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Dynamic thin-shell black-bounce traversable wormbholes
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Based on the recently introduced black-bounce spacetimes, we shall consider the construction of the
related spherically symmetric thin-shell traversable wormholes within the context of standard general
relativity. All of the really unusual physics is encoded in one simple parameter ¢ which characterizes the
scale of the bounce. Keeping the discussion as close as possible to standard general relativity is the
theorist’s version of only adjusting one feature of the model at a time. We shall modify the standard thin-
shell traversable wormhole construction, each bulk region now being a black-bounce spacetime, and with
the physics of the thin shell being (as much as possible) derivable from the Einstein equations. Furthermore,
we shall apply a dynamical analysis to the throat by considering linearized radial perturbations around
static solutions and demonstrate that the stability of the wormhole is equivalent to choosing suitable
properties for the exotic material residing on the wormhole throat. The construction is sufficiently novel to
be interesting and sufficiently straightforward to be tractable.
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I. INTRODUCTION

One can tentatively trace back wormhole physics to
Flamm’s work in 1916 [1] and to the “Einstein-Rosen
bridge” wormhole-type solutions considered by Einstein
and Rosen (ER) in 1935 [2]. However, the field lay dormant
for approximately two decades until 1955, when Wheeler
became interested in topological issues in general relativity
[3]. He considered multiply-connected spacetimes, where
two widely separated regions were connected by a tunnel-
like gravitational-electromagnetic entity, which he denoted
as a “geon.” These were hypothetical solutions to the
coupled Einstein-Maxwell field equations. Subsequently,
isolated pieces of work do appear, such as the Homer Ellis’
drainhole concept [4,5], Bronnikov’s tunnel-like solutions
[6], and Clement’s five-dimensional axisymmetric regular
multiwormhole solutions [7], until the full-fledged
renaissance of wormhole physics in 1988, through the
seminal paper by Morris and Thorne [8].

In fact, the modern incarnation of Lorentzian wormholes
(and specifically traversable wormholes) now has over
30 years of history. Early work dates from the late
1980s [8—14]. Lorentzian wormholes became considerably
more mainstream in the 1990s [15-35], including work on
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energy condition violations [36-42], with significant
work continuing into the decades 2000-2009 [43-56]
and 2010-2019 [57-70]. We shall particularly focus on
the thin-shell formalism [71-76], first applied to Lorentzian
wormholes in [10,11], and subsequently further developed
in that and other closely related settings by many other
authors [77-107]. Our notation will largely follow that of
Hawking and Ellis [108]. For the purposes of this article
we will focus primarily on applying the technical machi-
nery built up regarding spherically symmetric thin-shell
spacetimes in Refs. [10,26,60,61,65], and for the bulk
spacetimes (away from the thin shell) shall restrict attention
to the recently developed black-bounce spacetimes of
Refs. [67,68] (for related work, we refer the reader to
[109,110]).

Consider the following candidate regular black hole
(a black bounce) specified by the spacetime line element:

2m 2m -1
2 _ _ _ 2 _ 2
ds= = (1 7u2+a2>dt + (1 71424-612) du
+ (u? + a?)dQ?. (1)

Here the u and ¢ coordinates have the domains u €
(—o0,+00) and 7€ (—o0,+o0). In the original
Refs. [67,68] the u coordinate was called r; however, we
now want to use the symbol r for other purposes. In this
work, we shall analyze thin-shell constructions based on
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this spacetime. By considering the coordinate transforma-
tion > = u? + a?, we shall use the following completely
equivalent line element:

2 2m\ -1 2\ -1
ds2——<1——m)dt2+<1——m) <1—a—2> dr
r r r

+ r2dQ2. (2)

Here the r coordinate is now a double cover of the u
coordinate. It has the domain r € (a,+o0) and can be
interpreted as the Schwarzschild area coordinate—all the
2-spheres of constant r have area A(r) = 4zr2. This choice
has the additional advantage of making it easy to directly
compare the current analysis with most other work in
the literature. The ¢ coordinate has the usual domain
t € (—o0,+00). All of these black-bounce spacetimes
are simple one-parameter modifications of Schwarzschild
spacetime; for detailed analyses of the properties of these
black-bounce spacetimes see Refs. [67,68].

While Lorentzian wormholes are in general very differ-
ent from Mazur-Mottola gravastars [111-118], it is worth
pointing out that in the thin-shell approximation there are
very many technical similarities—quite often a thin-shell
wormhole calculation can be modified to provide a thin-
shell gravastar calculation at the cost of flipping a few
strategic minus signs [119,120].

Structurally we organize the article as follows: We first
introduce and briefly summarize the appropriate variant
of the thin-shell formalism in Sec. II. Section III discusses
some specific examples and applications. Finally we
conclude in Sec. IV.

II. THIN-SHELL FORMALISM

We shall first perform a general (and relatively straight-
forward) theoretical analysis, somewhat along the lines
laid out in Ref. [60], but with appropriate specializations,
simplifications, and modifications. Subsequently we shall
investigate a number of specific examples in the way of
special cases and toy models. We discuss the bulk space-
times in Sec. II A, the extrinsic curvature of the thin shells
in Sec. II B, before moving on to the Lanczos equations in
Sec. I C. We then discuss the Gauss and Codazzi equations
in Sec. I D, before considering the equation of motion and
its linearization in Secs. IIE and I F. Finally we develop
the master equation in Sec. II G, before moving on to the
next Sec. III where we shall discuss some specific examples
and applications.

A. Bulk spacetimes

We initiate the discussion by considering two distinct
“bulk” spacetime manifolds, M_ and M_, equipped with
boundaries OM_, =X, and OM_ = Z_. As long as the
boundaries are isometric, X, ~X_, then we can define
a manifold M = M U M_, which is smooth except

possibly for a thin-shell transition layer at X, ~2X_.
In particular, consider two static spherically symmetric
black-bounce spacetimes given on M by the following
two-parameter (m,a) Lorentzian-signature line elements

G (x) and g, (x2):

2 2 -1 2\ -1
ds* = —(1 - mi)dtzi + (1 - mi) ( ——aj> dr’
ry ry rL

+r2dQ2. (3)

The usual Einstein field equations, G,, = 8zT,, (with
¢ = G = 1), imply that the physically relevant orthonormal
components of the stress-energy tensor are (in the two bulk
regions) specified by

a*(r—4m
() = - A, (@)
a2
P = 5%, 5
pir) = - S G

Here p(r) is the energy density, p,(r) is the radial pressure,
and p,(r) is the transverse pressure. Given the spherical
symmetry, p,(r) is the pressure measured in the two
directions orthogonal to the radial direction. The subscripts
=+ (on m4 and a. ) have been (temporarily) suppressed for
clarity.

The null energy condition (NEC) is satisfied provided,
for any arbitrary null vector k¢, the stress energy T,
satisfies T, k*k” > 0. The radial null vector is Kt =
(1,£1,0,0) in the orthonormal frame where the stress

energy is 75 = diaglp(r), p(r), p.(r), p:(r)]. Then

- a*(r —2m)
(Tﬁﬁkﬂky)radial = p(r) + pr(r) = _T <0. (7)

To verify the negativity of this quantity, note that the bulk
spacetime models a regular black hole when a € (0,2m),

with horizons at uy = ++/(2m)? — a2, corresponding to
ry = u3 + a*> = 2m. We therefore “chop” the spacetime
outside any horizons that are present. Hence in both of the
bulk regions we have the condition that r > 2m. Thus the
radial NEC will be manifestly violated in both of the bulk
regions of the black-bounce thin-shell spacetime. In the
context of static spherical symmetry, this is sufficient to
conclude that all of the standard energy conditions asso-
ciated with general relativistic analysis will be similarly
violated.

In the transverse directions we can choose the null vector

to be k¥ = (1,0,cos ¢, sin¢) and so
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3a’m

(Thok k) p(r) +pr) = Sors 0. (8)

transverse ~

While this is manifestly positive, this is not enough to
override the NEC violations coming from the radial
direction.

B. Normal 4-vector and extrinsic curvature

The two bulk manifolds, M_ and M_, are bounded by
the hypersurfaces oM, =X, and M_=2X . These
two hypersurfaces possess induced 3-metrics gj; and
g;» respectively. The X, are chosen to be isometric. [In
terms of the intrinsic coordinates, gj;(¢) = g;;(£), with
& = (t,0, ¢).] Thence a single manifold M is obtained by
gluing together M, and M_ at their boundaries, that is,
M = M, U M_, with the natural identification of the two
boundaries X, = X.

