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Stability of magnetic black holes in general nonlinear electrodynamics
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We study the perturbative stability of magnetic black holes in a general class of nonlinear electrodynamics,
where the Lagrangian is given by a general function of the field strength of electromagnetic field F,, and its
Hodge dual F - We derive sufficient conditions for the stability of the black holes. We apply the stability
conditions to Bardeen’s regular black holes, black holes in Euler—Heisenberg theory, and black holes in Born—
Infeld theory. As a result, we obtain a sufficient condition for the stability of Bardeen’s black holes, which
restricts F WI:" # dependence of the Lagrangian. We also show that black holes in Euler—Heisenberg theory are
stable for a sufficiently small magnetic charge. Moreover, we prove the stability of black holes in the Born—

Infeld electrodynamics even when including F WF’“’ dependence.
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I. INTRODUCTION

The existence of black holes in the Universe has been
confirmed by direct detection of gravitational waves from a
binary [1] and imaging of a black hole shadow [2]. There is
no doubt that the black holes have gained more importance
not only in astrophysics but also in theoretical physics. In
particular, they provide us with profound understanding
of gravity. A primary concern about black holes is the
perturbative stability, which has been mathematically chal-
lenging. The simplest class of black holes found in general
relativity are proved to be stable. Historically, the linear
perturbation theory around Schwarzschild black holes was
first developed by Regge, Wheeler [3] and Zerilli [4], and
then it was extended to Reissner—Nordstrom black holes in
Einstein-Maxwell system in Refs. [5-8].

Curiously, however, there exists a singularity inside a
black hole. Indeed, the singularity theorem [9-12] states
that a formation of a singularity is inevitable in classical
general relativity with a matter which satisfies energy
conditions. It is generally believed that the singularity is
resolved by quantum effects. From this point of view,
general relativity is merely a low energy effective theory of
ultraviolet complete quantum theory of gravity. Hence, we
should also incorporate quantum corrections of matter. In
the electromagnetic case, for example, we should consider
Euler—Heisenberg theory [13] which include F « F /wF Y
dependence, where F,, and F w are the field strength of
electromagnetic field and its Hodge dual. An attempt to
resolve the singularity may affect the stability of black
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holes. Thus, it is important to analyze the stability of black
holes with the quantum corrections.

Note that a curvature singularity accompanies the
divergence of curvature invariants, which indicates the
existence of a cutoff scale which divide between classical
general relativity and fundamental theory. The similar
issue has been considered in electrodynamics and the idea
of limiting field strength was invented by Born and Infeld,
which is called the Born—Infeld theory of electrodynamics
[14]. Since the Born—Infeld theory has an overlap with
Euler-Heisenberg theory, it is also worth examining the
stability of Born—Infeld black holes. Intriguingly, the idea
of Born and Infeld can be promoted to the idea of
“limiting curvature hypothesis” [15], which states that
there is an upper bound on curvature invariants in
fundamental theory. The limiting curvature hypothesis
suggests that the singularity of a black hole should be
replaced with a regular structure [16—18]. A dynamical
model trying to realize limiting curvature hypothesis
called “limiting curvature theory” was studied initially
in the context of cosmology [19-24]. Then the theory is
applied to black hole singularity in Ref. [25], though the
singularity cannot be removed there. A realization of the
limiting curvature hypothesis in the context of scalar-
tensor theories is also studied in Refs. [26-28].
Unfortunately, the regular black hole in Ref. [27] seems
to be unstable [29-31].

To our best knowledge, the first model of a regular
black hole was proposed by Bardeen [32]. Note that the
regular black hole metric was obtained without assuming
any specific theory. Remarkably, Ayon-Beato and Garcia
found that a class of regular black holes can be obtained
as a solution of general relativity with nonlinear electro-
dynamics [33]. Moreover, the same authors found that the
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Bardeen black hole can be also obtained as a solution of
nonlinear electrodynamics with a magnetic charge [34].
The Bardeen black hole solution can be obtained also
with an electric charge [35]. Other black hole solutions
in nonlinear electrodynamics have been studied in
Refs. [36-51].

Given that there are regular black holes in nonlinear
electrodynamics, it is worth studying if the resolution
of a singularity affects the stability of black holes in
nonlinear electrodynamics. Indeed, the analysis of the
linear perturbations was extended to a class of nonlinear
electrodynamics in Ref. [52], where the Lagrangian of
electromagnetic field is assumed to be a function of
F o F,, F". Then, stability analysis, including thermody-
namical stability, of this class of nonlinear electrodynamics
was also studied in Refs. [53—-58]. The quasinormal modes
of black holes in nonlinear electrodynamics were studied in
Refs. [59-70].

It should be emphasized that 7 dependent models have
not been considered in the above analysis. Since quantum
corrections include F dependence, it is legitimate to
expect that there are other regular black hole solutions in
general nonlinear electrodynamics. Thus, it is worth
studying the stability of black holes in general nonlinear
electrodynamics where a Lagrangian depends on both F
and F. In the present paper, we achieve this aim by
extending the analysis of Ref. [52] to general nonlinear
electrodynamics. Our analysis includes the stability
analysis of black holes in Born-Infeld theory and
Euler—Heisenberg theory. Note that a consistency con-
dition from causality and unitarity of this class of theory
is studied in Ref. [71].

This paper is organized as follows. In Sec. II, we
investigate spherically symmetric black hole solutions
with a magnetic charge in general relativity coupled to
nonlinear electrodynamics. In Sec. III, we derive master
equations of motion for metric and electromagnetic
perturbations in the black hole background. In Sec. 1V,
we study the sufficient conditions for the stability of
the magnetic black holes. In Sec. V, we perform the
stability analysis for specific models in nonlinear electro-
dynamics as applications. Section VI is devoted to the
summary of the results. In Appendix A, we study a
general form of Lagrangian in nonlinear electrodynam-
ics. In Appendix B, the expansions of the variables with a
basis of spherical harmonics and gauge transformations
for metric and electromagnetic perturbations are carried
out explicitly.

Throughout this paper, we use the conventions such
that the metric signature is (—, 4, +, +) and the covariant
antisymmetric Levi-Civita tensor is normalized as
€123 = \/—9, wWhere g is the determinant of the metric.
We work in a unit system where the speed of light ¢, the
reduced Planck constant 7, and the permittivity in a vacuum
&y are all equal to one.

II. BLACK HOLES WITH A MAGNETIC CHARGE

We consider the action in general relativity with a
cosmological constant coupled to general nonlinear electro-
dynamics, which contains the contributions not only from a
field strength F =1 F, dx* A dx” = dA but also from its

Hodge dual F=1F dx* A dx’ =1le, ,Frodx" A dx”,
where A = A, dx* is an electromagnetic field. The action

is given by

1
Sig Al = [ @75 1o (R=20) = £y )|

(2.1)

where R represents the Ricci scalar with respect to the
spacetime metric tensor g = g, dx*dx", A is the cosmo-
logical constant, G is the Newton’s gravitational constant, g
is the determinant of g,,, and £ is an arbitrary function of
scalars defined by

X = w(FnEmERET ) (22)

ny,my Ny Ny,...
with non-negative integers ny, mp, n,, m,, ..., where F' and
F stand for the matrices with components F " and F W
respectively. The quantity (2.2) represents an arbitrary
scalar constructed from the field strength and its Hodge
dual. For example,

Xyo=tr(F2) = FYFf = —F, F*,  (2.3)

X, =w(FF)=F/}/F}=—F,F". (2.4)

When we choose £ = -1 X, = 1 F,, F*, the action (2.1)
gives the familiar Einstein-Maxwell theory with a cosmo-
logical constant.

