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In this article we further investigate the construction of graph coherent states, first introduced in
[M. Assanioussi, Phys. Rev. D 98, 045016 (2018)], in the context of loop quantum gravity. We specifically
investigate the possibility of defining a family of graph coherent states adapted to the canonical loop quantum
gravity Hamiltonian. After discussing various aspects of the general framework and the choice of operators,
we use the Euclidean part of the Hamiltonian operator to propose a generator of the generalized canonical
structure, necessary to define the coherent states.We then apply the construction procedure, leading to a new
family of graph coherent states partially adapted to the gravity Hamiltonian in loop quantum gravity.
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I. INTRODUCTION

In a previous article [1], a new class of coherent states has
been introduced in the context of loop quantum gravity
(LQG) [2–7]: the graph coherent states. These are canonical
coherent states with respect to a generalized canonical
structure which generates a graph change on the spin
networks graphs. The graph change is seen as an excitation
which distinguishes the spin networks graphs, and induces a
decomposition of the loop Hilbert space into separable
subspaces, each characterized by an ordered family of
graphs. Naturally, the graph coherent states take the form
of a normalized infinite superposition of spin network states,
each being labeled by the number of excitations they carry
and a canonical vacuum state. The goal of introducing such
states is to improve the analysis and understanding of graph
changing operators, such as the Hamiltonian operators, in
loop quantum theories. Here we use the term loop quantum
theories, instead of loop quantum gravity, to emphasize that
the discussion and construction is not restricted to gravity
only, but applies to models which include generic gauge
fields quantized following the loop (or polymer) quantiza-
tion, in particular the Yang-Mills sector.
The construction we introduced in [1] was general in the

sense that itmaybe applied tovarious graphchanges and in the
context of a loop quantum theory with arbitrary compact
gauge group. In particular, there is a large freedom in choosing
the mapping between the intertwiners in the case of a non-
Abelian gauge theory. This freedom is crucial as it allows to
adapt the choice of graph coherent states to a particular family
of operators of interest.We furthermore constructed a concrete
example, using the “special loop” graph change, which is
compatible with Yang-Mills Hamiltonian operator, and we

established some coherence properties of the induced graph
coherent states in that case. In the current article, we focus on
the gravity Hamiltonian which has a more complex structure
than the one of Yang-Mills Hamiltonian. Namely, while
considering roughly the same graph change, we introduce a
complete set of graph coherent states which is much more
adapted to the mapping between intertwiners inherent to the
action of the gravity Hamiltonian operator.
The article is organized as follows: in Sec. II we present a

summary of the general construction of graph coherent
states. In Sec. III we discuss the gravity Hamiltonian
operator(s) in canonical loop quantum gravity, we develop
a proposal for the generator and use it to derive the
generalized canonical structure, we then define the corre-
sponding graph coherent states which are partially adapted
to the gravity Hamiltonian. We close the section with a
discussion of certain aspects of the graph change associated
to the gravity Hamiltonian operators and their relevance in
the construction of the graph coherent states. In Sec. IV, we
conclude with a summary of our results and some outlooks.

II. GRAPH COHERENT STATES IN LOOP
QUANTUM THEORIES

In this section we review the general construction of the
graph coherent states introduced in [1] within the frame-
work of loop quantum theories. The construction is realized
on the vertex Hilbert space Hvtx, obtained from averaging
the states in the kinematical Hilbert spaceHkin of the theory
with respect to diffeomorphisms1 which preserve the

*mehdi.assanioussi@fuw.edu.pl, mehdi.assanioussi@desy.de

1In the context of the construction detailed here, in particular
with the indistinguishable special loops prescription explained in
the following paragraph, we consider the diffeomorphisms to be
C1-diffeomorphisms.
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vertices of the graphs [8]. The graph coherent states consist
of an infinite, but normalized, superposition of G-colored
networks [called spin networks when G ¼ SUð2Þ] with
different graphs. Though originally inspired from a par-
ticular dynamics, the construction is purely kinematical in
the sense that it is realized on the Hilbert space Hvtx
independently of the dynamics of the theory under con-
sideration, and in principle it can be applied with various
graph changes [1].
For a clear presentation of the steps and structures

involved in the general construction, we proceed with a
concrete implementation of a specific graph change which
consists of the addition of closed loops at the vertices of the
graphs. In particular, we take the graph change proposed for
the regularization of the gravity Hamiltonian constraint
[9,10]. Namely, the holonomy replacing the curvature of
the connection is taken along a closed oriented loop,
associated to a pair of edges at a vertex of a preexisting
graph, and which does not overlap with any edge of that
graph. We call such loops special loops, and they could be
implemented following slightly different prescriptions.2

