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In continuation of our previous study [C. A. Benavides-Gallego, A. Abdujabbarov, D. Malafarina,
B. Ahmedov, and C. Bambi, Phys. Rev. D 99, 044012 (2019)], we investigate the motion of charged
particles in the γ-metric. We provide some examples of curled trajectories in the equatorial plane and
escape trajectories outside the equatorial plane. Finally, we consider harmonic oscillations due to small
displacements from stable circular orbits on the equatorial plane and compute the epicyclic frequencies for
different values of deformation parameter and magnetic field.
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I. INTRODUCTION

Black holes in the general theory of relativity are entirely
described by three parameters, namely mass, angular
momentum, and charge [1–3]. We know that classical
black hole solutions contain curvature singularities which
are expected to be resolved by a theory of quantum gravity
[4,5]. This naturally leads to the question of whether such
quantum-gravity effects remain confined within the horizon
or may affect the exterior geometry, thus separating (astro)
physical black holes from mathematical black holes. A hint
toward the answer to this question comes from the study
of nonsingular gravitational collapse (see for example
Refs. [6–14]), which suggests that the resolution of the
singularity must affect the trapped surfaces in the space-
time. Another hint comes from the investigation of exact
solutions of Einstein’s equations that do not describe black
holes. For example, it is well known that static axially
symmetric vacuum solutions generically posses naked
curvature singularities when multipole moments of higher
order are present [15–20]. This fact can be interpreted in
two ways:

(i) A collapsing body must shed away all higher
multipole moments before crossing the horizon
threshold.

(ii) The space-time resulting from the collapse of a
nonspherical body requires quantum-gravity modi-
fication already at the horizon scale to account for
the nonvanishing multipole moments.

The issue will likely be resolved once we will be able to
precisely probe experimentally the geometry around astro-
physical black hole candidates.
As of today, the nature of the geometry around extreme

astrophysical compact objects is still unknown. However,
recent results such as x-ray reflection spectroscopy [21–23]
or the image of the “shadow” of the supermassive black
hole candidate at the center of the galaxy M87 [24] suggest
that experimental tests of the so-called Kerr hypothesis
[25,26], namely the hypothesis that all astrophysical black
hole candidates are described by the Kerr metric, may be
possible in the near future.
In this work, we focus our attention on the Zipoy-

Voorhees space-time, also known as the γ-metric, which is a
static, axially symmetric line element describing the gravi-
tational field outside a prolate or oblate object [27,28]. The
space-time is continuously linked to the Schwarzschild
metric through the value of one parameter γ, which is
related to the nonvanishing multipole moments, and in the
limit of γ ¼ 1, it reduces to Schwarzschild. As mentioned
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before, for γ ≠ 1, the line element presents a curvature
singularity at the surface r ¼ 2m, making the manifold
geodesically incomplete [29–31]. The properties of the
γ-metric, its geodesics, interior solutions, and geometrical
aspects have been studied by many authors [32–38].
In a series of previous articles, some of us investigated
the properties of this space-time in connection with the
possibility of observing departures from the Schwarzschild
or Kerr line elements in astrophysical observations [39–41].
In practice, to probe experimentally the geometry of

extreme compact objects, one can rely on different methods.
Shadow and orbits are limited to only two supermassive
black hole candidates, and therefore to obtain a larger sample
of observations, one must look at x-ray binaries.
The Rossi X-ray Timing Explorer (RXTE) mission has

provided thousands of observations of black holes tran-
sients [42], and the study of x-ray binaries has been
considered with great interest because it opens the pos-
sibility to probe fundamental physics [43]. The x rays
emitted by binary systems are produced by matter falling
from the donor (usually a normal star) to the accretor: a
neutron star or a black hole. Thanks to the RXTE mission,
complex variability patterns were discovered, including the
detection of quasiperiodic oscillation (QPO) at frequencies
higher than 40 Hz [42]. According to Belloni et al., the
QPOs open a new window onto fast phenomena in the
innermost regions of an accretion disk. [42]. The high-
frequency QPOs give us information about the masses and
radii of neutron stars [44,45] and the masses and spin of
the central objects [46,47]. Furthermore, since the high-
frequency QPOs are observed close to the orbital frequen-
cies of the marginally stable circular orbits, the effects from
strong gravity must be essential to explain their behavior
[48–51]. Finally, from the analysis of the frequencies, it is
also possible to obtain information about the electromag-
netic field in the vicinity of black hole candidates.
Many of the observed black hole candidates have

accretion disks formed by plasma whose dynamics can
generate a regular magnetic field [52]. In this sense, it is
essential to consider the role of the electromagnetic field in
the processes taking place in the surroundings of a black
hole. Recent observations have suggested that the center of
the MilkyWay galaxy has a strong magnetic field that is not
related to the accretion disk of the black hole [53]. Hence,
black holes can also be immersed in an external, large-scale
electromagnetic field that can have a complicated structure
in the vicinity of field source, but asymptotically (at large
distances), its character can be close to being homogeneous
[54]. In this sense, the idea of a black hole immersed in a
uniform magnetic field has been used in Ref. [52] as a
model to explain the frequencies of the 3∶2 high-frequency
QPOs observed in the three Galactic microquasars GRS
1915þ 105, XTE 1550564, and GRO165540, which
cannot be explained by a model based on the frequencies
of the geodesic epicyclic motion, if the accepted limits on

the mass and spin of the black holes are taken into
account [55,56].
In the present work, we shall focus on the motion of

