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We investigate the thermodynamics of dyonic hairy black holes in flat spacetime when the asymptotic
value of the scalar field is not fixed. We use the quasilocal formalism of Brown and York and corresponding
boundary terms that make the variational principle well defined to prove that the scalar charges do not
contribute to the first law of thermodynamics. We also provide a unified picture of obtaining exact solutions
by comparing two different methods and discuss in detail the ansatz used in each coordinate system and the
relation between them.
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I. INTRODUCTION

Einstein-Maxwell-dilaton theory appears naturally as a
consistent truncation of low energy limit of string theory.
The dilaton has a specific nonminimal coupling with the
Maxwell term and the first exact hairy black hole solutions
were constructed in [1–4]. Since in string theory the dilaton
is a modulus whose expectation value controls the string
dimensionless constant, gs, it makes sense to understand
how a variation of its asymptotic value affects the thermo-
dynamics of hairy black holes. Such a study was performed
in [5] with a surprising result. That is, the first law of hairy
black hole thermodynamics should be supplemented with
contributions from the scalar fields.1

This result, which is based on implementing the
Arnowitt-Deser-Misner (ADM) formalism [8,9] to hairy
black hole thermodynamics, can be explicitly checked for
various exact solutions. However, from a physical point of
view, the modification of the first law is puzzling. The
scalar fields are characterized by charges that are not
conserved, particularly in all known solutions there is no
integration constant associated to the classical hair and that
is why it is refereed to as “secondary hair.” Based on some
earlier suggestions on how to solve this puzzle [10,11],
Hajian and Sheikh-Jabbari have used the phase space
method to show in [12] that, indeed, the asymptotic value
of the dilaton, ϕ∞, is generally a redundant parameter. But
if the nonconserved scalar charges are not allowed to

appear in the first law, what exactly is inconsistent with
the original proposal of [5]? This question was com-
pletely answered in [13], where a general consistent
variational principle was provided when the asymptotic
value of the dilaton varies.2 In this case, the quasilocal
energy computed by using the Brown-York formalism
[17] gets a new contribution due to the boundary term
associated with the scalar field. This is consistent with the
interpretation from string theory where a variation of the
vacuum expectation value for the dilaton is equivalent
with a change of the string coupling. This new method
was explicitly checked for some exact electrically
charged hairy black holes in [13] and, later on, for
several different examples in [18]. It is important to
emphasize that the contribution from the scalar field to
the conserved charges in asymptotically AdS spacetimes
was clarified (see, e.g., [19–23]).
In this paper, we extend the work of [13] to dyonic black

holes. This is particularly important because, unlike the
electrically charged case, for the dyonic black holes the
extremal limit is well defined (see, e.g., [24] for a general
discussion of different classes of asymptotically flat hairy
black hole solutions) and so the canonical ensemble is well
defined. We prove again, as expected, that the scalar
charges do not appear explicitly in the first law as
independent contributions. We also provide a detailed
discussion on how two different methods can be used to
obtain exact solutions and check the consistency of
changing the coordinates from the frame used in [25–29]
to the canonical frame [1,2].
This paper is organized as follows. In Sec. II, we describe

a method used to obtain exact solutions in a nonstandard
radial coordinate, and we employ it to reobtain well-known
solutions for both electrically and dyonic hairy black holes.
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1A similar result was found for asymptotically AdS black
holes; see [6,7].

2Another approach was also presented in [14] and, for
asymptotically AdS spacetime, in [15,16].
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We also provide, in Sec. II B, an example of one advantage
of using this method in finding more general solutions.
Also, we discuss the connection between the solutions
obtained by this method and the ones obtained by using the
canonical frame (with the usual radial coordinate). In
Sec. III, we analyze the thermodynamic of these solutions
when the asymptotic value of the dilaton is allowed to vary.
We compute the on-shell action, the quasilocal stress
tensor, the conserved energy, and verify the quantum
statistical relation and first law of black hole thermody-
namics. The analysis for the dyonic black hole in the
Kaluza-Klein theory is left for the Appendix.

II. EXACT HAIRY BLACK HOLE SOLUTIONS

A. Method and setup

In this section, we start by briefly describing the method
proposed in [25,26], and also developed and used in
[23,27–35], to obtain exact black hole solutions. Similar
solutions were found using a different method in [36,37].
We are going to refer to this method and its corresponding
coordinate system as the “x-frame.”
We are interested in asymptotically flat hairy black hole

solutions and the asymptotic value of the scalar field is not
fixed in our analysis. Let us consider the Einstein-Maxwell-
dilaton action

I½gμν; Aμ;ϕ� ¼
1

2κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p �
R − zðϕÞF2 −

1

2
ð∂ϕÞ2

�
;

ð1Þ

where F2 ≡ FμνFμν, ð∂ϕÞ2 ≡ gμν∂μϕ∂νϕ, R is the Ricci
scalar, Fμν ¼ ∂μAν − ∂νAμ represents the Maxwell (gauge)
field and zðϕÞ is the coupling function between the
scalar and gauge fields. In our conventions, κ ¼ 8π and
GN ¼ c ¼ 1. The corresponding equations of motion are

Eμν ≡ Rμν −
1

2
gμνR − κðTEM

μν þ Tϕ
μνÞ ¼ 0; ð2Þ

∂μ½
ffiffiffiffiffiffi
−g

p
zðϕÞFμν� ¼ 0; ð3Þ

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ ¼

dzðϕÞ
dϕ

F2; ð4Þ

where the energy-momentum tensors for the gauge and
scalar fields have the following expressions:

TEM
μν ¼ 2zðϕÞ

κ

�
FμαFν

α −
1

4
gμνF2

�
;