For the moment, we choose to associate such special loop
following the prescription which implies that if two edges
eI and eJ have the same tangent vector _eI at a vertex v, then
given a third independent edge eK , the loops associated to
the pairs ðeIeKÞ and ðeJeKÞ are diffeomorphically equiv-
alent. This property translates into considering that the
tangentiality conditions in the prescription of a special loop
to be restricted to a fixed tangentiality order, e.g., the first
order. With this modification, the special loop prescription
guarantees that the added loops, with the same orientation
and associated to pairs of edges which belong to the same
wedge,3 are indistinguishable special loops.
Given a colored graph4 ΓA with a set of vertices VerðΓAÞ

and no special loops, one can construct a Hilbert space
HΓA

, subspace of Hvtx, spanned by G-colored networks
associated to all the colored graphs obtained by attaching a
finite number of special loops to the vertices of the graph
ΓA. We call the graph ΓA the ancestor graph, and we obtain
the following decomposition

Hvtx ¼ ⨁
ΓA

HΓA
: ð1Þ

Because of the local nature of assigning the special loops,
our construction and analysis can be reduced to a single
vertex of a given ancestor graph, and the extension to the
whole graph is straightforward. Therefore, once given an
ancestor graph ΓA, the only degrees of freedom left are the
numbers of loops associated to the wedges at each vertex,
and the intertwiners at the vertices. We then can write

HΓA ≅ ⊗
v∈ΓA

HΓA

v ; ð2Þ

which states that the space HΓA
is isomorphic to the tensor

product of spaces HΓA

v each associated to a vertex v of ΓA.
As illustrated in the example below [after (3)] and dis-
cussed in more detail in [1], a space HΓA

v is spanned by
states labeled by a distribution of special loops at the
wedges of the ΓA at the vertex v and an intertwiner.
In order to define the graph coherent states, one has to

first introduce what we call a canonical structure on the
spaceHΓA

. Namely, a set of closed operators aiðvÞ onHΓA
,

i being an index in a finite set Wv of cardinality wv,
associated to the vertices of v of ΓA and which satisfy

∀v; v0 ∈ VerðΓAÞ; ∀i ∈ Wv; ∀j ∈ Wv0 ;

½aiðvÞ; ajðv0Þ� ¼ ½a†i ðvÞ; a†jðv0Þ� ¼ 0;

½aiðvÞ; a†jðv0Þ� ¼ δvv0δijIHΓA : ð3Þ

In our previous work [1], as a concrete case we
considered each operator aiðvÞ to be associated to a wedge
at a vertex v. The set Wv is then the set of wedges at the
vertex v and wv is the number of wedges at v. The operators
aiðvÞ were defined by first introducing an orthonormal
basis in each space HΓA

v of which the elements are denoted
jιαfnig;fmigi, such that mi ≤ ni,

5 where each ni is the number

of special loops associated to the wedge i and the ια labels
the intertwiner at the vertex, and they satisfy6

∀i ∈ Wv; ∀ni ∈ N; ∀mi ≤ ni;

ani−mi
i jιαfnig;fmigi ≠ 0; ani−miþ1

i jιαfnig;fmigi ¼ 0: ð4Þ

As it will become clear later, the positive integers mi label
the vacuum states selected by the canonical annihilation
operators. The operators fai; a†i g are then defined through
their actions on the states jιαfnig;fmigi as follows

2The main property which characterizes different prescriptions
is the tangentiality conditions imposed on the edges of the loop at
the vertex to which it is attached. In particular, these conditions
could be adjusted in order to make the special loops associated to
a pair of edges either indistinguishable or entirely distinguishable.
We refer the reader to [1,9,10] for further details and discussion.

3A wedge is a pair of classes of edges at the same vertex of a
graph, each class corresponding to a set of edges which have the
same tangent vector at the vertex, and this tangent vector is
characterizing the class.