charged test particles in the equatorial plane of the Zipoy-
Voorhees space-time immersed in an external magnetic
field to characterize the effects of the nonvanishing quadru-
pole moment on the QPOs (the case of QPOs for neutral
particles was considered in Ref. [40]). The motion of test
particles in the magnetized Schwarzschild space-time
was first considered in Ref. [57]. Since then, solutions
of Einstein’s equations in external magnetic fields have
been widely studied (see for example Refs. [52,58–60]).
The article is organized as follows. In Sec. II, we review

the γ-metric and its main properties together with the basic
ideas of the description of a space-time immersed in an
external magnetic field [57]. In Sec. III, following the
Hamiltonian formalism presented in Ref. [52], we discuss
the charged particle motion in the magnetized Zipoy-
Voorhees space-time and obtain the effective potential
for charged test particles. Finally, Sec. IV is devoted to
the study of harmonic oscillations about the circular orbits
of charged particles. Throughout the manuscript, we use the
signature ð−;þ;þ;þÞ, and use geometrized units thus
setting G ¼ c ¼ 1. Greeks indices run from 0 to 3.

II. ZIPOY-VOORHEES SPACE-TIME IMMERSED
IN A UNIFORM MAGNETIC FIELD.

The Zipoy-Vorhees space-time, also known as the
γ-metric [27,28], is a well-known asymptotically flat
vacuum solution of Einstein’s equations that belongs to
theWeyl class of static, axially symmetric space-times [15].
In Erez-Rosen coordinates, the line element is given by [31]

ds2 ¼−Fdt2þF−1½Gdr2þHdθ2þðr2− 2mrÞ sin2 θdϕ2�;
ð1Þ

where

FðrÞ ¼
�
1 −

2m
r

�
γ

;

Gðr; θÞ ¼
�

r2 − 2mr
r2 − 2mrþm2 sin2 θ

�
γ2−1

;

Hðr; θÞ ¼ ðr2 − 2mrÞγ2
ðr2 − 2mrþm2 sin2 θÞγ2−1 : ð2Þ

When γ ¼ 1, the line element reduces to Schwarzschild
in Schwarzschild coordinates. From the expansion of the
gravitational potential, it is easy to evaluate the total mass
M of the source as [31]

M ¼ γm; ð3Þ

while the quadrupole moment Q is given by
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Q ¼ γ

3
ð1 − γ2ÞM3: ð4Þ

From Eq. (4), we see that γ > 1 correspond to oblate
spheroids, while γ < 1 correspond to prolate spheroids.
Symmetries in the space-time can be studied by means of

Killing vectors. In the case of vacuum, stationary, and axial
symmetric space-times, we have two Killing vectors: one
related to time translations and the other related to spatial
rotations about the symmetry axis. Such vectors are related
to conserved quantities, energy, and angular momentum
and satisfy the Killing equation [57,61]

£ξgμν ¼ ∇μξν þ∇νξμ ¼ 0; ð5Þ

where £ξgμν is the Lie derivative of the metric tensor and ∇
is the covariant derivative. One interesting property that
follows form Eq. (5) is the relation

∇ν∇νξμ ¼ −Rμ
λξλ ¼ −Rλ

μξλ: ð6Þ

On the other hand, in curved space-times, Maxwell’s
equations for the vector potential Aμ in the Lorentz gauge
(∇μAμ ¼ 0) are given by [61,62]

∇ν∇νAμ − Rλ
μAλ ¼ −4πJμ: ð7Þ

In this sense, if we consider Jμ ¼ 0, Eq. (7) reduces to

∇ν∇νAμ ¼ Rλ
μAλ: ð8Þ

Note that there is a sign difference between Eqs. (6) and (8),
so that the two equations coincide in the case of vacuum
space-times. This means that, when Rλ

μ ¼ 0, the Killing
vector ξμ must satisfy the source-free Maxwell’s equations
for a vector potential in the Lorentz gauge. In this sense, the
Killing vector ξμ in vacuum is endowed with the property of
being proportional to some vector potential Aμ and can be
used to derive a solution for the electromagnetic field
occurring when a stationary, axisymmetric space-time is
placed in an external magnetic field aligned along the axis
of symmetry [63]. Hence, the Faraday tensor of the
electromagnetic field Fμν can be expressed as [57]

Fμν ¼ ∇μξν −∇νξμ ¼ −2∇νξμ; ð9Þ

and the vector potential Aμ can be written as

Aμ ¼ C1ξ
ðtÞ
μ þ C2ξ

ðϕÞ
μ ; ð10Þ

where ξðtÞμ and ξðϕÞμ are the Killing vector fields associated
with time translations and rotations about the symmetry
axis. In this work, we consider the case of a magnetic field
that is uniform, with magnitude B at spatial infinity. If the
field is oriented perpendicularly to the equatorial plane

which is orthogonal to the symmetry axis; then, the four-
vector potential takes the form

Aμ ¼
B
2
ξðϕÞμ : ð11Þ

Consequently, the only nonzero component of the potential
of the electromagnetic field is [61]

Aϕ ¼ B
2
gϕϕ: ð12Þ

When applied to the γ-metric, given in Eq. (1), the vector
potential is given by [64]

Aϕ ¼ B
2

�
1 −

2m
r

�
1−γ

r2 sin2 θ; ð13Þ

and it automatically reduces to the well-known vector
potential in the Schwarzschild space-time for γ ¼ 1. We
shall now move to consider the motion of test particles in
the Zipoy-Voorhees geometry immersed in the magnetic
field discussed above.