The boundary manifold X possesses three tangent basis
vectors e(;) = 0/ O, with the holonomic components

(i)|i = 8x” “ JOE'. This basis specifies the induced metric

via the scalar product g;; =€ ;) -€(;) = gﬂy |jE Finally,

in explicit coordinates, the intrinsic metric to Z is given by
dst = —d7* + R*(7)(d6* + sin® Od¢p?). 9)

That is, the manifold M is obtained by gluing M_ and
M_ at the 3-surface x*(7,6,¢) = (1(r),R(z),0, ). The
respective 4-velocities, tangent to the junction surface
and orthogonal to the slices of spherical symmetry, are
defined on the two sides of the junction surface. They are
explicitly given by

az )
_ﬁ)+R )
R,0,0 . (10)

2my aN12 e
(1-3%)(1-%)

Here 7 is the proper time of an observer comoving
with X, and the overdot denotes a derivative with respect
to this proper time. Furthermore, the timelike junction
surface ¥ is given by the parametric equation f(x*(&')) =
r — a(r) = 0, and the unit normal 4-vector, n*, is defined as

V.f s Of Of |7\ of
- =+ —. 11
VA ‘ ox*oxP|  Oxt (1)
Hence n,n* = +1 and n e( = 0. In the usual Israel

"
formalism one chooses the normals to point from M_
to M [76], so that the unit normals to the junction surface
are provided by the following expressions:

()07
[ () w0 2

Taking into account spherical symmetry one may also
obtain the above expressions from consideration of the
contractions U¥n, =0 and n*n, = +1. The extrinsic
curvature, or second fundamental form, is typically defined
as K;; = (W)e() ( . Now, by differentiating n e() 0

with respect to 51 , one obtains the following useful relation:

9% xH
" e~

Ox* Ox¥

_n,u,va_é,‘a_gj? (13)

so that the extrinsic curvature K;; can therefore be

represented in the form

O*xH
£ _
Kij = —-n, <a§i8§j +17

Finally, using both spherical symmetry and Eq. (14), the
nontrivial components of the extrinsic curvature are
given by

1 2 2
KOt = :tR\/<l —%>< ‘I’;;) +R2,(15)

azi N my (Rz—azi)
R

JO-)(-5) v

C. Lanczos equations and surface stress energy

a S
+ OX ai) (14)

aff afl ag;

(16)

For the case of a thin shell, the extrinsic curvature need
not be continuous across X. For notational clarity we denote
the discontinuity in K;; as k;; = K;; — K7;. The Einstein
equations, when applied to the hypersurface joining the
bulk spacetimes, now yield the Lanczos equations:

, 1
Sti=——(k

=g (K =8 K%), (17)

where S’ j is the surface stress-energy tensor on the
junction interface 2. Because of spherical symmetry
k'; = diag(k*,, k%, k%), the surface stress-energy tensor
reduces to S’ = diag(—o, P, P), where o is the surface
energy density, and P the surface pressure. The Lanczos
equations imply
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1
O':—EKBQ, (18)
1 0
P = (k" +«%). (19)
8

Using the computed extrinsic curvatures (15) and (16), we
now evaluate the surface stresses:

2m_ 2
A 0-R) ]
P[RR o+ Ri - e )
 8zR
T \/( 2m+)(1__)+R2
1+R2(R 2a)+RR mR+ie%(Rm)
+ (21)

J-m)a-5+

The surface mass of the thin shell is defined by
m, = 47R%c, a result that we shall use extensively below.
Furthermore the surface energy density o is always
negative, implying energy condition violations in this
thin-shell context. For the specific symmetric case,
m_, = m_, and for vanishing bounce parameters a, = 0,
the analysis reduces to that of Ref. [25].

D. Gauss and Codazzi equations

The Gauss equation is sometimes called the first con-
tracted Gauss-Codazzi equation. In standard general rela-
tivity it is more often referred to as the “Hamiltonian
constraint.” The Gauss equation is a purely mathematical
statement relating bulk curvature to extrinsic and intrinsic
curvature at the boundary:

1

Gun'n® =3 (K* - K;;K'7 —°R). (22)

Applying the Einstein equation, and evaluating the dis-
continuity across the junction surface, this becomes

1 y
8x[T,, nn*]" = 2 [K* — K;;K']. (23)
Using the conventions [X]f=XT|y—X"|y and X =
1(X*|g 4+ X~|3) for notational simplicity, and applying
the Lanczos equations, one deduces the constraint equation

[Tﬂynﬂnl}}t = SUI_{U (24)

In contrast the Codazzi equation (Codazzi-Mainardi
equation) is often known as the second contracted
Gauss-Codazzi equation. In general relativity it is more
often referred to as the “ADM constraint” or “momentum
constraint.” The purely mathematical result is
n’ =K’

Gu.e) -K,;. (25)

vE(i) ilj

Together with the Einstein and Lanczos equations, and
considering the discontinuity across the thin shell, this now
yields the conservation identity:

= —Sl

jlit

[T;u/eﬂ(j) ] (26)

The left-hand side of the conservation identity (26) can be
interpreted in terms of momentum flux. Explicitly

[Tﬂyeﬂ(T) nu] +

= [T/w U nu] r

Ry -1 -2
= | £(T3 +T55) \/ (1-2(1 —I;e_z)

| @ R\J(1-2)(1-£)+ R o)

4 )
471'R (1 — ﬁ)

where T;; and T;; are the bulk stress-energy tensor
components given in an orthonormal basis. Note that the
flux term corresponds to the net discontinuity in the bulk
momentum flux ¥, = T,,U” which impinges on the shell.
For notational simplicity, we write

n]* = RE. (28)

Here we have defined the useful quantity
__ ! a4 _2ma) (- ai + R?
47R? | (R? — a?) R R?
a’ 2m a’ .
— l-—— |1 -— R*|.
*m%w9¢< ) (1-%)

Now A = 4zR? is the surface area of the thin shell. The
conservation identity becomes

[1]

(29)

—T+(0+P)——T::R. (30)

Equivalently
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d(cA) A _ .

it +PdT = HAR. (31)
The term on the right-hand side incorporates the flux term
and encodes the work done by external forces, while the
first term on the left-hand side is simply the variation of the
internal energy of the shell, and the second term character-
izes the work done by the shell’s internal forces. Provided
that the equations of motion can be integrated to determine
the surface energy density as a function of radius R we
infer the existence of a suitable function o(R). Defining
¢’ = do/dR the conservation equation can then be
written as

2
o =-2(0+P)+E (32)

E. Equation of motion

To analyze the stability of the wormhole, Eq. (20) can be
rearranged to provide the thin-shell equation of motion,
given by

% R2 4+ V(R) = 0. (33)

The potential V(R) is defined as

oS )

where m(R) = 47R*c(R) is the mass of the thin shell, and
the quantities A(R) and A(R) are defined as

A(R) = (m, +m.)
e (1-2) s (1-2)]. e

1], 2m, 5 2m_
+ﬁ_a+<l—T>—a_(1—T>:|, (36)

respectively. Note that by differentiating with respect to z,
the equation of motion implies R = —V’(R), which will be
useful below.

As outlined in Ref. [60], we can reverse the logic flow
and determine the surface mass as a function of the
potential. More specifically, if we impose a specific
potential V(R), this potential implicitly tells us how much
surface mass we need to distribute on the wormhole throat.
This further places implicit demands on the equation of
state of the exotic matter residing on the wormhole throat.
This implies that, after imposing the equation of motion for
the shell, one has the following:

Surface energy density:

(37)

Surface pressure:
1 —2V(R R?-2a% RV'(R m, R*+a® (R—m.)
1 [1=2VIR) = ) —RV'(R) - =% —
ﬁ 2m a
\/(1—T+)(1—R—;)—2V(R)

- ZV(R) <R2—2a3> _ RV/(R) _ m_R*+d>(R-m_)

R*—d? R?

\/(1 —MT—) (1 —R—i) —2V(R)

+

(38)

External energy flux:

e e (5 ) 2
(5 (-5) e

These three quantities, {o(R),P(R),E(R)}, are interre-
lated by the differential conservation law, so at most two of
them are functionally independent. We could equivalently
work with the quantities {m(R), P(R),E(R)}.