As we discuss in Appendix A, the general action given

by Eq. (2.1) eventually reduces to the following form,

Sig.A]= / d%ﬁ[ﬁ(ze—m)—c(f,ﬁ) . (2.5)

where L is an arbitrary function of the invariants defined by

1

F =2 FuP, (2.6)
Felp pw=te, pupe 2.7
= Z )17% - ge/wpa . ( : )

By taking variation of the action (2.5) with respect to the
metric, we obtain the Einstein equations

G’ = 81GT,”, (2.8)
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where G, stand for the components of the Einstein tensor
calculated from g,,, and 7,* are the components of the
energy-momentum tensor of the electromagnetic field,

~ A
Tﬂy = ,E]:F‘M}LFWL + 5;: ([:j:f - [, - %> 5 (29)

where Lz == OL/OF, L3 = OL/OF. Similarly, the equa-
tions of motion for the electromagnetic field derived by
varying the action (2.5) with respect to A, are given by

V (LpF" + L) =0, (2.10)

where V, stand for the covariant derivative with respect
o gup-

In this paper, we focus on black holes with a magnetic
charge because the analysis for magnetic black holes can be
translated into that for electrically charged black holes
through the electromagnetic duality of nonlinear electro-
dynamics [72]. Thus, let us seek the static and spherically
symmetric solution with a magnetic charge below. In this
case, we can put an ansatz for the metric as

g = —f(r)d* + h(r)dr?* + r?dQ?, (2.11)
where f(r) and h(r) are some functions of the radial
coordinate r, and dQ? = d6” + sin? Od¢g* represents the
line element on the unit two-sphere S>. Now we are
interested in the solutions with a static and spherically
symmetric magnetic field, thus we take the configuration of
the background field strength as

F = gsin0do N dg. (2.12)
Here, ¢ must be a constant because of the Bianchi identity,

dF = 0. Then we have the background values of the
invariants as

2
F=1  F-=o

I

(2.13)

[\

The quantity ¢ is interpreted as a magnetic charge in this
spacetime,

b4 2r
/ F:/ d@/ dp sinOg = 4rnq,  (2.14)
s? 0 0

where the left-most term implies that the integral is taken
over S%. Note that we can take the background gauge
potential which induces the field strength (2.12) as

A=A, =q(x]l —cos)dep, (2.15)

which describes the Dirac monopole [73]. Note that A , is
well-defined when 6 # x, whereas A _ is well-defined when

6 # 0. In a common region, A, and A_ are related through
gauge transformation and hence they represent physically
equivalent electromagnetic fields.

From the ansatz for the metric (2.11) and the configu-
ration of the background magnetic field (2.12), the Einstein
equations (2.8) read

1w 1

O/ =~ oEt oy~ T8OL-A (10
Lo
G =——=+2—-+——=-82GL - A, 2.17
TR AT T 217)
2
EX e A Y U S
2fh  4Af*h  Afh®  2rfh  2rh?
87Gq*
:—871G£—A+M (2.18)

}’4 ’

where the right-hand sides are given by the background
values, £ = £(q?/(2r*),0) and Ly = Lr(q*/(2r*),0).
Subtracting Eq. (2.16) from Eq. (2.17) yields

f/ h/
A
Fra?

which implies f/ = constant. Since we can always set the
constant equal to one by rescaling the time coordinate,
eventually we have

(2.19)

1
h=-. 2.20
7 (2.20)
Then Egs. (2.16) and (2.18) give
1 !
——2+Ji—|—i2:—8ﬂG£—A, (2.21)
r ror
1" ! 872G 2£
LA —87GL - A+ ——d=F (222)
2 r r
We can get a solution to these equations as
2GM A 2GM ()
=1- -1 2.23
1) e (2.23)
where M is an integration constant and we define
7
Mq(r) = 4n—/drr2£<ﬁ,0). (224)
r

Notice that M is the quantity corresponding to the mass of
the black hole, and we are interested in the case M > 0.
Meanwhile, from the ¢ component of the equations of
motion for the electromagnetic field (2.10), we have
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pe
This relation constrains a form of £—when we expand £

into power-series of F , the coefficient at the first-order
must vanish:

o0

LFF) = LolF) + Y Lu(FF,
n=2"""

(2.26)

where £, and £, are arbitrary functions of F.

In the rest of this section, we check energy conditions
which impose the reality and reasonability on the energy-
momentum tensor. Let us denote T,)=—p, T,” = p,,
Ty’ = py, and Ty? = p,, where p is the energy density
and p;(j=r.0.¢) correspond to the pressure along
Jj-direction. From Eq. (2.9), these are given by

=L+—, 2.27
p=Lte s (2.27)
A
=—-L—-—, 2.28
pr e (2.28)
A qZ[,]:
Po — p¢ —[, - _871'G r4 s (229)

where the right-hand sides are interpreted as the back-
ground values again, £ = L(¢?/(2r*),0) and Lr =
Lr(q*/(2r*),0). In terms of them, the statements of some
energy conditions are as follows.
(i) The weak energy condition—which states p > 0 and
p+p;=0(j =r.0,¢), for which we have

L+ % >0 and Lr>0. (2.30)
(i) The null energy condition—p + p; > 0,
Lr>0. (2.31)
(iii) The dominant energy condition—p > |p,|,
L+ A >0, Lr>0 and
872G
2<£+§%)—qgfza (2.32)

(iv) The strong energy condition—p + p; >0 and
p+ Zj Pj >0,

A 2
Lr>0 and —2<£+)4‘fozo. (2.33)

872G r

III. MASTER EQUATIONS FOR BLACK HOLE
PERTURBATIONS

In this section, we derive the equations of motion for
linear perturbations of metric and electromagnetic field on a
background discussed in Sec. II. Our goal is to obtain the
master equations in the form of simultaneous Schrédinger-
like equations with symmetric potentials.

In order to study the dynamics of metric and electro-
magnetic perturbations, we write

G = g/,w =+ 59;41/’ (31)

F, = Fﬂy—i—éFﬂ,,, (3.2)
where the quantities with a bar denote the spherically
symmetric background with a magnetic charge, which are
studied in detail in Sec. II. Here we recall them,

b

dr? + r2dQ2,
f(r)

Gudxtdxt = —f(r)di* + (3.3)

I-
EFlwdx" A dx¥ = gsin@d6 A de, (3.4)
where f(r) is a function of r given by Eq. (2.23) and ¢ is a
constant corresponding to a magnetic charge. We take the
background gauge potential as Eq. (2.15), that is,
A, dx* = q(£1 — cos 0)ddp. (3.5)
As we have seen in Eq. (2.13), the invariants related to the
background are given by

2 -
F=L  F=o

A (3.6)

On the other hand, ég,, and 6F,, represent small fluctua-
tions of metric and electromagnetic field strength,
respectively.

By virtue of the spherical symmetry of the background, it
is useful to expand the perturbations on a basis of tensor
spherical harmonics to separate the radial and angular
dependence of them. After that, we can proceed to split the
perturbations by their properties under parity transforma-
tion (spatial inversion),

59/41/ = 5g;v + 59;1/7 (37)

6F,, = 6F,, + 6F,,, (3.8)
where 8¢, and 6F,, represent the terms which pick a factor
of (=1)*! under parity transformation, where [ is the
azimuthal quantum number of the spherical harmonics, and
they are called to be odd, axial, or magnetic. On the other
hand, &g, and 6F,), pick a factor of (—1) under parity
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transformation, and are said to be even, polar, or electric.
As we discuss in Appendix B, choosing an appropriate
gauge following Refs. [3-5], we can write the metric
perturbations as the following matrices with components
in the (¢, r,6, ¢) coordinates,

0 O —[ho/ Sin 9]845 hO Sin 989
0 0 —[h{/sin@l0, h,sinBO
Sgm = Z [h1/ sin6]0, I oy,
I.m * * O O
*  * 0 0
(3.9)
fHy H, 0 0
* f_1H2 O 0
o v — Y ms
o %: 0 0 PK 0 !
0 0 0 r*sin?6K
(3.10)

where Y;,, = Y,,,(0, ¢) are spherical harmonics, and hy, h,
H,, H,, H,, and K are functions of (¢, r) given for each
mode (/, m). The functions K and h are defined for / > 2,
H; and h; are defined for /> 1, while H, and H, are
defined for / > 0. Note that the components denoted as stars
can be obtained from the symmetry of the matrices.

