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We study the geodesics of charged black holes in polynomial Maxwell Lagrangians, a subclass of
models within the nonlinear electrodynamics (NLED). Specifically, we consider black holes in Kruglov,
power-law, and Ayon-Beato-Garcia models. Our exploration on the corresponding null bound states reveals
that a photon can orbit the extremal black holes in stable radii outside the corresponding horizon, contrary
to the case of the Reissner-Nordstrom black holes. The reason behind this is the well-known theorem that a
photon in a NLED background propagates along its own effective geometry. This nonlinearity is able to
shift the local minimum of the effective potential away from its corresponding outer horizon. For the null
scattering states, we obtain corrections to the weak deflection angle off the black holes. We rule out the
power-law model to be physical since its deflection angle does not reduce to the Schwarzschild in the limit
of the vanishing charge.
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I. INTRODUCTION

One of the many intriguing properties of a black hole
(BH) is the notion of the photon sphere, the path upon
which null rays can orbit in a constant radius. The recent
profound observation of a black hole is made possible by
producing the ringlike image of a photon sphere around the
supermassive BH [1]. This discovery relies on the rather
realistic rotating BH, whose (circular as well as spherical)
photon orbits have extensively been investigated, for
example, in [2,3] and the references therein. It is never-
theless also of high interest to study the photon sphere in
static cases. The Schwarzschild BH is known to have an
(unstable) null orbit at r ¼ 3M in natural unit. The
Reissner-Nordstrom (RN) black hole possesses two photon

spheres r�ps ¼ 3M
2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8

9
ðQMÞ2

q �
, only one of which

(rþ) can be observed since it lies outside its outer horizon.
This physical orbit is the local maximum of the corre-
sponding effective null potential; thus, it is also unstable.
As pointed out in [4,5], the extremal RN black hole can
have a stable photon orbit exactly on its (extreme) hori-
zon, rEH.
Nonlinear electrodynamics (NLED) is not new in

modern physics. Mie in 1912 and later, Born and Infeld
in 1934 proposed that an electron is a nonsingular solution
of field theory with a finite electromagnetic energy [6,7].
With the development of quantum electrodynamics (QED),
these classical nonlinear field theories were later aban-
doned. Ironically, it is precisely the success of QED that

resurrects the recent interest in NLED. Recent photon-
photon scattering experimental results strongly indicate that
in the vacuum, electrodynamics might be nonlinear [8–11].
Euler and Heisenberg predicted that vacuum magnetic
birefringence must occur in QED [12]. This phenomenon
is absent in Maxwell and Born-Infeld (BI) electrodynamics
but can be present in other NLED. The bound for the
birefringence’s magnitude is provided by the BMV and
PVLAS experiments [13–15], and improvements are still
being sought. It is then no wonder that in the recent decade,
there are abundant proposals for NLED. Kruglov proposed
a generalization of BI electrodynamics as a model for
fractional electrodynamics [16,17] and a few nonlinear
electrodynamics models with trigonometric terms [18,19].
Euler-Heisenberg electrodynamics, which features second
order Maxwell electrodynamics, was revisited in [20,21].
Logarithmic electrodynamics was investigated in [22,23],
while exponential electrodynamics along with its phenom-
enology were studied in [24–26]. The first black hole
solutions coupled with a nonlinear charge was discussed
by Hoffmann and Infeld and by Peres [27,28]. They
presented exact solutions of the Einstein-Born-Infeld
(EBI) theory. Today, several exact solutions of black holes
charged with NLED sources, both in general relativity (GR)
as well as in modified gravity, have extensively been
explored (see, for example, [29–38] and references therein).
The cosmological effect of a form of NLED with one
parameter was examined in [39,40]. Some of the most
studied models of NLED are the conformally invariant
power Maxwell electrodynamics, which were analyzed
as higher-dimensional black holes in [41,42], and the
Ayon-Beato-Garcia electrodynamics, which were devel-
oped using a Hamiltonian formulation to construct an
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electrically charged Bardeen’s regular black hole solution
in [43], and the magnetically charged one on [44], where it
was resurfaced in recent studies [45,46].
It is well-known that a photon behaves differently in the

NLED ambient compared to the linear Maxwell electro-
dynamics. They do not propagate along the background
geometry’s null geodesic. Rather, they follow the null
geodesic of its effective geometry [47]. This behavior
sheds light on the photon sphere study on charged BH.
Curiously, research on this topic is rather rare.1 It is
therefore of our interest to study this phenomenology in
the vast literature of NLED models. In this work, we
shall investigate the null geodesic of several NLED
models in the framework of GR. For simplicity, in this
preliminary work, we shall focus on the polynomial
Maxwell-type Lagrangians. That is, we consider three
models: the Kruglov, the power-law Maxwell, and the
Ayon-Beato-Garcia NLED models.
This work is organized as follows. In Sec. II, we give a

brief overview of the general NLED model. Sections III–V
are devoted to investigating the three different NLED
models. In each, we study their timelike and null geodesics,
as well as the weak deflection angle of light. We completely
reproduce the photon orbit values for each model. Our
conclusion is summarized in Sec. VI.

