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Theories with an infinite number of derivatives are described by nonlocal Lagrangians for which the
standard Hamiltonian formalism cannot be applied. Hamiltonians of special types of nonlocal theories can
be constructed by means of the (1þ 1)-dimensional Hamiltonian formalism. In this paper, we consider a
simple scalar field model inspired by the infinite derivative gravity and study its reduced phase space by
using this formalism. Assuming the expansion of the solutions in the coupling constant, we compute the
perturbative Hamiltonian and the symplectic 2-form. We also discuss an example of a theory leading to an
infinite-dimensional reduced phase space for a different choice of the form factor.
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I. INTRODUCTION

A recurrent feature that appears in many theories of
quantum gravity is the nonlocality. For example, string
theory [1] is inherently nonlocal even on the classical level
because strings and branes cannot interact at a specific
point, but rather over a certain region. Similarly, there exists
a minimal area in loop quantum gravity [2], and causal set
approach [3], which is expected to give rise to nonlocal
behavior. It is not surprising that the nonlocalities appear
also in the effective descriptions of string field theory [4–8]
and p-adic string theory [9–14] (giving rise to zeta strings
[15]). In these models, the Lagrangians contain kinetic
operators with infinite number of derivatives.
It was realized already in [16–18] that the presence of

infinite derivatives in the action may improve the ultraviolet
behavior of loop integrals in many quantum field theories.
This happens if the form factors with an infinite number
derivatives appearing in the actions are entire functions
with no additional zeros in the complex plane. Later, it was
demonstrated in [19–21] that gauge theories and gravity
theories can be made ghost free.
In fact, in the context of gravity, there exist concrete

criteria for which the theories have the same number of
degrees of freedom as there are in Einstein’s theory when
perturbed around particular backgrounds [22–30]. It turns
out that such form factors with an infinite number of
derivatives not only improve the ultraviolet behavior of
the theories [31–33] but also resolve the cosmological
singularities [34–38] as well as the black-hole singularities
[23,39–47].
The Hamiltonian description of the nondegenerate

Lagrangian systems with a finite number of derivatives n

was found by Ostrogradsky already in [48]. (See [49] for a
recent review of this paper in English.) He realized that
such systems have 2n-dimensional phase space and gave a
prescription for its canonical coordinates. More impor-
tantly, he showed that the Hamiltonians of such systems are
unbounded if n > 1, which explains why most fundamental
equations in physics are of the second order at most.
A possible way to evade Ostrogradsky’s theorem is to

consider nonlocal Lagrangians with an infinite number of
derivatives. By introducing derivatives of an arbitrary order,
one might naively expect that we would need to prescribe
an infinite number of initial conditions; however, this is not
always the case. It is possible to find and solve differential
equations with an infinite number of derivatives for which
the initial value problem is well defined with a finite
number of initial data [50–53]. The reason is because the
initial data are often subject to infinitely many relations. As
we will discuss below, such relations are characterized by
the constraints (in the Hamiltonian description) with an
additional continuous parameter, which is identified as an
extra dimension.
A promising approach to counting the number of initial

conditions and degrees of freedom without solving the
differential equations is by means of the diffusion equation
method [54–58]. The advantage of this method is that it can
be applied even to some nonlinear theories if the non-
localities are captured by the exponential form factors.
The initial value problem is, however, best formulated in

the Hamiltonian formalism. Focusing on special types of
nonlocalities, it was found that one can rewrite a nonlocal
Lagrangian theory as a local-in-time field theory with one
extra dimension. Using the standard Legendre transforma-
tion, it is possible to arrive at the Hamiltonian formalism
(with constraints) for such a field theory which is fully
equivalent to the original nonlocal Lagrangian system.
This formalism is referred to as the (1þ 1)-dimensional
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Hamiltonian formalism and it was first proposed in [59].
Later, it was further developed and applied to various cases
in [60–63].1
In particular, the (1þ 1)-dimensional Hamiltonian for-

malism was rewritten using constraints and applied to
spacetime noncommutative theories [60]. It was employed
in the construction of gauge generators for spacetime non-
commutative gauge theories [61]. Finally, it was shown that
this formalism can be used in the analysis of the perturbative
reduced phase space and computation of the reduced
Hamiltonian [62,63]. Here, the procedure was demonstrated
on the p-adic string theory and the string field theory.
Hamiltonian formulation of the infinite derivative gravity

is a very challenging task.2 In this paper, we restrict ourselves
to a very simple scalar field model of the infinite derivative
gravity and analyze its reduced phase space. The theory is
constructed by perturbing the full action around the
Minkowski background and assuming the scaling symmetry
of equations of motion. We rewrite the theory in the (1þ 1)-
dimensional Hamiltonian formalism with constraints. By
solving the second-class constraints, we analyze the reduced
phase space of the free theory and discuss the illustrative
example where the phase space becomes infinite dimen-
sional. Considering the expansion of the solutions in the
coupling constant, we compute the reduced Hamiltonian for
the theory with the interaction term.
The paper is organized as follows: In Sec. II, we review

the (1þ 1)-dimensional Hamiltonian formalism for non-
local theories and discuss its limitations. In Sec. III, we
introduce a scalar field model of infinite derivative gravity.
In Sec. IV, we compute the perturbative Hamiltonian for the
theory with the interaction term, and discuss an example of
a theory leading to an infinite-dimensional phase space.
The paper is concluded with a brief summary of the results
in Sec. V. The Appendix contains a supplementary proof of
the second-class character of the constraints.

II. HAMILTONIAN FORMALISM FOR
NONLOCAL THEORIES

We begin by reviewing the (1þ 1)-dimensional
Hamiltonian formalism for nonlocal theories following the
works of [59,60]. In addition, we comment on the limitations
of this method and explain what types of nonlocal expres-
sions are allowed by the formalism. We describe the

formalism for single-variable systems. However, the exten-
sions to multiple variables or field theories (with additional
spatial dimensions) are also possible and they require
minimal changes in formulas. We also briefly summarize
necessary definitions of Dirac’s procedure for constrained
system [68,69] (see also [70,71]) and describe the methods
of constructing the reduced phase space using the (1þ 1)-
dimensional Hamiltonian formalism [62,63].

A. Nonlocal Lagrangians

Consider a system with a single variable qðtÞ described
by an action

S½q� ¼
Z
R
dtL; ð2:1Þ

with the Lagrangian L. In standard local theories, L is a
function of qðtÞ and its finitely many derivatives at time t,

L ¼ LðqðtÞ; _qðtÞ;…; qðkÞðtÞÞ: ð2:2Þ

In nonlocal theories, on the other hand, L involves the
dependence on variable q at different times as well. Here,
we will focus on Lagrangians that can be regarded as
functionals L ¼ L½q�ðtÞ of the whole history of q taking the
particular form

L ¼ L½qðtþ sÞ�: ð2:3Þ

This means that L is a t-dependent functional of a function
q that can only contain the expressions depending on
qðtþ sÞ, s ∈ R.
This form includes the standard local terms with a finite

number of derivatives as well as certain types of nonlocal
terms such as the integrals over expressions with qðtþ sÞ
or certain expressions with an infinite number of derivatives
of qðtÞ. The reason is because differential operators Dð∂tÞ
given by an analytic function DðzÞ acting on qðtÞ can be
often rewritten as a convolution with an integral kernel
KðsÞ,

Dð∂tÞqðtÞ ¼
Z
R
ds qðtþ sÞKðsÞ; ð2:4Þ

which has the dependence of the form, Eq. (2.3).
Equality (2.4) is generally expected to hold whenever
the convolution exists, but it should be checked for each
case separately; see, for example, [50,72]. It can be derived,
for example, by repeated use of the Fourier transform,3

1An equivalent formalism for nonlocalities of finite extent was
introduced in [64]. See also [65] for an approach using boundary
Poisson brackets.