Tϕ
μν ¼ 1

2κ

�
∂μϕ∂νϕ −

1

2
gμνð∂ϕÞ2

�
: ð5Þ

According to the x-frame method, the metric is initially
put in the following static spherically symmetric ansatz:

ds2 ¼ ΩðxÞ
�
−fðxÞdt2 þ η2dx2

fðxÞ þ dθ2 þ sin2θdφ2

�
; ð6Þ

where the coordinate x plays the role of a radial coor-
dinate,3 and η is introduced as a parameter of the solution.
The following ansatz for the gauge field is provided:

F≡ 1

2
Fμνdxμdxν ¼ −

q
zðϕÞ dt ∧ dxþ p sin θdθ ∧ dφ;

ð7Þ

where q and p are the electric and magnetic parameters of
the solution. Note that both the ansatz (6) and (7) satisfy the
Maxwell equations, (3). Now, by solving the combination
of Einstein’s equations Ex

x − Et
t, one gets

ϕ02 ¼ −
2Ω00

Ω
þ 3

�
Ω0

Ω

�
2

ð8Þ

which can be integrated provided an appropriate choice of
ΩðxÞ. Once ϕ ¼ ϕðxÞ is known, the remaining equations of
motion can be further integrated to get the metric function
fðxÞ and then the full solution. We will employ explicitly
this method along the paper, and we will discuss the
connection with the solutions obtained by using the
canonical radial coordinate, which is given by a change
of coordinates.

B. General solutions

As a concrete example of obtaining new regular solutions
with the x-method presented in the previous subsection, let
us consider a model with a nontrivial self-interaction for the
scalar field—the method of [1–3] cannot be used in this case.
Let us explicitly obtain an exact solution for the case when
the scalar field decays slowly enough up to a constant at the
boundary, ϕ∞. Let us first turn off the gauge field. Consider
the following action:

I½gμν;ϕ� ¼
1

2κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − VðϕÞ

�
: ð9Þ

The potential is “engineered” and, in this case, it has a
quite simple expression:

3The relation with the Schwarzschild radial coordinate is
manifest in the asymptotic limit, where ΩðxÞ ≈ r2.
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VðϕÞ ¼ 2α

ν2

�
ν − 1

νþ 2
sinh

ðνþ 1Þðϕ − ϕ∞Þffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − 1

p

−
νþ 1

ν − 2
sinh

ðν − 1Þðϕ − ϕ∞Þffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − 1

p

þ 4ν2 − 4

ν2 − 4
sinh

ðϕ − ϕ∞Þffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − 1

p
�
; ð10Þ

where ν and α are two independent constants defining the
theory. We emphasize that ϕ∞ is a boundary condition and
not an integration constant for a particular solution. Since
ϕ∞ appears explicitly in the action (9) through the potential
for the scalar field, it must be regarded as a constant that is
not allowed to vary, otherwise it might not be asymptoti-
cally Minkowski.
It was shown in [26] that, for ϕ∞ ¼ 0, a general family of

solutions exists for this theory. Let us proceed by consid-
ering the ansatz for the metric given in Eq. (6). Now, the
key point of this method is to choose a conformal factor
such that the equation of motion for the scalar field (8) can
be integrated, which, according to [26], is

ΩðxÞ ¼ ν2xν−1

η2ðxν − 1Þ2 : ð11Þ

We then obtain the following scalar field:

ϕðxÞ ¼ ϕ∞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − 1

p
lnðxÞ ð12Þ

which is consistent with the boundary condition. Finally,
the metric function, after integrating the remaining equa-
tions of motion, is

fðxÞ ¼ α

�
ðν2 − 4Þ−1 − x2

ν2

�
1þ x−ν

ν − 2
−

xν

νþ 2

��

þ xη2ðxν − 1Þ2
ν2xν−1

: ð13Þ

The solution can be generalized by including a gauge
field, so that the action becomes

I½gμν; Aμ;ϕ� ¼
1

2κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p �
R − eaϕF2

−
1

2
ð∂ϕÞ2 − VðϕÞ

�
; ð14Þ

where VðϕÞ is the one given by (10), and a is a coupling
constant. The gauge potential is

A ¼ qx−ν

ν2
dt; ð15Þ

where dF ¼ A and q is a charge parameter. Provided the
ansatz (6), the conformal factor (11) and the relation

a ¼ ðν−1νþ1
Þ1=2, one gets the same expression for the scalar

field in (12) and a more general metric function,

fðxÞ ¼ η2x2ðxν − 1Þ2
ν2xν

þ α

ν2

�
xνþ2

νþ 2
− x2 þ x2−ν

2 − ν
þ ν2

ν2 − 4

�

−
η2x2−2νðxν − 1Þ3

2ν3ðν − 1Þ
�
q2e

ffiffiffiffiffi
νþ1
ν−1

p
ϕ∞

�
: ð16Þ

This solution admits two disconnected branches that can
be analyzed independently. The branches correspond to
separate spacetimes each one potentially containing a black
hole, as we will explicitly show in the next subsections. In
the remaining of the paper, we are going to consider only
theories with VðϕÞ ¼ 0, so that ϕ∞ admits a variation.