II. OVERVIEW OF NLED

In general, all NLED models can be expressed as a
functional of Maxwell’s Lagrangian, L ¼ L½F �, where2

F ≡ 1
4
FμνFμν. By the correspondence principle, in the

low-energy/weak-coupling limit, they all should reduce
to Maxwell, L ¼ −F .
Any nonlinearization extension of an established theory

must obey causality and unitary principles. In the context of
electrodynamics, they can be formulated as the following
constraints [50,51]:

LF ≤ 0; LFF ≥ 0; LF þ 2FLFF ≤ 0; ð1Þ

where LF ≡ ∂L=∂F and LFF ≡ ∂2L=∂F 2.
The field equation is given by its corresponding Euler-

Lagrange,

∇μðLFFμνÞ ¼ 0: ð2Þ

Alternatively, one can define, by means of a Legendre
transformation, the corresponding “Hamiltonian” [43,52],

H≡ 2LFF − L: ð3Þ

The Lagrangian, in turn, can be written as

L ¼ 2HPP −H; ð4Þ
where P ≡ 1

4
PμνPμν and Pμν ≡ LFFμν. It is easy to see that

H ¼ H½P�. The field equation is then given by

∇μPμν ¼ 0: ð5Þ
In any case, the field equations can be shown to be

∇ ·D ¼ 0;
∂D
∂t ¼ ∇ ×H; ð6Þ

with D≡ ∂L=∂E the electric displacement field and H≡
−∂L=∂B the magnetic field. The nonlinearity implies the
relation betweenE andD as well asB andH are not linear.
In general, D ¼ DðE;BÞ and H ¼ HðE;BÞ. One interest-
ing phenomenological interpretation is that NLED describe
the electromagnetic wave propagation in nonlinear media.

III. GENERALIZED BORN-INFELD

This model was proposed by Kruglov to generalize the
BI electrodynamics [17],

LK ¼ 1

β

�
1 −

�
1þ βF

q

�
q
�
: ð7Þ

Here, β is a parameter with a dimension of ½L�4, and q is an
arbitrary dimensionless parameter. For q ¼ 1, the model
reduces to Maxwell, while q ¼ 1=2 gives us BI electro-
dynamics. In flat spacetime, the field equation (2) yields

∂μðΓq−1FμνÞ ¼ 0; Γ≡ 1þ βF
q

: ð8Þ

This equation is equivalent to Eq. (6) with the following
identifications:

D ¼ εE; H ¼ μ−1B; ð9Þ
where ε ¼ μ−1 ≡ Γq−1. For an electric point-charge source,
the displacement field DðrÞ is singular at the origin, but the
electric fieldEðrÞ is not. It is regular at the core with a finite
value given by Eð0Þ ¼

ffiffiffiffi
2q
β

q
.

The monopole black hole can be obtained from the
Einstein-Kruglov model [35],

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

þ LK

�
; ð10Þ

where κ2 ≡ 8πG. The ansatz employed here is a magnetic
monopole and has spherical symmetry [32],

At ¼ Ar ¼ Aθ ¼ 0; Aϕ ¼ Qð1 − cos θÞ; ð11Þ
and

1The relations between photon spheres in Einstein-BI gravity
with its phase transitions are studied in [48,49] and the references
therein.

2Throughout this work, we shall not deal with G≡ 1
4
FμνF̃μν.

This can be done by setting its constant parameter to be zero.
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ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2dΩ2: ð12Þ
The solutions are [35]

Fθϕ ¼ Q sin θ; ð13Þ
and

fðrÞ¼1−
2M
r

−
κ2r2

3β

�
2F1

�
−
3

4
;−q;

1

4
;−

Q2β

2qr4

�
−1

�
; ð14Þ

where Q is the magnetic charge and 2F1ða; b; c; dÞ the
hypergeometric function. It can be shown that in the limit of
β → 0, the solution reduces to the magnetic RN, while for
q → 1=2, it reduces to the magnetic BI black holes [29,34].
In Fig. 1, we show typical plots of the metric function

for several values of q, both in the strong and the weak
coupling regimes. The behavior does not differ much from
the RN solution; they all typically have two horizons. For
values of q that do not reduce to the Maxwell (for example,
q ¼ −1=2), the metric stops being real. Since they generally
possess two horizons, in principle, the metric (14) can be

extremal. While it is impossible to show the extremal
condition for M and Q analytically, in Fig. 2, we show that
the extremal conditions can be satisfied for certain values of
the parameters. The radius tangent to the minima of the
metric is the extremal horizon rEH. As β goes stronger, rEH
shifts closer to the singularity. However, for q < 1, there is a
critical value of β abovewhich only one horizon exists. This
can be seen in Fig. 1 on the right. For completion, in Fig. 3
we show the case for naked singularity.

