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We analyze the classical configurations of a bootstrapped Newtonian potential generated by
homogeneous spherically symmetric sources in terms of a quantum coherent state. We first compute
how the mass and mean wavelength of these solutions scale in terms of the number of quanta in the
coherent state. We then note that the classical relation between the ADM mass and the proper mass of the
source naturally gives rise to a generalized uncertainty principle (GUP) for the size of the gravitational
radius in the quantum theory. Consistency of the mass and wavelength scalings with this GUP requires the
compactness remains at most of order one even for black holes, and the corpuscular predictions are thus
recovered, with the quantized horizon area expressed in terms of the number of quanta in the coherent state.
Our findings could be useful for analyzing the classicalization of gravity in the presence of matter and the
avoidance of singularities in the gravitational collapse of compact sources.
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I. INTRODUCTION AND MOTIVATION

Black holes represent a benchmark for any attempt at
quantizing gravity. According to general relativity, the
gravitational collapse of any compact source will generate
geodetically incomplete space-times if a trapping surface
appears [1], whereas an eternal pointlike source is math-
ematically incompatible with the Einstein field equations
[2]. We expect a quantum theory of the gravitational
interaction should fix this inconsistent classical picture,
like quantum mechanics explains the stability of the
hydrogen atom. Whether this can be achieved by mod-
ifications of the gravitational dynamics solely at the
Planck scale or with sizeable implications for macroscopic
phenomenology remains open to debate.
The recently proposed corpuscular model of black

holes [3] abandons the geometric interpretation of gravity
at the root of general relativity and belongs to the class
of approaches for which geometry should only emerge
at suitable (macroscopic) scales from the underlying
(microscopic) quantum field theory of gravitons. It is in
particular based on the idea that the constituents of
black holes are soft gravitons (marginally) bound in their
own potential and forming a condensate [3,4]. The character-
istic Compton-de Broglie wavelength of these gravitons
should be

λG ∼ RH; ð1:1Þ

where the (gravitational) Schwarzschild radius of the
black hole of Arnowitt-Deser-Misner (ADM) mass [5] M
is given by1

RH ¼ 2GNM; ð1:2Þ
and the energy of the gravitons is correspondingly given by
ϵG ∼ ℏ=λG. If one assumes that the totalmass of the blackhole
M ≃ NGϵG, there immediately follows the scaling relation

NG ∼
M2

m2
p
∼
R2
H

l2
p
; ð1:3Þ

a result which reproduces Bekenstein’s conjecture for the
quantization of the horizon area [6], and indeed holds for any
compact sources, as we shall review in the following.
Black hole formation by gravitational collapse requires

the presence of matter in any astrophysically realistic
situations,2 whose inclusion then allows for looking at a
connection with the post-Newtonian approximation [7].
This can be seen by considering that the (negative)
gravitational energy of a source of massM localized inside
a sphere of radius R is given by

UN ∼MVNðRÞ ∼ −
GNM2

R
; ð1:4Þ
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1We shall use units with c ¼ 1 and the Newton constant
GN ¼ lp=mp, where lp is the Planck length and mp the Planck
mass (so that ℏ ¼ lpmp).

2Of course, one could also envisage the creation of black holes
by focusing gravitational waves, but highly energetic processes
involving matter would presumably be needed in order to
produce those waves in the first place.
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where VN ∼ −GNM=r is the (negative) Newtonian poten-
tial. This classical potential can be reproduced by the
expectation value of a scalar field on a coherent state jgi,
whose normalization then yields the graviton number (1.3)
[7–9]. In addition to that, assuming most gravitons have the
same wavelength λG, the (negative) energy of each single
graviton is correspondingly given by

ϵG ∼
UN

NG
∼ −

lpmp

R
; ð1:5Þ

which yields the typical Compton-de Broglie length
λG ∼ R. The graviton self-interaction energy hence repro-
duces the (positive) post-Newtonian energy,

UGGðRÞ ∼ NGϵGVNðRÞ ∼
G2

NM
3

R2
; ð1:6Þ

and the fact that gravitons in a black hole are marginally
bound is reflected by the maximal packing condition [3],
which roughly reads UN þ UGG ≃ 0 for R ≃ RH [7,8].
Small (post-Newtonian) perturbations around the New-

tonian potential were analyzed in more details in Ref. [8].
However, since the post-Newtonian correction VPN ∼ 1=r2 is
positive and grows faster than the Newtonian potential closer
to thesurfaceof thesource,onecannotconsidermatter sources
with radiusR≲ RH in this approximation. For that purpose, a
bootstrapped Newtonian potential V satisfying a nonlinear
equation for a spherically symmetric and static source was
derived in Ref. [8] and subsequently studied [10] and
improved [11]. The final form of the governing equation
contains, besides the usual Newtonian coupling with the
matter density, a coupling with the internal pressure and a
gravitational self-interaction term, all of which are treated
nonperturbatively on the same footing in order to explore the
effects of nonlinearities in the strong field regime [11,12].
Solutions were found for uniform sources of proper massM0

with generic compactness GNM=R ∼ RH=R, from the weak
field regimeR ≫ RH, in which we recover the standard post-
Newtonian picture with M ≃M0, to the large compactness
case R≲ RH where we find the proper massM0 significantly
differs from the ADM mass M and the source is enclosed
within a (Newtonian) horizon [11]. It is the latter case which
we can naively view as describing black holes in bootstrapped
Newtonian gravity, and it is natural to ask if quantum effects
could imply a constraint on the maximum compactness of
the source in order to recover the maximal packing men-
tioned above.
Like the Newtonian analog, the bootstrapped potential

determines the gravitational pull acting on test particles at
rest.3 It can therefore be used in order to describe the mean
field force acting on the constituents of the system, namely

the baryons in the static matter source as well as the
gravitons in the potential itself. In order to gain some
insight into the quantum structure of such self-gravitating
systems, the solutions for the bootstrapped potential will be
here described in terms of the quantum coherent state of a
free massless scalar field, analogously to what was done for
the Newtonian potential in Ref. [8] (see also Ref. [9] for a
model of black holes, Ref. [13] for general solitons and
Refs. [14] for photons in a static electric or magnetic field).
This analysis will be carried out in details both in the
Newtonian approximation, which corresponds to sources of
small compactness, and for the large compactness case. The
analysis of the coherent state will allow us to recover the
scaling (1.3) for the ADM mass M in terms of the number
of gravitons NG in all cases, whereas the scaling (1.1) for
the mean wavelength will appear to require the fine-tuned
maximal packing R ∼ RH. However, by considering the
quantum nature of the source in rather general terms, we
will also find that the classical bootstrapped relation
between the black hole mass M and the proper mass M0

of the source implies a generalized uncertainty principle
(GUP) [15] for the horizon size. Moreover, consistency of
this GUP with the properties of the coherent state indeed
suggests that the compactness of the source should be at
most of order one and the scaling relation (1.1) can
therefore be recovered in a fully quantum description of
black holes. Such a bound on the maximum compactness of
self-gravitating objects is at the heart of the so-called
classicalization of gravity [16], according to which quan-
tum fluctuations involved in processes above the Planck
scale should be suppressed precisely by the formation of
black holes viewed as quasiclassical configurations.
The paper is organized as follows: in the Sec. II we

review the coherent state description for a static potential
and apply it to the Newtonian potential generated by a
uniform source; in Sec. III, we recall the fundamentals of
the bootstrapped Newtonian picture, for which we then
repeat the analysis in terms of a coherent state in Sec. IV
(with more technical details given in the Appendix B). In
that section, we will derive the main results mentioned
above, with final comments and outlook in Sec. V.