2There were some attempts to develop the Hamiltonian
formalism for the full infinite derivative gravity in the literature,
e.g., [66,67]. However, these approaches rely on infinite-
dimensional generalization of the Ostrogradsky’s formulas for
canonical variables. In the (1þ 1)-dimensional formalism, on the
other hand, only the standard definitions of canonical variables
are used. Furthermore, in [66], the number of degrees of freedom
was deduced from an indeterminate expression that was not
evaluated by taking a proper limit.

3Our convention for the Fourier transform is

F ½f�ðkÞ ¼
Z
R
dt fðtÞe−ikt; F−1½f�ðtÞ ¼ 1

2π

Z
R
dk fðkÞeikt:
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Dð∂tÞqðtÞ ¼
1

2π

Z
R
dkDðikÞF ½q�ðkÞeikt

¼ 1

2π

Z
R
dkDðikÞ

Z
R
ds qðsÞeikðt−sÞ

¼ 1

2π

Z
R
ds

Z
R
dkDð−ikÞeiksqðtþ sÞ; ð2:5Þ

which gives an explicit formula for the integral kernel

KðsÞ ¼ F−1½Dð−ikÞ�ðsÞ: ð2:6Þ

Let us mention a few interesting examples of differential
operators and their integral kernels,

Dð∂tÞ ¼ ∂l
t; KðsÞ ¼ ð−1ÞlδðlÞðsÞ;

Dð∂tÞ ¼ ea∂t ; KðsÞ ¼ δðs − aÞ;

Dð∂tÞ ¼ ea∂2t ; KðsÞ ¼ 1

2
ffiffiffiffiffiffi
πa

p e−
s2
4a;

Dð∂tÞ ¼ ea∂2t ∂2
t ; KðsÞ ¼ s2 − 2a

8
ffiffiffiffiffiffiffiffi
πa5

p e−
s2
4a;

Dð∂tÞ ¼ sinð∂2
t Þ; KðsÞ ¼ 1

2
ffiffiffiffiffiffi
2π

p
�
sin

�
s2

4

�
− cos

�
s2

4

��
:

ð2:7Þ

The first example is the lth derivative qðlÞðtÞ. The second
one is the shift operator in time corresponding to
qðtþ aÞ. The third operator appears in the effective models
of p-adic string theory and the fourth one in string field
theory. The last case is an example of DðzÞ with infinite
zeros in the complex plane. (This operator will be studied in
Sec. IV C.)
If the differential operator is not of the form Dð∂tÞ,

but contains the explicit temporal dependence, it seems
unlikely that it could be expressed by means of qðtþ sÞ.
For instance, let us consider the operator eat∂t. When
acting on qðtÞ, this operator scales the time by a
constant ea, eat∂tqðtÞ ¼ qðeatÞ, instead of shifting it.
Therefore, this nonlocality is of a different type than
what is assumed in Eq. (2.3). It may be possible to
change the time coordinate and bring the expression to
the form, Eq. (2.4). For example, eat∂tqðtÞ is just the
time shift ea∂ t̃ q̃ðt̃Þ of the redefined function q̃ðt̃Þ ¼ qðet̃Þ
in the rescaled coordinate t̃ ¼ log t. However, such
a transformation is beneficial only if it does not
create unwanted nonlocalities in other parts of the
Lagrangian.
Let us focus on the equations of motion for q. Using the

chain rule for functional derivatives on the composed

functional Eq. (2.1) with Eq. (2.3), the Euler-Lagrange
equations can be rewritten in the form4

0 ¼ δS
δqðtÞ ¼

Z
R
ds

δLðsÞ
δqðtÞ : ð2:8Þ

Due to the presence of nonlocal expressions possibly
containing infinite number of derivatives, it is problematic
to interpret the Euler-Lagrange equations as standard
evolutionary equations for q from initial data. They should
be thought of as the functional relations constraining the
whole function q instead. Denoting the space of all possible
trajectories qðtÞ by J , Eq. (2.8) defines the subspace of the
physical trajectories J phys ⊂ J .
The equations of motion, Eq. (2.8), are usually very

difficult to solve. However, if they can be recast into linear
equations of the form

Dð∂tÞqðtÞ ¼ jðtÞ; ð2:9Þ

then the problem can be solved completely; see Refs. [50–
53]. As shown in [50], the full solution of (2.9) can be
found by means of the Laplace transform and the Cauchy
integral theorem. The number of independent solutions is
completely determined by the pole structure of DðzÞ−1.
This is because the operator Dð∂tÞ in the Laplace space
reads5

Dð∂tÞqðtÞ ¼
1

2πi

I
C
DðzÞL½q�ðzÞeztdz; ð2:10Þ

where the terms qðlÞð0Þ are dropped as they can be absorbed
into the arbitrary integration constants. The number of
solutions is given by the homogeneous equation
Dð∂tÞqðtÞ ¼ 0 which translates to the analyticity of
DðzÞL½q�ðzÞ due to the Cauchy integral theorem. This
can be only satisfied by L½q�ðzÞ that has at most the same

4We use the following notation for the functional differ-
entiation:

δF½f; δf� ¼ dF½f þ ϵδf�
dϵ

����
ϵ¼0

¼
Z
R
dx

δF½f�
δfðxÞ δfðxÞ;

where δF½f; g� denotes the variation and δF½f�
δfðxÞ is the functional

derivative.
5The Laplace transform is defined by the following formulas:

L½f�ðzÞ ¼
Z

∞

0

dt fðtÞe−zt; L−1½f�ðtÞ ¼ 1

2πi

I
C
fðzÞeztdz;

where t ≥ 0 and the curve C encloses all the poles of the
integrand.
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number of poles as DðzÞ−1 of given or lower multiplicities.
Each pole then contributes by a number of constants
(independent solutions) that is equal to its multiplicity.