A. Timelike geodesics

A test particle with a mass μ and (electric/magnetic)
charge ϵ around a compact object can be described by the
geodesics equation [34],

d2xν

dτ2
þ Γν

αβ

dxα

dτ
dxβ

dτ
¼ −

ϵ

μ
Fν
σ
dxσ

dτ
: ð15Þ

For our metric (12), the timelike geodesics on an equatorial
plane (θ ¼ π=2) can be written as

FIG. 1. Typical plots of fðrÞ with M ¼ Q ¼ 1.

FIG. 2. The cases naked singularities of the metric function fðrÞ. [Left] The no-horizon solution with fixed q for several values of β
[Right] and vice versa. Here, we set M ¼ 1.

GEODESIC OF NONLINEAR ELECTRODYNAMICS … PHYS. REV. D 101, 124036 (2020)

124036-3



1 ¼ f_t2 − f−1 _r2 − r2 _ϕ2: ð16Þ

The symmetry of the metric admits conserved quantities,

_t ¼ E
f
; _ϕ ¼ L

r2
; ð17Þ

where E and L are the energy-and angular momentum-per
unit mass of the test charged particles, respectively.
Equation (16) can be rewritten as

_r2 þ f

�
L2

r2
þ 1

�
− E2 ¼ 0: ð18Þ

Comparing the equation to 1
2
_rþ VeffðrÞ ¼ 0, we can

extract the effective potential as

VeffðrÞ¼
1

2

�
L2

r2
þ1

��
1−

2M
r

−
κ2r2

3β

×

�
2F1

�
−
3

4
;−q;

1

4
;−

Q2β

2qr4

�
−1

��
−
E2

2
: ð19Þ

It is interesting to note that for a monopole black hole, a
massive charged (either electrically or magnetically) test
particle behaves the same as the chargeless one.
The plot of VeffðrÞ for several values of q are shown in

Fig. 4. Here, we set E ¼ L ¼ 1. The feature of VeffðrÞ is
qualitatively the same as the Newtonian counterpart; there
exists bounded orbits. The minimum of VeffðrÞ corresponds
to the radius of a stable circular orbit3 rSCO, while its local
maximum represents the radius of an unstable circular orbit
rUCO. These closed orbits are constrained by q and the

FIG. 3. Typical of extremal cases of the metric function fðrÞ. [Left] The extremal solution with fixed q for several values of β [Right]
and vice versa. Here, we set M ¼ 1.

FIG. 4. The effective potential for massive particles Eq. (19) with M ¼ Q ¼ 1.

3To be precise, here, rSCO ¼ rSCOðM;Q; q; βÞ. The smallest
rSCO that corresponds to the minimum of hypersurface rSCO is the
ðM;Q; q; βÞ hyperspace and is called the innermost stable
circular orbit, rISCO.
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nonlinear coupling β. For q ≤ −1=2, the VeffðrÞ stops
being real.

B. Null geodesics

Novello et al. showed that in NLED, a photon follows
the null geodesic of its effective geometry given by [47]

gμνeff ¼ LFgμν − 4LFFFμ
αFαν: ð20Þ

For our case, it is given by

gμνeff ¼
�
1þ βF

q

�
gμν −

4βðq − 1Þ
q

FμαFν
α: ð21Þ

Defining a factor hðrÞ≡ 2qr4þβQ2

βð8q−7ÞQ2þ2qr4, the conformally

rescaled effective line element can be written as

ds2eff ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ hðrÞr2dΩ2: ð22Þ

The null rays in this line element follow the trajectories
given by

0 ¼ f_t2 − f−1 _r2 − hr2 _ϕ2; ð23Þ

from which the Veff can be extracted out as

VeffðrÞ ¼
fL2

2hr2
−
E2

2
; ð24Þ

or, explicitly,

VeffðrÞ ¼
L2

2r2

�
βð8q− 7ÞQ2 þ 2qr4

2qr4 þ βQ2

��
1−

2M
r

−
κ2r2

3β

×

�
2F1

�
−
3

4
;−q;

1

4
;−

Q2β

2qr4

�
− 1

��
−
E2

2
; ð25Þ

the stationary of which corresponds to the existence of
photon orbits; i.e., V 0

effðrÞ ¼ 0.
Since the metric function is not in a simple closed-form

function, it is of little interest to determine the rUCO and
rSCO analytically. In Figs. 5–6, we plot VeffðrÞ for a photon.
In the nonextremal case, the situation is similar as in RN,
except in the weak-coupling regime and q < 1, we have
rUCO < rSCO. Both are still inside the corresponding outer

FIG. 5. The effective potential for massless particles (25) in the nonextremal case. Here, we set M ¼ Q ¼ 1.