II. QUANTUM COHERENT STATE

We will first review how to describe a generic static
potential V by means of the coherent state of a free massless
scalar field. This will allow us to introduce a formal way of
counting the number of quanta NG for any such potential.
We remark that a clear understanding of the physical
meaning of the number of quanta so defined, in a field
configuration that is not in general perturbatively related
with the vacuum, could possibly be obtained only by
studying the dynamical process leading to the formation
of such a configuration. Of course, there is little hope of
solving this problem analytically in a nonlinear theory. Like
in Refs. [7,8], we shall instead take a similar approach to

3In a quantum field theory description, this dynamics would be
obtained from transition amplitudes yielding the propagator of the
test particle. We here assume that all the required approximations
hold for the dynamics to be described in terms of a potential.

CASADIO, LENZI, and CIARFELLA PHYS. REV. D 101, 124032 (2020)

124032-2



that for general solitons in quantum field theory found in
Ref. [13] (see also Ref. [9] for a model of black holes and
Refs. [14] for photons in QED). We remark, in fact, that
for our purposes, the number NG is mostly an auxiliary
quantity which allows us to tackle the issue of classical-
ization by means of the corresponding scaling relations
(1.1) and (1.3) for black holes, as discussed in Sec. I.
We start by setting the stage for the quantum interpre-

tation of the dimensionless V ¼ VðxÞ based on simple
Fourier transforms. In order to fix the notation, we write
normalized plane waves in the three-dimensional space
R3 ¼ fx ¼ ðx1; x2; x3Þ∶xi ∈ Rg as

vkðxÞ≡ eik·x

ð2πÞ3=2 ; ð2:1Þ

so that they satisfy the orthogonality relationZ
R3

dxv�kðxÞvhðxÞ ¼ δðk − hÞ: ð2:2Þ

We can then expand the real potential as

VðxÞ ¼
Z
R3

dk
ð2πÞ3 ṼðkÞvkðxÞ; ð2:3Þ

where, in turn, one has

ṼðkÞ ¼
Z
R3

dxVðxÞv�kðxÞ; ð2:4Þ

with ṼðkÞ ¼ Ṽ�ð−kÞ.
Next, we will specialize to spherically symmetric cases

and apply the construction to the Newtonian potential
generated by a uniform ball of matter, for which the
Fourier transform can be computed explicitly.4 This exer-
cise will allow us to introduce in the next section a different
way of analyzing cases, like the bootstrapped Newtonian
potential, for which this cannot be done analytically.

A. Static scalar potential

As it was done in Ref. [8], the first step consists in
rescaling the potential V so as to obtain a canonically
normalized real scalar field5

Φ ¼
ffiffiffiffiffiffi
mp

lp

s
V: ð2:5Þ

We will then quantize Φ as a free massless field satisfying
the wave equation

ð−∂2
t þ ∂2

x1 þ ∂2
x2 þ ∂2

x3ÞΦðt; xÞ≡ ð−∂2
t þ△ÞΦ ¼ 0;

ð2:6Þ

whose solutions are given by

ukðt; xÞ ¼ vkðxÞe−ikt; ð2:7Þ

with k ¼ ffiffiffiffiffiffiffiffiffi
k · k

p
, and satisfy the orthogonality relation in

the Klein-Gordon scalar product6

i
Z

dx½u�kðt; xÞ∂tuhðt; xÞ − ∂tu�kðt; xÞuhðt; xÞ� ¼ δðk − hÞ:

ð2:8Þ
The quantum field operator and its conjugate momentum
then read

Φ̂ðt; xÞ ¼
Z

dk
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffi
lpmp

2k

r
ðâke−iktþik·x þ â†ke

ikt−ik·xÞ;

ð2:9Þ

Π̂ðt; xÞ ¼ i
Z

dk
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lpmpk

2

r
ð−âke−iktþik·x þ â†ke

ikt−ik·xÞ;

ð2:10Þ

and must satisfy the equal time commutation relations

½Φ̂ðt; xÞ; Π̂ðt; yÞ� ¼ iℏδðx − yÞ: ð2:11Þ

The creation and annihilation operators therefore obey the
standard commutation rules

½âk; â†p� ¼ δðk − pÞ; ð2:12Þ

and the Fock space of quantum states is built from the
vacuum âkj0i ¼ 0.
Classical configurations of the scalar field must be given

by suitable states in the Fock space, and we note that a
natural choice for V ¼ VðxÞ is given by a coherent state,

âkjgi ¼ gkeiγkðtÞjgi; ð2:13Þ

such that the expectation value of the quantum field Φ̂
reproduces the classical potential, namelyffiffiffiffiffiffi

lp

mp

s
hgjΦ̂ðt; xÞjgi ¼ VðxÞ: ð2:14Þ

From the expansion (2.9), one can easily compute the left-
hand side of Eq. (2.14) by making use of Eq. (2.13).
Comparing with Eq. (2.3) then yields

4The even simpler cases of the Newtonian potential for a
pointlike source and for a Gaussian source can be found, e.g., in
Ref. [8].

5We recall that a canonically normalized scalar field has
dimensions of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mass=length

p
.

6We will usually omit the domain of integration when it is
given by all of R3.
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gk ¼
1

lp

ffiffiffi
k
2

r
ṼðkÞ ð2:15Þ

and γkðtÞ ¼ kt, with the latter condition turning (propa-
gating) plane waves into standing waves.
We are particularly interested in the total number of

quanta in this coherent state, whose general expression is
given by

N ¼
Z

dk
ð2πÞ3 hgjâ

†
kâkjgi

¼
Z

dk
ð2πÞ3 g

2
k

¼ 1

2l2
p

Z
dk

ð2πÞ3 kṼ
2ðkÞ; ð2:16Þ

and in their mean wavelength λ ≃ 1=k̄≡ N=hki, where the
mean wave number is given by

hki ¼
Z

dk
ð2πÞ3 hgjkâ

†
kâkjgi

¼
Z

dk
ð2πÞ3 kg

2
k

¼ 1

2l2
p

Z
dk

ð2πÞ3 k
2Ṽ2ðkÞ: ð2:17Þ

The above general expressions will next be specified for the
Newtonian potential generated by spherically symmetric
sources.

B. Newtonian potential for spherical sources

The Newtonian potential VðxÞ ¼ VNðrÞ for a spherically
symmetric source of static energy density ρ ¼ ρðrÞ, can be
described by means of the Lagrangian

LN½VN� ¼ −4π
Z

∞

0

r2dr

�ðV 0
NÞ2

8πGN
þ ρVN

�
; ð2:18Þ

where f0 ≡ df=dr. The corresponding Euler-Lagrange
equation of motion is the Poisson equation in spherical
coordinates,

r−2ðr2V 0
NÞ0 ≡△VN ¼ 4πGNρ: ð2:19Þ

Since the system is static, the (on-shell) Hamiltonian is
simply given byHN½VN� ¼ −LN½VN�. After introducing the
rescaled field Φ of Eq. (2.5), we also need to rescale the
Hamiltonian by a factor of 4π in order to canonically
normalize the kinetic term,7 to wit

HN½Φ� ¼ 4πHN½VN�: ð2:20Þ

The previous general analysis for the coherent state can
now be adapted to the spherically symmetric case by just
replacing the plane waves (2.1) with spherical Bessel
functions [8],

vkðxÞ → j0ðkRÞ≡ sinðkRÞ
kR

: ð2:21Þ

By substituting Eq. (2.3) into Eq. (2.19), we obtain the
general result

ṼNðkÞ ¼ −
4πlpρ̃ðkÞ
mpk2

; ð2:22Þ

which, together with Eq. (2.15), leads to

gk ¼ −
4πρ̃ðkÞ
mp

ffiffiffiffiffiffiffi
2k3

p : ð2:23Þ

The spherically symmetric versions of Eqs. (2.16) and
(2.17) then read

NG ¼
Z

∞

0

dk
2π2

k2g2k; ð2:24Þ

and

hki ¼
Z

∞

0

dk
2π2

k3g2k; ð2:25Þ

where the suffix G emphasizes that the quantity is evaluated
in the coherent state representing the gravitational potential.