Following Ref. [5], we write down the perturbations of
the electromagnetic field strength as

0 0 [fp/sin6l0, =—fg,sinb0,
5F 7, = Z 0 0 [f/sin6]0, —fl‘_2 si.n 00, -
|l x X 0 f23sin0
X X X 0
(3.11)
0 f& f&ae fgzazf)
x 0  fhoy fhO
SF = 12 2% Ny, . (3.12
. %: X X 0 0 : ( )
X X 0 0

where £, f&, 1, and f; are functions of (, r) given for
each (I, m). The functions f3,, f1,, and f; are defined for
[ > 1, while fj; and f}, are defined for [ > 0. The cross
marks stand for the components determined by the anti-
symmetry of the matrices. We can regard 5F,i as being
derived from the perturbations of the vector potential
SA; via

SF;, = 0,6A; — 0,6A:. (3.13)

For the odd-parity part, the components of the potential can
be expanded as

SAT =0, (3.14)

SA7 =0, (3.15)

&r:ZLa Y, (3.16)
¢ L+ 1)sing ™

8A7 ==Y /3 g 00y 1. (3.17)
¢ — (14 1) "

Then we can see the perturbation variables of the field
strength are related by

- fx
__ %
flz_l(l—l—])’ (3.19)

where a dot and a prime denote the derivative with
respect to t and r, respectively. For the even-parity part,
the components of the potential are expanded as

SAF == fir¥ i (3.20)
Im
8L == fi2Yim: (3:21)
Im
5A, =0, (3.22)
5A$ =0, (3.23)
and the field strength perturbations are related by
fo=1a =1t (3.24)

Notice that the background magnetic field is odd-parity
as we can see from Eq. (3.4), while the background metric
(3.3) is even-parity. (The spherically symmetric back-
ground corresponds to the mode [ = 0.) Therefore, we
can expect that the odd-parity parts of the metric perturba-
tions couple to the even-parity parts of the electromagnetic
perturbations to the linear order: we call this combination
the type 1. On the other hand, the even-parity metric
perturbations can couple to the odd-parity electromagnetic
perturbations, which we call the type II.

A. Type I: Odd-parity metric and even-parity
electromagnetic perturbations

Here let us focus on the system type I, in which the odd-
parity metric and the even-parity electromagnetic pertur-
bations are coupled. First, we list the variables in the
system below,

124026-5
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odd-parity 59,; thg, hy,
f()]’f()z fl2

even-parity 6F

By substituting the expansions (3.1) and (3.2) with the
odd-parity metric perturbations (3.9) and the even-parity
electromagnetic perturbations (3.12) into the field equa-
tions (2.8) and (2.10), and linearizing them, we can obtain
the equations of motion for the type I perturbations. Here
we write them as the Fourier transforms with respect to time
t, that is, we replace 9, by —iw. The (,%), (,%) and (,%)
components of the Einstein equations give

. 1+ 1 2iw
fhg+la)fh’1—< "+ ( = ))/’l0+ rfhl

16ﬂGq£ -

———fo (3.25)
, , @ I+ 1)-2f
P - fh”( A )hl
:—716”?5? <, (3.26)
(fhy) + ’“}ho 0, (3.27)

and from the 7, r, and € components of the gauge field
equations, we have

2 q q' .
to | Lr g (Lrr = Lrr) + 5 Lrrr| for
_MHDEr e HH Dakr, 3.28
r2f 02 4f ( )
2
, q fl(l + 1)L
o Ef F‘C]-'}'>f01 T}- Tz
1
_,_whl 0, (3.29)
, f'Lr 2¢°L la)[, 9Ly ,
Lrfis+ <Tf_ rsff Lt fszoz —h
alr (' 2\ 2¢'Lgr iwgLy
o[ (5-0) 25 o
(3.30)

where £ means the background value £ (F, F), and so
on. The Egs. (3.28) and (3.29) hold for / > 0, Egs. (3.25),
(3.26) and (3.30) hold for / > 1, while Eq. (3.27) holds for
[ > 2. In fact, Eq. (3.25) is redundant since it is automati-
cally satisfied by using Eqgs. (3.26), (3.27), and (3.30) with

the background equations (2.21) and (2.22). The Eq. (3.30)
is also redundant because we can combine Eq. (3.28) with
Eq. (3.29) to obtain it. Therefore, we below utilize four
equations (3.26)—(3.29) and an identity (3.24) for five
variables hg, hy, fg;» fq» and f}, to get a couple of
“master equations” which is a system of Schrodinger-like
second-order differential equations and determines the
dynamics of the perturbations.

For mode / = 0 corresponding to the spherically sym-
metric case, the equations above do not describe the degree
of freedom propagating spacetime, thus we are not inter-
ested in the mode. We first focus on the modes [ > 2,
in which metric and electromagnetic perturbations are
coupled together. After that, we turn to the modes [ = 1,
in which only the electromagnetic perturbations exist as the
physical degrees of freedom.

1. Type I master equations for 1 > 2

We can solve Eq. (3.27) for hy and Eq. (3.29) for f7,, and
substitute them into Eq. (3.26). Then we get a second-order
differential equation for A, in terms of fgj;. On the other
hand, we can obtain a second-order equation for fj; in
terms of /; by solving Eq. (3.28) for ¢, and Eq. (3.29) for
f1, and substituting them into Eq. (3.24). Let us define
“master variables” by

- Sh
e V872G (—iw)r’ (3:31)
- var L
E'_l(z+1)¢(1+2)(z—1)\£f| (ﬁf r4 ”)fo“
(3.32)

and use the tortoise coordinate r* which is defined by
fdr* = dr. Then we have a couple of master equations,

R 1 -1
4R +[w _f{gﬂc;uAJ(” )31 )HR
dr r
fq\/16ﬂG(l+2)(l—1)|£}-|
— 3 £=0, (3.33)
d2E 5 l(l—|—1) Lr
" [w _f{ r - (q 2/? ]’-”
+16an2Lf_ . ¢ Lrr
r4 4£]__
3f4* L 2fq* Lrrr <
+ r10£2 - rlOﬁf
1 2)(1 -1
_ san(ep) P/ TRGU 00Dl o _
r
(3.34)
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where we utilized the background equations (2.21) and
(2.22). These equations can be rewritten as

1 d (1 d
flrar () + R | - iR - Ve =0

(3.35)

# VI 2% (e (VIERTE)) + senterlare|

-VLE-VLR™ =0, (3.36)
where
1+2)(1-1)
V'H:( 32( : (3.37)
. . q\/162G(1+2)(1-1)|L#]|
Vo=V = 3 . (3.38)
I(1+1) 1 162G 4>
Vi, =1L
e e PP T
(3.39)

Getting back to the time domain, the quadratic action for
the perturbations which induces the equations of motion
above is given by

SR, €] = / dtdr* f [—%va(ﬂz-)*va(ﬂz-)

_Cifva(ME)*Va<\/\—£}75)

R-
— | R™ & |V, ,
£
where an index a runs over (7, r*), and we introduce the
potential matrix as

v ()

I —_— .
* Vi,

Note that the volume element in Eq. (3.40) satisfies

dtdr*f = dtdr. We can find that the necessary condition
to avoid the existence of a ghost is

(3.40)

(3.41)

Note that this condition is consistent with the energy
conditions considered in Eqs. (2.30)—(2.33).