(39)

F. Linearized equation of motion

‘We now consider the equation of motion%]?2 +V(R)=0,
which implies R = —V/(R), and linearize around an
assumed static solution at R,. This implies that a second-
order Taylor expansion of V(R) around R, provides

1
V(R) = V(Ro) + V'(Ro) (R = Ro) + 5 V"(Ry)(R = Ro)?
+ O[(R—Ry)?. (40)
Since we are expanding around a static solution, R, =

Ry =0, we have both V(Ry) =V'(Ry) =0, so that
Eq. (40) reduces to

V(R) = %V”(Ro)(R = Ro)> + O[(R—Ry)’].  (41)
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The static solution at Ry is stable if and only if V(R) has a local minimum at R,. This requires V" (Ry) > 0. This stability
condition will be our fundamental tool in the subsequent analysis—though reformulation in terms of more basic quantities will
prove useful. For instance, it is useful to express the quantities m(R) and m/(R) in terms of the potential and its derivatives—
doing so allows us to develop a simple inequality on m/ (R)) by using the constraint V" (R)) > 0. Similar formulas will hold for
the pairs ¢/ (R), 6" (R), for P'(R), P"(R), and for Z'(R), E”

5 —

(R). Inview of the multiple redundancies coming from the relations
m(R) = 4zo(R)R? and the differential conservation law, we can easily see that the only interesting quantities are Z'(R), Z” (R).

In the applications analyzed below, it is extremely useful to consider the dimensionless quantity

N (] ET T

We now express [m,(R)/R]" and [m,(R)/R]" in terms of the following quantities:

. (42)

) n(l-m) (-2 —vir) e (1-2) 8 (122 - ViR

2 @)
\/(1—2",;+) (1—;—5) —2V(R) \/(1 —2%) (1—R—) —2V(R)

and

(=) (%) vl

Similarly, consider the useful dimensionless quantity

4nR’E = —

G [ o R SH S e

This leads to the following relations:

(46)
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my a%r az 2m,
unreE) — | 20K+ at) [ 2m (@) oy gy 4R w(-%) e (1-%)-v®
TR~ Z) = (R2 ai)3 R R2 (R2 )
2 2y

%ﬂ“%)(“%‘zww wr F(%)

(47)

G. Master equation

Taking into account the extensive discussion above, we see that to have a stable static solution at R\, we must satisfy two
equations and one inequality. Specifically,

mg (RO)

) —anomom, ==\ (1-22) (1-2) + (-2 (1-5)] 9
and

UEISIA o =0 (49)
Jo-m)0-5)  J0-3)(-8)
and

m a> a 2m \ |2 2m a 3a’ 2m 4m  a’

me ) w0 -5) +5 0-%)] Fe(-7) % (%) %"
) (N
(=% (-%)]

. (50)
- —2)
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More specifically, this last inequality translates the stability condition V”(R)) > 0 into an explicit inequality on m) (R,), an
inequality that can in particular cases be explicitly checked. In the absence of external forces this inequality is the only
stability condition one requires. However, once one has external forces (that is, in the presence of fluxes E # 0), there is

additional information:

a2 2m a? a? 2m a?
A4zR2E) = — |——F ) (1-= —_— 1l—— )1 =-=]].
o l(R%—ai)\/< Ro )( R} +(R3—a3) Ry Rj

This leads one to consider the quantity

(51)

[4rR2E,] = @ 2Ry

®-a) | —a) \/ (1 "R,

a’ 2R, 3
TR-2) R \/ (1

[47TR2E()]” Z
° CRr)

ZATe a%)_:e—a(l-%)+%%( )| e

m, a’ a m
_W\/<l_zm+) (i __) e w(-R) 5 (%)
(

R — a3 )? \/(1 _2m_+)
Ry

3a* (2R} + a*) 2m_ a*
v A% ) 1=
(RO - a_) RQ RO

In summary, the inequalities (50) and (53) dictate the
stability regions of the wormhole solutions considered in
this work, and in the following section we consider specific
applications and examples.

III. APPLICATIONS AND EXAMPLES

In this section, we shall apply the general formalism
described above to some specific examples. Several of
these special cases are particularly important in order to
emphasize the specific features of these black-bounce
spacetimes. Some examples are essential to assess the
simplifications due to symmetry between the two asymp-
totic regions, while other cases are useful to understand the

o . (53)

asymmetry between the two universes used in traversable
wormhole construction. In the following analysis we will
consider specific cases by tuning the parameters of the bulk
spacetimes, namely, the bounce parameters a, and the
masses m..

A. Vanishing flux term: a_. =0

Here, we consider the case of a vanishing flux term,
that is, 2 =0, which is induced by imposing a, = 0.
Thus, the only stability constraint arises from inequality
(50). Note that this case corresponds to the thin-shell
Schwarzschild traversable wormholes analyzed in

Refs. [25,60]. For the specific case of ay =0, and

124035-8
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considering an asymmetry in the masses m_ # m,,
inequality (50) reduces to

R "
R} {—msl(? O)] > F(Ry,my)
0
2m, (1 _ 3m+) 2m. (1 _3&)
R 2R, Ro 2R,

— —+ .
2m, 3/2 om_\3/2
(1-%)" (-%)

Note that in order to plot the stability regions, we have
defined the following dimensionless form of the constraint
as Fi(Ry,m+) = R3[my(Ry)/Ro)", which is depicted
as the surfaces given in the plots of Fig. 1. The stability
regions lie above these surfaces. To visualize the whole
range of the parameters, so as to bring infinite R, in to a
finite region of the plot, we have considered the definition
x = 2m_ /R, for convenience. For instance, the limit Ry —
oo corresponds to x — 0, and Ry = 2m, is equivalent to
x = 1. Thus, we have considered the range 0 < x < 1.

In the left plot of Fig. 1, we have considered the
parameter y; = m_/m,, which lies within the range
0 <y; < 1/x. This parameter provides information on
the relative variation of the masses. However, one may
also consider a more symmetrical form of the stability
analysis, by considering the definition y, =2m_/R,,
which possesses the range 0 <y, < 1, and the stability

FIG. 1.

region is depicted in the right plot of Fig. 1. These two plots
provide complementary information.

Regarding the stability of the solution, from Fig. 1 we
verify that large stability regions exist for low values of
x=2m, /Ry and of yy = m_/m_ (and of y, = 2m_/R).
For regions close to the event horizon, x — 1, the stability
region decreases in size and only exists for low values of
y1.2- The specific case of y; = m_/m, = 1 corresponds to
the thin-shell Schwarzschild wormholes analyzed in [60],
and one verifies that the size of the stability regions
increases as the junction interface of the thin-shell
increases, namely, as x = 2m, /Ry — 0, as is transparent
from Fig. 1.

B. Vanishing mass: a, #a_ and m_ =0

Consider now the case of vanishing mass terms m = 0,
with an asymmetry of the bounce parameters a, # a_.
For this case, inequality (50) reduces to

mR "
R[> bt
0

and inequality (53) takes the following form:

Stability analysis for thin-shell Schwarzschild traversable wormholes, taking into account that @, = 0 and m_ # m, . The

surfaces are given by the dimensionless quantity F| (R, m..), defined by the right-hand side of inequality (54). The stability regions lie
above the surfaces depicted in the plots. We have considered the range 0 < x =2m_ /Ry < land 0 < y; = m_/m, < 1/x in the left
plotand 0 < y, = 2m_/Ry < 1 in the right plot, respectively. Note that large stability regions exist for low values of x = 2m /R, and
of y; . Forregions close to the event horizon, x — 1, the stability region decreases in size and only increases significantly for low values

of y;. See the text for details.
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RG[47R3E(Ry)]" > G»(Ry. a-)
2 2 4
oz 2
(1-%)"
Ry
2 4
(645 +2%)

0
( ag)S/z
R

We now consider the definition of the parameters x =
a,/Ry and y = a_/R, for convenience, so as to bring
infinite R, within a finite region of the plot. That is, Ry — oo
is represented as x — 0; and Ry = a, a_ is equivalent to x,
y = 1. Thus, the parameters x and y are restricted to the
ranges 0 <x <1 and 0 <y < 1. Inequality (55) is
depicted as the upper surface in Fig. 2 and inequality
(56) is depicted as the lower surface; the stability regions
are given above the respective surfaces. Thus, the final
stability region lies above the upper surface.

o?i:' IQN
AN
Q

(56)

C. Asymmetric vanishing parameters:
a,=0and m_=0
Consider now the case of vanishing interior mass
m_ =0, and vanishing exterior parameter a, = 0. For
this case, the inequality (50) reduces to

FIG. 2. The upper surface depicts the quantity F,(Ry,a;) =
R3[my(Ry)/Ry)", and the stable region lies above the surface of
that curve. On the other hand, the function G,(Ry,a.) =
R3[47R3Z,]" is depicted by the lower surface, and the stable
region also lies above the surface of that curve. Thus the final
stability region of the solution lies above the upper surface. See
the text for more details.

and inequality (53) is given by

I

25 (025 + %)

2\5/2
(1-%)

S

R{[47RGE(R)]" = G5(Ry. a_) = —

(58)

These are depicted as the upper and lower surfaces,
respectively, in Fig. 3. As in the previous example, the final
stability region of the solution lies above the upper surface.