FIG. 6. The extremal case of effective potential for massless particles. [Left] Veff with a fixed q and several values of β parameter
[Right] and vice versa. We set M ¼ 1.
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horizon. For the extremal case, however, something inter-
esting emerges. As can be seen from Fig. 6, there are
typically two rUCO and one rSCO, and the position of rSCO
shifts farther away from singularity when β gets stronger,
as opposed to the behavior of rEH discussed earlier. As a
result, there is a window of parameter space where you can
have stable photon orbits outside the extremal horizon; i.e.,
rSCO > rEH. This is clearly shown in Fig. 7. The conse-
quence is novel. Not only is a stable circular photon orbit
possible, but there exist a family of bounded orbits with
rmin ≤ r ≤ rmax, as long as rmin ≥ rEH.
As we mentioned in the previous subsection, for q < 1,

the inner horizon ceases to exist as β gets stronger; i.e., the
black hole behaves Schwarzschild-like. The relevant thing is
whether rSCO is located inside the remaining single horizon
rh. In Fig. 8, we plot the metric (left panel) as well as its
correspondingVeff for timelike (center panel) and null (right
panel) in the strong-coupling limit (β ¼ 2) and q ¼ 1=4. It
can be observed that the timelike Veff possesses rUCO and

rSCO with rUCO < rSCO. On the other hand, for a null
geodesic, only rSCO exists, and rh < rSCO. Thus, for
β ¼ 2, we infer that it is valid for a strong-coupling regime
β ≥ 1, and stable photon orbits also exist. In Table I, we
show physical photon orbits with rSCO > rEH for the case of
q ¼ 1=4with varying β and the values of BH chargeQ. This
is a typical family of solutions with q < 1. For the specific
β ¼ 0.05, we found that the rSCO is rather metastable since it
is the saddle point of Veff ; i.e., V 00ðrSCOÞ ¼ 0.

C. Null geodesics in the Born-Infeld case (q= 1=2)

In this section, we examine the null behavior of q ¼ 1=2,
which reduces our model to BI electrodynamics. While the
null geodesics of the BI model has been studied in the past
[34,53], there are only a few extensive studies that worked
on the magnetostatic scenario [54,55]. It is worth to note
that the BI model enjoys SOð2Þ-duality invariance (not
necessarily present in other NLED), where the spherically
symmetric solution is exactly the same for electric and
magnetic case. Breton has shown in her paper that for the
electric BI model, a black hole possesses rSCO outside
the rEH [34]. Through our study, we want to take a look if
the magnetic case also performs the same result. Here, we
evaluate the solution in the extremal case. The metric
function fðrÞ and its potential Veff are shown in Figs. 9–10.

FIG. 7. The zoomed-in version of Veff for q ¼ 1=4 shown in
Fig. 6. It can be observed that the inner rUCO coincides with rEH
(as can be confirmed by Table I), while rSCO lies outside.

FIG. 8. The metric function fðrÞ (left), effective potential for massive particles (center), and effective potential for light particles (right)
with M ¼ 1 and Q ¼ 2.

TABLE I. Comparation of the radius of an event horizon of the
extremal case (rEH) with q ¼ 1=4 for various number of β, with
its rSCO and rSCO. The starred value is a saddle point.

β Q rEH rUCO rSCO

2.0 2.0 0.2900 � � � 0.4220
0.1 1.4365 0.9300 0.934 and 2.223 1.081
0.08 1.4320 0.9475 0.951 and 2.187 1.054
0.05 1.4252 0.9690 2.117 0.980*
0.01 1.4165 0.9899 0.734 and 2.023 0.994

A. S. HABIBINA and H. S. RAMADHAN PHYS. REV. D 101, 124036 (2020)

124036-6



Here, we see the metric behavior is similar to the
previous case (q ¼ 1=4). The event horizon radius rEH
gets smaller as the value of β increases. The potential, on
the other hand, shows that the rSCO moves farther away
from the center of the black holes as β rises. We analyze the
numbers, and we find that the rSCO lies outside the event
horizon for almost all values of β, where the case of β ¼ 0.1
has the rEH, and rSCO coincide. In Table. II, we show
physical photon orbits with rSCO > rEH for the case of
q ¼ 1=2 with varying β and the values of BH charge Q.