4By colored graphs we mean diffeomorphism classes of
embedded graphs which label the basis states in Hvtx, and which
are characterized by the same nonvanishing irreducible repre-
sentations assigned to the edges, but with no fixed intertwiners.

5Note that this convention in the notation implies that if there is
an i such that mi > ni, then jιαfnig;fmigi ¼ 0.

6For convenience, we drop the label of the vertex v every time
we deem it unnecessary or cumbersome.
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∀k ∈ Wv; ∀nk ∈ N; ∀mk ≤ nk;

∀jιαfnig;fmigi ∈ HΓA

v ;

akjιαfnig;fmigi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nk −mk

p jιγf…;nk−1;…g;fmigi; ð5aÞ

a†kjιαfnig;fmigi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nk −mk þ 1

p
jισf…;nkþ1;…g;fmigi: ð5bÞ

We call the operators ai and a†i generalized canonical
annihilation and creation operators respectively. Equ-
ations (5) define the operators fai; a†i g using a choice of
mappings between the intertwiners ια, and they imply that
conditions (3) are satisfied up to conditions on different
pairs fai; a†i g at the same vertex. The remaining conditions
constrain the mappings between the intertwiners via

∀i; j ∈ Wv; ½ai; aj� ¼ 0: ð6Þ

implying that the intertwiner mappings are not indepen-
dent, but they are also not unique. This means that there is a
freedom in choosing the canonical operators fai; a†i g
encoded in the choice of intertwiner mappings.
Note that the states jιαfmig;fmigi which satisfy

∀i ∈ Wv; aijιαfmig;fmigi ¼ 0; ð7Þ

are understood as vacuum states from which arbitrary states
jιαfnig;fmigi are generated via the action of the operators a†i .

We denote these vacuum states as j0αfmigi, and the sub-

Hilbert space they span as Kv, which corresponds to the
common kernel of the operators aiðvÞ.
In general, given a set of commuting, closed, injective7

and densely defined operators fOigi∈Wv
which create the

same type of graph excitations at a vertex v, such as adding
a special loop, the general procedure to obtain a corre-
sponding canonical structure is to consider a set of
operators fÕigi∈Ws

which satisfy

∀i ∈ Wv; ∀ψ ∈ DðOiÞ;
Õiψ

jjψ jj ¼
Oiψ

jjOiψ jj
: ð8Þ

In other words, the operators Õi are linear isometries which
preserve the intertwiner mappings induced by the operators

Oi, that is, two operators Oi and Õi map a given
normalized intertwiner to the same normalized intertwiner,
with the difference that Õi preserves the norm, while Oi
does not necessarily. This step consists of roughly “normal-
izing” the operatorsOi. The operators Õi are used to define
the canonical structure by the identification

∀i ∈ Wv; Õi ¼ a†iVi; ð9Þ

such that the operator Vi ¼ ðaia†i Þ−1=2 is diagonal in the
colored network basis, and given a basis element jιαi we
have

Vijιαi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

ki þ 1
p jιαi; ð10Þ

where ki is the difference in the number of graph excitations
(e.g., special loops) associated to the structure (e.g., wedge)
i at the vertex, between the given state and the vacuum state
it is generated from. The vacuum states are spin networks
chosen as elements of an orthonormal basis which span the
kernel of the operators O†

i .
The association of the generalized canonical operators to

the wedges of a graph is an example of how one can
construct a canonical structure. As discussed in [1], this
choice is particularly adapted to the action of Yang-Mills
Hamiltonian operator in LQG. However, as we will see
later, we will introduce another canonical structure which is
more adapted to the action of the gravity Hamiltonian
operator.
Once we have a canonical structure, we define the graph

coherent vertices as being the eigenvectors of the chosen
generalized annihilation operators at each vertex, that is

∀v ∈ ΓA; ∀i ∈ Wv; aijZvi ¼ zijZvi;
Zv ≔ fzig ∈ Cwv: ð11Þ

These states are obtained from the vacuum states selected
by the canonical structure as