Given the solutions for the master equations, R~ and &,
the metric and electromagnetic perturbations in Fourier
space can be obtained by

hy = = 0V81G o (3.43)
f
ho = VBIGF(FR-), (3.44)
fh = f; V( g ; =V e (345)
sy = DA ey -2 oy,
(3.46)
N (I+2)(I-1) im\/8nGq

2= V2fLy VLrE+ TR

(3.47)

2. Type I master equations for =1
For the modes / = 1, the variable A is not defined, and
only the electromagnetic perturbations are dynamical
degrees of freedom. We define the master variable for
[=1as

}’2

2
q
T; (E]-' - F£]fﬁ>f5rl»

where we think of £ £ as positive since that is necessary for
ghostfreeness as seen in the modes / > 2. Then we have the
following master equation,

({25 2 2 L]: 167[Gq2£]:
ar? " [w _f{ﬁﬁ]-' @My P

-1 2
- (87:G£+A+6f—2> 9 Lrr
-

£ =

(3.48)

r4£}-
3f4° L3y 2fq* Lrrr
_ =0 3.4
T T g, fe=0 (349)
which can be rewritten as
1 d 5
FVErar (rar Ve e
2 L]: 1677Gq2£f
- E=0. 3.50
<r2£]_-—(q2/r4)£¢]~_-+ r4 ( )

In terms of &, the electromagnetic field perturbations are
given by

1 1

f01 _2 (z/r) \/_5

(3.51)

124026-7
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foo = 22;(\/55),7

(3.52)

iw 87qu
E:_<2ﬂ: ad >~/ £ (353)

Now the metric perturbation % is not a physical degree of
freedom and determined by the electromagnetic perturba-
tion. It is given by

l(l)r

(3.54)

B. Type II: Even-parity metric and odd-parity
electromagnetic perturbations

Let us turn to the system type I, in which the even-parity
metric and the odd-parity electromagnetic perturbations
form a coupled system together. We deal with the following
variables:

even-parity 59;3,: Hy, H,,H,, K,

odd-parity 6F,,: fo, f12, 23

From the ('), ("), (). (). (). (,) and (4%)
components of the Einstein equations, we have

2 r r

212
W+1), (),  81GaLr (. fa
Y™ H, - r? Hy = M K_7 ’

(3.55)

iw(2f —rf’) iof

I(1+1
iofK' + ———K-——H, —|—f(—t)H1 =0,
2r r 2r
(3.56)
/ _ 2
<L+£ K/_%(ZZI)K_FO)_K_J_CH{)
2 r 2r f r
I(I1+1) 2iw (rf)
+ 252 HO_THI_ r? H,
2 _
_ 8n6q Lr <K &> (3.57)
r q
162G
fH,+ f'H, + ioK + ioH, = — ” qcffoz, (3.58)
1 f io f’
K —H,| - Hy——H
°+<r Zf) 0T ( Zf)
167qu£
——L . (3.59)

FK" + (f’ f)K’—i—fK FHY - (3—ﬂ+J—:)H6

2
(141 /
+ (;2 )H0—2ia)H’1—i (r J})H,
N, (@ 2 LI+1)
(zﬂ)H +(7‘f T TR >H2
16”Gq <L:f+ Lﬁ> (%—K), (3.60)
HO—HZZO, (361)

where Egs. (3.55)-(3.57), (3.60) hold for [ > 0, Egs. (3.58)
and (3.59) hold for [ > 1, and Eq. (3.61) holds for / > 2. On
the other hand, from the 6 component of the electromag-
netic field equations, we have

2L il
FLrf1+ (f’cf 24 ”)flz f
1 2
-3 (ﬁf += ﬁff) Jut—=3 <£F + ﬁff)
L
+_612r2f (Hy—H,) =0, (3.62)

which holds for / > 1. In the same manner as for the type I,
we first focus on the modes [ > 2, then we turn to the
modes [ = 1.

1. Type II master equations forl > 2

Equation (3.61) immediately implies that we can replace
H appearing in all other equations by H,. We can also use
Eqgs. (3.18) and (3.19) to express f(, and f7, in terms of
f2;. Then Eq. (3.62) gives a second-order differential
equation with respect to f7;,

53//_|_ (i_zqzﬁff> 5/

o rLy
a)2 l(l+ 1) l(l"’ 1>q2£]:]: _
{? I o }fﬂ
- { r L ]K =0,  (3.63)

which describes the dynamics of the electromagnetic
perturbations. Next, let us turn to deformations of the
linearized Einstein equations. We can solve Eq. (3.56)
for K’ and substitute it into Eq. (3.59). Furthermore,
Egs. (3.61) and (3.19) allow us to replace H, by H, and
f1 by f33/1(L+ 1). Then Eq. (3.59) reduces to a first-order
equation for H,,
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) S| io 1(1+1) 17
Hz*(?‘?)"“ {7+ 2iwr2}H'+<?_ﬁ)

_ |:2l£+f/l(l+ 1>]H1 LAY

r 2iwr? r?

_162GqLr P44 (1+2)(I-1) 162Gg*L
= 3.64 AL e - Tk
U+ 1 )f23 (3.64 * [ 2f r r? rt
On the other hand, Eq. (3.18) can be used to rewrite M I+ % f3 =0. (3.66)
Eq. (3.58) as P+ 1)

162GiwgL r

Pll+1) fr (3.65) We can use this relation (3.66) to remove one of the

variables Hy, H,, or K from Eqgs. (3.65), (3.64), and (3.56).

Now let us eliminate H,, then Egs. (3.56) and (3.65)
Thus we have three first-order differential equations (3.65), reduce to

(3.64), and (3.56) for three metric perturbations H;, H,,
and K, to which the electromagnetic perturbation f5;

fH,+ fH| + ioK + ioH, =

! .
contributes as a source. As seen below, we can further K'+a\(nK + ay(r)H, = ji, (3.67)
reduce the variables. Let us substitute K’ from Eq. (3.56)
into Eq. (3.57) and replace H, by H, from Eq. (3.61).
L oo Slmiate 1 by i . (360 Thon H 4 bR + b = (68)

Now we can eliminate H), by using Eq. (3.64). Then we
find that Eq. (3.57) gives an algebraic relation between
some variables, where
|

—1672GfG*Lr + () (f —A=1) +2r2(A+ 1) =272 f (22 + 1) + 20°r*

a(r) = S0 , (3.69)
—fA+1)+(A+1)?+o?r?
a(r) = 22 E >ij)r<2€<+r)> Tor (3.70)
by () = i 322G fq*Lr — r*¢*(r) +4r2§(r)(/12—|’:zjlcl;ré;r2f(2/1 +1)—4r2(A+1)? —4a)2r4’ (3.71)
2(p) — — — 3 1) =022
b(r) — &) =<¢r(A=-2f+ l)r;g((:l)jL D(f=-4-1)=2wr ’ (3.72)
and
- _162GqLy[rff5 + (A4 1)f3]
J1 = 7"34’(7")(/1—'— 1) s (373)
. 160GqLy2rffo5 + (E(r) + 224 2)f3]
Jamie 272 () (A + 1) ’ (3.74)
where we defined
Py %<z+z)(z— ), (3.75)
C(r)ys=rf =2f+1(1+1)
—r?(87GL + A) = 3f + 21+ 3. (3.76)

In the second line of Eq. (3.76), we used the background equation (2.21). We have not used Egs. (3.55) and (3.60) so far. In
fact, they are redundant equations since they are automatically satisfied by using other equations.

We can combine the couple of first-order equations (3.67) and (3.68) to get a single second-order equation. We find that
the following choice of master variables makes the resulting equation simple:
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2r(A + l)mlw 2f(A+1)V22

== wl(r) (3.77)
B = +/162G|L£| (fgz - Zq(;(:)— D K- 2{3)5/2,?;)1) H1>. (3.78)

Using the tortoise coordinate r*, we have a pair of the master equations for the type II perturbations as

dr*? B

e (r) r? r? r?¢(r) + 23 (r)

322Gfg*Lr 2f¢*L 1 2022 — 2) 44
S0 IRGIE o |- 205 T (12 -  [s =0 e

@B {aﬂ _f{8(87rG)2fq4L’2f 642Gfq* Lrr 16an25f< 4G+ 1) 4,1f)

dPRY [wz_f{64ntq2,wf+ () _22-f+1) 80-f+1) 8Lf HW

dr? r°¢(r) e(r) rt () A
O Lrr 2fq* Lrrr  fq'L%r 200+ 1)
- rGE}_ (C(r) _3f_4(/1+ 1)) + r10£}_ - I’IO[:%_- + 2 }]B

0AGFPLy 2P Lrr 1 2020 f+2)  4Af B
- VIRGIE |- - B (12 - a ) [ o e

We can rewrite the equations above as

1|1 d d (R

f [r dr <r2 dr <r>> * “’ZW} — VIR - Vi,B=0, (3.81)
1 1 4 d [ B i . L
f L/|£f| dr* (Ef dr* ( |£f|>> +sgn(Ly)o B] VpB—-VyRT =0, (3.82)

where

2 8AA—f+1)  8f2  64rGfigL
=R e 389

2 2 2fq? 1 224 — 2 4
v¥2=vaﬂ=sgn<£f>\/3zncz|zf|q{—3 rOla Ly 2 E”+—(1— Shps ”)], (3.84)