D. Mirror symmetry: a,. =a and m.=m

Consider, for simplicity, the symmetric case, i.e., ay = a
and m = m, so that the stability conditions reduce to

0.6

0.4
o 02 02

, %,

FIG. 3. The upper surface depicts the quantity F3(Ry, m,,a_) =
R3[my(Ry)/Ro]", and the stable region lies above that surface. On
the other hand, the function G3(Ry, a_) = R3[4xR3E,)" is depicted
by the lower surface, and the stable region also lies above that
surface of that plot. Thus, the final stability region of the solution lies
above the upper surface. See the text for more details.
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m a® a® 2m 2 2m a2 3a? 2m 4ma®
mitg, O848 ) (-8 0-3)-y
Rg[ R ] > 24— 3+ L : (59)
(] Y e e
0 0
and
2 209p2 L 2 2 , m(p_a@) & (] _2m
) P 2a 3R;(2R; +a) a 4R; R R R Ry
R§[4nRGE)] Z(R2—a2) R2—a 1—— _F +(R2—a2)
0 0 0 2 2
Y-8 (-5)
0 0
m(p_a)ya(q_m|]? m(l_ai) @(1_2¢)_4ma2
JRO(I 8) % (1 o)) w0-g) (- - (60)

respectively.

It is useful to express inequality (59) in the following
dimensionless form F4(Ry, m,a) = R3[m,(Ry)/R,]" and
inequality (60) as G4(Ry, m,a) = [4nR0~0]” Both sur-
faces are depicted in Fig. 4, and the final stability region is
situated above the intersection of the surfaces.

2m

FIG. 4. The upper surface depicts the quantity F4(Ry, m,a) =
R3[my(Ry)/Ro]", and the stable region lies above that surface. On
the other hand, the function G4(Ry,m,a) = R}[4xR3Z,]" is
depicted by the lower surface, and the stable region also lies
above that surface. The final stability region of the solution lies
above the intersection of both surfaces. Note that inequality (60)
serves to decrease the stability region for high values of x and y.
See the text for more details.

124035-

Note that we have considered the definition x = 2m/R,
for convenience, so as to bring infinite R within a finite
region of the plot. That is, Ry — oo is represented as x — 0,
and Ry = 2m is equivalent to x = 1. Thus, the parameter x
is restricted to the range 0 < x < 1. We also define the
parameter y = a/R,, which also lies in the range
0 <y < 1. It is interesting to note that the inequality
(60) serves to decrease the stability region for high values
of x and y, as is transparent from Fig. 4.

E. Two specific asymmetric cases

l.a,#a_and m,=m_

Consider the case of symmetric masses my = m, but
with asymmetric bounce parameters a, # a_. To analyze
the stability regions we define a, = aa_, where a € R™.
Rather than write down the explicit form of the inequalities
which are rather lengthy and messy, we present the
dimensionless form of inequalities (50) and (53) as the
upper and lower surfaces in the plots of Figs. 5 and 6. Note
that the specific case of @ = 1 reduces to the analysis of the
mirror symmetry considered in the previous Sec. IIID.
We consider the dimensionless parameters x = 2m/R,, and
y = a_/Ry in order to analyze the stability regions. In the
following we separate the cases @ < 1 and a > 1.

(1) Specific case of a < 1: the upper and lower surfaces
in Fig. 5 depict the functions Fs(Ry,m,a.)=
R(z)[ms(Ro)/R()]” and Gs(Ro,m,ai> R0[477,'R0_.0] 5
respectively, and the stability regions representing
the inequalities (50) and (53) are the regions above
these surfaces. The range of the dimensionless
parameters is 0 < x,y < 1. We have considered o =
0.9 in the left plot and @ = 0.4 in the right plot of
Fig. 5. As the final stability region of the solution
lies above the intersection of both surfaces, we note

11
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FIG.5. Specific case of @, = aa_ and m, = m_ for a < 1: The upper surface depicts the quantity Fs(Ry, m,a.) = R3[m,(Ry)/Ry)",
and the function Gs(Ry, m,a) = R3[4nR3E,]" is depicted by the lower surface. The stable regions are given above the surfaces. We
have considered a = 0.9 in the left plot and @ = 0.4 in the right plot. Note that decreasing the value of a serves to decrease the lower
surface representing inequality (53), and thus increase the final stability region. See the text for more details.

that decreasing the value of a qualitatively serves to (1) Specific case of a@ > 1: the analysis is analogous to
decrease the lower surface representing inequality the above case and is depicted in Fig. 6; however,
(53), and thus increase the final stability region. This here the left plot is given by @ = 1.5 and the right
is transparent for high values of x and y. plot by a = 3. The range of the dimensionless

FIG. 6. Specific case of a, = aa_ and m, = m_ for a > 1: The upper and lower surfaces depict the quantities F5(Ry, m,a;) =
R2[m(Ry)/Ry)" and Gs(Ry, m, a+) = R3[4nR3E,]", respectively. The stable regions are given above the surfaces. We have considered
a = 1.5 in the left plot and a = 3 in the right plot. Note that increasing the value of a, serves to decrease the lower surface representing
inequality (60), and thus increase the final stability region. However, the range for y decreases for increasing values of a (for a = 1.5, the
range is 0 < y < 2/3, and for a = 3, it is 0 < y < 1/3). See the text for more details.
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FIG. 7. Specific case of a, = a_ and m, = am_ for a < 1. We consider the dimensionless parameters x = 2m_/R, and y = a/R,,.
We have considered a = 0.9 in the left plot and & = 0.7 in the right plot. Note that decreasing the value of a serves to decrease the lower
surface representing inequality (53), and thus increase the final stability region. See the text for more details.

parameters is givenby 0 < x < land0 <y < 1/a. and thus increase the final stability region.
As in the previous example, the final stability However, the range for y decreases for increasing
region of the solution lies above the intersection values of a (for a = 1.5, the range is 0 < y < 2/3,
of both surfaces depicted in Fig. 6. Note that and for a =3, it is 0 <y < 1/3). This analysis
increasing the value of «a serves to decrease is transparent for high values of x and y in
the lower surface representing inequality (53), Fig. 6.

Oy
Q’.“.’t’.’q’y;

o

W

f»;_.—:“‘

FIG. 8. Specific case of a, = a_ and m, = am_ for a > 1. We consider the dimensionless parameters x = 2m — /Ry and y = a/Ry.
We have considered @ = 1.1 in the left plot and @ = 1.3 in the right plot. Note that increasing the value of a serves to decrease the lower
surface representing inequality (53), and thus increase the final stability region. See the text for more details.
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2.a,=a_and m, #m_

Here we consider the case of asymmetric masses
my # m, but with symmetric bounce parameters a, = a,
and for simplicity define m, = am_, where a € R Asin
the specific case previously given above, we present the
dimensionless form of inequalities (50) and (53) as the
upper and lower surfaces in the plots of Figs. 7 and 8. We
consider the dimensionless parameters x = 2m_/R,
and y = a/R,, in order to analyze the stability regions,
and as in the previous example we separate the cases a < 1
and a > 1.

(i) Specific case of @ < 1:the functions F(Ry, m, a, ) =

R% [mS(Ro)/Roy/ and G6(R0, m, ai) = R(Z) [47[R(2)Eo]//
are depicted by the upper and lower surfaces in Fig. 7,
respectively, and the stability regions representing
the inequalities (50) and (53) are given above these
surfaces. The range of the dimensionless parameters is
0 < x,y < 1. We have considered @ = 0.9 in the left
plot and a = 0.7 in the right plot of Fig. 7. The final
stability region of the solution lies above the inter-
section of both surfaces. Note that decreasing the
value of a serves to decrease the lower surface
representing inequality (53), and thus increase the
final stability region.

(ii) Specific case of @ > 1: analogous to the above case,
the stability regions are depicted in Fig. 8. The left
plot is given by a = 1.1 and the right plot by
a = 1.3. The range of the dimensionless parameters
isgiven by 0 <x <1 and 0 <y < 1/a. As in the
previous example, the final stability region of the
solution lies above the intersection of both surfaces
depicted in Fig. 8. Note that increasing the value of a
serves to decrease the lower surface representing
inequality (53), and thus increase the final stability
region. However, the range for y decreases for
increasing values of a.