∀jZvi; ∃!j0αv;fmigi∈Kv∶jZvi

¼
Ywv

i¼1

ezia
†
i−z̄iai j0αv;fmigi≕ jZv;0αv;fmigi: ð12Þ

Finally the graph coherent states are defined as

jZΓA ; 0ΓAi ≔ ⊗
v∈ΓA

jZv; 0αv;fmigi; ð13Þ

and they are labeled by a colored ancestor graph ΓA, and to
each vertex of ΓA is associated a set of complex numbers
Zv representing the eigenvalues of the generalized

7The injectivity is required on the separable subspaces selected
by the graph change where the canonical structure is to be
defined. In general, a graph changing operator defined on Hvtx is
not injective on its whole domain, however some of its restric-
tions to the separable subspaces could be. This means that one
could proceed with the construction of the canonical structures on
these subspaces where injectivity is satisfied. Finally, note that
the issue of injectivity is not related to the graph change only, but
also to the intertwiner mapping inherent to the operator under
consideration.
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annihilation operators, and a set of vacuum states f0αvg. The
graph coherent states in (13) are by construction canonical
coherent states with respect to the canonical operators
fai; a†i g, hence these states are sharply peaked at the real
and imaginary parts of the eigenvalues fzig. Furthermore,
as shown in [1], we have that the relative variances Δrð:Þ ≔
jhð:Þ2i=h:i2 − 1j of the operators Õi satisfy

ΔrðÕiÞ¼ΔrðÕ†
i Þ¼1−

ejjzijj2
P∞

n¼0
jzij2nffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðnþ2Þ!

p

ðP∞
n¼0

jzij2nffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðnþ1Þ!

p Þ2
⟶
jzij≫1

0: ð14Þ

This concludes our overview of the general construction
of graph coherent states in loop quantum theories. In the
next section, we develop a specific canonical structure on
the space Hvtx for loop quantum gravity (G ¼ SUð2Þ),
which is more adapted to the canonical gravitational
quantum dynamics.

III. GRAPH COHERENT STATES FROM
GRAVITY HAMILTONIAN

A. LQG gravity Hamiltonian

The gravity Hamiltonian operator in loop quantum
gravity can be defined through its action on a (dual) spin
network function ψΓ in Hvtx as

HðMÞψΓ ¼
�X

v∈Γ
MðvÞðHE

v þHL
v Þ
�
ψΓ; ð15Þ

where M is the lapse function evaluated at the vertices of
the graph, and the Euclidean part operator HE

v is given by8

HE
v ≔ QðvÞ

X
I;J

ðTrðlÞN ½hαIJϒIJ�� þ ðTrðlÞN ½hαIJϒIJ��Þ†Þ; ð16Þ

while the Lorentzian part operator HL
v could be defined

using two different prescriptions: either HL
v is taken to be

proportional to the curvature operator R introduced in [11]
and dependent only on the flux operators Pi, or it is
obtained using Thiemann identities which involve the
Euclidean part operator, the volume operator V and the
holonomy operators9 h, for more details see [3,12].
In (16), the capital indices in the ordered sum run

through all the edges meeting at the vertex v, TrðlÞN stands

for the normalized trace for the representation10 l, depend-
ing on its argument, it is either a trace on the group SUð2Þ,
and in that case the normalization is given by TrðlÞN ½1� ¼ 1,
or it is a trace on the algebra suð2Þ and then we have

TrðlÞN ½τðlÞi τðlÞj � ¼ δij. The � stands for the dual mapping of the
operators from the kinematical Hilbert space to the dual
Hilbert space [8]. The operator ϒIJ could also be defined
using two different prescriptions, namely

ϒIJ ≔

8>><
>>:

P
K
ϵIJK½V; h−1sK �hsK ;

or

τkðϵijkϵIJPI
iP

J
j ÞdV−1;

ð17Þ

where ϵIJK ¼ −1, 0, 1, depending on the orientation of the
triple of edges ðeI; eJ; eKÞ, the holonomy hsK is a holonomy
along a segment sK of the edge eK at the vertex v, ϵIJ equals
zero when _eI and _eJ are collinear, and equals 1 otherwise.