C. Electrically charged solution in the x-frame

In the previous subsection, we showed, without a
detailed derivation, that there are more general solutions
which only can be obtained by using the x-frame. Here, we
will use the method to reobtain, with more details, the
very well-known electrically charged black hole exact
solutions with VðϕÞ ¼ 0. These solutions were obtained
first in [1–3].
Let us turn off the magnetic charge, p ¼ 0, and consider

the action (1) with zðϕÞ ¼ eaϕ, where a is an arbitrary
coupling constant parametrizing the theory.4 First, to
conveniently decouple the equations of motion, let us
separate the conformal factor as ΩðxÞ ¼ Ω1ðxÞΩ̃ðxÞ and
define a new coordinate u≡ R

Ω̃ðxÞdx. Then, by choosing

Ω1ðuÞ ¼
1

η2ðu − 1Þ2 ð17Þ

the ansatz (6) and (7) can be put in the following form:

ds2 ¼ 1

η2ðu − 1Þ2
�
−fðuÞΩ̃ðuÞdt2 þ η2du2

fðuÞΩ̃ðuÞ

þ Ω̃ðuÞðdθ2 þ sin2θdφ2Þ
�

ð18Þ

F ¼ −
qe−aϕðuÞ

Ω̃ðuÞ dt ∧ du: ð19Þ

One aspect that can be observed at this level is that,
in this coordinate system, the boundary of spacetime is
located at u ¼ 1, where the conformal factor in the metric
diverges (in the assumption that Ω̃ remains finite at the
boundary). The fact that u can approach to 1 from the
left or from the right side allows to recognize that there
are two branches for this solution, corresponding to two

4For the specific values a ¼ f1; ffiffiffi
3

p g, the model can be
embedded in supergravity [1–4,38,39].
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disconnected spacetimes, one where u ranges as 0 < u < 1,
which is called the negative branch, and other where u > 1,
called the positive branch.5

Note, also, that the physical charge Q, up to a global
sign, can be obtained by the Gauss law, i.e., by integrating
the Maxwell equation on the 2-sphere at infinity,6

Q ¼ 1

4π

I
s2∞

eaϕ⋆F ¼ 1

4π

I ffiffiffiffiffiffi
−g

p
eaϕFtudθ ∧ dφ ¼ q

η
:

ð20Þ

Now, in order to solve the equations of motion, let us
consider the combination Eu

u − Et
t, which gives

ϕ02 ¼
�
Ω̃0

Ω̃

�
2

−
2Ω̃00

Ω̃
; ð21Þ

where the prime symbol means d=du. The function Ω̃ðuÞ
can be chosen in two different ways, which defines the
two families of solutions, similar to the ones in [45]. We
call family 1 to the family of solutions obtained by picking

Ω̃ðuÞ ¼ exp ½−aðϕ − ϕ∞Þ�; ð22Þ

and we call family 2 to the family obtained by picking

Ω̃ðuÞ ¼ exp

�
1

a
ðϕ − ϕ∞Þ

�
; ð23Þ

where ϕ∞ is the asymptotic value of the scalar field. Notice
that Ω̃ remains finite at the boundary, as commented earlier.
Family 1.—By integrating Eq. (21), using (22), we

obtain the following expression for the scalar field:

ϕðuÞ ¼ ϕ∞ −
2a

1þ a2
lnðuÞ ð24Þ

and, by using (22) and (24), the remaining independent
Einstein’s equation can be integrated to get the last
unknown metric function fðuÞ,7

fðuÞ ¼ ðu − 1Þ2u−3a2−1
a2þ1 η2½ðu − 1Þð1þ a2Þðqe−1

2
aϕ∞Þ2 þ 1�:

ð25Þ

Notice that limu¼1 ð−gttÞ ¼ 1 and limu¼1 ϕðuÞ ¼ ϕ∞ as
expected for asymptotic flatness and, as pointed out in [3],
there is only one horizon,

uþ ¼ 1 −
eaϕ∞

ð1þ a2Þq2 ð26Þ

satisfying hðuþÞ ¼ 0.
Family 2.—By integrating Eq. (21), using (23), we

obtain the following expression for the scalar field:

ϕðuÞ ¼ ϕ∞ þ 2a
1þ a2

lnðuÞ ð27Þ

and, by using (23) and (27), the remaining independent
Einstein’s equation can be integrated to get

fðuÞ ¼ ðu − 1Þ2u− 4

a2þ1η2½−ðu − 1Þð1þ a2Þðqe−1
2
aϕ∞Þ2 þ u�

ð28Þ

which also satisfies limu¼1ð−gttÞ ¼ 1 and limu¼1 ϕ ¼ ϕ∞.
There is, again, only one horizon

uþ ¼ q2e−aϕ∞ð1þ a2Þ
q2e−aϕ∞ð1þ a2Þ − 1

ð29Þ

satisfying hðuþÞ ¼ 0.
We would like to briefly comment on these two families.

Let us follow the convention in which “negative branch”
describes the domain f0 < u < 1;ϕ < ϕ∞g, and “positive
branch” describes the domain fu > 1;ϕ > ϕ∞g. By
observing (24) and (27), it follows that, in order for
the convention to be consistent, then family 1 should be
associated with a ≤ 0, and family 2 is associated with
a > 0. Therefore, it is appropriate to say that, at least for the
electrically charged black hole solutions without a potential
for the scalar field, family 1 is adapted to the cases with
a ≤ 0, and family 2 to a > 0.
Finally, it is worth noticing that, for family 1, black hole

configurations exist only in the negative branch, where the
coupling function, eaϕ, can take arbitrarily large values. On
the other hand, for family 2, black hole configurations exist
only in the positive branch, where, again, the coupling
function can take arbitrarily large values.

1. Comparison with the canonical frame

Now, we would like to use a suitable change of
coordinate in order to rewrite the solution in the canonical
frame, as in [3], by using the standard radial coordinate, r.

5In general, these branches have different properties and, then,
the x-frame provides a new feature of the solutions. For instance,
it was recently shown that when the scalar field is provided with a
nontrivial self-interaction in asymptotically flat theories, as
shown in Sec. II B, there are dynamically and thermodynamically
stable black holes only in the positive branch [40,41]. Also, in the
extended phase space of black hole chemistry [42,43], where the
cosmological constant is considered to be a pressure term, there
are nontrivial criticality phenomena in the positive branch for
both canonical and grand canonical ensembles [44].