IV. CONCLUSION

In this article we have considered thin-shell wormholes
based on the recently introduced black-bounce spacetimes.
Specifically, by matching two black-bounce spherically
symmetric spacetimes using the cut-and-paste procedure,
we have analyzed the stability and evolution of dynamic
thin-shell black-bounce wormholes. We have explored the
parameter space of various models depending on the bulk
masses m.., and the values of the bulk bounce parameter a_,
investigating the internal dynamics of the thin-shell con-
necting the two bulk spacetimes, and demonstrating the
existence of suitable stability regions in parameter space.
Several of these models are particularly useful in order to
emphasize the specific features of these black-bounce
spacetimes. For instance, some examples are important
to assess the simplifications due to symmetry between the
two asymptotic regions, while other cases are useful to

understand the asymmetry between the two universes used
in traversable wormhole construction. Indeed, the interest-
ing physics is encoded in the parameter a. which character-
izes the scale of the bounce, and that emphasizes the features
of these spacetimes. In fact, the presence of the parameter a .
induces the flux term in the conservation identity, which is
responsible for the net discontinuity in the bulk momentum
flux which impinges on the shell. Thus, due to this flux term,
the bounce parameter places an additional constraint on the
stability analysis of the spacetime geometry.

From the linearized stability analysis one may assess and
understand the (a)symmetry between the two universes in
the traversable wormhole construction. For instance, con-
sider the simple case of vanishing mass m, =0 and
a, # 0 analyzed in Sec. III B, where large stability regions
exist for a; < R,. However, the low stability region for the
specific case of a, ~ R, increases significantly for the
asymmetric case of decreasing the value of a_. Another
interesting example is the asymmetric case analyzed in
Sec. III C, where we considered a, = 0 and m_ = 0. Here,
the low stability regions for a_ ~ Ry and m, ~ Ry may be
significantly increased by decreasing the asymmetric
parameters, until large stability regions are present for a_ <«
Rpand m | < R,. The mirror symmetric case of a; = a and
my = m considered in Sec. III D is of particular interest.
Despite the fact that large stability regions exist for a < Ry
and m < R, theregionata ~ Ryand m =~ R is of particular
interest. Here the flux term constraint kicks in and lowers
the stability region significantly. In fact, analyzing this
specific region for the asymmetric case is particularly
interesting, as one may explore the asymmetry between
the universes in the wormhole construction by considering
the case of a_ # a_ in Sec. Il E. More specifically, by
varying the relative values of @, and a_, the analysis showed
that one could increase or decrease the stability regions, and
one may assess and understand the (a)symmetry between the
two universes in the traversable wormhole construction.
In concluding, the constructions considered in this work
are sufficiently novel to be interesting, and sufficiently
straightforward to be tractable.

ACKNOWLEDGMENTS

F.S.N. L. is funded by the Fundacdo para a Ciéncia e a
Tecnologia (FCT, Portugal) through the Research Grants
No UID/FIS/04434/2019, No. PTDC/FIS-OUT/29048/
2017, and No. CEECIND/04057/2017, and acknowledges
support from the FCT Scientific Employment Stimulus
contract with reference No. CEECIND/04057/2017. A.S.
acknowledges financial support via a Ph.D. Doctoral
Scholarship provided by Victoria University of
Wellington. A.S. is also indirectly supported by the
Marsden Fund, administered by the Royal Society of
New Zealand. M.V. was directly supported by the
Marsden Fund, via a grant administered by the Royal
Society of New Zealand.

124035-14



DYNAMIC THIN-SHELL BLACK-BOUNCE TRAVERSABLE ...

PHYS. REV. D 101, 124035 (2020)

[1] L. Flamm, Beitrage zur Einsteinschen Gravitationstheorie,
Phys. Z. 17, 448 (1916).

[2] A. Einstein and N. Rosen, The particle problem in the
General Theory of Relativity, Phys. Rev. 48, 73 (1935).

[3] J. A. Wheeler, Geons, Phys. Rev. 97, 511 (1955).

[4] H. G. Ellis, Ether flow through a drainhole: A particle
model in general relativity, J. Math. Phys. (N.Y.) 14, 104
(1973).

[5] H.G. Ellis, The evolving, flowless drain hole: A non-
gravitating particle model in general relativity theory, Gen.
Relativ. Gravit. 10, 105 (1979).

[6] K. A. Bronnikov, Scalar-tensor theory and scalar charge,
Acta Phys. Pol. B 4, 251 (1973).

[7]1 G. Clement, Axisymmetric regular multiwormhole solu-
tions in five-dimensional general relativity, Gen. Relativ.
Gravit. 16, 477 (1984).

[8] M. Morris and K. S. Thorne, Wormholes in spacetime and
their use for interstellar travel: A tool for teaching General
Relativity, Am. J. Phys. 56, 395 (1988).

[9] M. S. Morris, K. S. Thorne, and U. Yurtsever, Wormholes,
Time Machines, and the Weak Energy Condition, Phys.
Rev. Lett. 61, 1446 (1988).

[10] M. Visser, Traversable wormholes from surgically modi-
fied Schwarzschild space-times, Nucl. Phys. B328, 203
(1989).

[11] M. Visser, Traversable wormholes: Some simple examples,
Phys. Rev. D 39, 3182 (1989).

[12] M. Visser, Wormholes, baby universes and causality, Phys.
Rev. D 41, 1116 (1990).

[13] M. Visser, Quantum mechanical stabilization of minkow-
ski signature wormholes, Phys. Lett. B 242, 24 (1990).

[14] M. Visser, Wormholes and interstellar travel, Los Alamos
Scientific Laboratory, Report No. LA-UR-89-1008.

[15] M. Visser, Quantum wormholes in Lorentzian signature,
in Proceedings of the 1990 DPF Conference, Rice Uni-
versity, Houston (World Scientific, Singapore, 1990),
pp- 0858-0860.

[16] D. Hochberg, Lorentzian wormholes in higher order
gravity theories, Phys. Lett. B 251, 349 (1990).

[17] V.P. Frolov and I.D. Novikov, Physical effects in
wormholes and time machine, Phys. Rev. D 42, 1057
(1990).

[18] M. Visser, Quantum wormholes, Phys. Rev. D 43, 402
(1991).

[19] M. Visser, Wheeler wormholes and topology change, Mod.
Phys. Lett. A 06, 2663 (1991).

[20] M. Visser, From wormbhole to time machine: Comments on
Hawking’s chronology protection conjecture, Phys. Rev. D
47, 554 (1993).

[21] M. Visser, van Vleck determinants: Traversable wormhole
space-time, Phys. Rev. D 49, 3963 (1994).

[22] J. G. Cramer, R. L. Forward, M. S. Morris, M. Visser, G.
Benford, and G. A. Landis, Natural wormholes as gravi-
tational lenses, Phys. Rev. D 51, 3117 (1995).

[23] S. Kar, Evolving wormholes and the weak energy con-
dition, Phys. Rev. D 49, 862 (1994).

[24] S. Kar and D. Sahdev, Evolving Lorentzian wormholes,
Phys. Rev. D 53, 722 (1996).

[25] E. Poisson and M. Visser, Thin shell wormholes: Lineari-
zation stability, Phys. Rev. D 52, 7318 (1995).

[26] M. Visser, Lorentzian Wormholes: From Einstein to
Hawking (AIP Press [now Springer], New York, 1995).

[27] D. Hochberg and M. Visser, Geometric structure of the
generic static traversable wormhole throat, Phys. Rev. D
56, 4745 (1997).

[28] M. Visser and D. Hochberg, Generic wormhole throats,
Ann. Isr. Phys. Soc. 13, 249 (1997).

[29] M. Visser, Traversable wormholes: The Roman ring, Phys.
Rev. D 55, 5212 (1997).

[30] E. Teo, Rotating traversable wormholes, Phys. Rev. D 58,
024014 (1998).

[31] D. Hochberg and M. Visser, Null Energy Condition in
Dynamic Wormholes, Phys. Rev. Lett. 81, 746 (1998).

[32] D. Hochberg and M. Visser, Dynamic wormholes, anti-
trapped surfaces, and energy conditions, Phys. Rev. D 58,
044021 (1998).

[33] D. Hochberg and M. Visser, General dynamic wormholes
and violation of the null energy condition, arXiv:gr-qc/
9901020.

[34] D. Hochberg, C. Molina-Paris, and M. Visser, Tolman
wormbholes violate the strong energy condition, Phys. Rev.
D 59, 044011 (1999).

[35] C. Barcel6 and M. Visser, Traversable wormholes from
massless conformally coupled scalar fields, Phys. Lett. B
466, 127 (1999).