In the second expression the operator dV−1 is the “inverse-
volume” operator defined using the Tikhonov regulariza-
tion [13] for the volume operator (see [14]). Finally,
the coefficient QðvÞ in (16) is a factor which depends
on the valence of the vertices and on the choice of the
operator ϒIJ.
The holonomy operators hα are the holonomies associated

to specific closed loops α at a vertex. For the operator to be
defined on Hvtx, the added closed loops are chosen to be
special loops and could be made either distinguishable or
indistinguishable at the wedges. There is also another
regularization of the Hamiltonian, the special edges
regularization [12], where the closed loops are partially
overlapping with the edges meeting at the vertices of the
graph and are completed by a new edge. However, the
Hamiltonian operator with such regularization cannot be
defined onHvtx, but either onHkin using the so-called URST,
i.e., the Uniform Rovelli-Smolin Topology [3,15], or on the
full diffeomorphism invariant Hilbert space Hdiff when the
lapseM is taken tobe a constant.11We further comment on the
special edge regularization in the context of our construction
of graph coherent states at the end of Sec. III.
The presence of the holonomy operators hα in the

expression of HE
v makes the operators HE

v , and conse-
quently HðNÞ, graph changing operators, i.e., they map the
graphs they act on to other graphs with a different
distribution of special loops at the vertices.

8In (16), we imposed a choice of ordering of the operators, and
a choice of symmetrization using the adjoint operators denoted by
† understood as the adjoint action on the space Hvtx.

9Note that the actual holonomy operators in LQG are defined
only on the kinematical Hilbert space Hkin. The term holonomy
operator that we use here should be understood as the operator on
Hvtx whose action on a dual state, i.e., state in Hvtx, is given by
the dual action of the actual holonomy operator on the corre-
sponding kinematical state in Hkin.

10The construction of the Hamiltonian operator and of the
graph coherent states do not depend on the specific choice of the
representation of the holonomies, hence it is left arbitrary but
assumed to be fixed.

11In this case, one would still have to modify the general
expression of the regularized Hamiltonian on the kinematical
Hilbert spaceHkin, by including some projectors associated to the
ancestor graph, in order to be able to define a densely defined
dual operator on Hdiff .
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Naturally, the question is then whether one can use
directly the Hamiltonian operator, in particular the part of
the Euclidean operator which creates loops, in order to
induce a canonical structure or not. The answer is unfortu-
nately negative, for the simple reason that the operators
which create loops, namely

ðTrðlÞN ½hαIJϒIJ��Þ†; ð18Þ
and even their sum as in (16), are not injective. This is due
to the presence of the volume (or inverse volume) operator
in theϒIJ operators, which has a nontrivial kernel for every
graph configuration at a vertex. The injectivity of the
operator used to generate the canonical structure is essential
to construct the canonical operators following the method
we propose. In this case, one could think of restricting the
construction to the orthogonal complement of the kernel of
the volume operator, however it is not clear whether this
could work because we do not know if the operator in (22)
preserves the orthogonal complement of the volume kernel.
This is an issue which we do not investigate in this article,
and we leave for a future work. We are therefore forced to
consider a different operator than the operators (18), while
still retaining to the maximal extent the structure of the
intertwiner mappings present in the gravity Hamiltonian.
In this article, we propose to use the operators

ðTrðlÞN ½hαIJτkYk
IJ��Þ†; ð19Þ

where

Yk
IJ ≔ ϵijkϵIJPI

iP
J
j : ð20Þ

One can see that the difference between the operators in
(19) and the ones in (16), when ϒIJ are taken to be the
second operators in (17), is the absence of the inverse
volume operator. In fact, the operators (19) form the
Euclidean part of the physical Hamiltonian in the context
of the loop deparametrized theory with respect to a
massless scalar field [9,16,17]. As it is shown in the
Appendix, the operators (19) are injective operators, except
on the specific degenerate subspaces corresponding to
vertices which have no more than two collinear classes
of edges (see footnote 3), We call such vertices degenerate
vertices. Since the operators (19) do not generate such
vertices, these are simply excluded from the construction.