6The convention is ⋆F ¼ 1
4

ffiffiffiffiffiffi−gp
ϵμναβFμνdxα ∧ dxβ, where

ϵμναβ is the totally antisymmetric Levi-Civita symbol.
7Note that the constants of integration were already assumed

to be η and q, therefore, any other constant appearing after
integrating the equations of motion must be a suitable combi-
nation of η and q.
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For concreteness, let us consider the family 1 (negative
branch). The change of coordinates proposed is

u ¼ 1 −
1

ηr
; ð30Þ

where η is positive definite. By noting that guu ¼
grrðdr=duÞ2, the solution can be easily rewritten in the
canonical radial coordinate as

ds2¼−aðrÞ2dt2þ dr2

aðrÞ2þbðrÞ2ðdθ2þsin2θdφ2Þ ð31Þ

with

a2ðrÞ≡ ðr − rþÞðr − r0Þ
1−a2

1þa2

r
2

1þa2
; b2ðrÞ≡ r2

�
1 −

r0
r

� 2a2

a2þ1;

ð32Þ

where rþ ¼ q2eaϕ∞ð1þ a2Þ=η and r0 ¼ 1=η are the black
hole outer horizon and the location of the central singu-
larity, respectively. To see that, at least for the cases a < 0,
r0 is actually the central singularity, and not an inner
horizon, observe that both the Ricci scalar and the scalar
field diverge at the limit r → r0:

R ¼ 2a2ðr − rþÞr20r−
2ða2þ2Þ
a2þ1

ða2 þ 1Þ2ðr − r0Þ
1þ3a2

1þa2

;

ϕðrÞ ¼ ϕ∞ −
2a

1þ a2
ln

�
1 −

r0
r

�
: ð33Þ

It is convenient to introduce the so-called “scalar charge”
Σ as the component in the subleading term in the asymp-
totic expansion of the scalar field in the canonical coor-
dinate, ϕðrÞ ¼ ϕ∞ þ Σ

r þOðr−2Þ. In this case, the scalar
field is expanded as

ϕðrÞ ¼ ϕ∞ þ 2a
ð1þ a2ÞηrþOðr−2Þ ð34Þ

and, therefore, Σ ¼ 2a
ð1þa2Þη.

Finally, notice that a ¼ 0 corresponds to the Reissner-
Nordström limit. In that particular case, the scalar field
becomes a constant, the Ricci scalar vanishes everywhere
and r0 ¼ 1=η becomes the inner horizon.

D. Dyonic solution in the x-frame

In this subsection, we consider the case zðϕÞ ¼ e�ϕ with
both electric and magnetic charges turned on. We are going
to reobtain the exact solution in [10], by using the method
shown before. Let us, again, focus on the family 1
(a ¼ −1),8 and consider the ansatz

ds2¼ΩðuÞ
�
−fðuÞdt2þ η2du2

u2fðuÞþdθ2þsin2θdφ2

�
ð35Þ

F ¼ −
qeϕ

u
dt ∧ duþ p sin θdθ ∧ dφ; ð36Þ

where η, q and p are the three constants of integration
(the parameters) of the solution. They are related with the
physical electric and magnetic charges, P and Q, which are

Q ¼ 1

4π

I
s2∞

e−ϕ⋆F ¼ q
η
; P ¼ 1

4π

I
s2∞

F ¼ p; ð37Þ

respectively. The combination of the Einstein’s equations
Et
t − Eu

u leads to the equation

ϕ02 ¼ 3

�
Ω0

Ω

�
2

−
2

u

�
Ω00

Ω
þΩ0

Ω

�
ð38Þ

which, provided the conformal factor

ΩðuÞ ¼ u
η2ðu − 1Þ2 ; ð39Þ

can be integrated to obtain the following expression for the
scalar field:

ϕðuÞ ¼ ϕ∞ þ lnðuÞ: ð40Þ

Now, the remaining independent equation of motion is
solved by the following metric function:

fðuÞ ¼ η2ðu − 1Þ2
u2

½uþ 2uðu − 1Þðqe1
2
ϕ∞Þ2

− 2η2ðu − 1Þðpe−1
2
ϕ∞Þ2�: ð41Þ

Unlike the electrically charged solution presented
before, in this case, the horizon equation, f ¼ 0, implies
the existence of two horizons,

u� ¼ 1

2
þ 2η2e−ϕ∞p2 − 1

4q2eϕ∞
� ð∓Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4e−2ϕ∞p4η4 þ 4e2ϕ∞q4 − 2ð2qpηÞ2 − 4η2e−ϕ∞p2 − 4q2eϕ∞ þ 1

p
4q2eϕ∞

ð42Þ

8The analysis is identical for the family 2 (a ¼ þ1).
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due to the magnetic charge. The choice � or∓ depends on
the branch being considered. In the negative branch
(0 < u < 1), one must ensure that u− < uþ and, in the
positive branch (1 < u < ∞), uþ < u−.

1. Comparison with the canonical frame

Let us consider the same change of coordinate used for
the electrically charged solution, (30). In the same manner,
the solution can be rewritten as

ds2¼−a2ðrÞdt2þ dr2

a2ðrÞþb2ðrÞðdθ2þsin2θdφ2Þ; ð43Þ

where

a2ðrÞ ¼ ðr − rþÞðr − r−Þ
b2ðrÞ ; b2ðrÞ ¼ rðrþ ΣÞ: ð44Þ

By asymptotically expanding the scalar field in the r
coordinate, one gets Σ ¼ −1=η, and the inner and outer
horizon, r� ¼ 1 − 1

ηu�
, can be written as

r� ¼ Σq2

eϕ∞
−
p2eϕ∞

Σ
−
Σ
2
∓ 1

2Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðqΣÞ4
e2ϕ∞

− 8ðqpΣÞ2 − 4ðqΣ2Þ2
eϕ∞

þ 4ðe1
2
ϕ∞pÞ4 − 4ðΣe1

2
ϕ∞pÞ2 þ Σ4

s
: ð45Þ

Notice that Σ is negative, according to our conventions.
One can see that both the Ricci scalar and the scalar field
diverge in the limit r ¼ −Σ, which is the location of the
central singularity,

R ¼ Σ2ðr − rþÞðr − r−Þ
2r3ðrþ ΣÞ3 ; ϕðrÞ ¼ ϕ∞ þ ln

�
1þ Σ

r

�
:

ð46Þ

Now, we are going to explore thermodynamic aspects of
the solutions presented so far when the asymptotic value of
the scalar field is not fixed.