B. (1 + 1)-dimensional Hamiltonian formalism

Let us consider the field quantities Q that depend on an
additional coordinate s ∈ R, Q ¼ Qðt; sÞ. We will denote
the derivatives with respect to t and s by _F ¼ ∂tF and
F0 ¼ ∂sF. The (1þ 1)-dimensional Hamiltonian formal-
ism uses the definition of the Hamiltonian,

H½Q;P�ðtÞ ¼
Z
R
dsPðt; sÞQ0ðt; sÞ − L̂½Q�ðtÞ; ð2:11Þ

where Pðt; sÞ is the canonical momenta of Qðt; sÞ. The
functional L̂ is obtained from the Lagrangian L by
replacing qðtþ sÞ → Qðt; sÞ,

L̂½Q�ðtÞ ¼ L½q�ðtÞjqðtþsÞ¼Qðt;sÞ; s ∈ R: ð2:12Þ

This substitution effectively changes all nonlocal terms into
the corresponding terms that are local in time t. Therefore,
the Hamiltonian (2.11) defines an ordinary field theory that
is local in time t. For instance, the nonlocal expressions of
the form Dð∂tÞqðtÞ are replaced by local-in-time terms
[cf. Eq. (2.4)],

Dð∂tÞqðtÞjqðtþsÞ¼Qðt;sÞ ¼
Z
R
dsQðt; sÞKðsÞ ¼Dð∂sÞQðt;0Þ:

ð2:13Þ

The phase space is defined as the cotangent bundle of all
possible trajectories S ¼ T�J with the symplectic 2-form
given by

Ω ¼
Z
R
ds dQðt; sÞ ∧ dPðt; sÞ: ð2:14Þ

The corresponding Poisson bracket of two phase-space
observables F ¼ F½Q;P� and G ¼ G½Q;P� is

fF;Gg ¼ dF · Ω−1 · dG

¼
Z
R
ds

�
δF

δQðt; sÞ
δG

δPðt; sÞ −
δF

δPðt; sÞ
δG

δQðt; sÞ
�
:

ð2:15Þ

Hamilton’s equations for (2.11) are given by

_Qðt; sÞ ¼ δHðtÞ
δPðt; sÞ ¼ Q0ðt; sÞ;

_Pðt; sÞ ¼ −
δHðtÞ
δQðt; sÞ ¼ P0ðt; sÞ þ δL̂ðtÞ

δQðt; sÞ ; ð2:16Þ

where the first equation implies that Qðt; sÞ is a function of
the sum tþ s, which is identified with qðtþ sÞ. The second
equation does not lead to further restrictions on Qðt; sÞ,
meaning that the theory described by H½Q;P� is not fully
equivalent to the original theory associated with L½q�.
As shown in Refs. [59,60], the equivalent theory is

obtained by restricting to the subspace Sc ⊂ S defined by
the primary constraint,6

Φðt; sÞ ¼ Pðt; sÞ −
Z
R
ds̃ χðs;−s̃Þ δL̂ðt; s̃Þ

δQðt; sÞ ≈ 0; ð2:17Þ

where χðs; rÞ ¼ 1
2
ðsgnðsÞ þ sgnðrÞÞ and L̂ðt; sÞ is a

density-type functional,

L̂½Q�ðt; sÞ ¼ L½q�ðtÞjqðtþs̃Þ¼Qðt;s̃þsÞ; s̃ ∈ R: ð2:18Þ

Similar to (2.13), the nonlocal operators in this expression
are replaced by local-in-time operators,

Dð∂tÞqðtÞjqðtþs̃Þ¼Qðt;s̃þsÞ ¼ Dð∂sÞQðt; sÞ: ð2:19Þ

Note that L̂½Q�ðtÞ ¼ L̂½Q�ðt; 0Þ, which appears in the
prescription for the Hamiltonian (2.11). The con-
straint (2.17) is called the momentum constraint because
it is associated with the definition of Pðt; sÞ.
The consistency condition of the momentum constraint

with the Hamiltonian evolution _Φ ≈ 0 generates the sec-
ondary constraint [60],

Ψðt; sÞ ¼
Z
R
ds̃

δL̂ðt; s̃Þ
δQðt; sÞ ≈ 0; ð2:20Þ

which is referred to as the Euler-Lagrange constraint
because it corresponds to the Euler-Lagrange equation (2.8)
when Qðt; sÞ is replaced by qðtþ sÞ. This also establishes
the equivalence between the dynamics of the Hamiltonian
system with H½Q;P� constrained on the surface Sc and
the space of physical trajectories J phys defined by the
original nonlocal Lagrangian L½q�. When applied to the
local theories with a finite number of derivatives, this
formalism reproduces the Ostrogradsky’s construction
[48]; see [59,60].

C. Reduced phase space

Arbitrary set of constraints can be always split into
two classes. The first-class constraints are such that their
Poisson brackets with all other constraints weakly vanish.

6As it is standard in Dirac’s procedure for constrained systems,
we use the weak equality denoted by ≈ to emphasize that the
equation holds only on the constrained surface. The usual
equality (with the standard sign ¼) is called the strong equality
and means that the equation holds everywhere in the phase space.
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These constraints generate the gauge transformations
(ignoring the cases when the Dirac’s conjecture does not
hold), which indicates that there is more than one set of
canonical variables corresponding to a given physical state.
The constraints that are not of the first class are called

the second-class constraints.7 These constraints are usually
treated by replacing the standard Poisson bracket with the
Dirac bracket.
In this paper, we focus on the examples for which all

constraints (momentum and Euler-Lagrange for various s)
form a second-class set. This means that the a pair of
canonical variables Qðt; sÞ and Pðt; sÞ that satisfies the
constraints uniquely determines only one physical state. In
this case, the matrix composed of all Poisson brackets of
constraints with continuous indices s and s̃ (and suppressed
t dependence),

Cðs; s̃Þ ¼
� fΨðsÞ;Ψðs̃ÞgfΨðsÞ;Φðs̃Þg
fΦðsÞ;Ψðs̃ÞgfΦðsÞ;Φðs̃Þg

�
; ð2:21Þ

has a maximal rank, so it can be inverted to find C−1 by
means of

Z
R
ds̃Cðs; s̃Þ · C−1ðs̃; ˜̃sÞ ¼

�
1 0

0 1

�
δðs − ˜̃sÞ: ð2:22Þ

The Dirac bracket is then defined by the relation

fF;Gg� ¼ fF;Gg −
Z
R
ds

Z
R
ds̃ F

→
ðsÞ · C−1ðs; s̃Þ · G⃗ðs̃Þ;

F
→
ðsÞ ¼ ½ fF;ΨðsÞgfF;ΦðsÞg �;

G⃗ðs̃Þ ¼
� fΨðs̃Þ; Gg
fΦðs̃Þ; Gg

�
: ð2:23Þ

Since all the equations of the theory can be reformulated
in terms of Dirac brackets, the second-class constraints
effectively become strong equations expressing relation
between canonical variables. This is because when working
with Dirac brackets, we can set the second-class constraints
equal to zero before evaluating the bracket. By solving the
second-class constraints, we can entirely eliminate the
redundant variables and, thus, determine the reduced phase
space. The number of degrees of freedom of the theory is
then equal to the half of the number of dimensions of the
reduced phase space.
There are two different approaches to solving the

second-class constraints and analyzing the reduced phase
space [62,63] which are as follows:

(1) Solve the Euler-Lagrange constraintΨ ≈ 0, determine
the momenta from Φ ≈ 0, and find the expression for
the symplectic 2-form on the constrained surfaces.

(2) Expand the components in the Taylor frame,
Eqs. (A5) and (A6), find appropriate pairings be-
tween constraints Ψk and Φl that eliminate the
corresponding canonical pairs ðqj; pjÞ.

In this paper, we will focus on the former approach. The
examples of both methods can be found in [62].