III. CHARGED PARTICLE DYNAMICS

To study the dynamics of charged particles, we follow
Ref. [52]. The Hamiltonian for the charged particle can be
written as

H ¼ 1

2
gαβðπα − qAαÞðπβ − qAβÞ þ

1

2
m2

0; ð14Þ

where πα is the canonical four-momentum which is related
to the kinematical four-momentum pμ ¼ m0uμ by the
relation

πμ ¼ pμ þ qAμ ð15Þ

and satisfies Hamilton’s equations

dxμ

dζ
≡ pμ ¼ ∂H

∂πμ ;
dπμ
dζ

¼ −
∂H
∂xμ : ð16Þ

The affine parameter ζ is related to the proper time of the
particle by the relation ζ ¼ τ=m0. For the line element in
Eq. (1), using Eqs. (14) and (16), we obtain two constants
of motion: the energy per unit mass E and the angular
momentum per unit mass L, which are given by
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E ¼ E
m0

¼
�
1 −

2m
r

�
γ dt
dτ

;

L ¼ L
m0

¼ r2sin2θ

�
1 −

2m
r

�
1−γ

�
dϕ
dτ

þ B
�
; ð17Þ

where we have introduced also B ¼ qB=2m0. As expected,
Eqs. (17) reduce to the Schwarzschild case when γ ¼ 1.
By expressing the Hamiltonian in Eq. (14) as

H¼ 1

2

FðrÞ
GðrÞp

2
r þ

1

2

FðrÞ
HðrÞp

2
θ þ

m2
0

2FðrÞ ðVeffðr;θ;B;LÞ− E2Þ:

ð18Þ

we can derive the effective potential Veffðr; θ;B;LÞ as [64]

Veffðr; θ;B;LÞ ¼
�
1 −

2m
r

�
γ
�
1þ

�
1 −

2m
r

�
γ−1

×

�
L

r sin θ
− Br sin θ

�
1 −

2m
r

�
1−γ

�
2
�
:

ð19Þ

The term in parentheses of Eq. (19) is the central force
potential for the specific angular momentum L and the
electromagnetic potential energy given by the magnetic
parameter B. Once again, note that Eq. (19) reduces to the
Schwarzschild case when γ ¼ 1. As usual, for a given value
of E, the particle’s motion is restricted by the condition that

E2 ¼ Veffðr; θ;L;BÞ: ð20Þ

Due to the static nature of the space-time, the effective
potential of the γ-metric immersed in a uniform magnetic
field is symmetric with respect to the change in sign for
ðL;BÞ; namely, replacing ðL;BÞ with ð−L;−BÞ does not
change the effective potential [52,59]. This symmetry
enables us to distinguish the following two situations:
(a) Minus configuration (MC): the magnetic field and

angular momentum parameters have opposite signs,
and the Lorentz force is attracting the charged particle
toward the axis of symmetry. This holds for L > 0,
B < 0 or, equivalently, for L < 0, B > 0

(b) Plus configuration (PC): the magnetic field and
angular momentum parameters have the same sign,
and the Lorentz force is repulsive, pushing the particle
away from the source. In this configuration, we have
L > 0, B > 0 (or equivalently L < 0, B < 0).

Having fixed the direction of the symmetry axis z, a
positive value of the angular momentum L > 0 means
that the particle moves counterclockwise. On the other
hand, taking the particle’s charge q > 0, in the MC, B < 0
corresponds to the magnetic field pointing in the negative
direction (downward), while in the PC, B > 0 corresponds
to the magnetic field pointing upward the z axis.
In Fig. 1, we show the equipotential slices for the

effective potential at the equatorial plane for different
values of γ. From the figure, it is possible to see the

FIG. 1. Equipotential slices for the effective potential in the equatorial plane (θ ¼ π=2), Veffðr; π=2;L;BÞ as a function of the
Cartesian coordinates x and y for fixed values of B ¼ �0.005 and L ¼ 4. In the figure, we have set m ¼ 1.
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regions where Veff has a local minimum. On the other hand,
in Fig. 2, we plot sections (y ¼ 0) of the effective potential
Veff as function of the Cartesian direction x for different
values of γ at a fixed value of B. We consider two cases:
z ¼ 0 and z → ∞. To do so, we use spherical coordinates
given by

x¼ rsinθcosϕ; y¼ rsinθsinϕ; z¼ rcosθ; ð21Þ

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. For y ¼ 0 (i.e., ϕ ¼ 0), the last

equation reduces to x ¼ r sin θ and z ¼ r cos θ. Therefore,
the effective potential takes the form

Veffðx;0; z;L;BÞ ¼
�
1−

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
�

γ
��

1−
2mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
�

γ−1

×

�
L
x
− xB

�
1−

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
�

1−γ
�

2

þ 1

�
:

ð22Þ

At z → ∞, the effective potential reduces to

Veffðx; 0; z → ∞;L;BÞ ¼ 1þ
�
L
x
− Bx

�
2

; ð23Þ

which is the same expression as Schwarzschild [52].
From Fig. 2, it can be seen that in the equatorial plane

(z ¼ 0) notable differences in Veff for different values of γ
appear in the region where the role of the magnetic field is
suppressed by gravity (i.e., small values of x). In this case,
it is possible to distinguish between different values of γ.
At large values of x, the role of the magnetic field
dominates over the gravitational part of the effective
potential, and differences between different values of γ
become smaller. Figure 2 also shows that at z → ∞, the
behavior of Veff does not depend on γ and is the same as in
the Schwarzschild case [52] (see the solid gray lines in the
figure). The reason for such a behavior lies in those terms

which contain the dependence on γ in Eq. (19). Since
these terms tend to 1 when z → ∞, the effective potential
reduces to the Schwarzschild case as z → ∞ as shown
also for example in Ref. [52]. This behavior is expected
since both line elements (γ-metric and Schwarzschild) are
asymptotically flat.
According to Eq. (19), the effective potential is a

function of two variables only: r and θ. This is due to
the axial symmetry of the system, which is in turn due to
the symmetry of the background magnetic field and the
symmetry of the geometry. Therefore, the extrema of the
effective potential can be obtained from