D. Deflection of light

As the last analysis for this model, let us calculate the
(weak) deflection angle of light in the case other than the BI
model. Consider the case of q ¼ 1=4, knowing the con-
served quantities, E ¼ f_t, L ¼ hr2 _ϕ and defining the
impact parameter b0 ¼ L=E, we rewrite the null geodesics
in terms of u≡ 1=r as

d2u
dϕ2

þ fhu ¼ −
u2

2

d
du

ðfhÞ þ 1

2b20

d
du

ðh2Þ: ð26Þ

Assuming small β ≪ 1, we might expand the metric
function f and conformal factor h using the Taylor series
for the first order of β. Inserting the corresponding function,
Eq. (26) up to the first order in β is

d2u
dϕ2

þ u ¼ 3Mu − κ2Q2u3 þ β

�
48Q2u3

b20
þ 84MQ2u6

−
1

10
237κ2Q4u7 − 36Q2u5

�
: ð27Þ

Define ϵ≡Mu0 and ξ≡ u=u0. This yields Eq. (27), up
to the second-order in ϵ,

d2ξ
dϕ2

þ ξ ≈ 3ξ2ϵþ ξ3ϵ2
�
48βQ2

b02M2
−
κ2Q2

M2

�
: ð28Þ

Now, expand ξ in power of ϵ, ξ ¼ ξ0 þ ϵξ1 þ ϵ2ξ2 þ :…,
then insert them into Eq. (28). We can sort the equation by
collecting terms in a different order of ϵ [38],

d2ξ0
dϕ2

þ ξ0 ¼ 0;

d2ξ1
dϕ2

− 3ξ20 þ ξ1 ¼ 0;

d2ξ2
dϕ2

þ κ2ξ30Q
2

M2
−
48βξ30Q

2

b20M
2

− 6ξ1ξ0 þ ξ2 ¼ 0: ð29Þ

FIG. 9. [Left] The extremal case of metric function fðrÞ and [Right] the extremal case of effective potential for massless particles with
q ¼ 1=2 and several values of β parameter. Here, we set M ¼ 1.

TABLE II. Comparation of the radius of event horizon of the
extremal case (rEH) in Born-Infeld case for various number of β,
with its rSCO.

β Q rEH rUCO rSCO

0.1 1.4213 0.970 0.910 and 2.077 0.981
0.3 1.4355 0.935 0.937 and 2.221 1.072
0.5 1.4500 0.893 0.895 and 2.344 1.122
0.8 1.4718 0.830 0.827 and 2.502 1.142

FIG. 10. The zoomed-in version of Veff for the Born-Infeld case
shown in Fig. 9. It can be observed that the inner rUCO coincides
with rEH (as can be confirmed by Table II), while rSCO lies
outside.
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Solving them, we find the approximation of inverse radial
distance u as

u ≃ u0 cosðϕÞ þ
1

2
Mu20ð3 − cosð2ϕÞÞ

þ u30
32b20

½12ϕ sinðϕÞðb02ð10M2 − κ2Q2Þ þ 48βQ2Þ

þ cosðϕÞðb02ð54M2 − 7κ2Q2Þ þ 336βQ2Þ
þ cosð3ϕÞðb02ð6M2 þ κ2Q2Þ − 48βQ2Þ�: ð30Þ

Asymptotically, ϕ → π=2þ δ as u → 0. For the case of
u0 ≈ 0, we can solve δ, keeping only the second order
of u0 as

δ ≈ 2Mu0 þ u20

�
9πβQ2

b20
þ 15πM2

8
−

3

16
πκ2Q2

�
: ð31Þ

We want to see the contribution of the first order β in the
deflection angle. We use b0 ≈ 1=u0 ≡ rtp, where rtp is the
radius of the turning point. The weak deflection angle can
be obtained as

Δϕweak ≡ 2δ ≈
4M
rtp

þ 15πM2

4r2tp
þQ2

�
18πβ

rtp4
−
3πκ2

8r2tp

�
: ð32Þ

Using the same method, the deflection angle for other cases
of q is calculated. The behavior is shown in Fig. 11.
In Fig. 11 above, we show the behavior of deflection

angles by setting the value of its parameter with M ¼
10 M⊙ (solar mass), setting the charge (arbitrarily) to
be Q ¼ 0.3, and the radius of the turning point rtp ¼ b in
asolar radius r⊙, which has been normalized by a
Schwarzchild radius rS. It can be seen that the other
cases beside the Maxwell (q ≠ 1) lay on the same curves.
They all asymptote to Maxwell for large rtp, as they
should, but significantly differ in the short-length regime.
The extra term of β contributes a bigger value of the
deflection angle near the Schwarzchild radius. Obviously,
we cannot trust this weak approximation all the way to
rtp ¼ rS, since it is the regime where the field gets
strong, and thus, full strong deflection analysis is
required [56–59].