III. SCALAR FIELD MODEL OF INFINITE
DERIVATIVE GRAVITY

It was shown in [23,27,73] that the most general four-
dimensional parity-invariant, torsion-free gravity action
that is quadratic in curvature can be written in a rather
compact form

SQG½gμν� ¼
1

2κ2

Z
M

ffiffiffiffiffiffi
−g

p �
Rþ 1

2
ðRF 1ð□ÞR

þRμνF 2ð□ÞRμν þRμνκλF 3ð□ÞRμνκλÞ
�
;

ð3:1Þ

where κ ¼ ffiffiffiffiffiffiffiffiffi
8πG

p
and the form factors F ið□Þ are differ-

ential operators given by arbitrary analytic functions of
d’Alembertian □ ¼ ∇μ∇μ.8 Such actions are nonlocal if
at least one form factor is a nonpolynomial function. In
order for the theory to be ghost free on the Minkowski
background, the form factors must satisfy 2F 1ð□Þ þ
F 2ð□Þ þ 2F 3ð□Þ ¼ 0; see Ref. [23]. To simplify our lives,
and without loss of generality, we can set F 3ð□Þ ¼ 0.9

Furthermore, we assume that the combination [23]

að−□Þ≡ 1 − F 1ð□Þ□ ¼ 1þ 1

2
F 2ð□Þ□ ð3:2Þ

is an arbitrary entire function with no zeros in the com-
plex plane satisfying að0Þ ¼ 1 that can be expanded to all
orders as

aðzÞ ¼ 1þ
X∞
k¼1

akzk; ak ¼
aðkÞð0Þ
k!

: ð3:3Þ

This ensure that the theory has the same number of
dynamical degrees of freedom as general relativity and it
reproduces the Einstein-Hilbert action in the local limit
aðzÞ → 1. The higher derivatives are suppressed by the scale
of nonlocality Ms, which is implicitly included in the

7Do not confuse with the classification of primary and
secondary constraints, which refers to the manner in which
the constraints are generated from consistency with the Hamil-
tonian evolution.

8We do not consider nonanalytic operators such as □−1

[74,75], or logð□Þ [76–78].
9We should stress that the term involving F 3 can be always

neglected if one is interested in the second-order metric pertur-
bations; however, it contributes to the third-order expansion.
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coefficients ak ∝ 1=M2k
s .10 Equation (3.3) also implies that

operators F ið□Þ are analytic. With these assumptions, we
can rewrite the action as

SIDG½gμν� ¼
1

2κ2

Z
M

ffiffiffiffiffiffi
−g

p �
R − Gμν

1 − að−□Þ
□

Rμν

�
;

ð3:4Þ

which belongs to the class of theories of the infinite
derivative gravity. Here, Gμν ¼ Rμν − 1

2
Rgμν is the

Einstein tensor.
By perturbing this action around the Minkowski back-

ground,

gμν ¼ ημν þ κhμν; ð3:5Þ

we can find that this theory is ghost free and the only
propagating degree of freedom is the massless spin-2
graviton. Indeed, the only pole of the propagator in the
Fourier space,

ΠðkÞ ¼ ΠGRðkÞ
aðk2Þ ; ð3:6Þ

is the pole k2 ¼ 0 corresponding to the graviton propagator
of general relativity ΠGRðkÞ because aðk2Þ has no zeros in
the complex plane [23].
Obviously, the complicated action [Eq. (3.4)] is still way

beyond the scope of applicability of the Hamiltonian
formalism discussed in Sec. II. Note that we are forced
to work with perturbative analysis because the formalism
is not covariant and one cannot transform the nonlocal
terms in the action to the form, Eq. (2.4), for a general
metric gμν. These coordinates might exist only for very
special geometries such as the ultrastatic spacetimes where
□ ¼ −∂2

t þ Δ, with Δ being the Laplacian of the spatial
part of the metric.
The perturbative expansion of the action around the

Minkowski background contains many terms with a com-
plicated tensorial structure. To keep the problem manage-
able, we focus on the terms involving only the trace hμμ and
construct a scalar field theory for ϕ≡ hμμ whose equations
of motion enjoy the same scaling symmetry as Einstein’s
equations. Such scalar field models of infinite derivative
gravity were studied in [33,79–81]. We follow [33] where
the scalar field action was constructed by examining all
possible terms of the third-order metric perturbations of
(3.4). Keeping the trace terms only, it was found that the
free part Sfree and the interaction part Sint of the scalar field
action S ¼ Sfree þ Sint should take the following form:

Sfree½ϕ� ¼
1

2

Z
d4x ϕað−□Þ□ϕ;

Sint½ϕ� ¼ κ

Z
d4xðα1ϕ∂μϕ∂μϕþ α2ϕ□ϕað−□Þϕ

þ α3ϕ∂μϕað−□Þ∂μϕÞ; ð3:7Þ

where □ ¼ ∂μ∂μ.
Unfortunately, the particular values of constants αi are

technically quite difficult to find. An alternative method
(proposed in [33]) is to specify the coefficients αi by
demanding the equation of motion to have the same scaling
symmetry gμν → ð1þ ϵÞgμν as Einstein’s equations. This
translates into the transformation of the scalar field

ϕ → ϕ̃ ¼ ð1þ ϵÞϕþ ϵκ−1: ð3:8Þ

Since the transformations that scale the action leave the
equations of motion invariant, we look for the coefficients
αi satisfying

δS½ϕ; δsϕ� ∝ S½ϕ�; ð3:9Þ

where we denoted

δsϕ ¼ ðϕ̃ − ϕÞ=ϵ ¼ ϕþ κ−1: ð3:10Þ

It is useful to split the action (3.7) into local and nonlocal
parts S ¼ Sloc þ Sn−l and demand the proportionality for
both cases with the same constant. We obtain the following
relations:

α1 ¼ α2 ¼ α3 þ
1

2
: ð3:11Þ

We should stress that only the local part Sloc is specified
uniquely by this method. The nonlocal part Sn−l still
depends on one parameter. For simplicity, we choose11

α1 ¼ 0; α2 ¼ 0; α3 ¼ −
1

2
; ð3:12Þ

which gives rise to the action

S½ϕ� ¼ 1

2

Z
d4xϕað−□Þ□ϕþ κ

4

Z
d4xϕ2að−□Þ□ϕ:

ð3:13Þ

The computations presented in the next section could be
extended to other choices of αi.

10The current bound on Ms is ≥ 0.004 eV. The constraint
arises from the deviation of Newton’s 1=r potential in torsion-
based experiments [39].

11The authors of [33,79–81] studied the theory corresponding
to the choice α1 ¼ α2 ¼ −α3 ¼ 1=4. In our computation, we
found that we can simplify the interaction term by making a
judicious choice of Eq. (3.12).
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In what follows, we will focus on the spatially homo-
geneous fields ϕ ¼ ϕðtÞ≡ qðtÞ. Ignoring the spatial deriv-
atives and rescaling the action by

R
d3x, we arrive at the

nonlocal Lagrangian for a single variable qðtÞ,

L½q�ðtÞ ¼ −
1

2
qðtÞað∂2

t Þq̈ðtÞ −
κ

4
qðtÞ2að∂2

t Þq̈ðtÞ; ð3:14Þ

for which we compute the Hamiltonian using the (1þ 1)-
dimensional formalism.

IV. COMPUTATION OF HAMILTONIAN

Employing the formalism of Sec. II, we compute the
Hamiltonian for the scalar field model introduced in
Sec. III. To provide a simple starting point, we begin at
the level of the free theory where the nonlocality does not
play a significant role. Then we move on to the theory with
interactions and compute the perturbative Hamiltonian.
Finally, we study an example of a free theory leading to
an infinite-dimensional reduced phase space.