C. Newtonian potential of a uniform ball

Note that all expressions above can be explicitly com-
puted if we know the coefficients gk. As a workable
example, we will consider a homogeneous source of radius
R, whose density is given by

ρ ¼ ρ0 ≡ 3M0

4πR3
ΘðR − rÞ; ð2:26Þ

where

M0 ¼ 4π

Z
R

0

drr2ρðrÞ ≃ NBμB ð2:27Þ

is the total rest mass of the homogeneous configuration
of NB baryonic constituents with proper mass μB. The
solution to Eq. (2.19) must satisfy the regularity condition
in the origin

V 0
inð0Þ ¼ 0; ð2:28Þ

where V in ¼ VNðr < RÞ, and it must also be smooth across
the surface r ¼ R,7See Ref. [8] for more details.
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�
V inðRÞ ¼ VoutðRÞ≡ VR;

V 0
inðRÞ ¼ V 0

outðRÞ≡ V 0
R;

ð2:29Þ

where Vout ¼ VNðr > RÞ. The complete solution is in fact
well known and reads

VN ¼
(

GNM
2R3 ðr2 − 3R2Þ for 0 ≤ r < R;

− GNM
r for r > R;

ð2:30Þ

where M ¼ M0 is the ADM mass equal to the rest mass in
this Newtonian case.
The Fourier transform of the density (2.26) is given by

ρ̃ðkÞ ¼ 4π

Z
∞

0

drr2ρðrÞj0ðkrÞ

¼ 3M
k2R2

�
sinðkRÞ
kR

− cosðkRÞ
�
; ð2:31Þ

and the coherent state eigenvalues then read

gk ¼
12πMffiffiffi

2
p

mpk7=2R2

�
cos ðkRÞ − sin ðkRÞ

kR

�
: ð2:32Þ

The mean wave number (2.25) can be easily evaluated from
this expression,

hki ¼ 36M2

m2
pR4

Z
∞

0

dk
k4

�
cos ðkRÞ − sin ðkRÞ

kR

�
2

¼ 36M2

m2
pR

Z
∞

0

dz
z4

�
cos z −

sin z
z

�
2

¼ 12πM2

5m2
pR

¼ −4π
UN

lpmp
; ð2:33Þ

where

UN ¼ −
3GNM2

5R
ð2:34Þ

is precisely the gravitational potential energy of the spheri-
cally symmetric homogeneous source (2.26), a result
consistent with the linearity of the Newtonian interaction.8

While the mean wave number hki above is finite, the
number of gravitons (2.24) diverges in the infrared (IF), i.e.,
k2g2k → ∞ for k → 0. This is also expected as the potential
(2.30) has infinite spatial support and we could simply
introduce a cutoff k0 ¼ 1=R∞ to account for the necessarily
finite life-time of a realistic source [8]. In this case,

NG ¼ 36M2

m2
pR4

Z
∞

k0

dk
k5

�
cos ðkRÞ − sin ðkRÞ

kR

�
2

¼ 36M2

m2
p

Z
∞

R=R∞

dz
z5

�
cos z −

sin z
z

�
2

ð2:35Þ

≃ 4
M2

m2
p
log

�
R∞

2R

�
: ð2:36Þ

The corpuscular scaling (1.3) with the square of the energy
M of the system already appears at this stage, but we
can still understand better the logarithmic divergence for
R∞ → ∞ in order to make full sense of it.
As pointed out in Ref. [13], the fact that the energy

(or the mean wave number) is finite despite the diverging
number of constituents is a direct consequence of a
decreasing energy contribution coming from gravitons with
lower and lower momenta. We can in fact separate two
contributions by introducing a scale Λ which splits the
phase space of gravitons into effective (hard) and IR (soft)
modes,

hki ¼
Z

Λ

0

dk
2π2

k3g2k þ
Z

∞

Λ

dk
2π2

k3g2k

≡ kIR þ keff ; ð2:37Þ

where we require keffðΛÞ ≫ kIRðΛÞ. Indeed the scale Λ
remains somewhat arbitrary, since it is just defined by
requiring that keffðΛÞ ≃ hki to a good approximation. The
accuracy of the approximation is clearly measured by the
ratio kIR=keff which we plot in Fig. 1 (see Appendix A for
the details). The interesting fact is that we can identify a
threshold value ΛR ≃ 1=R which only depends on the size
R of the source and not on M. Values of Λα ¼ ΛR=α ¼
1=αR with α > 1 correspond to kIR=keff < 1 and are
acceptable approximations, with the level of precision
set by α (e.g., kIR=keff ≃ 0.1 for α ¼ 5). In particular,
we find

FIG. 1. Ratio between kIR and keff for varying Λ. The threshold
is ΛR ≃ 1=R.

8We note that the factor of 4π in the right-hand side of
Eq. (2.33) is just a consequence of the canonical rescaling (2.20).
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keff ¼
M2

m2
pR

fðαÞ; ð2:38Þ

with fðαÞ given explicitly in Eq. (A1).
We can now use the scale Λα in order to identify the

number Neff
G of effective (hard) gravitons and the number

NIR
G of IR gravitons, namely

NG ¼
Z

Λα

0

dk
2π2

k2g2k þ
Z

∞

Λα

dk
2π2

k2g2k

¼ NIR
G þ Neff

G : ð2:39Þ
The finite number of gravitons contributing to keff ≃ hki is
given by

Neff
G ¼ M2

m2
p
gðαÞ; ð2:40Þ

where gðαÞ is a numerical factor displayed in Eq. (A4). The
infinity (for R∞ → ∞) in the total amount (2.36) comes
from NIR

G , which counts the very soft gravitons contributing
the small kIR. It is now quite straightforward to evaluate the
mean graviton wavelength as

λG ≃
Neff

G

keff
¼ R

fðαÞ
gðαÞ

≡ RhðαÞ: ð2:41Þ
Since hðαÞ < 1 for α > 1 (see Fig. 2), we have

λGðαÞ ≃ hðαÞR ≤ αR; ð2:42Þ

and the average wavelength consistently belongs to the
effective part of the spectrum [that is, 1=λGðαÞ > Λα].
We conclude this section by remarking once more that

the important results are that Neff
G only depends on the

ADM energy M precisely like in Eq. (1.3), whereas λG
is only proportional to R, and none of this quantities
associated with the coherent state for the Newtonian
potential therefore depend on the compactness of the

source. The corpuscular scaling (1.1) for black holes,
namely λG ≃ RH ∼M, could therefore be obtained only
by assumingR ∼ RH. This all should not be surprising since
the Newtonian theory is linear, hence nothing special
happens in it when R ∼ RH and a black hole is formed.