IV. POWER-LAW NLED

This power-law electrodynamics was proposed by
Hassaine and Martinez [30,31] and is given by

L ¼ −F q: ð33Þ

Maxwell is recovered when q ¼ 1. The corresponding
“permittivity” and “permeability” are expressed as

ϵm ¼ μ−1m ¼ qF q−1: ð34Þ

They found that the BH is given by

fðrÞ ¼ 1 −
2M
r

−
κ22−qr2

3 − 4q

�
Q2

r4

�
q

: ð35Þ

It can be seen at a glance that q ≠ 3=4. The typical plots of
fðrÞ is shown in Fig. 12. Asymptotically, fðrÞ goes as

lim
r→∞

fðrÞ ¼

8>><
>>:

1; q > 1=2;

1 − 1ffiffi
2

p ; q ¼ 1=2;

−∞; q < 1=2.

9>>=
>>;
:

Thus, the black hole is asymptotically flat only for q > 1=2.
The case of q ¼ 1=2 is unique as it goes to flat but differs
from Minkowski at a large distance [30,31].

FIG. 11. Deflection angles for various number of q.

FIG. 12. Metric function fðrÞ with Q ¼ M ¼ 1.

A. S. HABIBINA and H. S. RAMADHAN PHYS. REV. D 101, 124036 (2020)

124036-8



A. Timelike geodesics

The corresponding Veff for massive test particles is

VeffðrÞ ¼
1

2

�
L2

r2
þ 1

��
1 −

2M
r

−
κ22−qr2

3 − 4q

�
Q2

r4

�
q
�
−
E2

2
:

ð36Þ

Asymptotically,

lim
r→∞

VeffðrÞ ¼

8>><
>>:

0; q > 1=2;

− 1

2
ffiffi
2

p ; q ¼ 1=2;

−∞; q < 1=2.

9>>=
>>;
:

The Veff behaves quite similarly with the metric, as shown
in Fig. 13. No stable or unstable orbit exists outside the
horizon.

B. Null geodesics

The effective geometry in this model is given by

gμνeff ¼ gμν −
4

ðq − 1ÞF FμαFν
α: ð37Þ

The line element can be written as Eq. (21) but with
hðrÞ≡ ð8q − 7Þ−1. The corresponding effective potential is

VeffðrÞ ¼
ð8q − 7ÞL2

2r2

�
1 −

2M
r

−
κ22−qr2

3 − 4q

�
Q2

r4

�
q
�
−
E2

2
:

ð38Þ

In Fig. 14, we show the uninteresting result of Veff , since no
photon orbit (stable or unstable) exists either. In the
following discussion, we shall show that this power-law
NLED model is problematic phenomenologically, at least
in the weak-deflection limit.

C. Deflection of light

For this model, it is easier to calculate the deflection
angle through the first-order, rather than the second-order
as done previously, differential equation. Recalling the null
geodesics equation (23) and substituting u ¼ 1=r, the term
_r can be rewritten as

_r2 ¼
�
dr
dϕ

dϕ
dτ

�
¼ L2

�
du
dϕ

�
2

: ð39Þ

Equation (23) then becomes

�
du
dϕ

�
2

¼ 1

b2
−
fu2

h
: ð40Þ

Defining σðuÞ≡ buðf=hÞ1=2, we obtain

du
dϕ

¼ 1

b
ð1 − σ2Þ1=2: ð41Þ

As an example, let us take q ¼ 2. In the weak-field limit,
we obtain

bdu ¼
�
1

3
þ 2Mσ

9b
−
7κ2Q4σ6

87480b6

�
dσ: ð42Þ

The total change of angle ϕ with respect to u from infinity
(u ¼ 0) to the minimum radius ðu ¼ u0 ¼ 1=bÞ and back
to infinity can be written as

δϕ ¼ 2

Z
u0

0

dϕ
du

du ¼ 2

Z
u0

0

bð1 − σ2Þ−1=2du

¼ 2

Z
1

0

ð1 − σ2Þ−1=2
�
1

3
þ 2Mσ

9b
−
7κ2Q4σ6

87480b6

�
dσ: ð43Þ

The total deflection angle is defined as Δϕ≡ δϕ − π.
Using this method, we calculate the angles for several q
as follows:

FIG. 13. The effective potential for massive particles with
M ¼ 1, Q ¼ 1, and E ¼ L ¼ 1.

FIG. 14. The effective potential for light particles with M ¼ 1,
Q ¼ 1, and E ¼ L ¼ 1.
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Δϕðq ¼ 1Þ ¼ 4M
b

þ 3πκQ2

8b2
;

Δϕðq ¼ 2Þ ¼ 4M
9b

þ π

�
−

7κ2Q4

279936b6
−
2

3

�
;

Δϕðq ¼ 3Þ ¼ 4M
17b

þ π

�
−

77κ2Q6

5815734272
ffiffiffiffiffi
17

p
b
þ 1ffiffiffiffiffi

17
p − 1

�
:

ð44Þ
As can be seen from the result above, unless q ¼ 1, the

deflection angle does not reduce to Schwarszchild even in
the limit of Q → 0. What is more problematic is that as
shown in Fig. 15, the angles are generically negative and do
not go to zero at large rtp! This correspondence violation
poses a doubt whether this result is physical or not. At best,
we can say that the weak-field approximation seems to
break down for this model.