A. Free theory

We start with the free theory given by the first term in
Eq. (3.14). The time-localized density-type functional
L̂½Q�ðt; sÞ for the (1þ 1)-dimensional field Qðt; sÞ reads

L̂½Q�ðt; sÞ ¼ −
1

2
Qðt; sÞað∂2

sÞQ00ðt; sÞ; ð4:1Þ

where we used the rule (2.19).
For our calculations, it is useful to have the functional

derivative of L̂ðt; sÞ,

δL̂ðt; sÞ
δQðt; s̃Þ ¼ −

1

2
δðs − s̃Það∂2

sÞQ00ðt; sÞ

−
1

2
Qðt; sÞað∂2

sÞδ00ðs − s̃Þ: ð4:2Þ

By integrating this expression [see Eq. (2.20)], we obtain
the Euler-Lagrange constraint,

Ψðt; sÞ ¼ −að∂2
sÞQ00ðt; sÞ ≈ 0: ð4:3Þ

Employing the identity

χðs;−s̃ÞδðnÞðs̃ − sÞ ¼
Xn−1
k¼0

ð−1ÞkδðkÞðsÞδðn−k−1Þðs̃Þ; ð4:4Þ

we can obtain the momentum constraint [see Eq. (2.17)],

Φðt; sÞ ¼ Pðt; sÞ − 1

2

X∞
k;j¼0

akþjZk;j½Q�ðt; sÞ ≈ 0; ð4:5Þ

where

Zk;j½Q�ðt; sÞ ¼ Qð2kþ1Þðt; 0Þδð2jÞðsÞ
þQð2kÞðt; 0Þδð2jþ1ÞðsÞ: ð4:6Þ

At this point, we should check that the constraints Ψðt; sÞ
and Φðt; sÞ form a second-class set. This is done in the
Appendix by expanding the constraints and variables in the
Taylor basis and computing the matrix (2.21).
The linear differential equation (4.3) can be solved

exactly. As we discussed in Sec. II A, the number of
independent solutions of such equations is determined
by the pole structure of the function 1=ðaðz2Þz2Þ, which
is the same as 1=z2 because aðz2Þ has no zeros in the
complex plane. This means that all solutions of the Euler-
Lagrange constraint (4.3) are also the solutions of a simpler
constraint,

Ψ̃ðt; sÞ ¼ Q00ðt; sÞ ≈ 0; ð4:7Þ

which is solved by the linear function

Qðt; sÞ ¼ q0ðtÞ þ q1ðtÞs: ð4:8Þ

Inserting this expression in the momentum constraints (4.5),
we find

Pðt; sÞ ¼ 1

2
q1ðtÞ

X∞
j¼0

ajδð2jÞðsÞ þ
1

2
q0ðtÞ

X∞
j¼0

ajδð2jþ1ÞðsÞ:

ð4:9Þ

Therefore, we have shown that the phase-space variables
ðQ;PÞ are described solely in terms of q0 ¼ q and q1 ¼ _q.
These quantities can be used to parametrize the reduced
phase space of the system. Employing the relations
Eqs. (2.11), (2.14), (4.8), and (4.9), we obtain the reduced
Hamiltonian and the symplectic 2-form,

Hred ¼
1

2
_q2; Ωred ¼ dq ∧ d _q: ð4:10Þ

We can see from the form of the symplectic 2-form that the
reduced phase space is two-dimensional. Thus, the theory
has 1 degree of freedom. This confirms the expected result
obtained by the inspection of the propagator. The system is
dynamically equivalent to the original Lagrangian without
the nonlocal operator, L ¼ − 1

2
qq̈.

Note that we could alternatively obtain the same results
by using more general formulas

Hred ¼
1

2

X∞
k;j¼0

akþjðQð2kþ1Þ
s¼0 Qð2jþ1Þ

s¼0 −Qð2kÞ
s¼0Q

ð2jþ2Þ
s¼0 Þ;

Ωred ¼
X∞
k;j¼0

akþjdQ
ð2kÞ
s¼0 ∧ dQð2jþ1Þ

s¼0 ; ð4:11Þ
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where QðmÞ
s¼0 ≡QðmÞðt; 0Þ. These expressions hold true for

arbitrary analytic function aðzÞ. They can be derived by
inserting Pðt; sÞ from Eq. (4.5) in Eqs. (2.11), (2.14), and
using Eq. (4.3).

B. Interaction term

Let us consider the Lagrangian (3.14) with the cubic
interaction term. Using the rule (2.19), we can write
the functional L̂½Q�ðt; sÞ of the (1þ 1)-dimensional
Hamiltonian formalism as

L̂½Q�ðt; sÞ ¼ −
1

2
Qðt; sÞað∂2

sÞQ00ðt; sÞ

−
κ

4
Qðt; sÞ2að∂2

sÞQ00ðt; sÞ: ð4:12Þ

Its functional derivative reads

δL̂ðt; sÞ
δQðt; s̃Þ ¼ −

1

2
δðs − s̃Það∂2

sÞQ00ðt; sÞ

−
1

2
Qðt; sÞað∂2

sÞδ00ðs − s̃Þ

−
κ

2
δðs − s̃ÞQðt; sÞað∂2

sÞQ00ðt; sÞ

−
κ

4
Qðt; sÞ2að∂2

sÞδ00ðs − s̃Þ: ð4:13Þ

This expression can be integrated to obtain the Euler-
Lagrange constraints with the additional nonlinear terms
in Q,

Ψðt; sÞ ¼ −að∂2
sÞQ00ðt; sÞ − κ

2
Qðt; sÞað∂2

sÞQ00ðt; sÞ

−
κ

4
að∂2

sÞ∂2
sðQðt; sÞ2Þ ≈ 0: ð4:14Þ

With the help of the identity, Eq. (4.4), we find momentum
constraint

Φðt; sÞ ¼ Pðt; sÞ − 1

2

X∞
k;j¼0

akþjZk;j½Q�ðt; sÞ

−
κ

4

X∞
k;j¼0

akþjZk;j½Q2�ðt; sÞ ≈ 0; ð4:15Þ

where Zk;j is the functional defined in Eq. (4.6). The
interaction term does not change the second-class character
of the constraints Ψðt; sÞ and Φðt; sÞ.
Due to the nonlinear terms in Eq. (4.14), we must resign

to the perturbative approach in the coupling constant κ to
solving the Euler-Lagrange constraint. However, let us first
discuss the solution of the local limit að∂2

sÞ → 1 (i.e.,
ak → 0, k > 0). The differential equation (4.14) reduces to

Q00 þ κQQ00 þ κ

2
ðQ0Þ2 ¼ 0; ð4:16Þ

which has an exact solution

Qlocðt; sÞ ¼ ðκ−1 þ q0ðtÞÞ13
�
κ−1 þ q0ðtÞ þ

3

2
q1ðtÞs

�2
3

− κ−1;

ð4:17Þ

with two arbitrary functions q0ðtÞ, q1ðtÞ. Since all deriv-
atives of this function can be continuously extended to
κ ¼ 0, it seems reasonable to restrict ourselves to the
solutions of the nonlocal problem that also admit smooth
expansion in the coupling constant κ.
Following Ref. [59], we define the perturbative solution

of Eq. (4.14) as a power series,

Qðt; sÞ ¼
X∞
k¼0

κkQkðt; sÞ; ð4:18Þ

such that the initial data are given by a set of arbitrary
functions q0ðtÞ and q1ðtÞ,