∂rVeffðr;θ;L;BÞ¼0 and ∂θVeffðr;θ;L;BÞ¼0: ð24Þ

From the second condition in Eq. (24), we see that all
extrema of Veffðr; θ;L;BÞ occur in the equatorial plane.
Therefore, similarly to the Schwarzschild case, there are no
off-equatorial circular orbits for charged particles.
On the other hand, from the first condition in Eq. (24)

restricted to the equatorial plane, we obtain the following
polynomial equation:

dL2 þ eLþ f ¼ 0; ð25Þ
with

d ¼ ½r −mð1þ 2γÞ�ðr − 2mÞ2γ−2;
e ¼ 2mγBr1þγðr − 2mÞγ−1;
f ¼ −ðr −mÞr2γþ2B2 −mγr1þγðr − 2mÞγ: ð26Þ

Equation (25) is quadratic for the specific angular
momentum. Therefore, if we solve for L, we find that
circular orbits are given by

LE�¼ðr−2mÞ1−γ
�
−mBγrγþ1�ðr−2mÞ1−γr1þγ

2 F ðr;BÞ
r−mð1þ2γÞ

�
;

ð27Þ

FIG. 2. Sections (y ¼ 0) of the effective potential taken at the equatorial plane z ¼ 0 and at spatial infinity z → ∞ (gray solid line) for
different values of γ. In the figure, we consider B ¼ 0, B ¼ �0.005, m ¼ 1, and L ¼ 4.
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with

F ðr;BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − 2mÞ2γ−3½mðr − 2mÞγðr −mð1þ 2γÞÞγ þ B2ðr − 2mÞrγþ1ðmð1þ γÞ − rÞ2�

q
: ð28Þ

Equation (25) can be used to obtain the innermost stable circular orbit (ISCO). There are two ways to compute the ISCO:
either by solving the equation ∂2

rVeff ¼ 0 or by means of the local extrema LEðexÞ of Eq. (27). Hence, after using the implicit
function theorem on Eq. (25), we find the local extremum of LE�ðr;BÞ is given by1

LEðexÞ ¼
−2mγBrγðr − 2mÞ1−γ½ðr −mÞγ −m� þ ðr − 2mÞ1−γGðr;BÞ

ðr − 2mγÞð2γ − 1Þ ; ð29Þ

where the function Gðr;BÞ is given by

Gðr;BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2B2r2γγ2½mþ γðm − rÞ�2 − rγðr − 2mÞðr − 2mγÞð2γ − 1Þδ

q
ð30Þ

with

δ ¼ −B2r1þγð3r − 2mþ 2ðr −mÞγÞ
þ 2mðr − 2mÞγ−2γðmþ γðm − rÞÞ: ð31Þ

The ISCO is located at the point of intersection of the
functions LEðexÞ and LEþ. In Table I, some ISCO radii are
evaluated for different values of γ and B. In Fig. 3, we show
the behavior of rISCO as a function of γ for different values
of B. The case without an external magnetic field (i.e., the
dashed line in Fig. 3) was studied in Ref. [65]. There, it was
shown that the dependence of the ISCO radius upon the γ
parameter for neutral particles could be divided into three
different regions:

(i) For γ < 1=
ffiffiffi
5

p
, there is no ISCO.

(ii) For 1=
ffiffiffi
5

p
< γ < 1=2, there are two disjoint regions

for stable circular orbits (i.e., two separate allowed
values of the ISCO).

(iii) For γ > 1=2, there is only one ISCO, similarly to the
spherically symmetric case. A similar situation was
described in Ref. [64].

In Fig. 3, we show the value of rISCO as function of γ for
B ¼ �0.1 and compare it with the case without magnetic
field. In both cases, the effect of the magnetic field on the
value of the ISCO is to reduce it with respect to the case
B ¼ 0. In addition, the ISCO for B ¼ −0.1 (i.e., the MC
configuration) is larger than the ISCO radius for B ¼ 0.1
(i.e., the PC configuration). Hence, the presence of a
uniform magnetic field allows particles to move in stable
circular orbits closer to the infinitely redshifted surface

r ¼ 2m. This behavior can be observed in Fig. 4, where we
plot the behavior of LEþ and LEðexÞ.
Similarly to the case of Schwarzschild immersed in a

uniform magnetic field, the motion of charged particles in
the γ space-time is also bounded in the radial direction
near the equatorial plane due to the term proportional to B
in the effective potential. Nevertheless, this term vanishes
for θ ¼ 0, and so particles can escape along the polar
direction, i.e., the z direction, toward infinity.
In order to find the condition on the particle’s energy for

the particle to escape, we consider the effective potential at
z → ∞ along a given direction x. Then, Veffðx; z → ∞Þ is
given by (see gray solid line in Fig. 2)

Veffðx; z → ∞Þ ¼ 1þ L2

x2
− 2LB þ B2x2: ð32Þ

The minimum of Eq. (32) is located at x ¼ jL=Bj, and at
this value of x, the energy is

Eescape ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jLBj − 2LB

p
: ð33Þ

Therefore, the condition for particles to escape is given by

TABLE I. Numerical values of the innermost stable circular
orbits (rISCO) as a function of γ and B. We set m ¼ 1, which is
equivalent to using the rescaling r → r=m in the line element.