[36] M. Visser, Gravitational vacuum polarization. 1: Energy
conditions in the Hartle-Hawking vacuum, Phys. Rev. D
54, 5103 (1996).

[37] M. Visser, Gravitational vacuum polarization. 2: Energy
conditions in the Boulware vacuum, Phys. Rev. D 54, 5116
(1996).

[38] M. Visser, Gravitational vacuum polarization. 3: Energy
conditions in the (1 4+ 1) Schwarzschild space-time, Phys.
Rev. D 54, 5123 (1996).

[39] M. Visser, Gravitational vacuum polarization. 4: Energy
conditions in the Unruh vacuum, Phys. Rev. D 56, 936
(1997).

[40] M. Visser, Gravitational vacuum polarization, arXiv:gr-qc/
9710034.

[41] M. Visser and C. Barceld, Energy conditions and their
cosmological implications, Proceedings of the COSM0O99
conference (World Scientific Publishing, Singapore,
2000).

[42] P. Martin-Moruno and M. Visser, Classical and semi-
classical energy conditions, Fundam. Theor. Phys. 189,
193 (2017), (formerly Lecture Notes in Physics).

[43] C. Barcel6 and M. Visser, Brane surgery: Energy con-
ditions, traversable wormholes, and voids, Nucl. Phys.
B584, 415 (2000).

[44] C. Barcel6 and M. Visser, Scalar fields, energy conditions,
and traversable wormholes, Classical Quantum Gravity 17,
3843 (2000).

[45] N. Dadhich, S. Kar, S. Mukherji, and M. Visser, R =0
space-times and selfdual Lorentzian wormholes, Phys.
Rev. D 65, 064004 (2002).

[46] C. Barcel6 and M. Visser, Twilight for the energy con-
ditions?, Int. J. Mod. Phys. D 11, 1553 (2002).

[47] M. Visser, S. Kar, and N. Dadhich, Traversable Wormholes
with Arbitrarily Small Energy Condition Violations, Phys.
Rev. Lett. 90, 201102 (2003).

124035-15


https://doi.org/10.1103/PhysRev.48.73
https://doi.org/10.1103/PhysRev.97.511
https://doi.org/10.1063/1.1666161
https://doi.org/10.1063/1.1666161
https://doi.org/10.1007/BF00756794
https://doi.org/10.1007/BF00756794
https://doi.org/10.1007/BF00762340
https://doi.org/10.1007/BF00762340
https://doi.org/10.1119/1.15620
https://doi.org/10.1103/PhysRevLett.61.1446
https://doi.org/10.1103/PhysRevLett.61.1446
https://doi.org/10.1016/0550-3213(89)90100-4
https://doi.org/10.1016/0550-3213(89)90100-4
https://doi.org/10.1103/PhysRevD.39.3182
https://doi.org/10.1103/PhysRevD.41.1116
https://doi.org/10.1103/PhysRevD.41.1116
https://doi.org/10.1016/0370-2693(90)91588-3
https://doi.org/10.1016/0370-2693(90)90718-L
https://doi.org/10.1103/PhysRevD.42.1057
https://doi.org/10.1103/PhysRevD.42.1057
https://doi.org/10.1103/PhysRevD.43.402
https://doi.org/10.1103/PhysRevD.43.402
https://doi.org/10.1142/S0217732391003109
https://doi.org/10.1142/S0217732391003109
https://doi.org/10.1103/PhysRevD.47.554
https://doi.org/10.1103/PhysRevD.47.554
https://doi.org/10.1103/PhysRevD.49.3963
https://doi.org/10.1103/PhysRevD.51.3117
https://doi.org/10.1103/PhysRevD.49.862
https://doi.org/10.1103/PhysRevD.53.722
https://doi.org/10.1103/PhysRevD.52.7318
https://doi.org/10.1103/PhysRevD.56.4745
https://doi.org/10.1103/PhysRevD.56.4745
https://doi.org/10.1103/PhysRevD.55.5212
https://doi.org/10.1103/PhysRevD.55.5212
https://doi.org/10.1103/PhysRevD.58.024014
https://doi.org/10.1103/PhysRevD.58.024014
https://doi.org/10.1103/PhysRevLett.81.746
https://doi.org/10.1103/PhysRevD.58.044021
https://doi.org/10.1103/PhysRevD.58.044021
https://arXiv.org/abs/gr-qc/9901020
https://arXiv.org/abs/gr-qc/9901020
https://doi.org/10.1103/PhysRevD.59.044011
https://doi.org/10.1103/PhysRevD.59.044011
https://doi.org/10.1016/S0370-2693(99)01117-X
https://doi.org/10.1016/S0370-2693(99)01117-X
https://doi.org/10.1103/PhysRevD.54.5103
https://doi.org/10.1103/PhysRevD.54.5103
https://doi.org/10.1103/PhysRevD.54.5116
https://doi.org/10.1103/PhysRevD.54.5116
https://doi.org/10.1103/PhysRevD.54.5123
https://doi.org/10.1103/PhysRevD.54.5123
https://doi.org/10.1103/PhysRevD.56.936
https://doi.org/10.1103/PhysRevD.56.936
https://arXiv.org/abs/gr-qc/9710034
https://arXiv.org/abs/gr-qc/9710034
https://doi.org/10.1007/978-3-319-55182-1_9
https://doi.org/10.1007/978-3-319-55182-1_9
https://doi.org/10.1016/S0550-3213(00)00379-5
https://doi.org/10.1016/S0550-3213(00)00379-5
https://doi.org/10.1088/0264-9381/17/18/318
https://doi.org/10.1088/0264-9381/17/18/318
https://doi.org/10.1103/PhysRevD.65.064004
https://doi.org/10.1103/PhysRevD.65.064004
https://doi.org/10.1142/S0218271802002888
https://doi.org/10.1103/PhysRevLett.90.201102
https://doi.org/10.1103/PhysRevLett.90.201102

LOBO, SIMPSON, and VISSER

PHYS. REV. D 101, 124035 (2020)

[48] S. Kar, N. Dadhich, and M. Visser, Quantifying energy
condition violations in traversable wormholes, Pramana
63, 859 (2004).

[49] E.S.N. Lobo and M. Visser, Fundamental limitations on
‘warp drive’ spacetimes, Classical Quantum Gravity 21,
5871 (2004).

[50] A.V.B. Arellano and F. S.N. Lobo, Evolving wormhole
geometries within nonlinear electrodynamics, Classical
Quantum Gravity 23, 5811 (2006).

[51]1 E.S.N. Lobo, A General class of braneworld wormholes,
Phys. Rev. D 75, 064027 (2007).

[52] F.S.N. Lobo, Exotic solutions in General Relativity:
Traversable wormholes and ‘warp drive’ spacetimes,
Classical Quantum Gravity Research (Nova Science
Publishers, New York, 2008), pp. 1-78, ISBN 978-1-
60456-366-5.

[53] C.G. Boehmer, T. Harko, and F. S. N. Lobo, Conformally
symmetric traversable wormholes, Phys. Rev. D 76,
084014 (2007).

[54] C.G. Boehmer, T. Harko, and F. S. N. Lobo, Wormhole
geometries with conformal motions, Classical Quantum
Gravity 25, 075016 (2008).

[55] E.S.N. Lobo, General class of wormhole geometries in
conformal Weyl gravity, Classical Quantum Gravity 25,
175006 (2008).

[56] F. S.N. Lobo and M. A. Oliveira, Wormhole geometries in
f(R) modified theories of gravity, Phys. Rev. D 80,
104012 (2009).

[57] N. Montelongo-Garcia and F.S.N. Lobo, Wormhole
geometries supported by a nonminimal curvature-matter
coupling, Phys. Rev. D 82, 104018 (2010).

[58] N. Montelongo-Garcia and F.S.N. Lobo, Nonminimal
curvature-matter coupled wormholes with matter satisfy-
ing the null energy condition, Classical Quantum Gravity
28, 085018 (2011).

[59] C. G. Boehmer, T. Harko, and F. S.N. Lobo, Wormhole
geometries in modified teleparralel gravity and the energy
conditions, Phys. Rev. D 85, 044033 (2012).

[60] N. Montelongo-Garcia, F.S.N. Lobo, and M. Visser,
Generic spherically symmetric dynamic thin-shell travers-
able wormholes in standard general relativity, Phys. Rev. D
86, 044026 (2012).

[61] F. S.N. Lobo, P. Martin-Moruno, N. Montelongo-Garcia,
and M. Visser, Linearised stability analysis of generic thin
shells, arXiv:1211.0605.