Qkðt; 0Þ ¼ δ0kq0ðtÞ; Q0
kðt; 0Þ ¼ δ0kq1ðtÞ; ð4:19Þ

and the coefficients Ψkðt; sÞ of series,

Ψðt; sÞ ¼
X∞
k¼0

κkΨkðt; sÞ; ð4:20Þ

all vanish for such functions Qðt; sÞ. Inserting Eq. (4.18) in
Eq. (4.14), we can write the equations for Qkðt; sÞ as

Ψk ¼ −að∂2
sÞQ00

k −
1

2

Xk−1
m¼0

Qmað∂2
sÞQ00

k−m−1

−
1

4

Xk−1
m¼0

að∂2
sÞ∂2

sðQmQk−m−1Þ ≈ 0: ð4:21Þ

Recall that for Q0 corresponding to Ψ0, the general
solution of Eq. (4.3) was a solution of a much simpler
equation (4.7). This can be generalized to the constraintsΨk
with k > 0 as well because the differential equations (4.21),
are of the form Eq. (4.3) with the nonvanishing right-hand
side given by Qj with j < k [see Eq. (2.9)]. A general
solution of the constraints, Eq. (4.21), is equivalent to the
solution of nonhomogeneous equations,

Ψ̃k ¼ Q00
k þ

1

2

Xk−1
m¼0

1

að∂2
sÞ
ðQmað∂2

sÞQ00
k−m−1Þ

þ 1

4

Xk−1
m¼0

∂2
sðQmQk−m−1Þ ≈ 0: ð4:22Þ

Here, the operator 1=að∂2
sÞ is given by the analytic function

1=aðzÞ. Its coefficients can be generated from the expan-
sion around z ¼ 0,
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1

aðzÞ ¼
X∞
k¼0

ð1=aÞðkÞð0Þ
k!

zk ¼ 1 − a1zþ ða21 − a2Þz2 þ…:

ð4:23Þ
Solving Eq. (4.22) iteratively and taking into account

initial conditions (4.19), we arrive at the perturbative
solution of the Euler-Lagrange constraint (4.14),

Qðt; sÞ ¼ q0ðtÞþq1ðtÞs−
1

4
κq1ðtÞ2s2

þ 1

2
κ2q1ðtÞ2s2

�
1

2
q0ðtÞþ

1

3
q1ðtÞs

�

þ 1

4
κ3q1ðtÞ2s2

�
9

4
a1q1ðtÞ2−q0ðtÞ2

−
4

3
q0ðtÞq1ðtÞs−

7

12
q1ðtÞ2s2

�
þOðκ4Þ: ð4:24Þ

This can be compared with the Taylor series of exact local
solution, Eq. (4.17),

Q ¼ Qloc þ
9

16
κ3a1q41s

2 þOðκ4Þ; ð4:25Þ

where we explicitly see the first nonlocal contribution. By
inserting Eq. (4.24) in the momentum constraints (4.15),
we obtain

Pðt; sÞ ¼ 1

2
ð1þ κq0ðtÞÞq1ðtÞ

X
j

ajδð2jÞðsÞ

þ 1

2

�
1þ 1

2
κq0ðtÞ

�
q0ðtÞ

X
j

ajδð2jþ1ÞðsÞ

−
1

4
κ2ð1− κq0ðtÞÞq1ðtÞ3

X
j

ajþ1δ
ð2jÞðsÞ

þ 1

4
κ

�
1þ 9

4
κ2a1q1ðtÞ2

�
q1ðtÞ2

X
j

ajþ1δ
ð2jþ1ÞðsÞ

þ 5

8
κ3q1ðtÞ4

X
j

ajþ2δ
ð2jþ1ÞðsÞ þOðκ4Þ; ð4:26Þ

where we denoted
P

j≡P∞
j¼0.

By this procedure, we constructed the two-dimensional
reduced phase space of perturbative solutions that is para-
metrized by variables q0 ¼ q and q1 ¼ _q. The Hamiltonian
and the symplectic 2-form can be computed by inserting
Eqs. (4.24) and (4.26) in Eqs. (2.11) and (2.14),

Hred ¼
1

2
_q2 þ 1

2
κq _q2 þ 3

8
κ2a1 _q4 −

3

8
κ3a1q _q4 þOðκ4Þ;

Ωred ¼
�
1þ κqþ 3

2
κ2a1 _q2 −

3

2
κ3a1q _q2 þOðκ4Þ

�
dq ∧ d _q:

ð4:27Þ

The first term with the nonlocal contribution appears in the
second order of the coupling constant κ in both expressions.
However, we should remind that we restricted ourselves

to the lowest-order interaction term in the action. If we
included higher-order interactions as well, the Hamiltonian
and the symplectic 2-form might get additional contribu-
tions. In such situation, we should be more careful with the
order of κ and write just

Hred ¼
1

2
_q2 þ 1

2
κq _q2 þOðκ2Þ;

Ωred ¼ ð1þ κqþOðκ2ÞÞ dq ∧ d _q; ð4:28Þ
which is equivalent to the local case at this order.

C. Theory with infinite degrees of freedom

So far, we have considered aðzÞ to be an entire function
with no zeros in the complex plane. We have shown that the
corresponding free theory has 1 degree of freedom and the
phase space is two-dimensional. If this assumption is not
satisfied, we can expect the theory to have more degrees of
freedom. An interesting case is when the phase space is
truly infinite-dimensional.
Let us focus on a particular example of aðzÞ with an

infinite number of zeros,

aðzÞ ¼ sinðzÞ
z

¼ 1þ
X∞
j¼1

ð−1Þjz2j
ð2jþ 1Þ! ¼

Y∞
k¼1

�
1 −

z2

π2k2

�
:

ð4:29Þ
The free part of the Lagrangian (3.14) in the (1þ 1)-
dimensional language is then

L̂½Q�ðt; sÞ ¼ −
1

2
Qðt; sÞ sinð∂2

sÞQðt; sÞ: ð4:30Þ

Note that this Lagrangian still contains just the kinetic
terms and no potential term because the lowest term in
expansion of sinð∂2

sÞ is ∂2
s , cf. Eq. (4.29). Recalling the

expressions, Eqs. (4.3) and (4.5), which are valid for
arbitrary analytic function aðzÞ, we arrive at the Euler-
Lagrange constraint,

Ψðt; sÞ ¼ − sinð∂2
sÞQðt; sÞ ≈ 0; ð4:31Þ

and the momentum constraint,

Φðt; sÞ ¼ Pðt; sÞ − 1

2

X∞
j¼0

ð−1Þj
ð2jþ 1Þ!