V. AYON-BEATO-GARCIA BLACK HOLE

In 1968, Bardeen [60] in his seminal proceeding paper
published his famous regular black hole solution,

fðrÞ ¼ 1 −
2Mr2

ðr2 þQ2Þ3=2 : ð45Þ

The metric is regular at the origin, as in Fig. 16. The black
hole regularity is ensured by the fact that the corresponding
invariants are also regular everywhere. Ayon-Beato and
Garcia [44] were the first to realize that such a solution can
be interpreted as a black hole charged with a NLED
magnetic monopole, whose Lagrangian is given by

L ¼ −
3

sκ2Q2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Q2F

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Q2F

p
�

5=2
; ð46Þ

s≡Q=2M. Its electrically charged counterpart solution
was later proposed by Rodrigues and Silva [46]. Being an

NLED BH, we shall study the null geodesic structure of
Ayon-Beato-Garcia (ABG) metric and investigate the stable
photon orbits.

A. Timelike and null geodesics

The explicit form of the ABG’s timelike geodesics can
be written as

VeffðrÞ ¼
1

2

�
L2

r2
þ 1

��
1 −

2Mr2

ðr2 þQ2Þ3=2
�
−
E2

2
: ð47Þ

This Veff allows (marginally) stable orbits for massive test
particles, as can be seen in the right panel of Fig. 17.
While the null geodesics structure of the original

Bardeen spacetime was investigated by numerous authors
(see, for example, [58,61–64]), none assumes the NLED
perspective. They thus neglected the photon’s effective
geometry and considered a photon and graviton to follow
the same null rays. Consequently, no stable photon sphere
is observed by an observer outside the horizon. Here, we
follow the ABG’s perspective and found something novel.
From the Lagrangian [Eq. (46)], the effective metric can

be written as

gμνeff ¼ gμν þ 2r4ð6Q4 þ 5Q2r2 − 1Þ
Q2ðQ2 þ r2Þ2 FμαFν

α: ð48Þ

Defining hðrÞ≡ ð1 − 2ð6Q4þ5Q2r2−1Þ
ðQ2þr2Þ2 Þ−1, the effective poten-

tial can be obtained,

VeffðrÞ ¼
L2

2r2

�
1 −

2ð6Q4 þ 5Q2r2 − 1Þ
ðQ2 þ r2Þ2

�

×

�
1 −

2Mr2

ðr2 þQ2Þ3=2
�
−
E2

2
: ð49Þ

The circular orbit radii satisfy

FIG. 15. Deflection angles for various number of q. Here, we
set M ¼ 10 M⊙ and Q ¼ 0.3.

FIG. 16. Metric function for ABG black hole solution (45) with
M ¼ 1 and several values of Q.
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0 ¼
Lð4rð12Q4þ10Q2r2−2Þ

ðQ2þr2Þ3 − 20Q2r
ðQ2þr2Þ2Þð1 − 2Mr2

ðQ2þr2Þ3=2Þ
2r2

þ
Lð1 − 12Q4þ10Q2r2−2

ðQ2þr2Þ2 Þð 6Mr3

ðQ2þr2Þ5=2 −
4Mr

ðQ2þr2Þ3=2Þ
2r2

−
Lð1 − 12Q4þ10Q2r2−2

ðQ2þr2Þ2 Þð1 − 2Mr2

ðQ2þr2Þ3=2Þ
r3

: ð50Þ

Finding its analytical roots is not illuminating. We thus
determine the rSCO by studying Fig. 18. It can be seen that
for the case of extremal and two horizons, there are minima,
albeit of little depth, whose rSCO > rh. This means that an
ABG BH allows stable photon orbits. The detail numerical
values of the corresponding radii are shown in Table. III.
This stability is considered to be marginally stable, since
the depth of minima is quite shallow. Nevertheless, it is not
a problem classically.