III. BOOTSTRAPPED GRAVITATIONAL
POTENTIAL

In this section, we briefly recall the definition of the
bootstrapped Newtonian gravity described in details in
Refs. [8,10–12]. In particular, the nonlinear equation for
the potential generated by a compact source is obtained by
adding to the Newtonian Lagrangian (2.18) several interact-
ing terms for the field potential V. First of all, we couple V to
a gravitational current proportional to its own energy density,

JV ¼ 4
δUN

δV
¼ −

½V 0ðrÞ�2
2πGN

; ð3:1Þ

where V is the spatial volume and UN the Newtonian
potential energy. The current JV can also be obtained from
the weak field expansion of the Einstein-Hilbert action to
next-to-leading order [8]. Moreover, at the same order in that
expansion, one finds the term

Jρ ¼ −2V2; ð3:2Þ

which couples to the energy density ρ. Finally, since the
pressure gravitates and becomes very relevant for large
compactness, we add to the energy density the term [11]

JB ¼ −
δUB

δV
≃ p; ð3:3Þ

where UB is the potential energy associated with the work
done by the force responsible for the pressure. The total
Lagrangian then reads

L½V� ¼ LN½V�

− 4π

Z
∞

0

r2dr½qVJVV þ qBJBV þ qρJρðρþ pÞ�

¼ −4π
Z

∞

0

r2dr

� ðV 0Þ2
8πGN

ð1 − 4qVVÞ

þ Vðρþ qBpÞ − 2qρV2ðρþ pÞ
�
; ð3:4Þ

where the coupling constants qV , qB and qρ can be used
to track the effects of the different contributions. Their
values would depend on the underlying microscopic
quantum theory,9 but we will here consider only the case

FIG. 2. Plot of the function h ¼ hðαÞ.

9See Refs. [11,12] for more details on the role of these
coupling parameters.
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qV ¼ qB ¼ qρ ¼ 1 for simplicity, so that the corresponding
field equation for V reads

△V ¼ 4πGNðρþ pÞ þ 2ðV 0Þ2
1 − 4V

: ð3:5Þ

Finally, one must include the conservation equation

p0 ¼ −V 0ðρþ pÞ: ð3:6Þ

Equation (3.5) is understood as the Poisson equation (2.19)
with the addition of pressure and a self-interacting term,
while Eq. (3.6) is the Newtonian conservation equation
which also accounts for pressure contributing to the matter
energy density.

A. Uniform ball

The above equations were solved in Ref. [11] for a
homogeneous ball of matter in vacuum described by the
density (2.26). The solutions must satisfy the same regu-
larity conditions (2.28) and (2.29) of the Newtonian
potential and must approach the Newtonian behavior far
from the source

VoutðrÞ ≃ VN ¼ −
GNM
r

for r ≫ R�; ð3:7Þ

where M is the total ADM energy which is equal to the
rest mass M0 only in the Newtonian case. In general, the
relation M0 ¼ M0ðMÞ is rather involved and is fixed by
the boundary conditions (2.29). The scale R� introduced
above represents a distance (well) beyond which the
potential can be safely approximated by the Newtonian
expression in the outer vacuum. It is therefore natural to
identify R� as the larger between the gravitational radius of
the matter source with energyM and the actual size R of the
matter source,

R� ¼ maxfGNM;Rg: ð3:8Þ

In the following, we will review the (approximate) sol-
utions obtained in Refs. [10,11].

1. Outer potential

In vacuum, where ρ ¼ p ¼ 0, Eq. (3.5) simplifies to

△V ¼ 2ðV 0Þ2
1 − 4V

; ð3:9Þ

and an exact solution was found in Ref. [10] satisfying the
asymptotic condition (3.7), namely

Vout ¼
1

4

�
1 −

�
1þ 6GNM

r

�
2=3

�
: ð3:10Þ

The right-hand sides of Eq. (2.29) can therefore be
computed exactly,

VR ¼ VoutðRÞ ¼
1

4

�
1 −

�
1þ 6GNM

R

�
2=3

�
; ð3:11Þ

V 0
R ¼ V 0

outðRÞ ¼
GNM

R2ð1þ 6GNM=RÞ1=3 ; ð3:12Þ

which will be useful in the following.

2. Pressure and inner potential

In the interior of the homogeneous ball, Eq. (3.6) can be
used to express the pressure as [11]

p ¼ ρ0½eVR−V − 1�: ð3:13Þ

The field equation (3.5) then becomes

△V ¼ 3GNM0

R3
eVR−V þ 2ðV 0Þ2

1 − 4V
: ð3:14Þ

As shown in Ref. [11], it is possible to find approximate
solutions for GNM=R ≪ 1 and GNM=R ≫ 1, which
of course give two different relations between M and
M0. More explicitly, in the low compactness regime
GNM=R ≪ 1, one finds10

V in ≃ Vs ¼
GNM
2R

�
1 −

2GNM
R

�
r2 − 3R2

R2
; ð3:15Þ

with

M0 ≃
Me

− GNM

2Rð1þ6GNM=RÞ1=3

ð1þ 6GNM=RÞ1=3

≃M

�
1 −

5GNM
2R

�
: ð3:16Þ

On the other hand, when the compactness is very large,
GNM=R ≫ 1, the inner solution is well approximated by
the linear potential

V in ≃ V lin ¼ VR þ V 0
Rðr − RÞ; ð3:17Þ

and we obtain the relation

GNM0

R
∼
�
GNM
R

�
2=3

; ð3:18Þ

which expresses the compactness in the (hidden) mass
M0 in terms of the (observable) compactness in the outer

10More accurate approximations can be found in Ref. [11].
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mass M. Equation (3.16) also shows that M0 ≲M for
GNM=R ≪ 1, whereas Eq. (3.18) tells us thatM0 ≪ M for
GNM=R ≫ 1. In both cases the ADM mass is larger than
the proper mass of the source.

IV. SCALING RELATIONS FROM THE
BOOTSTRAPPED POTENTIAL

Everything is set for a quantum interpretation of
the bootstrapped potential in terms of a coherent state
following the approach of Sec. II. Unfortunately, the
calculations of the number of gravitons and their mean
wavelength are now made more difficult by the fact that we
cannot compute the Fourier transform of the scalar poten-
tial V ¼ VðrÞ and the integrals in k in Eqs. (2.16) and
(2.17) cannot be done exactly. For this reason, we shall
employ a different procedure, detailed in Appendix B,

which amounts to rewriting Eq. (2.17) as the spatial integral
(B8),11 that is

hki ¼ 2π

l2
p

Z
∞

0

drr2½V 0ðrÞ�2

¼ 2π

l2
p

Z
R

0

drr2½V 0
inðrÞ�2 þ

2π

l2
p

Z
∞

R
drr2½V 0

outðrÞ�2;

ð4:1Þ
and then use a similar argument to that of Sec. II C. The
main difference is that, since we integrate along the radial
coordinate, we must determine a length scale Rγ such that
the integral from 0 to Rγ provides the main contribution to
hki in Eq. (4.1).
We separate the two possible cases with Rγ < R and

Rγ > R, respectively, and define

keff ¼
8<
:

2π
l2p

R Rγ

0 drr2½V 0
inðrÞ�2 for 0 ≤ Rγ < R;

2π
l2p

R
R
0 drr2½V 0

inðrÞ�2 þ 2π
l2p

R Rγ

R drr2½V 0
outðrÞ�2 for Rγ > R;

ð4:2Þ

and

k∞ ¼
8<
:

2π
l2p

R
R
Rγ
drr2½V 0

inðrÞ�2 þ 2π
l2p

R∞
R drr2½V 0

outðrÞ�2 for 0 ≤ Rγ < R;

2π
l2p

R∞
Rγ
drr2½V 0

outðrÞ�2 for Rγ > R:
ð4:3Þ

The ratio

k∞
keff

¼ γ; ð4:4Þ

with γ < 1, defines the scale Rγ for which keff approximates
hkiwithin the required precision (similarly to the parameter
α used in Sec. II C). The analysis in Appendix B 2 shows
that the number of gravitons scales as M2=m2

p, under quite
general assumptions, and contains the same logarithmic
divergence as in the Newtonian case, with R� replacing R,
that is

NG ≃ 4
M2

m2
p
log

�
R∞

R�

�
: ð4:5Þ

We shall therefore rely on the argument of Sec. II C and
assume that the number of gravitons effectively contribut-
ing up to the scale Rγ is finite and proportional to M2=m2

p,

Neff
G ∼

M2

m2
p
: ð4:6Þ

In the following, we will estimate the scale Rγ for the
Newtonian potential as a test of the method and then apply
it to the bootstrapped potential.