X2j
l¼0

Zl;2j−l½Q�ðt; sÞ ≈ 0:

ð4:32Þ
The constraints Ψðt; sÞ and Φðt; sÞ are of the second class;
see the Appendix.
We need to find a general solution of the Euler-Lagrange

constraint (4.31). The function 1= sinðz2Þ has a second-
order pole at z ¼ 0 and infinite number of simple poles at
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z ¼ � ffiffiffiffiffi
πk

p
and z ¼ �i

ffiffiffiffiffi
πk

p
, k ∈ N. Suppressing the t

dependence, the analyticity of sinðz2ÞL½Q�ðzÞ implies

L½Q�ðzÞ ¼ A0

z
þ B0

z2
þ
X∞
k¼1

�
Bk

z −
ffiffiffiffiffi
πk

p þ Bk

zþ ffiffiffiffiffi
πk

p

þ A−k

z − i
ffiffiffiffiffi
πk

p þ A−k

zþ i
ffiffiffiffiffi
πk

p
�

ð4:33Þ

for some arbitrary constants Aj and Bj, j ∈ Z. After
performing the inverse Laplace transform, calculating the
integrals by means of the Cauchy integral theorem, and
restoring the t dependence, we arrive at

Qðt; sÞ ¼ α0ðtÞ þ β0ðtÞs

þ
X∞
k¼1

�
αkðtÞ þ βkðtÞ

2
e

ffiffiffiffi
πk

p
s þ αkðtÞ− βkðtÞ

2
e−

ffiffiffiffi
πk

p
s

þ α−kðtÞ cos ð
ffiffiffiffiffi
πk

p
sÞ þ β−kðtÞ sin ð

ffiffiffiffiffi
πk

p
sÞ
�
;

ð4:34Þ
where αjðtÞ and βjðtÞ, j ∈ Z, are arbitrary functions. The
coefficients were chosen in order to get simple expressions
for derivatives of Qðt; sÞ at s ¼ 0,

Qð2jÞ
s¼0 ¼ α0δ

j
0 þ

X∞
k¼1

½αk þ ð−1Þjα−k�ðπkÞj;

Qð2jþ1Þ
s¼0 ¼ β0δ

j
0 þ

X∞
k¼1

½βk þ ð−1Þjβ−k�ðπkÞjþ1
2: ð4:35Þ

Instead of solving the momentum constraint (4.32), for
Pðt; sÞ, we can insert these expressions directly in
the general formulas, Eq. (4.11). After some algebra, the
resulting Hamiltonian and the symplectic 2-form on the
reduced phase space get the simple form

Hred ¼
1

2
β20 þ

X∞
k¼1

ð−1Þkπkð−α2k þ β2k þ α2−k þ β2−kÞ;

Ωred ¼ dα0 ∧ dβ0 þ
X∞
k¼1

ð−1Þkðdαk ∧ dβk þ dα−k ∧ dβ−kÞ:

ð4:36Þ
From the symplectic 2-form, we can conclude that the
reduced phase space, parametrized by variables αj and βj,
j ∈ Z, is truly infinite-dimensional. Therefore, the theory
has an infinite number of dynamical degrees of freedom.

V. SUMMARY

In this paper, we studied the nonlocal scalar field theory,
Eq. (3.13), which is obtained by metric perturbation of the
infinite derivative gravity action, Eq. (3.4). The equations
of motion are assumed to have the same scaling symmetry

as Einstein’s equations. We focused on spatially homo-
geneous fields.
First, we analyzed the reduced phase space of the free

theory with aðzÞ being an entire function with no zeros in
the complex plane. We confirmed an expected result that
such a system is dynamically equivalent to a local theory
with 1 degree of freedom. Then, we investigated the theory
with interactions by expanding the solution in the coupling
constant. By iteratively solving the constraints, we com-
puted the perturbative reduced Hamiltonian (4.27). Finally,
we discussed an illustrative example where aðzÞ has an
infinite number of zeros, aðzÞ ¼ sinðzÞ=z. This choice
leads to an infinite-dimensional reduced phase space;
see Eq. (4.36).
There are many open questions which are hard and

require further investigation. For example, we would like
to include the spatially nonhomogeneous fields. Also, it
would be very interesting to explore the covariant formu-
lation of Hamiltonian construction for nonlocal theories.
This step is necessary for the study of the full action of the
infinite derivative gravity.
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APPENDIX: SECOND-CLASS CHARACTER
OF CONSTRAINTS

In the following, we demonstrate that the set of Euler-
Lagrange and momentum constraints (with the continuous
index s)

Ψðt; sÞ ¼ −að∂2
sÞQ00ðt; sÞ ≈ 0;

Φðt; sÞ ¼ Pðt; sÞ − 1

2

X∞
k;j¼0

akþjZk;j½Q�ðt; sÞ ≈ 0 ðA1Þ

are of the second class for an arbitrary analytic function
aðzÞ with að0Þ ¼ 1. For this purpose, we have to compute
the matrix

Cðs; s̃Þ ¼
� fΨðsÞ;Ψðs̃ÞgfΨðsÞ;Φðs̃Þg
fΦðsÞ;Ψðs̃ÞgfΦðsÞ;Φðs̃Þg

�
ðA2Þ

and determine its rank.
In order to simplify our calculations, we replace the

phase-space quantities by their components in the Taylor
basis
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ekðsÞ ¼ ð−1ÞkδðkÞðsÞ;

ekðsÞ ¼
sk

k!
: ðA3Þ

Note that ekðsÞ and ekðsÞ satisfy the orthonormality
relations

Z
R
ds ekðsÞelðsÞ ¼ δkl ;

X∞
k¼0

ekðsÞekðs̃Þ ¼ δðs − s̃Þ: ðA4Þ

The Taylor-basis components of the canonical variables are
given by the expansions

Qðt; sÞ ¼
X∞
k¼0

qkðtÞekðsÞ; Pðt; sÞ ¼
X∞
k¼0

pkðtÞekðsÞ:

ðA5Þ

The new quantities qk and pk play a role of the canonical
coordinates on the phase space.
The components Euler-Lagrange and momentum con-

straints read

Ψðt; sÞ ¼
X∞
k¼0

ΨkðtÞekðsÞ; Φðt; sÞ ¼
X∞
k¼0

ΦkðtÞekðsÞ:

ðA6Þ

By inserting the expansions Eq. (A5) in Eq. (2.14), we
obtain the expression for the symplectic 2-form,

Ω ¼
X∞
k¼0

dqk ∧ dpk: ðA7Þ

The inversion of Ω provides the formula for the Poisson
bracket of two phase-space observables F ¼ Fðqj; pkÞ and
G ¼ Gðqj; pkÞ, cf. Eq. (2.15),

fF;Gg ¼
X∞
k¼0

�∂F
∂qk

∂G
∂pk −

∂F
∂pk

∂G
∂qk

�
: ðA8Þ

The matrix C can be equivalently written by means of the
components form Ψk and Φk,

Cmj ¼
� fΨm;ΨjgfΨm;Φjg
fΦm;ΨjgfΦm;Φjg

�
: ðA9Þ

Employing Eqs. (A5) and (A6), we obtain the compo-
nents of the constraint Eq. (A1) in terms of qj and pk,

Ψm ¼ −
X∞
k¼0

akqmþ2kþ2 ≈ 0;

Φ2l ¼ p2l −
1

2

X∞
k¼0

akþlq2kþ1 ≈ 0;

Φ2lþ1 ¼ p2lþ1 þ
1

2

X∞
k¼0

akþlq2k ≈ 0: ðA10Þ

After evaluating all combinations of the Poisson brackets
using Eq. (A8), we get the explicit expression for the
matrix (A9),

C¼

2
6666666666666666666666666664

0 0 0 0 … 0 0 −a0 0 −a1 0 …

0 0 0 0 … 0 0 0 −a0 0 −a1 …

0 0 0 0 … 0 0 0 0 −a0 0 …

0 0 0 0 … 0 0 0 0 0 −a0 …

..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
. ..

. ..
. ..

. . .
.