B. Deflection of light

Finally, let us calculate the deflection angle of a photon
off the ABG black hole which, to the best of our knowl-
edge, has not been studied in the literature. In the limit of
small Q, the inverse radial distance is, approximately,

u ≃
u30

32α2
ð12 ffiffiffi

α
p

ϕ sinð ffiffiffi
α

p
ϕÞððα − 1Þαb20 þ 10M2Þ

þ cosð ffiffiffi
α

p
ϕÞð7ðα − 1Þαb20 þ 54M2Þ

þ cosð3 ffiffiffi
α

p
ϕÞð6M2 − ðα − 1Þαb20ÞÞ

þMu20
4α

ð9sin2ð ffiffiffi
α

p
ϕÞ þ sinð ffiffiffi

α
p

ϕÞ sinð3 ffiffiffi
α

p
ϕÞ

þ 4cos4ð ffiffiffi
α

p
ϕÞÞ þ u0 cosð

ffiffiffi
α

p
ϕÞ; ð51Þ

where we define α≡ 1 − 20Q2

b2
0

. For α ≈ 1, the weak deflec-

tion angle is given by

Δϕweak ≈
8M
rtp

þ 15πM2

2r2tp
þOðQ2Þ: ð52Þ

The zeroth order is twice the Schwarzschild’s angle. This is
because ABG describes a regular (Bardeen) black hole,
which is distinct from Schwarzschild. The dependence of
Δϕ on rtp is shown in Fig. 19. This might be used to
distinguish the ABG/Bardeen’s signature from another
ordinary black hole.

FIG. 17. The effective potential for massive particles with M ¼ 1 for a various number of Q.

FIG. 18. The effective potential for light particles with M ¼ 1
for a various number of Q. The corresponding equation is
Eq. (49).

TABLE III. Comparation of the radius of event horizon of the
extremal case (rEH) Q, next to its corresponding values of rSCO
and rSCO of the null geodesics.

Q rh rUCO rSCO

0.62 0.5065 and 1.6349 0.6994 and 3.3887 0.4097 and 1.6743
0.77 1.0887 1.0897 and 3.8556 1.54353
0.92 � � � 4.4158 � � �
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VI. CONCLUSION

This work is intended to investigate the null geodesic
of several NLED black holes and its phenomenolo-
gical aspects. In this work, we specifically consider three
polynomial-type NLED models: the generalized BI model
(we dubbed it the Kruglov-BI model), the power-law model,
and the Ayon-Beato-Garcia model used in a Bardeen black
hole. Each has been extensively studied by a large number of
authors. What is left uninvestigated, and this is our main
result, is the behavior of a photon around them. Due to the
field discontinuity, a photon follows the null geodesic that is
different from a graviton in NLED theories. Our simple
investigation shows novel results.
In the first model, we show that in the extremal limit of

some weak coupling β, the black hole allows stable physical
photonorbits. Byphysical, wemean that the orbits lie outside
the horizon. For the strong coupling β < 1, generically for
q < 1, the black hole only possesses one horizon, and we
show that there is a range of parameters that also allows this
case to have stable physical orbits for a photon. The results
are genuine, since an extremal RN black hole has a stable
photonorbitwith a rSCO that coincideswith rEH. It is not clear
how stable this is since any small perturbationmight collapse
the photon inside the horizon. Now, the possibility of having
rSCO > rEH in theNLEDcase evades such concern. Not only
do we now have stable circular orbits, but also there exist a
family of bounded orbits parametrized by two radii, rþ and
r−, as long as r− ≥ rEH. In Newtonian gravity, these closed

orbits would correspond to ellipses. In GR, however, to
determine the orbits, we must explicitly solve the null
geodesic equation. This is left for our future investigation.
For the second model, we found problematic phenom-

enological results since the weak deflection angle does not
coincide with Schwarzschild even in the chargeless limit
(Q → 0). We argue that such a model is unphysical, even
though we do not eliminate the possibility that our weak-
gravitational field approach might be a breakdown for this
model. At best, we can say that the weak-field analysis
fails, and one must resort to the full strong deflection
analysis to get a satisfactory answer.
The lastmodel dealswith theABGmetric that gives rise to

a regular black hole. A regular black holewas first proposed,
to our best knowledge, by Bardeen. Later, Ayon-Beato and
Garcia realized that such a solution can be perceived as a
black hole endowed with a NLED magnetic charge. An
interesting aspect is that, while the metric solution and the
timelike geodesic between Bardeen and ABBG are equiv-
alent, the null geodesic is not. Perceived as an original
Bardeen, a regular BH has the usual property that a photon
follows its null geodesic. The study of its null geodesic
showed that the corresponding Veff possesses singularity
[65]; therefore, it is futile to talk about a photon orbit around a
Bardeen BH. But looking from the NLED perspective, the
matter becomes nontrivial. A test photon follows its effective
geometry, and our investigation reveals that it is nonsingular.
Similar to the Kruglov-BI case, the ABG black hole also
allows a photon sphere and other bounded orbits outside the
horizon. Our calculation on theweak deflection angle shows
that up to zeroth order, it is twice the Schwarzschild value.
While we argue that this might be caused by the fact that the
two have different natures regarding the singularity (thus, the
effective null geodesic outside the horizon is influenced by
the nature inside it), we also realize that the strong deflection
formalism is needed to have a conclusive hypothesis.
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