γ B ¼ −0.2 B ¼ −0.1 B ¼ 0 B ¼ 0.1 B ¼ 0.2

rISCO rISCO rISCO rISCO rISCO

0.6 3.028 3.235 3.6944 2.987 2.618
0.7 3.411 3.609 4.3045 3.284 2.817
0.8 3.759 3.922 4.8832 3.549 3.033
0.9 4.066 4.291 5.4464 3.802 3.227
1 4.4139 4.6319 6.0000 3.9827 3.3552
1.1 4.763 4.981 6.54722 4.205 3.487

1We considered the function W ¼ L2½r −mð2γ þ 1Þ�ðr −
2mÞ2γ−2 þ 2mγBrγþ1ðr − 2mÞγ−1L −mγrγþ1ðr − 2mÞγ−1 − ðr −
mÞB2r2γþ2; from which dL=dr ¼ −ð∂W=∂rÞ=ð∂W=∂LÞ, where
∂W=∂L ≠ 0. Thus, using the condition dL=dr ¼ 0 and solving
for L, we obtain Eq. (29).
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E ≥ Escape ¼
�

1 if B ≥ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4BL

p
if B < 0:

ð34Þ

The exact same condition was found by Kolo et al. in
Ref. [52]. This is due to the fact that Schwarzschild and γ-
metric have the same behavior at z → ∞ [see Eq. (32)
and Fig. 2].

On the other hand, for charged particles on bound orbits,
the energy condition in Eq. (20) describes what is called a
lakelike region where the particles are trapped between two
radii. The condition for such a region is given by

E < Escape: ð35Þ

Since the specific energy E is related by the specific angular
momentum L, the trapped region can be expressed by the
condition

LL−
< L < LLþ ; ð36Þ

where the values of LL−
and LLþ are given by the condition

E ¼ Eescape. Therefore, for B ≥ 0, we have

LL�¼ðr−2mÞBrγþ1�rγ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr−2mÞr1−γðrγ−ðr−2mÞγÞ

p
ðr−2mÞγ ;

ð37Þ

and for B < 0, LL−
and LLþ become

LL� ¼
−Brγþ1ð2rγðr−2mÞ1−γ−ðr−2mÞÞ�r2γ−1Kðr;BÞ

ðr−2mÞγ ;

ð38Þ

with

Kðr;BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3ð1−γÞðr − 2mÞ1−2γðrγ − ðr − 2mÞγÞð4ðr − 2mÞB2r2γþ1 þ ðr − 2mÞ2γÞ

q
: ð39Þ

In Fig. 4, we show the behavior of LE�, LEðexÞ, and the
behavior of the so-called lakelike angular momentum
functions LL� as functions of r for different values of γ
and B. In the figure, we see that the extremum functionLE�,
which determines the circular orbits in the equatorial plane,
diverges when the charged particles move close to the
photon sphere. In the figure, we can also see the value of
LISCO from the intersection ofLE� with LEðexÞ. Note that the
position of rISCO is affected by the presence of the magnetic
field. Moreover, stable and unstable circular orbits are
located at r > rISCO and r < rISCO, respectively. On the
other hand, regarding the lake angular momentum functions,
we see that the region between LL− and LLþ is smaller for
B > 0 than the region in the case B < 0 (for a given value of
γ). Finally, for fixed values of B ≠ 0, the region between
LL− and LLþ becomes broader as γ increases.

A. Charged particle trajectories

The trajectories of charged particles immersed in a
uniform magnetic field can be obtained by solving the

equations of motion. Typically, this can be done following
two possible procedures, namely (i) from the Lorentz
equation or (ii) from the Hamiltonian formalism. In the
following, we use the former method. Then, a particle with
(rest) mass m0 and charge q immersed in an electromag-
netic field Fρσ satisfies the Lorentz force law [61,62]

d2xμ

dτ2
þ Γμ

αβ

dxα

dτ
dxβ

dτ
¼ q

m0

gμρFρσ
dxσ

dτ
; ð40Þ

where τ is the affine parameter of the particle’s trajectory
and Fρσ is the electromagnetic Faraday tensor. In general,
the tensor Fρσ is defined, in terms of the vector potential
Aα, as

Fρσ ¼ ∂ρAσ − ∂σAρ; ð41Þ

and in the case of the γ-metric immersed in a uniform
magnetic field, the only nonvanishing components of
vector potential are given by Eq. (13) so that the

FIG. 3. Location of rISCO as a function of γ for different values
of B. Again, we set m ¼ 1.
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nonvanishing components of the electromagnetic tensor,
expressed in ðt; r; θ;ϕÞ coordinates, take the form

F̃rϕ ¼ −F̃ϕr ¼ 2B sin2 θðr − 2mÞ−γrγ½r − ðγ þ 1Þm�;
F̃θϕ ¼ −F̃ϕθ ¼ 2B sin θ cos θðr − 2mÞ1−γrγþ1; ð42Þ

where we have defined F̃ρσ ¼ qFρσ=m0. Note again that for
γ ¼ 1, Eqs. (42) reduce to the case of Schwarzschild
immersed in a uniform electromagnetic field [52].
Using the conservation of angular momentum from