0 0 0 0 … 0 −a0 0 −a1 0 −a2 …

0 0 0 0 … a0 0 a1 0 a2 0 …

a0 0 0 0 … 0 −a1 0 −a2 0 −a3 …

0 a0 0 0 … a1 0 a2 0 a3 0 …

a1 0 a0 0 … 0 −a2 0 −a3 0 −a4 …

0 a1 0 a0 … a2 0 a3 0 a4 0 …

..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
. ..

. ..
. ..

. . .
.

3
7777777777777777777777777775

∼

2
6666666666666666666666666664

0 0 0 0 … 0 0 −1 0 −a1 0 …

0 0 0 0 … 0 0 0 −1 0 −a1 …

0 0 0 0 … 0 0 0 0 −1 0 …

0 0 0 0 … 0 0 0 0 0 −1 …

..

. ..
. ..

. ..
. . .
. ..

. ..
. ..

. ..
. ..

. ..
. . .

.

0 0 0 0 … 0 −1 0 0 0 0 …

0 0 0 0 … 1 0 0 0 0 0 …

1 0 0 0 … 0 0 0 0 0 0 …

0 1 0 0 … 0 0 0 0 0 0 …

a1 0 1 0 … 0 0 0 0 0 0 …

0 a1 0 1 … 0 0 0 0 0 0 …

..

. ..
. ..

. ..
. . .
. ..

. ..
. ..

. ..
. ..

. ..
. . .

.

3
7777777777777777777777777775

: ðA11Þ
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Taking into account a0 ¼ 1 ≠ 0, we reduced the
matrix by adding appropriate multiples of rows from
the upper part of C to its bottom part, followed by
adding multiples of the first two rows of the bottom
part of C to the rows below them. By applying this

similarity transformation, we arrive at a matrix that is
obviously nonsingular. (It could be brought to the
identity matrix by further row operations.) Therefore,
we have verified that the constraints (A1), form a
second-class set.

[1] J. Polchinski, String Theory. Vol. 2: Superstring Theory and
Beyond, Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, United Kingdom,
2007).

[2] A. Ashtekar, Introduction to loop quantum gravity and
cosmology, Lect. Notes Phys. 863, 31 (2013).

[3] J. Henson, The causal set approach to quantum gravity,
arXiv:gr-qc/0601121.

[4] E. Witten, Noncommutative geometry and string field
theory, Nucl. Phys. B268, 253 (1986).

[5] P. G. O. Freund and M. Olson, Nonarchimedean strings,
Phys. Lett. B 199, 186 (1987).

[6] E. Brezin and V. A. Kazakov, Exactly solvable field theories
of closed strings, Phys. Lett. B 236, 144 (1990).

[7] D. J. Gross and A. A. Migdal, Nonperturbative Solution of
the Ising Model on a Random Surface, Phys. Rev. Lett. 64,
717 (1990).

[8] C. de Lacroix, H. Erbin, S. P. Kashyap, A. Sen, and M.
Verma, Closed superstring field theory and its applications,
Int. J. Mod. Phys. A 32, 1730021 (2017).

[9] L. Brekke, P. G. O. Freund, M. Olson, and E. Witten,
Nonarchimedean string dynamics, Nucl. Phys. B302, 365
(1988).

[10] P. H. Frampton and Y. Okada, Effective scalar field theory of
P-adic string, Phys. Rev. D 37, 3077 (1988).

[11] D. Ghoshal and A. Sen, Tachyon condensation and brane
descent relations in p-adic string theory, Nucl. Phys. B584,
300 (2000).

[12] A. Sen, Tachyon dynamics in open string theory, Int. J.
Mod. Phys. A 20, 5513 (2005).

[13] T. Biswas, M. Grisaru, and W. Siegel, Linear Regge
trajectories from worldsheet lattice parton field theory,
Nucl. Phys. B708, 317 (2005).

[14] D. Ghoshal, P-Adic String Theories Provide Lattice Dis-
cretization to the Ordinary String Worldsheet, Phys. Rev.
Lett. 97, 151601 (2006).

[15] B. Dragovich, Zeta strings, arXiv:hep-th/0703008.
[16] H. Yukawa, Quantum theory of non-local fields. Part I. Free

fields, Phys. Rev. 77, 219 (1950).
[17] H. Yukawa, Quantum theory of non-local fields. Part II.

Irreducible fields and their interaction, Phys. Rev. 80, 1047
(1950).

[18] G. V. Efimov, Non-local quantum theory of the scalar field,
Commun. Math. Phys. 5, 42 (1967).

[19] J. W. Moffat, Finite nonlocal gauge field theory, Phys. Rev.
D 41, 1177 (1990).

[20] D. Evens, J. W. Moffat, G. Kleppe, and R. P. Woodard,
Nonlocal regularizations of gauge theories, Phys. Rev. D 43,
499 (1991).

[21] E. T. Tomboulis, Superrenormalizable gauge and gravita-
tional theories, arXiv:hep-th/9702146.

[22] J. W. Moffat, Ultraviolet complete quantum gravity, Eur.
Phys. J. Plus 126, 43 (2011).

[23] T. Biswas, E. Gerwick, T. Koivisto, and A. Mazumdar,
Towards Singularity and Ghost Free Theories of Gravity,
Phys. Rev. Lett. 108, 031101 (2012).

[24] A. O. Barvinsky and Yu. V. Gusev, New representation of
the nonlocal ghost-free gravity theory, Phys. Part. Nucl. 44,
213 (2013).

[25] T. Biswas, T. Koivisto, and A. Mazumdar, Nonlocal theories
of gravity: The flat space propagator, in Proceedings,
Barcelona Postgrad Encounters on Fundamental Physics
(Facultat de Física. Universitat de Barcelona s.n, Barcelona,
2013), pp. 13–24.

[26] A. O. Barvinsky, Aspects of nonlocality in quantum field
theory, quantum gravity and cosmology, Mod. Phys. Lett. A
30, 1540003 (2015).

[27] T. Biswas, A. S. Koshelev, and A. Mazumdar, Consistent
higher derivative gravitational theories with stable de Sitter
and anti de Sitter backgrounds, Phys. Rev. D 95, 043533
(2017).

[28] A. Mazumdar and G. Stettinger, New massless and massive
infinite derivative gravity in three dimensions, Nucl. Phys.
B956, 115024 (2020).

[29] V. P. Frolov, A. Zelnikov, and T. de Paula Netto, Spherical
collapse of small masses in the ghost-free gravity, J. High
Energy Phys. 06 (2015) 107.

[30] V. P. Frolov, Mass-Gap for Black Hole Formation in Higher
Derivative and Ghost Free Gravity, Phys. Rev. Lett. 115,
051102 (2015).

[31] L. Modesto, Super-renormalizable quantum gravity, Phys.
Rev. D 86, 044005 (2012).

[32] L. Modesto and L. Rachwal, Super-renormalizable and
finite gravitational theories, Nucl. Phys. B889, 228
(2014).

[33] S. Talaganis, T. Biswas, and A. Mazumdar, Towards under-
standing the ultraviolet behavior of quantum loops in
infinite-derivative theories of gravity, Classical Quantum
Gravity 32, 215017 (2015).

[34] T. Biswas, A. Mazumdar, and W. Siegel, Bouncing uni-
verses in string-inspired gravity, J. Cosmol. Astropart. Phys.
03 (2006) 009.
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