A. Newtonian potential

We start with the Newtonian potential in order to test the
validity of the above Eqs. (4.1), (4.2) and (4.3). The first
important check is that Eq. (4.1) indeed reproduces the
result (2.33),

hki ¼ 2π

l2
p

Z
R

0

drr4
G2

NM
2

R6
þ 2π

l2
p

Z
R∞

R
dr

G2
NM

2

r2

¼ 2πM2

5m2
pR

þ 2πM2

m2
pR

¼ 12πM2

5m2
pR

: ð4:7Þ

It is then easy to verify that Eqs. (4.2) and (4.3) give

keff ¼
8<
:

2πM2R5
γ

5m2
pR6 for 0 ≤ Rγ < R;

12πM2

5m2
pR

− 2πM2

m2
pRγ

for Rγ > R;
ð4:8Þ11It is crucial that the NG is still IR divergent while hki is finite,

as shown explicitly in Appendix B.
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and

k∞ ¼
8<
:

12πM2

5m2
pR

− 2πM2R5
γ

5m2
pR6 for 0 ≤ Rγ < R;

− 2πM2

m2
pRγ

for Rγ > R:
ð4:9Þ

After replacing these expression into Eq. (4.4), it turns out
that γ < 1 implies Rγ ≳ R, as shown in Fig. 3. One can in
fact solve Eq. (4.4) for Rγ and find

Rγ ¼
5

6

�
γ þ 1

γ

�
R: ð4:10Þ

It would be tempting to set a direct connection with the
momentum scale Λα introduced in Sec. II C and state that
Λα¼γ ¼ 1=Rγ, but we could not find a strict proof of this
relation. It is nonetheless reassuring that Eq. (4.10) further
supports the conclusion that in the Newtonian regime the

only relevant scale for hki is the radius R of the source. In
any case it is sufficient for our purposes to assume that
Λα ¼ 1=Rγ for precisions γ ∼ α and show that the mean
wavelength computed with the effective gravitons alone is
qualitatively the same as in Eq. (2.41).

B. Bootstrapped potential

We can finally consider the bootstrap solutions of
Sec. III. When the compactness is small, the solutions in
Eqs. (3.10) and (3.15) follow rather closely the Newtonian
behavior and the results of Sec. IVA become a very good
approximation.
When the compactness is instead large, things change

significantly. The outer potential is always given by the
exact solution (3.10) while for the inner potential we will
consider the linear approximation (3.17). In so doing,
Eq. (4.1) gives

hki ≃ 2π

l2
p

Z
R

0

drr2ðV 0
RÞ2 þ

2π

l2
p

Z
∞

R
drr2

�
GNM

ð1þ 6GNM=rÞ1=3r2
�
2

¼ 2πR3ðV 0
RÞ2

3l2
p

þ 2πG2
NM

2

l2
p

Z
∞

R

dr

ð1þ 6GNM=rÞ2=3r2

¼ πGNM
l2
p

�
2GNM

ð1þ 6GNM=RÞ2=3Rþ
�
1þ 6GNM

R

�
1=3

− 1

�

≃
M

lpmp

�
GNM
R

�
1=3

; ð4:11Þ

where V 0
R is given in Eq. (3.12) and the last expression contains just the leading order in the compactness GNM=R ≫ 1.

Like in the Newtonian case, the mean wave number hki is finite, despite the fact that the number of gravitons diverges
again and with the same behavior and functional dependence (see Appendix B 2 for the details). Given these similarities
with the Newtonian regime, we exploit the same method described in Sec. IVA in order to find the scale Rγ for the
bootstrapped potentials. We only consider the case Rγ > R as it is the only one in which one can have γ < 1. Hence,
Eqs. (4.2) and (4.3) yield

keff ¼
2πRðGNM=RÞ2

3l2
pð1þ 6GNM=RÞ2=3 þ

πM
lpmp

��
1þ 6GNM

R

�
1=3

−
�
1þ 6GNM

Rγ

�
1=3

�
ð4:12Þ

FIG. 3. Ratio k∞=keff ¼ γ for the Newtonian potential (left) and a close-up view for small Rγ (right).
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and

k∞ ¼ πM
lpmp

��
1þ 6GNM

Rγ

�
1=3

− 1

�
; ð4:13Þ

where the linear approximation (3.17) was considered for
the inner potential and the exact solution (3.10) for the
outer region. After solving Eq. (4.4) for Rγ, one finds

Rγ ≃
6GNM

½ 20
3·62=3

ð γ
γþ1

ÞðGNM
R Þ1=3 þ 1�3 − 1

: ð4:14Þ

It is easy to see that the threshold value of Rγ, correspond-
ing to γ ¼ 1, is still proportional to R in the regime
GNM=R ≫ 1. On the other hand, Figs. 4 and 5 show that
Rγ raises very quickly for γ < 1 and reaches values of
order GNM or larger for better precisions. Hence, from
Eqs. (4.10) and (4.14), we see that Rγ qualitatively behaves
as the scale R� of Eq. (3.8): it is proportional to R for
sources with small compactness (consistently with the
quasi-Newtonian behavior) while it is also related to the
scale GNM when the compactness becomes large. In other

words, we get a good description of the system by
considering gravitons inside a ball of radius Rγ ∼ R for
GNM=R ≪ 1 and Rγ ∼ RðGNM=RÞ2=3=γ for GNM=R ≫ 1

and 0 < γ ≪ 1. In particular, for large compactness, we can
tune the precision coefficient γ so that Rγ ∼GNM. As we
mentioned at the end of Sec. IVA, this suggests that there is
a scale Λ ∼ 1=R� in momentum space below which the
contribution of gravitons becomes essentially irrelevant.
Finally, we simply evaluate the mean graviton wave-

length as the ratio between Eq. (4.6) and Eq. (4.11) and get

λG
R

≃
�
GNM
R

�
2=3

≫ 1; ð4:15Þ

so that we can conclude that

1≲ λG
R

≲GNM
R

; ð4:16Þ

and the compactness of the source yields a (rough) upper
bound for the mean wavelength. The above expression also
does not reproduce the expected scaling relation (1.1) of the
corpuscular model, to wit λG ∼M, unless the compactness
is of order one, rather than very large. However, we will see
below that it might be the quantum nature of the source that
requires this rather strong bound for the compactness.