PO LNty P G0
_ 20+1) 162G* Ly | 641Gq*Ly A f@Lrr\ 20+ 1)Ly | 8(87G)*fq L5
Vi = seni ) [ 2100 e (1 g+ L ) )
(3.85)

The action which yields the equations of motion for the type Il perturbations is

st fauroo (Yo%) e ) o) (x (3]

(3.86)

where an index a runs over (¢, r*), and the potential matrix is
VH VH
V= ( 1 12). (3.87)
*

I
V22
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We can read the ghostfree condition
Lr >0, (3.88)

which is the same as type I, see Eq. (3.42).
Given the solutions R* and B, we have the perturbations of the metric as

f 22 V16xGfqLlr

___ I o A\
K_\/2_/1(/1+1) +r\/ﬂ(/1+l) (1H f+C(r)> r(r) A+ 1)/Lr (3.89)
_wr " iw {(r) 11 —ﬂ>7€+ i/ 162GqL r B 3.0
N Y PR fmm‘l)( 2 ) Yemaenve s P
CH - (S0, A R_*>
o=t == (1= =) (5
1 327G f2Aq* L r JA 3 4fAN 22}72+
TR S i (- ) o) S
_\/1671qu£;< B >/_\/4ﬂ'GC]£]: (32ﬂqu2£;_1+4/1—2f—|—4+ 4f/1> B (3.91)
rA+18r) \/Lr) rPa+1) \ rP3(0) ¢(r) SGYRVIS '
and the electromagnetic perturbations as
R, 1 B
f23—\/2_}L p + —167/7G\/E’ (3.92)
N q R_+ 1 B
Joo = I(1+1) [\/2_/1 r +\/167zG\/E}’ (3.93)
oo b e Ry, L (B
NSy L/ﬁ< r) V165G (Jc_)] 359

2. Type II master equations for 1=1

For the modes [ = 1, the variable K is not defined, and only the electromagnetic perturbations are dynamical. We assume
Lz > 0 for ghostfreeness as seen in the modes / > 2. We define the master variable for / = 1 as

Bi:=/Lrfs. (3.95)
Then we have the master equations,
d’B > 2 | ¢Lrr 6f +1\ | 2fq'Lrrr  fq'L5
i 87GL + A - 2L B=0, 3.96
dr*? * [a) f{rz * Ly < rOL AT r? > + rlOL rm/lzf }} ( )

which can be rewritten as

1 1 d d B > 2 q2£]:]:
e L — [—= - (1 = 0. .
ilyzir (i () vl -5 (52 )0 69

In terms of the master variable B, the electromagnetic perturbations are given by
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B
- _ ’ 3.98
f23 \/E ( )
B
== , 3.99
f02 \/E ( )
1 B\’
== . 3.100
f12 2 m) ( )
The metric perturbations are nondynamical and determined by the electromagnetic perturbations:
- rfE(r) K B )// (167qu2£¢ 2_@+g+2q2£ﬁr> l( B )/
2q(w?r* +1-f) \/ﬁf *L(r) fooF Ly ) r\(Lr
162Gq>L 2 L B
fg< ‘C}' \/ ﬁf
_ ia)r3ﬂ;’( {( ) (1671’Gq2£; 2_@+g+2q2£;;>1( B )’
: 2Q(w + 1- E]: f f r4£; I \ 4 /ﬁ}-
16”Gq2£}' a)2 2 ( q*Lrr B ]
- —+—— |1+ —, (3.102)
( rfE(r) r2f Ly )) \/Lr
o PfCer £ 2-27 —((r)
0 2g(0*r? +1-f)
B \” 167Gq*L 2 2¢°L 1/ B Y\
XK >+<2 22”4 F +2+@__ 614 ]—'F)_( >
VLF rQ2w'rt+2-2f - {(r)) o f rLg VLr
16T[Gq2£}‘ (l)2 < q2£}_}_>) B :|
+ +—=—-==(1+ . 3.103
<r4f(2w2r2+2—2f—(:(r)) 12 Ly VLr ( )
|
IV. STABILITY CONDITIONS det(V;) (-DII+1)(1+2) 1
)= )

In this section, we derive sufficient conditions for the rt 1- ‘lzﬁﬁ]f/ (r 45? )
stability of magnetically charged black holes in general (4.1)
nonlinear electrodynamics. The procedure here basically
follows Ref. [52]. The background solutions are stable )
against linear perturbations for the modes [ > 2 if the tr(Vy) = (7 + 2>§l -1 4 16”Gf Lr
potential matrices V; and Vy; are positive-definite. For a r r
2 x 2 matrix, it is equivalent to that both the determinant n I(1+1) 1 (4.2)

and trace of the matrix are positive. Thus we first calculate
the determinant and trace of the potential matrices, and
propose the sufficient conditions for both of them to be
positive. We derive the stability conditions for the type I
and type II perturbations separately. Finally, we summa-
rize them.

A. Stability condition for type I perturbations

For the type I potential V; defined for / > 2, we have the
determinant and trace as

P =g Lrz/(rLy)

We can read off the stability condition of the background
solution against the type I perturbations as

Note that £ must be positive for ghostfree theory, see
Eq. (3.42). When the condition is satisfied, the stability
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against the electromagnetic perturbations of the modes
[ =1 also holds as we can see from Eq. (3.50).

B. Stability condition for type II perturbations
For the type II potential, we have

det(Vy) =

128T[G/1fq2£]: 1 q2£]:]:
8¢ (r) L

2

9 Lrr
A+1=fl 14—
X[+ f<+r4£}'>]

4/1(1"’1) qzﬁj__}_
A2 (” rm)
X [(=C(r) —4f +4A+4)C(r) +44f],  (4.4)
2 322G fq*L 2p
2f 167G q* L5\ >
i (B )
—{(r)—4f +44+4 162Gq> L5
r?¢(r) (2/1 + —2> .
(4.5)

Below, we derive the sufficient condition for stability under
the following assumptions,
L(F,0) + A o0 and
’ 87G

Lr(F,0)

qzﬁff(]_: ) 0) _

PLA(F0) >0. (4.6
The former is reasonable as the weak energy condition
implies, see Eq. (2.30). First, let us show that the function
¢(r) defined by Eq. (3.76) is positive outside the horizon of
the black hole. Let r = r;, be the position of the horizon,
where f(r,) =0 and f(r) becomes from negative to
positive from inside to outside the horizon smoothly. We
therefore have {(r),) = r,f'(r;) +1(I4+1) > 0. In addi-
tion, a brief calculation gives (r{(r))" = 162G¢*Lr/r> +
(I+2)(I-1)>0 for I >1, where we used the back-
ground equations (2.21) and (2.22), and the ghostfree
condition £ > 0. Thus it is shown that {(r) is positive
outside the horizon. Next, note that it follows 0 < f(r >
ry) < 1 from Eq. (2.23) with a positive constant M. Then
using the fact that {(r > r,) >0 and 0 < f(r > r;,) < 1,
we can see that —{(r) —4f + 44 +4 = r*(8zGL + A) +
1 — f 424 > 0 outside the horizon. Therefore, tr(Vy) is
positive outside the horizon under the assumptions (4.6).
On the other hand, det(Vy;) is always positive outside the
horizon if

f<1+2£%(;:(;)) f(1+2f%> <it1

C(1+1)
-2

(4.7)

Under the assumptions (4.6), this relation gives the suffi-
cient condition for the background solution to be stable
with respect to the type II perturbations for the modes [ > 2.
For [ = 1, if we assume the latter of Eq. (4.6), the stability
is ensured as we can see from Eq. (3.97).

C. Summary of stability conditions

For later convenience, let us summarize the sufficient
conditions for the stability of magnetic black holes:

L(F.0) +% -0, (4.8)
Lr(F,0) >0, (4.9)
- L7 #(F,0)
1—2f% >0, (4.10)
O<f( —1—2}"%) <3, (4.11)
7(F

where the upper bound in the condition (4.11) comes from
setting / = 2 in Eq. (4.7). Notice that the conditions (4.8) and
(4.9) together form the weak energy condition (2.30). The
conditions (4.8), (4.9), and (4.11) have been already derived
in Ref. [52], while the condition (4.10) is a new result
obtained by taking into account F dependence of the theory.