Eq. (17), we can obtain the equation of motion for the
axial coordinate ϕ. This equation has the form

dϕ
dτ

¼ L
r2

�
1 −

2m
r

�
γ−1

− B; ð43Þ

while the equation of motion for the radial component takes
the form

�
dr
dτ

�
2

¼
�
1 −

m
r

�
γ2−1

�
E2 −

�
1 −

2m
r

�
γ

−
ðrBð2m − rÞ þ Lð1 − 2m

r ÞγÞ2
rð2mþ rÞ

�
: ð44Þ

Given the difficulty of solving analytically the equations,
in general one needs to resort to numerical analysis. In
Figs. 5 and 6, we show some examples of trajectories for
charged particles on the equatorial plane. We considered
both PC and MC configurations, and different values of γ.
From the figures, it is possible to identify the infalling
trajectories, and the circular and bounded orbits. In the case
of bound orbits, the radial coordinate is constrained in the
interval ra ≤ r ≤ rp, where ra and rp are the apoapsis and
periapsis, respectively [52]. From the figures, we can see
two types of bounded trajectories: curled and noncurled.
The former is obtained when the coordinate ϕ decreases

FIG. 4. Plots of LE� (solid line), LEðexÞ (dotted line), and LL� (dashed line) as a function of r for different values of γ. The intersection
of LE� with LEðexÞ provides location and angular momentum for a particle at the ISCO. In the figure, we consider B ¼ 0, B ¼ �0.1 and
set m ¼ 1.
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during the particle motion, in contrast to noncurled tra-
jectories, where ϕ always increases (see also Fig. 7).
Furthermore, it is important to point out that these trajec-
tories are specific to the charged particle motion in the
asymptotically uniform magnetic fields, and cannot occur
in the case of uncharged particles, and more precisely they
are possible only in the PC configuration. Similar curly
trajectories were found in the Schwarzschild space-time
immersed in a magnetic field [52,59,60].
It is known that the motion of an electrically neutral test

particle is always restricted to the equatorial plane and that

a freely moving particle can escape to infinity only in this
plane, even in the presence of an external magnetic field.
Nevertheless, when we consider charged particles in the
presence of an asymptotically uniform magnetic field, it is
possible to have escape trajectories, which end at spatial
infinity as z → ∞ evolving along the magnetic field lines,
as can be seen in the left and central panels of Fig. 8.
Out of the equatorial plane, particle motion tends to be

chaotic [33,66–68]. The chaotic motion is related to the
variations in the coordinate θ. Nevertheless, as we will
discuss in the next section, harmonic oscillations may occur

FIG. 5. Charged particle motion in the equatorial plane (θ ¼ π=2, _θ ¼ 0) in the PC case (i.e., LB > 0) for different values of γ, L, and
B. The motion of the particle is plotted from a given initial radius r0 (the initial angle ϕ is irrelevant due to symmetry), radial velocity _r0,
and angular velocity _ϕ0. We set m ¼ 1. Notice that curly motion is allowed in this case, as opposed to the MC case.
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when bounded orbits are located close to the equatorial
plane. In Fig. 8, left panel, we show one example.

IV. HARMONIC OSCILLATIONS OF CHARGED
TEST PARTICLES

It is known that if a particle is displaced slightly from the
radius of a stable circular orbit, the particle will start
to oscillate around its equilibrium value. For sufficiently
small displacement, it will execute simple harmonic motion
[61]. This oscillating motion is governed by the epicyclic
frequencies.

A. Epicyclic frequencies

To obtain the epicyclic frequencies for the γ space-time
immersed in a uniform magnetic field, we follow the
analysis in Ref. [40]. In this sense, we also restrict our
analysis to the linear regime and consider radial and vertical
oscillations separately.
The Hamiltonian given in Eq. (14) can be expressed in

the following form:

H¼1

2
grrp2

rþ
1

2
gθθp2

θþ
m2

0

2
ðgttE2þgϕϕðL−BgϕϕÞ2þ1Þ:

ð45Þ

FIG. 6. Charged particle motion in the equatorial plane (θ ¼ π=2, _θ ¼ 0) in the MC for different values of γ, L, and B. The motion of
the particle is plotted from a given initial radius r0 (the initial angle ϕ is irrelevant due to symmetry), radial velocity _r0, and angular
velocity _ϕ0. We set m ¼ 1.
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The normalization condition uβuβ ¼ −1 (where uβ is the
4-velocity of the charged particle), leads to H ¼ 0. Hence,
Eq. (45) reduces to

grrp2
rþgθθp2

θ¼−m2
0ðgttE2þgϕϕðL−BgϕϕÞ2þ1Þ; ð46Þ

from which we can express the left-hand side as

grr

�
dr
dζ

�
2

þ gθθ

�
dθ
dζ

�
2

¼ −Πðr; θÞ; ð47Þ

where we have used the relation pμ ¼ m0uμ and defined the
function Πðr; θÞ as

Πðr; θÞ ¼ gttE2 þ gϕϕðL − BgϕϕÞ2 þ 1: ð48Þ

In the case of charged particles moving on a plane with
θ0 ¼ const (as is the case for motion in the equatorial
plane), Eq. (47) takes the form

grr

�
dr
dζ

�
2

¼ RðrÞ ¼ −Πðr; θ0Þ: ð49Þ

On the other hand, if we consider charged particles moving
at a fixed radial distance r ¼ r0 with θ ≠ 0, then Eq. (47)
reduces to

gθθ

�
dθ
dζ

�
2

¼ ΘðθÞ ¼ −Πðr0; θÞ: ð50Þ

Therefore, test charged particles will move on a circular
orbit r ¼ r0 in the equatorial θ ¼ θ0 ¼ π=2 if [40]

Rðr0Þ ¼ 0; ∂rRðrÞjr0 ¼ 0; ð51Þ

and

Θðθ0Þ ¼ 0; ∂θΘðθÞjθ0 ¼ 0: ð52Þ

FIG. 7. Plots of ϕ coordinate for curled (left panel), circular (center), and noncurled orbits (right panel). The plots are obtained from
the data of the curled trajectory shown in the third column, last row of Fig. 5 (left panel) and the orbits shown in the second and third
columns in the last row of Fig. 6 (middle and right panels), respectively. We set m ¼ 1.