C. Quantum source and GUP for the horizon

It was shown in Ref. [17] that a quantum source whose
size R is comparable with its gravitational radius (1.2)
satisfies a GUP [15] of the form

ΔR ∼
lpmp

ΔP
þ γlp

ΔP
mp

; ð4:17Þ

where ΔR is the uncertainty in the size of the source and
ΔP the uncertainty in the conjugate radial momentum. The
first term in the right-hand side follows from the usual
Heisenberg uncertainty relation, whereas the second termFIG. 5. Rγ in units of GNM for the bootstrapped potential.

FIG. 4. Ratio k∞=keff ¼ γ for the bootstrapped potential (left) and close-up view for small Rγ (right).

CASADIO, LENZI, and CIARFELLA PHYS. REV. D 101, 124032 (2020)

124032-10



corresponds to the horizon fluctuations,ΔRH ∼ΔM0 ∼ΔP,
obtained from the horizon wave function (HWF) determin-
ing the size RH of the gravitational radius [18]. In Eq. (4.17)
the two terms are just linearly combined with an arbitrary
coefficient γ > 0 [17]. In particular, one finds that the
quantum fluctuations of the horizon depend strongly on the
precise quantum state of the source: the quantum fluctua-
tions of a macroscopic black hole of mass M ∼M0 ≫ mp

are very large (with ΔRH=RH ∼ 1) if the source is given by
a localized single particle with Compton width ΔR ∼ R ∼
lpmp=M0 [17], whereas they can be negligibly small if the
source contains a large number of components of individual
energy ϵ ≪ M0 and size R ∼ RH [19], like is the case for
corpuscular black holes [3].
It is now interesting to note that the relation (3.18) for

very compact sources directly implies a similar GUP for the
gravitational radius, namely

ΔRH

RH
≃
ΔM
M

¼ ΔM0

M0

þ ΔR
R

∼
l2
p

R2

�
R

GNM

�
2=3 R

ΔR
þ ΔR

R
; ð4:18Þ

where we again assumed the Heisenberg uncertainty
relation for the source,

ΔM0 ∼
lpmp

ΔR
; ð4:19Þ

and used Eq. (3.18) to express the compactness in terms of
the ADM mass M. In particular, the second term in
Eq. (4.18) is analogous to the second term in Eq. (4.17)
and would not be found in the case of Newtonian gravity
(where M ¼ M0 exactly), or it would be negligibly small
for small compact sources (for which M ≃M0). The
fluctuations of the horizon are now dominated by the
fluctuations of the source, ΔM ∼ ΔR, for very large
compactness GNM=R ≫ 1, if the size of the source
R≳ lp (otherwise the usual Heisenberg term cannot be
neglected). This is analogous to the above-mentioned
results obtained from the HWF (except for the auxiliary
condition R≳ lp).
Let us continue to consider the case of large compactness

and note that one needs ΔM=M ≪ 1 for the gravitational
radius to show a classical behavior. This can be obtained
for a quasiclassical source with ΔR=R ≪ 1 provided the
compactness is sufficiently large. Indeed, we can minimize
the above expression (4.18), thus obtaining

ΔR
R

≃
lp

R

�
R

GNM

�
1=3

: ð4:20Þ

The corresponding minimum value of the horizon fluctua-
tions is then given by

ΔM
M

≃ 2
lp

R

�
R

GNM

�
1=3

∼
ΔR
R

; ð4:21Þ

so that the condition of classicality of the source,
ΔR=R ≪ 1, or

GNM
R

≫
l3
p

R3
; ð4:22Þ

seems to ensure that the gravitational radius is also classical
and satisfies ΔRH=RH ∼ ΔM=M ≪ 1.
However, the above argument does not yet take into

consideration the quantum description of the gravitational
potential in terms of a coherent state. Indeed, we should
note that Eq. (4.15) implies that the above minimum
uncertainty (4.21) for the horizon would correspond to a
mean graviton wavelength

λG
R

∼
�
GNM
R

�
2=3

∼
l2
p

ΔR2
: ð4:23Þ

Assuming the matter uncertainty cannot realistically be
smaller than the Planck length, this appears to constrain the
compactness to be of order one or less, in clear contra-
diction with the starting assumption GNM=R ≫ 1. On the
other hand, for a compactness of order one, both Eq. (3.18)
and the analysis of the Newtonian case in Sec. II C would
imply that

λG ∼ R ≃ lp
M
mp

; ð4:24Þ

which is precisely the prediction of the corpuscular model
[3]. Furthermore, we remark that the second approximation
in the small compactness expression (3.16) clearly fails for
GNM=R ≃ 1 and Eq. (3.18) cannot yet be trusted in this
intermediate regime.12 If we evaluate the first line of
Eq. (3.16) for GNM=R ≃ 1, we obtain

M ≃
3

2
M0 ð4:25Þ

and

ΔM
M

≃
ΔM0

M0

∼
mp

M

lp

ΔR
≲ 1ffiffiffiffiffiffiffi

NG
p ; ð4:26Þ

where we used the scaling relation (1.3) and ΔR=lp ≳ 1.
This result is consistent with the horizon of a macroscopic
black hole (with NG ≫ 1) being classical. Finally, we note
that the scaling for the fluctuations derived for thermal
black holes in Refs. [19],

12We showed numerically in Ref. [11] that this is in fact the
most difficult regime to describe analytically.
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ΔM
M

∼
1

NG
; ð4:27Þ

is recovered from ΔR ∼ λG ∼ RH. Such a large uncertainty
would apply to matter in a truly quantum state, like a
condensate or the core of a neutron star.

V. CONCLUSIONS AND OUTLOOK

In this work, we have investigated the coherent state
description for the bootstrapped Newtonian potential
found in Ref. [11] for a uniform spherically symmetric
source and shown that the scaling relation (1.1) for the
mean graviton wavelength can be recovered provided the
compactness of the source never exceeds values of order
one. [The similar scaling (1.3) for the ADM mass holds
regardless.] Moreover, such a bound on the compactness
seems in turn to be required by a consistent quantum
description of both gravity and the matter source itself, so
that even macroscopic black holes should be viewed as
proper quantum systems [3,20]. We should remark that
this result comes with a number of caveats.
First of all, from a quantum field theory perspective,

the potential we employ to describe the gravitational pull on
test particles should emerge from a suitable limit of
the interacting propagator for test particles with the con-
stituents of the matter source. Considering that we are
interested in understanding gravity also in the interior of
the self-gravitating object, and given the complexity of a
macroscopic matter source, this approach seems hardly
attainable (analytically). We have therefore assumed that
a heuristic description in terms of a scalar potential repre-
sents a sensible mean field approximation, like the Coulomb
potential yields a viable quantum description of the hydro-
gen atom or other bound states in quantum electrodynamics.
Another important remark is that, if one views the

equation governing the bootstrapped potential as the
truncated version of general relativity, including just
the first nonlinearities, sounds completely arbitrary and
one might argue that there are no reasons to believe the
results would remain unchanged by adding more terms.
Actually, one could easily argue that, at the classical
level, the inclusion of all terms stemming from general
relativity would reintroduce the Buchdahl limit [21] and
the well-known singularities. However, if the singular-
ities have to be removed, a modification of general
relativity becomes necessary and the bootstrapped
Newtonian potential is just one of the simplest toy
models we can employ to study quantum features of
the nonlinear dynamics for macroscopic sources. On the
other hand, if it is indeed possible to recover the
(quantum) gravitational dynamics at all orders in per-
turbation theory from the leading nonlinearities and
diffeomorphism invariance (which is usually referred
to as the bootstrap program [22], but see also the
approach in Ref. [23]), the results in the present work