V. APPLICATIONS

In this section, we apply the stability conditions derived
in the previous section to specific models. Since we focus
on the asymptotically flat spacetime, hereafter we set the
cosmological constant A to zero. Note that we are con-
sidering the magnetically charged background, and the
invariants of the background electromagnetic field are
given by Eq. (3.6),

_ C]2 =
F =—, F=0. 5.1
2’,.4 ( )

A. Bardeen-like regular black holes

Let us choose the Lagrangian as

VR NS
p ( +7W> +Zn Ly(F)F",

(5.2)

L(F.F)=

124026-13



NOMURA, YOSHIDA, and SODA

PHYS. REV. D 101, 124026 (2020)

where y is a parameter with a mass dimension, y and N are
dimensionless non-negative constants, and L,(F) are
functions of F. We choose the form of the first term as
an extension of the model in Ref. [62], which resolves a
singularity at the center of black holes, as we will see
below. Here we add the terms proportional to F like
Eq. (2.26). From Eq. (2.23), we obtain the metric function

f(r) as

2GM  8xG - 2-N/2p2-2N A= Ig|V

—1-
f(r) . T IN-3
3 1 7lq|
Fi(-24+N.N.—=+N,— . (53

where ,F;(-,-,-,-) is the hypergeometric function. The
radial position of the horizon is determined by a zero of
f(r). Note that the weak energy condition (2.30) is satisfied
since £(F,0) and

(VF/u)N
L+ y/F/u )N+

are always positive. On the other hand, in general, the
strong energy condition which is an assumption for
Penrose-Hawking singularity theorem can be violated in
a particular region. We here list the quantities which have
importance for the stability analysis,

4
LrF0) =42

(5.4)

Lyz(F.0) FO+r /T o 5
1—2?% TN S Ly(F),
(5.5)
2 Lrr(F.0)  N—1-=2p/F/u
LH2F S S e (5.6)

From Egq. (4.10), the function £, (F), which characterizes a
F dependence of the Lagrangian, does not interfere with
the stability against the type I perturbations unless it makes
Eq. (5.5) negative outside the horizon. In other words, the
positivity of Eq. (5.5) can be understood as a condition

on L,(F):

Ez(]‘_— l ( \% -7_:/)“4>N_2

<

F (U /F ™!

Next, let us focus on the stability against the type II
perturbations, which can be discussed by analyzing
Eq. (5.6). Note that Eq. (5.6) monotonously grows as F
decreases and it approaches the maximum given by
N—-1 when F -0, or equivalently, r — oo. Thus if
N < 4, the latter inequality in Eq. (4.11) is always satisfied.
In the following paragraphs, we investigate whether the

(5.7)

function (5.6) is positive outside the horizon for some
models which satisfy N < 4 and yield black hole solutions
without curvature singularity.

Ay6n-Beato and Garcia [34] point out that setting
N =5/2 and an appropriate choice of the parameters
can give rise to the so-called Bardeen’s regular black hole
solution. In fact, when we choose N =5/2 and the
integration constant M as

2/ plq|*?
the metric function (5.3) reduces to
6 3GM5/2 3/2.2
flr) = 1 - OVIOMPy (59

(BMur® + 2/ a|q 232

which no longer has any divergence of the curvature
invariants at r = 0. We note that there is still monopole
singularity at » = 0 simply because 7 = ¢*/2r*. The metric
function has a minimum at r;, = 2"/8/7|q|’/*/\/3Mu,
and the radial position of the horizon denoted by r;, satisfies
rp > o if it exists. We can see that Eq. (5.6) is always
positive at r > r;, because it is already positive at r = r;,,
where its value is 1/3. Thus the Bardeen black hole solution
proposed in Ref. [34] in the context of nonlinear electro-
dynamics is stable as long as the function £, (F) guarantees
the positivity of Eq. (5.5) with N =5/2. This result is
consistent with that in Ref. [52], which corresponds to the
case L£,(F) =0 in our setup.

An alternative model for the Bardeen-like regular black
hole with a magnetic charge is considered in Ref. [62],
which corresponds to N = 2. In this case, by neglecting
the latter terms in Eq. (5.2) and taking the weak field limit

F/u* < 1, we can recover the Maxwell theory given

by L(F,F) = F. With a particular choice of the integra-
tion constant,
_ 2plgl? (5.10)
=5 /4\/}7 , )
the metric function (5.3) reduces to
2GM  8$2GEM?
—1-=
f(r) p +ﬂ4q4—|—4M2r2
N 4GM arctan(n*q*/(2MTr))
zr
8GM? (arctan x 1
—1-== < - 2), (5.11)
n’q X 1+x

where we defined a new variable x:=2Mr/(z%q¢?) in
the second line. This metric is also regular at r =0,
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and asymptotically behaves like the Reissner—Nordstrom
black hole,

roco. 2GM  47Gg?
fr)—1- + ﬂzq + O(r 3).

(5.12)

r r

We are interested in whether Eq. (5.6) is positive every-
where outside the horizon. Now it is given by

-~ Lrr(F,0)  4M*P2 =2z'q*  x* -2

14+2F = = = =
* Lr(F,0) 4M*r* +72t¢*  x*+1

:Z(x).

(5.13)

This function has a single zero at x = x, := v/2, outside
which it is always positive. Thus our task is to verify that
Xg = \/f is inside the horizon. If it is true, the stability is
guaranteed since outside the horizon Z(x) is positive. In
order to seek the position of the horizon, that is, zero of
f(r) given by Eq. (5.11), we look at the intersections of the
function

( ) arctan x 1
X) = —_
N X 1+ x?

(5.14)

and y, = 7°¢?/(8GM?). The behavior of y,(x) is shown
in Fig. 1, from which we can see that there are two
horizons when y, < 0.3551. In the extremal case given
by y, =0.3551, there is single horizon. When
v > 0.3551, f(r) is always positive over the spacetime
and the metric describes some kind of soliton rather
than black hole. Moreover, Fig. 1 tells us that the
innermost position of the outer horizon is given by
x = 1.825. Therefore, we can conclude that x, = V2 <
1.825 is always located inside the horizon if the black
hole exists, and the Bardeen-like regular black hole is
stable as long as the function £,(F) guarantees the
positivity of Eq. (5.5) with N = 2.

0.40
0.35 1
0.30 1
0.251
y1() 0.20 1
0.151
0.101
0.05 1

0% ‘ ‘ ‘
0 1 2 3

FIG. 1. A red line indicates the behavior of y;(x) defined by
Eq. (5.14). A dashed gray line at 0.3551 divides whether the
horizons exist or not.

B. Euler—Heisenberg theory

The Euler-Heisenberg Lagrangian was first proposed in
1936 [13], which describes the effective Lagrangian for a
constant electromagnetic field in the quantum electrody-
namics after integrating out the electron. In a nonperturba-
tive form, it is given by

~ 1 [eod
L(F.F)= .7:—1——2/ —fexp(—m%s)
8 0o S
Re cosh (esx/ 2F + 2i.7:)
Im cosh (esv 2F + 2i.7:)

—=(es)*F - 1] ,

x F

(es)?

\S]

(5.15)

w

where m, is the electron mass, and e is the elementary
charge. Assuming that the electromagnetic field is suffi-
ciently small, and taking into account the terms up to the
quadratic order of F and F, the Lagrangian is approxi-
mated by

202
45m?

LF.F)=F -5 (AF+1F%).  (5.16)

where a:=e?/4n is the fine-structure constant. The
shadow of a black hole in this quadratic theory is studied
in Ref. [74]. Here let us see a stability of a black hole in this
theory. For the effective Lagrangian, we have the metric
function as

2GM  4zGq*> 16a2Ga’q*
r r? 225mir®

fn=1

(5.17)

Let us examine the stability on the effective Lagrangian
briefly. The first derivative with respect to F is

B 8a2q2
a5mirt’

Lr(F,0)=1 (5.18)

We need £(F,0) > 0 in order to satisfy the null energy
condition and prevent the existence of a ghost, which is
violated inside rygc = (8/45)'/4\/a|q|/m,. In terms of
the radius, we have

- L #(F.0) 7 1
| —2F=EES =1+4+=- . (5.19
E;(]—",O) 2 (”/”NEC) -1 ( )
= Lrr(F.,0) 2
14 2F - =1- . 5.20
70 W1 O

The behaviors of these functions are shown in Fig. 2. We
can see the function (5.19) is always positive at r > rygc.
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4.