III. THERMODYNAMICS AND
SCALAR CHARGES

In this section, we are going to use the counterterm
method and the quasilocal formalism for the asymptotically
flat black hole solutions presented before, in order to
compute the conserved energy and obtain the regularized
on-shell action. This will allow to verify the quantum
statistical relation and the first law of black hole thermo-
dynamics, under the consideration that ϕ∞ is allowed
to vary.
It is well known that, once the model is embedded in

string theory, ϕ∞ is related to the string coupling; this
makes clear that ϕ∞ is a parameter that controls the theory
rather than an integration constant specific to a particular
solution (see, e.g., [12,13] for some recent discussions in
this context). In general relativity, the claim above may
seem unusual because the boundary conditions are fixed.
However, similar with the AdS case [22,23,46,47], first one
expands all the fields at the boundary and, at this level, one
imposes boundary conditions that characterize a large set of
solutions. Therefore, ϕ∞ is a boundary condition, not an
integration constant for a specific solution.

According with the variational principle when the
asymptotic value of the scalar field is not fixed, the
gravitational action for Einstein-Maxwell-dilaton theories
[with VðϕÞ ¼ 0], which consists of the bulk part of the
action, the Gibbons-Hawking boundary term IGH and the
gravitational counterterm Ict, should be supplemented with
a boundary term for the scalar field Iϕ, as

I ¼ Ibulk þ IGH þ Ict þ Iϕ: ð47Þ

The gravitational counterterm that cancels infrared diver-
gences in the theory, regularizing the action, is [48–51]

Ict ¼ −
1

κ

Z
∂M

d3y
ffiffiffiffiffiffi
−h

p ffiffiffiffiffiffiffiffiffiffiffi
2Rð3Þ

p
; ð48Þ

where ya ¼ ðt; θ;φÞ are the coordinates on the boundary
∂M, which is the hypersurface u ¼ const, and the general
boundary term for scalar field, found in [13], is

Iϕ ¼ −
1

2κ

Z
∂M

d3y
ffiffiffiffiffiffi
−h

p �ðϕ − ϕ∞Þ2
Σ2

Wðϕ∞Þ
�
; ð49Þ

where the function W is defined by means of the general
boundary condition

Σ≡ dWðϕ∞Þ
dϕ∞

ð50Þ

which is similar with the one proposed in [46] for AdS
black holes.9 The action (47) corresponds with the grand

9A concrete relation Σ ¼ Σðϕ∞Þ in not required and we can
work in the general situation,W ¼ R

Σðϕ∞Þdϕ∞. We remark that
both ϕ∞ and Σ are coming from the asymptotic expansion of the
scalar field which is independent of particular solutions.
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canonical ensemble, where δAtj∂M ¼ 0 is the boundary
condition for the gauge potential. This corresponds to
fixing the electric potential Φ≡ Atj∂M − Atjhorizon. The
canonical ensemble, given by the boundary condition
δðzðϕÞ⋆FÞj∂M ¼ 0, which fixes the electric charge Q, is
obtained by adding a new boundary term to the action,10

IA ¼ −
2

κ

Z
∂M

d3y
ffiffiffiffiffiffi
−h

p
zðϕÞnμFμνAν; ð51Þ

where nμ is the normal unit to the boundary.
The quasilocal formalism of Brown and York [17]

provides a powerful method to obtain conserved quantities
in general relativity. According to this method, the total
energy of spacetime E is the conserved quantity associated
with the time-translational symmetry of the metric tensor,
given by the Killing vector ξ ¼ ∂=∂t. If one consider a
quasilocal surface with a stress tensor defined as

τab ≡ 2ffiffiffiffiffiffi
−h

p δI
δhab

; ð52Þ

where I is the total action given by (47), then, the conserved
energy is

E ¼
I
s2∞

d2σ
ffiffiffi
σ

p
naτabξb; ð53Þ

where d2σ ¼ dθdφ (for the spherical cross section) and
na ¼ ð−gttÞ−1=2δta is the normal unit to the hypersurface
t ¼ const at the asymptotic limit. The concrete expression
for the quasilocal stress tensor for the total action including
the gravitational counterterm was found in [52] and it is
given, in this case, by11

τab ¼
1

κ
½Kab −habK−ΨðRð3Þ

ab −Rð3ÞhabÞ−hab□ΨþΨ;ab�

þhab
2κ

ðϕ−ϕ∞Þ2W
Σ2

; ð54Þ

where Ψ≡ ð1
2
Rð3ÞÞ−1=2. The fact that the function Wðϕ∞Þ,

coming from general boundary conditions for the scalar
field, appears in the expression for the quasilocal stress
tensor indicates that it may contribute to the total energy, as
we shall verify in the next cases.