[62] T. Harko, F. S.N. Lobo, M. K. Mak, and S. V. Sushkov,
Modified-gravity wormholes without exotic matter, Phys.
Rev. D 87, 067504 (2013).

[63] M.R. Mehdizadeh, M. Kord Zangeneh, and F.S.N.
Lob0, Einstein-Gauss-Bonnet traversable wormholes satis-
fying the weak energy condition, Phys. Rev. D 91, 084004
(2015).

[64] M. Kord Zangeneh, F. S.N. Lobo, and M. H. Dehghani,
Traversable wormholes satisfying the weak energy con-
dition in third-order Lovelock gravity, Phys. Rev. D 92,
124049 (2015).

[65] F. S.N. Lobo, M. Bouhmadi-Lépez, P. Martin-Moruno, N.
Montelongo-Garcia, and M. Visser, A novel approach to
thin-shell wormholes and applications, arXiv:1512.08474.

[66] P. Boonserm, T. Ngampitipan, A. Simpson, and M. Visser,
Exponential metric represents a traversable wormbhole,
Phys. Rev. D 98, 084048 (2018).

[67] A. Simpson and M. Visser, Black-bounce to traversable
wormbhole, J. Cosmol. Astropart. Phys. 02 (2019) 042.

[68] A. Simpson, P. Martin-Moruno, and M. Visser, Vaidya
spacetimes, black-bounces, and traversable wormholes,
Classical Quantum Gravity 36, 145007 (2019).

[69] F.S.N. Lobo, Wormholes, warp drives and energy con-
ditions, Fundam. Theor. Phys. 189 (2017).

[70] J.L.Rosa, J. P. S. Lemos, and F. S. N. Lobo, Wormholes in
generalized hybrid metric-Palatini gravity obeying the
matter null energy condition everywhere, Phys. Rev. D
98, 064054 (2018).

[71] N. Sen, Uber die grenzbedingungen des schwerefeldes
an unsteig keitsflichen, Ann. Phys. (Leipzig) 73, 365
(1924).

[72] K. Lanczos, Flichenhafte verteiliung der materie in der
Einsteinschen gravitationstheorie, Ann. Phys. (Leipzig)
74, 518 (1924).

[73] G. Darmois, Mémorial des sciences mathématiques
XXV, Fascicule XXV ch V (Gauthier-Villars, Paris, France,
1927).

[74] J.L.. O’Brien and S. Synge, Jump conditions at disconti-
nuities in general relativity, Commun. Dublin Inst. Adv.
Stud. A 9 (1952), https://www.stp.dias.ie/Communications/
DIAS-STP-Communications-009-OBrienandSynge.pdf.

[75] A. Lichnerowicz, Théories Relativistes de la Gravitation
et de I’Electromagnetisme, Masson, Paris (Masson et C.
Editeurs, Paris, 1955).

[76] W. Israel, Singular hypersurfaces and thin shells in general
relativity, Nuovo Cimento 44B, 1 (1966); and corrections
in 48B, 463 (1966).

[77] E.F. Eiroa and G.E. Romero, Linearized stability of
charged thin-shell wormholes, Gen. Relativ. Gravit. 36,
651 (2004).

[78] F.S.N. Lobo and P. Crawford, Linearized stability analysis
of thin shell wormholes with a cosmological constant,
Classical Quantum Gravity 21, 391 (2004).

[79] J. Fraundiener, C. Hoenselaers, and W. Konrad, A shell
around a black hole, Classical Quantum Gravity 7, 585
(1990).

[80] P.R. Brady, J. Louko, and E. Poisson, Stability of a shell
around a black hole, Phys. Rev. D 44, 1891 (1991).

[81] S. M. C. V. Gonc¢alves, Relativistic shells: Dynamics, hori-
zons, and shell crossing, Phys. Rev. D 66, 084021 (2002).

[82] J.P.S. Lemos, F. S. N. Lobo, and S. Q. de Oliveira, Morris-
Thorne wormholes with a cosmological constant, Phys.
Rev. D 68, 064004 (2003).

[83] F. S.N. Lobo, Energy conditions, traversable wormholes
and dust shells, Gen. Relativ. Gravit. 37, 2023 (2005).

[84] E.S. N. Lobo, Surface stresses on a thin shell surrounding a
traversable wormhole, Classical Quantum Gravity 21,
4811 (2004).

[85] J.P.S. Lemos and F. S. N. Lobo, Plane symmetric travers-
able wormholes in an anti-de Sitter background, Phys. Rev.
D 69, 104007 (2004).

[86] S. Sushkov, Wormholes supported by a phantom energy,
Phys. Rev. D 71, 043520 (2005).

124035-16


https://doi.org/10.1007/BF02705207
https://doi.org/10.1007/BF02705207
https://doi.org/10.1088/0264-9381/21/24/011
https://doi.org/10.1088/0264-9381/21/24/011
https://doi.org/10.1088/0264-9381/23/20/004
https://doi.org/10.1088/0264-9381/23/20/004
https://doi.org/10.1103/PhysRevD.75.064027
https://doi.org/10.1103/PhysRevD.76.084014
https://doi.org/10.1103/PhysRevD.76.084014
https://doi.org/10.1088/0264-9381/25/7/075016
https://doi.org/10.1088/0264-9381/25/7/075016
https://doi.org/10.1088/0264-9381/25/17/175006
https://doi.org/10.1088/0264-9381/25/17/175006
https://doi.org/10.1103/PhysRevD.80.104012
https://doi.org/10.1103/PhysRevD.80.104012
https://doi.org/10.1103/PhysRevD.82.104018
https://doi.org/10.1088/0264-9381/28/8/085018
https://doi.org/10.1088/0264-9381/28/8/085018
https://doi.org/10.1103/PhysRevD.85.044033
https://doi.org/10.1103/PhysRevD.86.044026
https://doi.org/10.1103/PhysRevD.86.044026
https://arXiv.org/abs/1211.0605
https://doi.org/10.1103/PhysRevD.87.067504
https://doi.org/10.1103/PhysRevD.87.067504
https://doi.org/10.1103/PhysRevD.91.084004
https://doi.org/10.1103/PhysRevD.91.084004
https://doi.org/10.1103/PhysRevD.92.124049
https://doi.org/10.1103/PhysRevD.92.124049
https://arXiv.org/abs/1512.08474
https://doi.org/10.1103/PhysRevD.98.084048
https://doi.org/10.1088/1475-7516/2019/02/042
https://doi.org/10.1088/1361-6382/ab28a5
https://doi.org/10.1007/978-3-319-55182-1
https://doi.org/10.1103/PhysRevD.98.064054
https://doi.org/10.1103/PhysRevD.98.064054
https://www.stp.dias.ie/Communications/DIAS-STP-Communications-009-OBrienandSynge.pdf
https://www.stp.dias.ie/Communications/DIAS-STP-Communications-009-OBrienandSynge.pdf
https://www.stp.dias.ie/Communications/DIAS-STP-Communications-009-OBrienandSynge.pdf
https://www.stp.dias.ie/Communications/DIAS-STP-Communications-009-OBrienandSynge.pdf
https://www.stp.dias.ie/Communications/DIAS-STP-Communications-009-OBrienandSynge.pdf
https://www.stp.dias.ie/Communications/DIAS-STP-Communications-009-OBrienandSynge.pdf
https://doi.org/10.1023/B:GERG.0000016916.79221.24
https://doi.org/10.1023/B:GERG.0000016916.79221.24
https://doi.org/10.1088/0264-9381/21/2/004
https://doi.org/10.1088/0264-9381/7/4/011
https://doi.org/10.1088/0264-9381/7/4/011
https://doi.org/10.1103/PhysRevD.44.1891
https://doi.org/10.1103/PhysRevD.66.084021
https://doi.org/10.1103/PhysRevD.68.064004
https://doi.org/10.1103/PhysRevD.68.064004
https://doi.org/10.1007/s10714-005-0177-x
https://doi.org/10.1088/0264-9381/21/21/005
https://doi.org/10.1088/0264-9381/21/21/005
https://doi.org/10.1103/PhysRevD.69.104007
https://doi.org/10.1103/PhysRevD.69.104007
https://doi.org/10.1103/PhysRevD.71.043520

DYNAMIC THIN-SHELL BLACK-BOUNCE TRAVERSABLE ...

PHYS. REV. D 101, 124035 (2020)

[87] F.S.N. Lobo, Phantom energy traversable wormbholes,
Phys. Rev. D 71, 084011 (2005).

[88] F.S.N. Lobo and P. Crawford, Stability analysis of
dynamic thin shells, Classical Quantum Gravity 22,
4869 (2005).

