and
second (lower panel) relativistic Einstein rings as a function of Γ3.
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δθ ¼ θ2π − θ4π: ð47Þ

Figure 7 displays δθ as a function of Γ3. It is worth noting
that the result for the minimally coupled case (namely, δθ ≈
2 × 10−2 μas [8]) is recovered in the limit Γ3 → 0.

V. FINAL REMARKS

We have examined strong deflection effects taking
into account a nonminimal coupling between gravitation
and electromagnetism. Assuming a Schwarzschild back-
ground, it was shown that the motion of photons in the
eikonal limit is governed by an effective metric. The
associated effective potential displays an effective photon
sphere, the radius of which depends ofΓ3.We have analyzed
here a particular configuration that displays strong field
lensing effects in which the observer, the lens (taken as the
supermassive black hole at the center of ourGalaxy), and the
source are aligned so that an infinite number of relativistic
Einstein rings are formed. Using the lens equation intro-
duced in [8], we evaluated in the strong field lensing regime
the dependencewith Γ3 of the deflection angle α, the closest
distance of approach R0, and the angular position θ of the
image with respect to the optical axis. Our results show that
the angular separation δθ between the first and second
Einstein rings can be as high as approx. 0.7 μas (for
Γ3 ¼ −1), and falls rapidly as the coupling parameter Γ3

increases, reaching the order of 10−3 μas for Γ3 ¼ 0.5.

It is worth noting that the highest resolution telescope
available today (the Event Horizon Telescope) [39] has a
resolution of the order of 25 μas, i.e., roughly 30 times
larger than the separation between the first and second
Einstein rings for Γ3 ¼ −1. Hence, it is not capable of
detecting the maximum angular separation between two
consecutive relativistic Einstein rings predicted by our
results. If we assume that future observations yield a result
that will not be very different from that of the minimally
coupled case (which is of the order of 2 × 10−2 μas), at
least a resolution of the order of 10−2 μas would be needed
to set limits on Γ3 using the results presented here. Such a
resolution may be achieved by future instruments, in
particular by the Millimetron Space Observatory [40]
(which may have a resolution of approx. 50 narcsec at
λ ¼ 0.345 mm.). We should also point out that although the
magnification for higher-order images is very small in the
vacuum case, it becomes significantly larger in the presence
of plasma [7,41]. Another important point is that a measure
of δθ with its corresponding error would permit to set both
an upper and a lower limit for Γ3. This would an improve-
ment with respect to the current situation, in which only
upper limits are available [42].
The results presented here, based on the aligned con-

figuration, show that it may be feasible in the future to use
the separation of the relativistic rings to set limits on Γ3.

8

The theoretical estimates presented here may improve if
other configurations for the source-lens-observer system
are studied. In particular, values different from 1=2 for the
ratio DLS=DS could be considered, as well as misaligned
configurations. It would also be of interest to study how
variations in the angular position of the source (together
with changes in the lens-source distance) would furnish
modifications—due to the nonminimal coupling—in the
angular separations between any two relativistic images.
Finally, the analysis should be extended to the more
realistic case of a Kerr black hole In fact, as discussed
in [44], precise measurements of the photon ring and even
its subrings in this case are feasible using interferometry.
We shall examine these points in future work.
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