A. Electrically charged solutions

In this subsection, we are going to consider the electri-
cally charged solutions from Sec. II C. Concretely, the

family 1. We will compute the conserved energy, obtain the
regularized Euclidean on-shell action and verify the quan-
tum statistical relation.
From the trace of Einstein’s equation, (2), it follows that

R ¼ 1
2
ð∂ϕÞ2 and, therefore, the bulk part of the action is

IEbulk ¼ −
q2β
2η

Z
ub

uþ

du

Ω̃ðuÞeaϕ ¼ βq2e−aϕ∞

2η
ðuþ − 1Þ; ð55Þ

where ub is the coordinate at the boundary, which finally
should be pushed to ub → 1. β is the periodicity in the
imaginary time (τE ¼ −it) that removes the conical singu-
larity in the Euclidean version of the metric, and it is
the inverse of the Hawking temperature, β ¼ T−1. The
Gibbons-Hawking boundary term has the following falloff:

IEGH ¼ β

4η

�
3ða2 þ 1Þq2e−aϕ∞ þ a2 þ 3

a2 − 1

�
þ β

ηðub − 1Þ
þOðub − 1Þ: ð56Þ

By noting that the Ricci scalar of the foliation u ¼ const is
Rð3Þ ¼ 2η2ðu − 1Þ2=Ω̃, we obtain the falloff of the gravi-
tational counterterm,

IEct ¼ −
β

2η
½1þ ða2 þ 1Þq2e−aϕ∞ � − β

ηðub − 1Þ þOðub − 1Þ

ð57Þ

and, finally, the boundary term of the scalar field has a finite
contribution at the boundary

IEϕ ¼ −
β

4η
Ω̃ðubÞ½fðubÞΩ̃ðubÞ�1=2

ðln ubÞ2
ðub − 1Þ3 W ¼ 1

4
βW:

ð58Þ

Therefore, the total on-shell action at the limit ub ¼ 1 is

IE ¼ IEbulk þ IEGH þ IEct þ IEϕ

¼ β

�ða2 þ 2uþ − 1Þ
4η

q2e−aϕ∞ −
1

4η

�
a2 − 1

a2 þ 1

�
þ 1

4
W

�
:

ð59Þ

In order to identify IE with the thermodynamic potential,
let us now obtain the expressions for the thermodynamic
quantities of these solutions. The Hawking temperature T,
the Bekenstein-Hawking entropy S, the electric charge Q
and the conjugate potential Φ are

10The thermodynamic potentials of grand canonical ensemble
and canonical ensemble are related by a Legendre transform
in Q −Φ.

11Concrete applications of this method for asymptotically flat
black holes can be found in [11,53–55].
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T ¼ Ω̃ðuþÞ
4πη

dfðuÞ
du

����
uþ

¼ ηðuþ − 1Þ2u−
a2−1
a2þ1þ

4πuþ

�
2ða2 þ 2uþ − 1Þ
ða2 þ 1Þðuþ − 1Þ

þ ð3a2 þ 4uþ − 1Þq2e−aϕ∞ − 1

�
ð60Þ

S ¼ πΩ̃ðuþÞ
η2ðuþ − 1Þ2 ; Q ¼ q

η
; Φ ¼ −qe−aϕ∞ðuþ − 1Þ;

ð61Þ

while the conserved energy is obtained by computing the
quasilocal stress tensor, which, in this case, has the
following expansion:

τtt ¼
1

κ

��
a2 − 1

a2 þ 1
− ða2 þ 1Þq2e−aϕ∞

�
η−

1

2
η2W

	
ðub − 1Þ2

þO½ðub − 1Þ3�: ð62Þ

With this result, the conserved energy is

E ¼ 1

2η

�
ða2 þ 1Þq2e−aϕ∞ −

a2 − 1

a2 þ 1

�
þ 1

4
W ð63Þ

which matches with the ADM mass M, obtained by
expanding gtt, in the limit W ¼ 0, that is, when ϕ∞ is
considered fixed from the beginning. We conclude that the
conserved energy is E ¼ M þ 1

4
W, where12

M ¼ 1

2η

�
ða2 þ 1Þq2e−aϕ∞ −

a2 − 1

a2 þ 1

�
: ð64Þ

It is worth noting that the quantity added to the ADM mass
is only proportional to the asymptotic value of the scalar
field in the particular case where Σ does not depend on ϕ∞.
In general, W is not proportional to ϕ∞.
It is easy now to verify that both the quantum statistical

relation and the first law of black hole thermodynamics

IE ¼ βðE − TS −QΦÞ≡ βG; dE ¼ TdSþΦdQ;

ð65Þ

where G is the thermodynamic potential for the grand
canonical ensemble, hold. In the canonical ensemble,
where the electric charge is fixed, the boundary term
(51) contributes as IEA ¼ βQΦ and the quantum statistical
relation reads ĨE ¼ βðE − TSÞ, where ĨE ¼ IE þ IEA.

Finally, notice that, despite the electrically charged
solution has not an extremal limit well defined, for the
dyonic solution, one can use the entropy function formal-
ism [56,57] to show that the extremal limit is allowed [10].

B. The dyonic solution, a= − 1
Now, we would like to perform a similar analysis in the

presence of a magnetic charge, for the case a ¼ −1. We
proceed in the same manner as the previous subsection.
Note, however, that the gauge potential can be written as

A ¼
�Z

qeϕ

u
duþ C1

�
dtþ ð−p cos θ þ C2Þdφ; ð66Þ

where C1 and C2 are additive constants. This implies that,
if we consider the boundary condition δAtj∂M ¼ 0, the
contribution at the boundary coming from the variation of
the action is

δI ¼ −
2

κ

Z
d3x

ffiffiffiffiffiffi
−g

p
eαϕFθφδAφ

����θ¼π

θ¼0

¼ 2

κ

Z
d3x

�
pηe−ϕ

u

�
δAφ

����θ¼π

θ¼0

: ð67Þ

Let us choose the additive constant C2 in the expression for
the gauge potential in the following way: inside the domain
0 < θ < π

2
we take C2 ¼ −P and inside π

2
< θ < π we

take C2 ¼ P. In this way, we can integrate from θ ¼ 0
to π=2 − ϵ and from π=2þ ϵ to π, avoiding the Dirac string
as long as we take the limit ϵ → 0. In the Euclidean section,
we have then