FIG. 8. Left panel: example of a escape trajectory. The initial conditions are r0 ¼ 16, _r0 ¼ 0, θ0 ¼ 3, ϕ0 ¼ 0, and _ϕ0 ¼ 0 with
B ¼ 0.1 and L ¼ 7.1. Center: another example of a escaped trajectory with the same initial conditions as in the left panel but for γ < 1.
Right panel: example of a trajectory with a small perturbation (_θ0 ≠ 0). The initial conditions are _θ0 ¼ 0.01, _r0 ¼ 0, B ¼ 0.1, L ¼ 10,
r0 ¼ 9, and θ0 ¼ π=2. We set m ¼ 1.
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In the case of small perturbation along the radial direction,
i.e., r ¼ r0 þ δr with δθ ¼ 0, and in the case of small
perturbation in the vertical direction, i.e., θ ¼ θ0 þ δθ with
δr ¼ 0, we can express the functions RðrÞ and ΘðθÞ in
powers of δr and δθ, by expanding near the equilibrium
positions r0 and θ0. In this way, we obtain the equations
governing the motion of test charged particles that slightly
depart from a circular orbit. The Taylor expansions up to
second order in δr and δθ are given by [40]

RðrÞ ¼ Rðr0Þ þ ∂rRðrÞjr0δrþ
1

2
∂2
rRðrÞjr0δr2 þ � � �

ð53Þ

ΘðθÞ ¼ Θðθ0Þ þ ∂θΘðθÞjθ0δθ þ
1

2
∂2
θΘðθÞjθ0δθ2 þ � � � ;

ð54Þ

which, after using Eqs. (51) and (52), allows us to rewrite
Eqs. (49) and (50) as

grrδ_r2 ¼
1

2
∂2
rRðrÞjr0δr2; ð55Þ

gθθδ_θ
2 ¼ 1

2
∂2
θΘðθÞjθ0δθ2: ð56Þ

Taking into account that the total energy of the orbit is
conserved, one obtains [40]

δ_r

�
grrδ̈r −

1

2
∂2
rRðrÞjr0δr

�
¼ 0; ð57Þ

δ_θ

�
gθθδθ̈ −

1

2
∂2
θΘðθÞjθ0δθ

�
¼ 0: ð58Þ

It is clear that the trivial solutions δ_r ¼ 0 and δ_θ ¼ 0
correspond to circular orbits. On the other hand, the other
solution, given by the quantities inside square brackets
of Eqs. (57) and (58), can be expressed in the form of
harmonic oscillators as [69]

δ̈rþ ω2
rδr ¼ 0; ð59Þ

δθ̈ þ ω2
θδθ ¼ 0; ð60Þ

where ω2
r and ω2

θ are the radial and vertical (latitudinal)
frequencies, which are defined by

ω2
r ¼ −

∂2
rRðrÞjr0
2grr

¼ ∂2
rΠðr; θ0Þjr0

2grr
; ð61Þ

ω2
θ ¼ −

∂2
θΘðθÞjθ0
2gθθ

¼ ∂2
θΠðr0; θÞjθ0

2gθθ
: ð62Þ

For the γ-metric immersed in uniform magnetic field, the
function Πðr; θÞ is given by

Πðr; θÞ ¼ 1þ
�
1 −

2m
r

�
γ−1

�
L

r sin θ
− Br sin θ

�
1 −

2m
r

�
1−γ

�
2

−
�
1 −

2m
r

�
−γ
E2: ð63Þ

Therefore, the epicyclic frequencies are given by

ω2
r ¼

½rðr −mÞ−2ðr − 2mÞ�−γ2
r2ðr2 − 3mrþ 2m2Þ2 ½aðr; γÞE2 þ bðr; γÞB2 þ cðr; γÞL2�;

ω2
θ ¼ ðr −mÞ2ðγ2−1Þ½ðr − 2mÞr�−γ2−1½L2ðr − 2mÞ2γr−2γ − ðr − 2mÞ2r2B2�; ð64Þ

where we have defined

aðr; γÞ ¼ 2γmrð2m − rÞððγ − 1Þmþ rÞ;
bðr; γÞ ¼ r2ðr − 2mÞ2ð2γðγ þ 1Þm2 − 2ðγ þ 1Þmrþ r2Þ;
cðr; γÞ ¼ ðr − 2mÞ2γr−2γ½2ðγ þ 1Þðγ þ 2Þm2 − 6ðγ þ 1Þmrþ 3r2�; ð65Þ

and the values for E2 ¼ Veffðr; π=2Þ and L ¼ LEþ are
given by Eqs. (19) and (27), respectively. There is a third
fundamental frequency given by oscillations about the
azimuthal angle ϕ which can be obtained from Eq. (43).
This is given by

ω2
ϕ ¼ ½Lr−1−γðr − 2mÞγ−1 − B�2: ð66Þ

In the case of vanishing magnetic field, we obtain again
the same results as in Ref. [40]. On the other hand, and
differently from the neutral case, when B ≠ 0, we also
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FIG. 9. Plots of ωr, ωθ, and ωϕ as functions of r for different values of γ and B. The gray dot-dashed line corresponds to the Larmor
frequency ωL, which has a constant value. We set m ¼ 1.
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FIG. 10. Plots of the frequencies Ωr, Ωθ, and Ωϕ measure by an observer at infinity as a function of r for different values of γ and B.
We set m ¼ 1.
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have the so-called Larmor angular frequency ωL, which is
associated with the uniform magnetic field itself, and is
given by the relation [52]