might help to understand the gravitational physics of
macroscopic matter sources which cannot be treated as
small perturbations about the vacuum.
We would like to conclude with a few more com-

ments and outlook. It is interesting to notice that the
bootstrapped gravitational potential inside very com-
pact sources being essentially linear shows a similarity
with the case of quantum chromodynamics. Moreover,
according to the final result of this work, it appears that
the linear regime (analogous to the effective gluon
potential between two quarks) should never be realized
inside static black holes, like quarks cannot be pulled
too far apart but form mesons and hadrons. We already
mentioned in the Introduction that it is tempting to
view this picture, in which the compactness of a self-
gravitating object never exceeds values of order one, as
pointing to the classicalization [16,24] in matter-gravity
systems. From the phenomenological point of view, the
question naturally arises whether these objects show a
proper horizon, which could have interesting observa-
tional consequences for astrophysical black holes (see,
e.g., Ref. [25] for a recent proposal). In order to address
this matter and compare directly with observable quan-
tities for black holes in general relativity, the boot-
strapped potential is however not sufficient, and one
should first obtain a complete effective metric, at least
in the vacuum outside the source. This important but
complex task is left for future developments. We once
more remark the crucial role of the matter source in
supporting this perspective and the importance of
analyzing distributions more realistic than the uniform
one considered here (see Ref. [26] for polytropic stars).
Likewise, the study of both matter and gravitational
perturbations about the static solutions will be essential
for understanding the causal structure and possible
phenomenological implications of the quantum model
[20]. Finally, we recall that the corpuscular picture of
gravity can be applied to cosmology [24,27], where
the Universe is depicted as a cosmological condensate
of gravitons and can give rise to dark energy and
dark matter phenomenology [28], and reproduce the
Starobinsky model of inflation [27,29]. It will therefore
be very interesting to embed the description of compact
sources in bootstrapped Newtonian gravity within such a
cosmological perspective as local impurities affecting
the cosmological condensate of gravitons.
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APPENDIX A: EFFECTIVE WAVE NUMBER
AND GRAVITON NUMBER FOR THE

NEWTONIAN POTENTIAL

We show here the explicit calculation of keff and Neff
G for

Λα ¼ 1=αR and the corresponding functions fðαÞ and gðαÞ
of Sec. II C.
Equation (2.37) with the gk given by Eq. (2.32) yields

keff ¼
Z

∞

Λα

dk
2π2

k3g2k

¼ 6M2

5m2
pR

�
2πþ α3ð3α2 þ 5Þ− αð3α4 − α2 þ 2Þ cos

�
2

α

�

− α3ð6αþ 1Þ sin
�
2

α

�
− 4Si

�
2

α

��

≡ M2

m2
pR

fðαÞ; ðA1Þ

where

SiðxÞ ¼
Z

x

0

dt
sin t
t

ðA2Þ

is the sine integral. Since Siðx → ∞Þ ¼ π=2, we correctly
obtain that keff → 0 for α → 0 (that is, for Λα → ∞).
Likewise, Eq. (2.39) with the same gk of Eq. (2.32) reads

Neff
G ¼

Z
∞

Λα

dk
2π2

k2g2k

¼ αM2

2m2
p

�
3α3ð2α2 þ 3Þ − αð6α4 − 3α2 þ 2Þ cos

�
2

α

�

− α2ð6α2 þ 1Þ sin
�
2

α

�
− 4Si

�
2

α

��
ðA3Þ

≡M2

m2
p
gðαÞ; ðA4Þ

and we again remark that Neff
G → 0 for Λα → ∞.

APPENDIX B: GRAVITON NUMBER AND MEAN
WAVELENGTH FOR COMPACT SOURCES

As already pointed out in the main text, the exact
analytical calculation of the Fourier transform is not
possible for arbitrary potentials V ¼ VðxÞ generated by
a compact source. We will therefore describe here an
approximation obtained by rewriting the Fourier transform
Ṽ ¼ ṼðkÞ in terms of a spatial integral of the Laplacian of
the scalar field. In fact, if we apply the Laplacian operator
on both sides of Eq. (2.4), we obtain

ṼðkÞ ¼ −
1

k2

Z
dx△VðxÞvkðxÞ: ðB1Þ

Upon substituting the above expression together with
Eq. (2.1) into Eq. (2.16) we get

NG ¼ 1

2ð2πÞ3l2
p

Z
dx

Z
dy△VðxÞ△VðyÞ

Z
dk

eik·ðx−yÞ

k3

¼ 1

ð2πÞ2l2
p

Z
B∞
0

dx
Z
B∞
0

dy△VðxÞ△VðyÞ
Z

∞

k0

dk
sinðkσÞ
k2σ

;

ðB2Þ
where σ ¼ jx − yj and k0 ¼ 1=R∞ is the IR cutoff intro-
duced in Sec. II C for the purpose of regularizing the
diverging number of gravitons associated with the infinite
spatial support of the potential. We have correspondingly
restricted the spatial domain of integration to a ball of
radius R∞ centered in the origin, B∞

0 ¼ fjxj < R∞g.
Similarly for the mean wave number in Eq. (2.17) we

have

hki ¼ 1

2ð2πÞ3l2
p

Z
dx

Z
dy△VðxÞ△VðyÞ

Z
dk

eik·ðx−yÞ

k2

¼ 1

ð2πÞ2l2
p

Z
dx

Z
dy△VðxÞ△VðyÞ

Z
∞

0

dk
sin ðkσÞ

kσ

¼ 1

8πl2
p

Z
dx

Z
dy

△VðxÞ△VðyÞ
σ

; ðB3Þ

where we used the property of the sine integral (A2) that
Siðx → ∞Þ ¼ π=2. This mean wave number is regular
since only a finite part of the (infinite number of) gravitons
effectively contributes to it, and does not require any cutoff.
Equations (B2) and (B3) show that the divergence of NG

and the finiteness of hki do not depend on the actual shape
of the potential V, as long as it falls off fast enough at large
distance. We also anticipate that another relevant scale will
be given by R� defined in Eq. (3.8).

1. Mean graviton wave number

Wewill first show how to obtain Eq. (4.1) from Eq. (B3).
This is most easily done if we directly consider a spheri-
cally symmetric case such that

hki ¼ 1

8πl2
p

Z
∞

0

dr1

Z
∞

0

dr2r21r
2
2△Vðr1Þ△Vðr2Þ

×
Z

dΩ1

Z
dΩ2

1

jx − yj ; ðB4Þ

where dΩa ¼ sin θadθadφa, with a ¼ 1, 2. The freedom to
rotate the system allows us to choose θ2 as the angle
between x and y, which introduces a factor of 8π2 from the
integration in dΩ1 and dφ2. The only angular integration
left is in ds≡ sin θ2dθ2 ¼ −d cos θ2, which yields

QUANTUM BLACK HOLES IN BOOTSTRAPPED NEWTONIAN … PHYS. REV. D 101, 124032 (2020)