δI ¼ −
2

κ

Z
d3x

�
pηe−ϕ

u

�
δAφ

����θ¼
π
2
−ϵ

θ¼0

−
2

κ

Z
d3x

�
pηe−ϕ

u

�
δAφ

����π
θ¼π

2
þϵ

¼ βΨpδp; ð68Þ

where Ψp ≡ −
R
u¼1
uþ

pηe−ϕ

u du is the conjugate (magnetic)
potential. In order to have a well-defined action principle,
one needs to add to the action an extra term coming from
the magnetic sector. In the grand canonical ensemble, this
extra term is going to appear in the Euclidean action
as IEp ¼ −βPΨp.
The total on-shell action is, therefore,

IE ¼ IEbulk þ IEGH þ IEct þ IEϕ þ IEp

¼ β

�
q2eϕ∞uþ

2η
−
ηp2eϕ∞ð2uþ − 1Þ

2uþ
− PΨp þ 1

4
W

�
:

ð69Þ

Now, by computing the relevant component of the quasi-
local stress tensor, whose asymptotic expansion gives

12Notice that the factor 1=4, appearing in this expression, does
not appear in [13]. This is due to the convention used in the action
for the scalar field kinetic term.
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τtt ¼
1

κ

�
2ηð−q2eϕ∞ þ η2p2e−ϕ∞Þ − 1

2
η2W

�
ðub − 1Þ2

þO½ðub − 1Þ3�; ð70Þ

we can obtain the total energy, in the limit ub ¼ 1,
which is

E ¼ q2eϕ∞

η
− ηp2e−ϕ∞ þ 1

4
W ¼ M þ 1

4
W; ð71Þ

where M is the ADM mass.
Now, let us verify the quantum statistical relation. The

Hawking temperature and entropy are

T ¼ uþ
4πη

dhðuÞ
du

����
uþ

¼ ηðuþ − 1Þ2
2πu2þ

�
uþð2uþ þ 1Þq2eϕ∞

− ðuþ þ 2Þη2p2e−ϕ∞ −
uþðuþ þ 1Þ
2ðuþ − 1Þ

�
ð72Þ

S ¼ πΩðuþÞ: ð73Þ

The electric and magnetic charges are given in (37) and
the conjugate potentials, the electric Φ and magnetic one
Ψp, are

Φ ¼ −ðuþ − 1Þqeϕ∞ ;

Ψp ≡ Ap
t ðu ¼ 1Þ − ApðuþÞ ¼ −

ηðuþ − 1Þ
uþ

peϕ∞ ; ð74Þ

where, in the language of differential forms, dAp ¼ Fp ≡
e−ϕ⋆F or, equivalently, Ψp ¼ R uþ

u¼1 F
p
utdu. One can see

that indeed both the quantum statistical relation and the
first law,

IE ¼ βðE − TS −QΦ − PΨpÞ;
dE ¼ TdSþΦdQþΨpdP; ð75Þ

hold, as expected, without including explicitly the “scalar
charge” Σ. These results support the conclusions of [13].

IV. CONCLUSION

In this work, we use the method developed in [26] to
reobtain some known exact hairy black hole solutions of
Einstein-Maxwell-dilaton asymptotically flat theories [3].
However, we have generalized the method to obtain
solutions when the asymptotic value of the scalar field
ϕ∞ is not fixed, which provides an interesting tool for
constructing this type of exact solutions. We have obtained
two different families of solutions and each of them
with two different branches or domains of the radial
coordinate. We have also analyzed some specific aspects

of black hole thermodynamics, using the quasilocal for-
malism, supplemented with the boundary terms that make
the action principle well defined when the asymptotic value
of the scalar field varies.
It is important to remark that we analyzed two different

kinds of theories, one with VðϕÞ ≠ 0 where ϕ∞ is a
constant that cannot be varied, and another with VðϕÞ ¼ 0
which allows variations of ϕ∞. We realize that, regarding
ϕ∞, the conserved energy matches the ADM mass
for any value of ϕ∞ in the former and for ϕ∞ ¼ 0 in
the latter.
With respect to thermodynamics, we first analyzed hairy

electrically charged black holes for more slightly general
theories than considered previously in [13] for asymptoti-
cally flat spacetimes, concretely, for arbitrary value of the
constant in the coupling function eaϕ between the scalar
and Maxwell fields. We checked that the conserved energy
receives a new contribution coming from the asymptotic
value of the scalar field, E ¼ M þ 1

4
W, whereW ¼ Wðϕ∞Þ

is defined by the relation between Σ, appearing in the
subleading term in the asymptotic expansion of the scalar
field, and ϕ∞. This might be compared with AdS, when
one considers a scalar field with the falloff ϕðrÞ ¼ α=rþ
β=r2 þOðr−2Þ where the conserved energy reduces to M
when either α ¼ 0, β ¼ 0, or under a nontrivial third
condition β ∝ α2, that is not present in the flat case. We
observe that once the correct total energy is computed,
there is no need of including the scalar charges in the first
law of thermodynamics.
One observation, not new in the context of [3], is that

hairy (with no self-interacting potential) electrically
charged asymptotically flat exact black hole solutions
in four dimensions do not have a well-defined extremal
limit. In this limit, the solution becomes a naked singu-
larity. This is particularly problematic in the scenario
when we do thermodynamics withQ fixed, since, as it was
pointed out in [58], a vacuum solution with a fixed Q ≠ 0
is not a regular solution of Einstein’s equations and,
therefore, cannot be chosen as the ground state of the
theory. A natural candidate that can be used as a back-
ground for the canonical ensemble is, then, the extremal
black hole and so the importance of constructing solutions
with such a limit becomes evident. By turning on the
magnetic charge, we obtain regular extremal hairy dyonic
black hole solutions. Consequently, the canonical ensem-
ble can be appropriately defined. In this context, we
verified that the first law is indeed satisfied without
including the extra term due to the nonconserved scalar
charges. Therefore, we have generalized the results
presented in [13] to the dyonic sector.
As a final comment, we would like to point out that the