3.

-1 r/TNEC

-2

FIG. 2. A red and a blue line indicate the behaviors of the
functions (5.19) and (5.20), respectively.

Meanwhile, the function (5.20) is negative in the region
1 < r/ryge < 3Y* = 1.3161. The stability depends on he
mass and charge of the black hole. Black holes are stable if
the horizon is located outside of the position where the
stability condition is violated. To see this, we evaluate the
metric function at the positions of our interest,

fir C):l_\/§101/4GMme 27 82Gm?|q|
" Vigla — 8/10 @
(5.21)
30'4GMm 29 8z2Gm2|q|
34 nge) =1 — ‘ <=,
f( NEC) \/W 8\/% a
(5.22)

Then it turns out that the functions (5.18) and (5.20) are
always positive outside the horizon and the stability is
ensured if

Valgl  29wm,|q*?

307Gm, T 300 M and
10°\/3alq] | 9V3am.|ql? 523
30Gm, | 104ya (523)

On the other hand, the black hole can be unstable if the
charge is sufficiently large compared to the mass. Note that
this instability is a prediction of the gquadratic Euler—
Heisenberg Lagrangian (5.16), not the quantum electrody-
namics itself because of following two reasons: First, 7ygc
is nothing but a length scale where F = ¢?/2r* ~ m?/a?.
Thus the truncation of the higher order terms is no longer
valid near r~ rygc. Second, the spherically symmetric
configuration means that the electromagnetic field is not a
constant. In such a case, nonperturbative Euler—Heisenberg
Lagrangian is no longer valid and derivative interactions
such as 0,F,,0'F* will contribute to the effective

Lagrangian. Thus, the appearance of instability in our
analysis should be understood as the necessity of such
an ultraviolet completion of the quadratic theory.

C. Born-Infeld theory

In the 1930s, Born and Infeld introduced a nonlinear
Lagrangian to remove the divergence of the electron’s
self-energy in classical electrodynamics [14]. Black hole
solutions in a class of Born—Infeld theory have been studied
in Refs. [46,54,75,76]. The Lagrangian is given by

2 _F

LIF.F)=p"\ 1+ -5 —-u'  (524)
I

where p is a scale parameter with a mass dimension. When
the electromagnetic field is sufficiently small compared to
the scale, the Lagrangian reduces to Maxwell’s one. For the
Lagrangian, we obtain the metric function as

2GM  8aGu*r?
) =1- ==+
p

3 11 q°
X|:1—2F1<—Z,—§,Z,—W>:|. (525)

For the stability analysis, we need the following expres-
sions

_ 1
Lr(F.0)=——— 5.26
#(F,0) I (5.26)

- Lz #(F.0) 2F
1 —2F=22FE = 5.27
;F0) T (5-27)
) 7 1
| 4ol £0) (5.28)

Lr(F.0)  142F/u*

which are all positive. In addition, the quantity (5.28) is
less than one. Thus the stability conditions derived in the
previous section are all satisfied in this theory.

VI. SUMMARY AND OUTLOOK

In this paper, we obtained equations of motion for the
linear perturbations on the magnetically charged black hole
in general nonlinear electrodynamics. Furthermore, we
clarified sufficient conditions for the stability of magnetic
black holes, which are summarized by Eqgs. (4.8)—(4.11).
Comparing to the previous work for electric black holes by
Moreno and Sarbach [52], where they focus on a
Lagrangian with L£(F), we investigated the most general
action (2.1) that is composed of the field strength F,,

and its Hodge dual F s

Lagrangian with £(F,F) given by Eq. (2.5) as demon-
strated in Appendix A. We checked the stability conditions

which generally reduces to a
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in three models with a magnetic charge: Bardeen’s regular
black holes, black holes in Euler—Heisenberg theory and
black holes in Born—Infeld theory. We obtained a sufficient
condition of F dependence for Bardeen’s magnetic black
holes, which is the positivity of Eq. (5.5). We showed that
magnetic black holes in the quadratic Euler—Heisenberg
theory are stable when the mass and the charge satisfy the
condition (5.23). In addition, we proved that magnetic
black holes in Born—Infeld electrodynamics are stable
without omitting F dependence.

Throughout the paper, we focused only on magnetically
charged black holes. Through the electromagnetic duality
of nonlinear electrodynamics [72], our results are expected
to be translated to black holes with an electric charge. In
particular, because Born—Infeld theory is duality invariant,
the stability of electrically charged black holes in Born—
Infeld electrodynamics follows from that of magnetically
charged ones. Notice that our analysis cannot apply to
black holes with both electric and magnetic charge. Then it
is interesting to check the stability of black holes with both
magnetic and electric charge.

Our Lagrangian (2.1) typically appears as an effective
theory for ahomogeneous, constant field strength, 9, F,,, ~ 0,
for example as Euler—Heisenberg action. From the point of
view of effective field theory, it is natural to include the
derivative interactions like 0,F,,0/F*” for a spherically
symmetric case. It is not clear how such interactions affect
the stability of black holes.

As an application of our results, it is important to study
the quasinormal modes of gravitational waves and electro-
magnetic radiations in nonlinear electrodynamics. So far,
quasinormal modes are investigated only without F
dependence. Thus it is interesting to see effects of F
dependence on quasinormal modes. We leave these inter-
esting problems for future work.
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APPENDIX A: GENERAL NONLINEAR
ELECTRODYNAMICS

In this appendix, we study the general form of
Lagrangian in nonlinear electrodynamics. Let us define

an,m],nz,mz,... = tr(Fan’annZFmZ o ) (Al)
with non-negative integers ny, mp, n,, m,, ..., where F' and
F stand for the matrices with components F " and F W
respectively. An arbitrary scalar constructed from the field
strength and its Hodge dual can be expressed in terms
of X, nym,....- Our goal in this appendix is to reduce the

form of X, ., 4, m, . to one in terms of the invariants
=1 HY T .1 v — 1 W ppo
F=3F, F* and F =1 F, F" = g€, " .

First, using an identity ¢*"%¢,,,, = —4!5}:’555,’35?, we
can see that an even number of F' can be expressed in terms
of F. Thus we can rewrite X, ,, ,,, m, ... given by Eq. (A1)
as a form including only one or zero F. Next, we can use

the relation 8e”** = 0 to find that

0= F o F o6 )

1
= gF ol aﬁ(éjjef’”“ﬁ + 6ﬁ€”"ﬁ" + 5,’;€“/3"/’ + 536/3"”” + 6,@6""”“)
:l v cafop ‘_‘ c praf
SFngaﬂzSﬂe +5sz,Faﬂ5,,€
_ Sy r 2tp F e (A2)
5% T ap€

In the third line, we use the antisymmetry of F,, to get
together some terms. Therefore, if the combination of FF
appears in X, 4, m,...» W€ can take it to a form in terms
of F by using

1

FJ/F,} = EFﬂpFaﬂepmﬂ = -0, F,

(A3)
where the second line comes from Eq. (A2). Thus we can
reduce X, ., 4, m,,.. t0 a function of F and tr(F---F).
Finally, the Cayley—Hamilton theorem for 4 x 4 matrices
states

(FY)," = tu(F)(F),* —%((tr(F))2 —tw(F?))(F?),"
+ é ((tr(F))* = 3tc(F2)te(F) + 2e(F>))F,
— det(F)e, (A4)

where (F*),* means F,"F,/F/F,*, and so on. Now we

can also use the following relations which hold from the
antisymmetry of F,,

tr(F) = w(F3) =0, (A5)
tw(F?) = F,*F ) = —4F, (A6)

det(F) = %det(F,w) __ (\/%_g P ( Fm) 2
= — <— é eﬂyp"FﬂyFm> ’ = —.7:2, (A7)

where Pf(F,,) stands for the Pfaffian of the antisymmetric
matrix F,,. Note that F" has been defined to be a matrix with
components F,”. In order to relate the determinant of F,”

with that of F,,, additionally we need that of the inverse
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metric, g~!, which appears in the second equality in
Eq. (A7). Note also that we normalize the covariant
Levi-Civita tensor as €;,3 = /=g throughout this paper,
thus €”'? = —1/,/=g. Using these relations, Eq. (A4)
becomes

(F*),r = %tr(Fz)(Fz)ﬂ” — det(F)s,

= -2F(F%)} + F5.. (A8)
Since X, 1n, nym,.... 18 eventually given by the trace of the
matrix, we can conclude that it can be reduced to a function
of F and F. Therefore, in the context of nonlinear
electrodynamics, a general form of Lagrangian is given
by a function of the invariants F and F: this is what we
wanted to show in this appendix.