[89] E. S.N. Lobo, Stability of phantom wormholes, Phys. Rev.
D 71, 124022 (2005).

[90] E.F. Eiroa and C. Simeone, Cylindrical thin shell worm-
holes, Phys. Rev. D 70, 044008 (2004).

[91] E.F. Eiroa and C. Simeone, Thin-shell wormholes in
dilaton gravity, Phys. Rev. D 71, 127501 (2005).

[92] M. Thibeault, C. Simeone, and E.F. Eiroa, Thin-shell
wormholes in Einstein-Maxwell theory with a Gauss-
Bonnet term, Gen. Relativ. Gravit. 38, 1593 (2006).

[93] F. Rahaman, M. Kalam, and S. Chakraborty, Thin shell
wormholes in higher dimensional Einstein-Maxwell
theory, Gen. Relativ. Gravit. 38, 1687 (2006).

[94] F. Rahaman, M. Kalam, and S. Chakraborti, Thin shell
wormhole in heterotic string theory, Int. J. Mod. Phys. D
16, 1669 (2007).

[95] C. Bejarano, E.F. Eiroa, and C. Simeone, Thin-shell
wormholes associated with global cosmic strings, Phys.
Rev. D 75, 027501 (2007).

[96] E.F. Eiroa and C. Simeone, Stability of Chaplygin gas
thin-shell wormholes, Phys. Rev. D 76, 024021 (2007).

[97] J.P.S. Lemos and F.S.N. Lobo, Plane symmetric thin-
shell wormholes: Solutions and stability, Phys. Rev. D 78,
044030 (2008).

[98] E.E. Eiroa, M. G. Richarte, and C. Simeone, Thin-shell
wormholes in Brans-Dicke gravity, Phys. Lett. A 373, 1
(2008); Erratum, Phys. Lett. A 373, 2399 (2009).

[99] E.E. Eiroa, Thin-shell wormholes with a generalized
Chaplygin gas, Phys. Rev. D 80, 044033 (2009).

[100] E.F. Eiroa, Stability of thin-shell wormholes with spheri-
cal symmetry, Phys. Rev. D 78, 024018 (2008).

[101] E.F. Eiroa and C. Simeone, Some general aspects of thin-
shell wormholes with cylindrical symmetry, Phys. Rev. D
81, 084022 (2010).

[102] S.H. Mazharimousavi, M. Halilsoy, and Z. Amirabi,
Stability of thin-shell wormholes supported by ordinary
matter in Einstein-Maxwell-Gauss-Bonnet gravity, Phys.
Rev. D 81, 104002 (2010).

[103] G. A.S. Dias and J. P. S. Lemos, Thin-shell wormholes in
d-dimensional general relativity: Solutions, properties, and
stability, Phys. Rev. D 82, 084023 (2010).

[104] X. Yue and S. Gao, Stability of Brans-Dicke thin shell
wormholes, Phys. Lett. A 375, 2193 (2011).

[105] A. DeBenedictis, R. Garattini, and F. S. N. Lobo, Phantom
stars and topology change, Phys. Rev. D 78, 104003 (2008).

[106] P. Musgrave and K. Lake, Junctions and thin shells in
general relativity using computer algebra I: The Darmois-
Israel formalism, Classical Quantum Gravity 13, 1885
(1996).

[107] M. Ishak and K. Lake, Stability of transparent spherically
symmetric thin shells and wormholes, Phys. Rev. D 65,
044011 (2002).

[108] S. W. Hawking and G.F. R. Ellis, The Large Scale
Structure of Spacetime (Cambridge University Press,
Cambridge, England, 1973).

[109] K. A. Bronnikov, V. N. Melnikov, and H. Dehnen, Regular
black holes and black universes, Gen. Relativ. Gravit. 39,
973 (2007).

[110] K. A. Bronnikov, V. N. Melnikov, and H. Dehnen, On a
general class of brane world black holes, Phys. Rev. D 68,
024025 (2003).

[111] P.O. Mazur and E. Mottola, Gravitational condensate
stars: An alternative to black holes, arXiv:gr-qc/0109035.

[112] P.O. Mazur and E. Mottola, 10th Marcel Grossmann
Meeting on Recent Developments in Theoretical and
Experimental General Relativity, Gravitation and Rela-
tivistic Field Theories (MG X MMIII) (World Scientific
Publishing, Singapore, 2006), pp. 1041-1047.

[113] P. O. Mazur and E. Mottola, Dark energy and condensate
stars: Casimir energy in the large, arXiv:gr-qc/0405111.

[114] P.O. Mazur and E. Mottola, Gravitational vacuum con-
densate stars, Proc. Natl. Acad. Sci. U.S.A. 101, 9545
(2004).

[115] M. Visser and D.L. Wiltshire, Stable gravastars: An
Alternative to black holes?, Classical Quantum Gravity
21, 1135 (2004).

[116] C. Cattden, T. Faber, and M. Visser, Gravastars must have
anisotropic pressures, Classical Quantum Gravity 22, 4189
(2005).

[117] E. S.N. Lobo, Stable dark energy stars, Classical Quantum
Gravity 23, 1525 (2006).

[118] F. S.N. Lobo and A. V. B. Arellano, Gravastars supported
by nonlinear electrodynamics, Classical Quantum Gravity
24, 1069 (2007).

[119] P. Martin-Moruno, N. Montelongo-Garcia, F. S. N. Lobo,
and M. Visser, Generic thin-shell gravastars, J. Cosmol.
Astropart. Phys. 03 (2012) 034.

[120] E. S. N. Lobo, P. Martin-Moruno, N. Montelongo-Garcia,
and M. Visser, Novel stability approach of thin-shell
gravastars, arXiv:1512.07659.

124035-17


https://doi.org/10.1103/PhysRevD.71.084011
https://doi.org/10.1088/0264-9381/22/22/012
https://doi.org/10.1088/0264-9381/22/22/012
https://doi.org/10.1103/PhysRevD.71.124022
https://doi.org/10.1103/PhysRevD.71.124022
https://doi.org/10.1103/PhysRevD.70.044008
https://doi.org/10.1103/PhysRevD.71.127501
https://doi.org/10.1007/s10714-006-0324-z
https://doi.org/10.1007/s10714-006-0325-y
https://doi.org/10.1142/S0218271807010924
https://doi.org/10.1142/S0218271807010924
https://doi.org/10.1103/PhysRevD.75.027501
https://doi.org/10.1103/PhysRevD.75.027501
https://doi.org/10.1103/PhysRevD.76.024021
https://doi.org/10.1103/PhysRevD.78.044030
https://doi.org/10.1103/PhysRevD.78.044030
https://doi.org/10.1016/j.physleta.2008.10.065
https://doi.org/10.1016/j.physleta.2008.10.065
https://doi.org/10.1016/j.physleta.2009.04.065
https://doi.org/10.1103/PhysRevD.80.044033
https://doi.org/10.1103/PhysRevD.78.024018
https://doi.org/10.1103/PhysRevD.81.084022
https://doi.org/10.1103/PhysRevD.81.084022
https://doi.org/10.1103/PhysRevD.81.104002
https://doi.org/10.1103/PhysRevD.81.104002
https://doi.org/10.1103/PhysRevD.82.084023
https://doi.org/10.1016/j.physleta.2011.04.055
https://doi.org/10.1103/PhysRevD.78.104003
https://doi.org/10.1088/0264-9381/13/7/018
https://doi.org/10.1088/0264-9381/13/7/018
https://doi.org/10.1103/PhysRevD.65.044011
https://doi.org/10.1103/PhysRevD.65.044011
https://doi.org/10.1007/s10714-007-0430-6
https://doi.org/10.1007/s10714-007-0430-6
https://doi.org/10.1103/PhysRevD.68.024025
https://doi.org/10.1103/PhysRevD.68.024025
https://arXiv.org/abs/gr-qc/0109035
https://arXiv.org/abs/gr-qc/0405111
https://doi.org/10.1073/pnas.0402717101
https://doi.org/10.1073/pnas.0402717101
https://doi.org/10.1088/0264-9381/21/4/027
https://doi.org/10.1088/0264-9381/21/4/027
https://doi.org/10.1088/0264-9381/22/20/002
https://doi.org/10.1088/0264-9381/22/20/002
https://doi.org/10.1088/0264-9381/23/5/006
https://doi.org/10.1088/0264-9381/23/5/006
https://doi.org/10.1088/0264-9381/24/5/004
https://doi.org/10.1088/0264-9381/24/5/004
https://doi.org/10.1088/1475-7516/2012/03/034
https://doi.org/10.1088/1475-7516/2012/03/034
https://arXiv.org/abs/1512.07659