124032-13



hki ¼ π

l2
p

Z
∞

0

dr1

Z
∞

0

dr2r21r
2
2△Vðr1Þ△Vðr2Þ

Z
1

−1

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 þ 2r1r2s

p
¼ π

l2
p

Z
∞

0

dr1

Z
∞

0

dr2r1r2△Vðr1Þ△Vðr2Þðr1 þ r2 − jr1 − r2jÞ: ðB5Þ

Thanks to the symmetric role of r1 and r2, the above integrals can be written as

hki ¼ 2π

l2
p

Z
∞

0

dr1r1△Vðr1Þ
�Z

r1

0

dr2r22△Vðr2Þ þ r1

Z
∞

r1

dr2r2△Vðr2Þ
�
: ðB6Þ

From the definition (2.19) of the Laplacian, it is then easy to see that

hki ¼ 2π

l2
p

Z
∞

0

dr1r1△Vðr1Þ
�Z

r1

0

dr2
∂
∂r2

�
r22
∂Vðr2Þ
∂r2

�
þ r1

Z
∞

r1

dr2
r2

∂
∂r2

�
r22
∂Vðr2Þ
∂r2

��

¼ 2π

l2
p

Z
∞

0

dr1r1△Vðr1Þ
�
r21
∂Vðr1Þ
∂r1 − r1

�
r1
∂Vðr1Þ
∂r1 þ Vðr1Þ

��

¼ −
2π

l2
p

Z
∞

0

drr2VðrÞ△VðrÞ; ðB7Þ

where we integrated by parts taking into account the
boundary conditions (2.28) and (3.7). After integrating
by parts again, one finally obtains

hki ¼ 2π

l2
p

Z
∞

0

drr2½V 0ðrÞ�2; ðB8Þ

from which we see that we can indeed estimate hki directly
from the potential V ¼ VðrÞ.

2. Graviton number

Next, we will show how to estimate NG in Eq. (B2). Our
method relies on the introduction of the characteristic
length scale R� defined in Eq. (3.8) and in identifying
the leading terms in the expansion for large R∞=R�. In fact,
for the potential generated by a compact source, it is
reasonable to consider R� ≪ R∞, provided the source itself
has existed for long enough [8].
We first compute explicitly the integral in k in Eq. (B2),

that is

fðσÞ≡
Z

∞

k0

dk
sin ðkσÞ
k2σ

¼
Z

∞

σk0

dz
sinðzÞ
z2

¼ sin ðσk0Þ
σk0

− Ciðσk0Þ; ðB9Þ

where

CiðxÞ ¼
Z

x

0

dt
1 − cosðtÞ

t
− γE − lnðxÞ ðB10Þ

is the cosine integral and γE the Euler-Mascheroni constant.
It is then easy to show that the function fðσÞ is larger and
contributes significantly to Eq. (B2) only when its argu-
ment σ ≪ R∞ (see Fig. 6). In fact, for σ ≃ R∞, we have

jfðσÞj ≤
Z

∞

σk0

dz
z2

¼ 1

σk0
¼ R∞

σ
≃ 1: ðB11Þ

On the other hand, when σ ≪ R∞, we can expand Eq. (B9)
for σk0 ≪ 1, and note that the leading term is given by
−Ciðσk0Þ ≃ lnðσk0Þ. To conclude, we can approximate

fðσÞ ≃ ln

�
R∞

σ

�
¼ ln

�
R∞

R�

�
þ ln

�
R�

σ

�
; ðB12Þ

where we explicitly introduced the scale R�. The second
term in Eq. (B12) diverges for σ ¼ jx − yj → 0, but the
spatial integrations in Eq. (B2) will regularize it. In fact, we

FIG. 6. Function fðσÞ.
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have explicitly shown in Sec. B 1 that the singular function
1=σ leads to the finite result (B4) once integrated over the
spatial domain. Since 0 < − ln ðσ=R�Þ < R�=σ for σ ≪ R�,
we can safely neglect the second term in Eq. (B12) and just
keep the leading contribution coming from the first term
which dominates (and actually diverges) for R∞ ≫ R�.
We must now estimate the spatial integrals in Eq. (B2),

whose domains are effectively restricted by the condition
σ ¼ jx − yj ≪ R∞ for which the function fðσÞ is the
largest. Given the symmetry in x and y, we can achieve
this by integrating y inside a ball B�

x of radius R� ≪ R∞
centered around x and then summing over x inside B∞

0 ,
that is

NG ≃
1

ð2πÞ2l2
p

Z
B∞
0

dx△VðxÞ
Z
B�
x

dy△VðyÞ log
�
R∞

R�

�
:

ðB13Þ
The explicit evaluation of this integral is not any simpler
than the starting Eq. (B2). However, we can now more
easily find upper and lower bounds by observing that the
Laplacians are everywhere positive, as can be seen from
the fact that the right-hand side of Eq. (3.5) is positive.
An upper bound is obtained by extending the domain of y to
all of B∞

0 ,

NG ≤
1

ð2πÞ2l2
p

Z
B∞
0

dx△VðxÞ
Z
B∞
0

dy△VðyÞ log
�
R∞

R�

�

≃ 4
M2

m2
p
log

�
R∞

R�

�
; ðB14Þ

where we used the Gauss theorem in the formZ
B∞
0

dx△VðxÞ ¼
Z
∂B∞

0

ds · ∇V

≃ R2
∞

Z
dΩ

GNM
R2
∞

≃ 4πGNM; ðB15Þ
with ds ¼ R2

∞dΩn the measure on the sphere ∂B∞
0 of radius

R∞ whose unit normal vector is n. Note also that the second
line follows from the Newtonian behavior at large distance
from the source, namely for r≳ R�. A lower bound can be
obtained by first restricting the domain of x to a ball B�

0 of
radius R� and then, instead of integrating y over all the balls
centered around x, only taking the one centered in the
origin as well. The result is

NG ≥
1

ð2πÞ2l2
p

Z
B�
0

dx△VðxÞ
Z
B�
x

dy△VðyÞ log
�
R∞

R�

�

≥
1

ð2πÞ2l2
p

Z
B�
0

dx△VðxÞ
Z
B�
0

dy△VðyÞ log
�
R∞

R�

�

ðB16Þ

≃ 4
M2

m2
p
log

�
R∞

R�

�
; ðB17Þ

where we used the defining assumption of R� that

V 0ðR�Þ ≃ GNM
ðR�Þ2 : ðB18Þ

Therefore, we can safely approximate NG as

NG ≃ 4
M2

m2
p
log

�
R∞

R�

�
: ðB19Þ

We point out that this result only depends on the
boundary conditions on the potential at large distance
from the source and bares no dependence on the details
of the source or of the gravitational interaction at shorter
distances.
We conclude by estimating the number of effective

gravitons. Like in Sec. II C, we introduce the splitting
scale Λ in Eq. (B9) and write

fðσÞ ¼
Z

σΛ

σk0

dz
sinðzÞ
z2

þ
Z

∞

σΛ
dz

sinðzÞ
z2

¼ fIR þ feff ; ðB20Þ

where fIR is dominated by the logarithmic IR divergence in
Eq. (B12) for k0 ¼ 1=R∞ → 0. For the finite part, we
obtain

feff ¼ sin ðσΛÞ
σΛ

þ
Z

σΛ

0

dt
1 − cosðtÞ

t
− γE − ln ðσΛÞ;

ðB21Þ

in which the dominant term is again given by ln ðσΛÞ
for σΛ small (but still larger then σk0). Since again
0 < − ln ðσΛÞ < 1=σΛ, we obtain

NG ≲ 1

ð2πÞ2l2
pΛ

Z
dx

Z
dy

△VðxÞ△VðyÞ
σ

ðB22Þ

≃
hki
Λ

: ðB23Þ

In Sec. IV, we show that we can consider Λ ∼ 1=R�, from
which we obtain for the mean wavelength

λG ≃
Neff

G

hki ≲ R�; ðB24Þ

so that again this representative scale belongs to the
effective part of the spectrum, that is 1=λG ≳ Λ.
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