APPENDIX B: DECOMPOSITIONS AND GAUGE
TRANSFORMATIONS OF PERTURBATIONS

In a study of perturbations on a spherically symmetric
background, it is useful to expand the perturbations in
terms of spherical harmonics and extract the time and radial
dependence of them. Here we list the decomposition of
perturbations explicitly. First, 10 components of the metric
perturbations are expanded as

0gap = ZV@AAQBBHAB(l’m;t’ "Y(0,.¢), (Bl)
I.m

89ar = Z[hX(l, m;t,1)Y 7, (0. 9)

Lm

+ hy (Lm;t,r)Yp,, (0, 4)], (B2)
o9y = Z[rzK(l, m;t, 7)Y ,,,(0, )
l,m
+GH(Lmit, )Yy, (0.4)
+ G (L.m;t,1)Y7;,,(0.9)], (B3)

and 4 components of the gauge potential perturbations are
expanded as

5Ax =Y SAA(Lm;t.1)Y 1, (0. 9), (B4)
I.m
8A; =Y [6AT(Lm;t, )Y}, (0.0)
I.m
+ 6A~ (I, m; t, r)Y;lm(H, ?)], (B5)

where indices A and B take ¢ and r, while I and J take @
and ¢. Here we use g,p to represent the components of
the metric on the background two-dimensional pseudo-
Riemannian manifold where the coordinates (z,r) are

given: gupdx*dx® = —f(r)dt* + f~'(r)dr?* in our interest
[see Eq. (3.3)]. On the other hand, €;; stand for the
components of the metric on the unit two-sphere S
Q, dx'dx’ = do* + sin” 0d¢p*>. The standard (scalar)
spherical harmonics are denoted as Y, (0,¢), where [
and m are integers such that / > 0 and —/ < m < [. In terms
of Y,,,(0,¢), the vector spherical harmonics defined for
[ > 1 are given by

Y m(0.0) = DY, (0. ) = (99, 0y)Y 1,n (0. ).  (B6)

YI_,lm (9’ ¢) = €IJDJYlm (9’ ¢)

1 .
= (@ (945, — S1n 68,9) Ylm (9, ¢), (B7)

where D; and ¢;; stand for the covariant derivative and the
antisymmetric Levi-Civita tensor on 52, whose indices are
raised or lowered by €;;. The tensor spherical harmonics
defined for / > 2 are given by

Y;’”m(e, 4’) = DIDJYlm<9’ ¢> - 81K€JLDKDLYlm<9s ¢)
w X
= < > Ylm(eﬁ ¢)7

B8
* —sin%0 (B8)

Y7, m(0.9) = XDgD,;Y,,,(0.¢) + £,5DgD,Y,, (0, )

~ [ (1/sin@)X —sinOW Y (6
B < * —sin9X> (0. ).
(B9)

where stars stand for quantities determined by the sym-
metry of the matrices and some operators are defined by

L (B10)

W = 9 — cot09, — ,
07O T Gin2 g0

X =20y0p —2cot0,. (B11)
It is convenient to classify the perturbations by their parity
since ones which have different parity do not mix in the
linear order. Under parity, note that Y,,,, Y, and Y,
pick a factor of (=1), while Y7, and Y7, pick (—=1)"*!.
Then let us consider gauge transformations induced by
diffeomorphisms and a U(1) gauge parameter:

59;41/ - 59;41/ + £§gﬂw (Blz)

SA, — SA, +£:A, + 0,0, (B13)
where £; represents the Lie derivative along a vector field
&, which produces a set of diffeomorphisms, and © is an
arbitrary function corresponding to the additional U(1)
gauge symmetry. The quantities with a bar correspond to
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the background, which are given by Egs. (3.3) and (3.5) in
our case. A general vector field £, can be expanded on
scalar and vector spherical harmonics as

$a = Z@x(lvmﬁ, Y (0,¢), (B14)
I.m

&= [E (Lmt.r)Y], (0.)+& (Lmit.r)Y7,,(0.0)).

lm

(B15)

Given the background as (3.3) and (3.5), we can write down
the gauge transformations explicitly. For the coefficients of
metric perturbations, we have

H,— H, + (%ét_f/é:r)’ (B16)

H —H +(5’+§' —£é> (B17)
tr tr t r f t ]

H,, — H, + (f'& +2f&), (B18)

hE = b+ (& + &), (B19)

hy > hy + &, (B20)

Y (e:, v —§§+), (B21)

2

hr — hT + <§—’ - ;z:—), (B22)

K-> K+ <2f l(l; b f+>, (B23)

Gt - G + &, (B24)

G~ - G+ ¢, (B25)

where a dot and a prime denote the derivative with respect
to t and r, respectively. For [ > 2, we can choose the
4 degrees of freedom of gauge functions so that
hf = h} = Gt = G~ = 0. After that and renaming

Hy,=H,, (B26)
H =H,=H,, (B27)
Hy=H,, (B28)
hy = —h;, (B29)
hy = —h, (B30)

which follows the notation in Ref. [3], we are left with
Eqgs. (3.9) and (3.10). For / = 1, G* and G~ are not defined,
thus we can set h; = h;y(=—hy) =hf =K =0 by
choosing four degrees of freedom of gauge functions
appropriately. For [ = 0, the functions h;", h;, h/, h;,
G' and G~ are not defined and we have two degrees of
freedom of gauge denoted by &, and ¢&,. Then we can
choose a gauge fixing such that H,.(= H;) = K = 0.

Let us turn to gauge transformations of electromagnetic
perturbations. When we expand a U(1) gauge parameter ©
in Eq. (B13) as

O(t,r,0,9)

_Z[ (1, 7)Y 1,,(6. )

q(£1 —cos6)
r*sin@

1
<§+ Sineaq‘)ylm - 5_30Y1m)] )
(B31)

where ©(z,r) is an arbitrary function of (7, r), the gauge
transformations are induced as follows:

SA, = 8A, + O, (B32)

SA, > A, + @, (B33)

SAT = GAT + (@ + %5—), (B34)
SA™ — SA™ — —§+ (B35)

For [ > 1, we can use the degree of freedom of gauge
parameter ® to set AT = 0. After that and renaming

fn .
—= = 0A", B36
I(1+1) (B36)

foo = —0A,, (B37)

=04, (B38)

we have the expressions in the main text, Eqs. (3.14)—(3.17),
(3.20)—(3.23). For [ = 0, the functions SA™ and A~ are not
defined, thus we can be left only with 0A, (or equivalently
15) by using the degree of freedom of gauge to remove 64,
(or f)-
Before the gauge fixing, we can see the following
combinations are gauge invariant:

hy = hy =G~ (B39)

. 2
hr=hr -G +2G,

p (B40)
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A

2 . .. 2
H,=H, —?(ht+ -GY) +f (hj -Gt —i—;G*),

(B41)
N . . . 2.
Htr = le_ (htJr _G+)/_ <hj: _G+/+G+>
r
o A
+= (b =G7), (B42)
f
N 2
Hrr :=Hrr_f/<hj:_G+/+G+>
r
2 !
—2f<h,+ —G+'+—G+) , (B43)
r

. 2 2 I(1+1
ke=x-% <h,+ -G" +—G+> +(;2>G+,
r r r
(B44)
A™ =6 + LG+, (B45)
I
N . q .
SA, = 8A, — <5A+ - pG > (B46)
~ q !
SA, =6A, — (5A+ - —ZG‘> . (B47)
I
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