ωL ¼ qB
m0

¼ 2jBj: ð67Þ

It is important to point out that the Larmor frequency ωL
does not dependent on the radial coordinate and therefore it
becomes important at large distances, where the magnetic
field dominates over the gravitational field.
In Fig. 9, we show the behavior of ωr, ωθ, and ωϕ as

functions of r for different values of γ and B. For
completeness, we also show the corresponding value of
the Larmor frequency ωL. When the γ space-time is not
immersed in a uniform magnetic field (i.e., when B ¼ 0),
ωϕ and ωθ only coincide when γ ¼ 1 (i.e., Schwarzschild).
Moreover, as expected, they asymptotically tend to zero as
r increases, similar to the Schwarzschild case [52] (see the
third row in Fig. 9). In the same figure, it is possible to see
that the radial frequency ωr has a maximum value, which
decreases as γ increases. Moreover, we can see that ωr
vanishes at the ISCO. On the other hand, when B ≠ 0,
Fig. 9 shows different behaviors. It is worth noting that
for B < 0 both ωr and ωϕ tend asymptotically to the
Larmor frequency ωL, while ωθ tends to 0. Nevertheless,
when B > 0, only the radial frequency ωr tends to ωL as r
increases.

B. Frequencies measured by distant observers

The epicyclic frequencies derived in the previous section
in Eqs. (64) and (66) are measured with respect to the
proper time of a comoving observer. Therefore, to obtain
the frequencies measured by an observer at infinity, it is
necessary to take into account the redshift factor dτ=dt.
Hence, we have that

Ωi ¼ ωi
dτ
dt

; ð68Þ

where i ¼ r, θ or ϕ. For the γ-metric, the redshift factor can
be obtained from Eq. (17) and is given by

dτ
dt

¼ r−γðr − 2mÞγ
E

: ð69Þ

Therefore, the frequencies in Eq. (68) are given by

Ωi ¼ ωi
r−γðr − 2mÞγ

E
: ð70Þ

It is important to point out that E ¼ EðrÞ in Eq. (70) is
the specific energy at the circular orbit given by E ¼
Veffðr; π=2;LEþÞ. Therefore, we obtain

Ω2
r ¼

r−γðγþ2Þðr −mÞ2γ2ðr − 2mÞγð2−γÞ
r2ðr2 − 3mrþ 2m2Þ

�
aðr; γÞ þ bðr; γÞB2 þ cðr; γÞL2

E2

�
;

Ω2
θ ¼

ðr −mÞ2ðγ2−1Þðr − 2mÞ−ðγ−1Þ2r−ðγþ1Þ2

E2
½L2ðr − 2mÞ2γr−2γ − ðr − 2mÞ2r2B2�;

Ω2
ϕ ¼

�
Lr−ð1þ2γÞðr − 2mÞ2γ−1 − Br−γðr − 2mÞγ

E

�
2

: ð71Þ

In Fig. 10, we show the behavior of Ω2
r , Ω2

θ, and Ω2
ϕ as

functions of r for different values of γ and B. From the
figure, we see that the latitudinal Ωθ and azimuthal Ωϕ

frequencies measured by a distant observer vanish as r
increases for all the values of γ and B. In particular, when
B ¼ 0 and γ ¼ 1, these frequencies coincide (Ωθ ¼ Ωϕ).
Furthermore, for positive (negative) values of B, Ωϕ is
always smaller (greater) than Ωθ.

V. CONCLUSIONS

Observations of stellar mass and supermassive black
hole candidates rely on the measurement of the spectrum of
light emitted by their accretion disks. In particular x-ray
reflection spectroscopy appears to be a promising tool
to probe the nature of the geometry in the vicinity of

black hole candidates [21–23]. The recent observation of the
shadow of the supermassive black hole candidate at the core
of the galaxy M87 [70–72] also suggests that the possibility
to test experimentally the geometry in the vicinity of such
astrophysical compact objects may soon be at hand.
In both cases, it is of paramount importance to know the

behavior of the motion of test particles in the gas of the
accretion disk, since the light emitted from the accretion
disk is the only medium through which the measurements
are made. The behaviors of test particles and, as a
consequence, the properties of accretion disks, are influ-
enced by several factors, besides the geometry, of which the
most relevant are the presence of additional matter fields
[73–75], magnetic fields [57,58], and the particle’s spin
[76–78]. Therefore, it is very important to know how such
factors may alter the observational features of the accretion
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disks, in order to exclude the possibility of degeneracies
such as, for example, the measurement of a black hole spin,
which could be also due to a nonspinning source with
quadrupole moment [79].
The behavior of test particles in the Kerr and

Schwarzschild geometries has been studied in detail
[80–85]. On the other hand, the same behavior in other
exact solutions of Einstein’s vacuum field equations has not
been thoroughly studied so far. One reasonable hypothesis
is that if departures from the black hole geometry do exist
they would manifest in the presence of quadrupole moment
in the source of the gravitational field. In this respect, the
γ-metric represents the ideal test bed to investigate depar-
tures from the behavior expected by black holes.
Following a program initiated by some of us, we

attempted here to characterize the behavior of charged test
particles on orbits slightly departing from the ISCO of the
γ-metric immersed in an external magnetic field. We have
shown that the presence of a nonvanishing deformation
parameter affects the motion of charged particles and
changes the epicyclic frequencies.
As more and more precise measurements of the proper-

ties of supermassive black hole candidates become avail-
able, these models will allow testing the hypothesis that

the geometry outside such objects is well described by the
Kerr metric.
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