present analysis is not the most general one. In order to
understand these solutions and their thermodynamics on a
deeper level, a general analysis in the lines of [59,60] is
required when scalar fields are turned on.
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APPENDIX: THE DYONIC SOLUTION, a= − ffiffiffi
3

p

Since this solution is algebraically more complicated in
this case, let us consider the well-known exact solution [38]
as written in [10]. The metric is

ds2 ¼ −aðrÞ2dt2 þ dr2

aðrÞ2 þ bðrÞ2ðdθ2 þ sin2 θdφ2Þ

ðA1Þ

aðrÞ2 ¼ ðr − rþÞðr − r−Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞp ;

bðrÞ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞ

p
; ϕðrÞ ¼ ϕ∞ þ

ffiffiffi
3

p

2
ln

�
AðrÞ
BðrÞ

�
;

ðA2Þ

where

r� ¼ M � c;

c ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 þ Σ2 − 4q2e

ffiffi
3

p
ϕ∞ − 4p2e−

ffiffi
3

p
ϕ∞

q
ðA3Þ

and

AðrÞ ¼ ðr − rAþÞðr − rA−
Þ; BðrÞ ¼ ðr − rBþÞðr − rB−

Þ
ðA4Þ

with

rA� ¼ −
Σ

2
ffiffiffi
3

p � pe−
1
2

ffiffi
3

p
ϕ∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Σ

Σþ 2
ffiffiffi
3

p
M

s
;

rB� ¼ Σ
2

ffiffiffi
3

p � qe
1
2

ffiffi
3

p
ϕ∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Σ

Σ − 2
ffiffiffi
3

p
M

s
ðA5Þ

and the constraint

1

6
Σ ¼ p2e−

ffiffi
3

p
ϕ∞

Σþ 2
ffiffiffi
3

p
M

þ q2e
ffiffi
3

p
ϕ∞

Σ − 2
ffiffiffi
3

p
M

: ðA6Þ

The gauge field, on the other hand, is

F ¼ qe
ffiffi
3

p
ϕ

b2
dt ∧ drþ p sin θdθ ∧ dφ: ðA7Þ

Now, let us schematically show the connection between
the solution in the canonical frame, as given above, with the
x-frame. The change of coordinates that connects them is

u ¼
�
A
B

��1

ðA8Þ

so that the scalar field can be rewritten in the u-coordinate
as

ϕðuÞ ¼ ϕ∞ �
ffiffiffi
3

p

2
lnðuÞ: ðA9Þ

The choice of � sign defines the two families of the
solution in the x-frame, according to the previous discus-
sions. If, by considering the change of coordinates (A8), we
defineΩðuÞ ¼ u�1

2BðuÞ, then, the metric can be rewritten as

ds2 ¼ ΩðuÞ
�
−hðuÞdt2 þ η2du2

fðuÞ þ dθ2 þ sin2θdφ2

�
;

ðA10Þ

where hðuÞ and fðuÞ must be determined in order to
complete the relation between the x-frame and the canoni-
cal frame.

1. Thermodynamics

To obtain the Euclidean action, we proceed as before.
Note that, from Einstein equations we have R ¼ 1

2
ð∂ϕÞ2

and, from the Klein-Gordon equation (4), we haveffiffiffi
3

p
e−

ffiffi
3

p
ϕF2 ¼ − 1ffiffiffiffi−gp ða2b2 sin2 θϕ0Þ0. Therefore, the bulk

part of the action is

IEbulk ¼ −
β

4
ffiffiffi
3

p ða2b2ϕ0Þjrbrþ ¼ 1

4
ffiffiffi
3

p βΣþOðr−1b Þ: ðA11Þ

The Gibbons-Hawking boundary term, the gravitational
counterterm and the boundary term for the scalar field are

IEGH ¼ 3

2
βM − βrb þOðr−1b Þ;

IEct ¼ βrb − βM þOðr−1b Þ;

IEϕ ¼ 1

4
βW þOðr−1b Þ; ðA12Þ

and the total action, considering the contribution from the
magnetic sector, is then
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IE ¼ IEbulk þ IEGH þ IEct þ IEϕ þ IEp

¼ β

�
Σ

4
ffiffiffi
3

p þ 1

2
M − PΨp þ 1

4
W

�
: ðA13Þ

By computing the conserved energy by using the quasilocal
formalism, we get

E ¼ −a3b
�
ab0 − 1 −

1

4Σ2
bðϕ − ϕ∞Þ2W

�
¼ M þ 1

4
W

ðA14Þ

as expected. Finally, to verify the quantum statistical
relation, let us obtain the thermodynamic quantities. The
Hawking temperature and entropy, in the compact form,
can be written as

T ¼ rþ − r−
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrþÞBðrþÞ

p ; S ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrþÞBðrþÞ

p
: ðA15Þ

The electric and magnetic charges are Q ¼ q and P ¼ p,
and the concrete expressions for electric and magnetic
potentials can be written as

Φ ¼ 36MQe
ffiffi
3

p
ϕ∞

ð ffiffiffi
3

p
Σ − 6rþÞð

ffiffiffi
3

p
Σ − 6MÞ ;

Ψp ¼ 36MPe−
ffiffi
3

p
ϕ∞

ð ffiffiffi
3

p
Σþ 6MÞð ffiffiffi

3
p

Σþ 6rþÞ
; ðA16Þ

respectively. One can now easily verify that, by using the
expression (A3), (A5) and (A6) for this solution, both the
quantum statistical relation and the first law

IE ¼ βðE − TS −QΦ −ΨpPÞ;
dE ¼ TdSþΦdQþ ΨpdP ðA17Þ

hold, once again, with no scalar charge Σ appearing
explicitly.
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