B. Graph coherent states with special loops

We come now to the construction of graph coherent
states which are partially adapted to the gravity
Hamiltonian in LQG. By partially adapted we mean that
the graph coherent states will implement the graph change
induced by the action of the Hamiltonian operator, but they
will incorporate only partially the mapping between inter-
twiners, which is induced by the Euclidean part in (16). We
therefore focus on the operators

ðTrðlÞN ½hαIJτkYk
IJ��Þ†; ð21Þ

which are considered to be the operators creating special
loops, while their adjoint operators are removing them. An
operator as in (21) associates (diffeomorphically equiva-
lent) special loops to the wedge ðIJÞ. Hence one would first
consider to use the intertwiner mapping induced by the
operators in (21) in order to build a canonical structure (3),
where each pair of canonical operators is associated to a
wedge of an ancestor graph. However, it is easy to observe
that at a given vertex v, the operators (21) associated to the
wedges at v do not commute. This implies that with these
intertwiner mappings, the pairs of canonical operators
associated to different wedges at the same vertex would
not always commute with each other, and hence one would
fail to have a canonical structure at the vertex. Thus, we are
obliged to look for a different way to implement these
intertwiner mappings.
Since we are interested in the Hamiltonian operator as a

whole, the idea is to take the sum of the operators in (21)
associated to the same vertex, as a base to construct the
canonical structure. This means that instead of looking at
the wedges separately, and associating a pair of canonical
operators to each one of them, we will try to build only one
pair of canonical operators associated to the vertex itself.
Such structure would trivially solve the problem of com-
mutation since there would be only one canonical pair per
vertex. The closed, densely defined, and injective12 oper-
ator Cv that we consider to generate the canonical structure
is then

Cv ≔
X
I;J

ðTrðlÞN ½hαIJτkYk
IJ��Þ†: ð22Þ

As we mentioned earlier, this operator contributes in
forming the physical Hamiltonian in the deparametrized
model with respect to a massless scalar field. More
precisely, it corresponds to the Euclidean part of the square
of the physical Hamiltonian operator [9,16]. From now on,
we refer to the operator Cv as the nonsymmetric Euclidean
operator. Using (8), Cv defines the linear isometry C̃v, which
naturally induces a canonical structure through the iden-
tification

a†vVv ¼ C̃v; such that Vv ≔ ðava†vÞ−1=2; ð23Þ

where av and a†v are the induced annihilation and creation
operators respectively. To understand the details of the
construction, let us elaborate on the canonical structure
defined in (23). Given an ancestor graph ΓA, we first note

12The proof of these properties is presented in the Appendix.
Note that, as mentioned earlier, the injectivity is required only on
the Hilbert spaces HΓA

associated to ancestor graphs where the
vertex v is not degenerate.
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that we can introduce a decomposition of the Hilbert space
HΓA

v associated to a vertex v, namely

HΓA

v ¼ ⨁
n
Hn

v; ð24Þ

where a spaceHn
v is the finite dimensional Hilbert space of

states with n special loops at the vertex v. We denote the
normalized states inHn

v which belong to the kernel of C
†
v as

j0αni, these are the vacuum states in our construction. The
successive action of Cv on the vacuum states generates
states which, once normalized, correspond to the number
states jn; 0αmi, namely

jn; 0αmi ≔ ðC̃vÞn−mj0αmi ¼
1

jjðCvÞn−mj0αmijj
ðCvÞn−mj0αmi;

ð25Þ
where n denotes the total number of special loops in the state,
while m denotes the number of special loops in the vacuum
state they come from. Each number state jn; 0αmi is a super-
position ofdual spin network states (at thevertexv) associated
to graphs representing all possible distributions of n −m
loops at the wedges of the vacuum state with m loops. Note
that for the vacuum states, we use the short notation j0αmi
which replaces jm; 0αmi. These number states are the eigen-
states of the number operator N v ≔ a†vav, and we have

∀n ∈ N; ∀m ≤ n; ∀jn; 0αmi ∈ Hn
v;

avjn; 0αmi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n −m

p jn − 1; 0αmi; ð26aÞ

a†vjn; 0αmi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n −mþ 1

p jnþ 1; 0αmi; ð26bÞ

N vjn; 0αmi ¼ ðn −mÞjn; 0αmi: ð26cÞ

At this point, one can define the graph coherent states
obtained from a selected set of vacuum states fj0αv;mig, and
the canonical operators ðav; a†vÞ induced by the operator Cv.
Similarly to (11), one first defines the graph coherent
vertices as the eigenvectors of the annihilation operators

∀v ∈ ΓA; avjzvi ¼ zvjzvi; zv ∈ C; ð27Þ
and are given as

∀jzvi; ∃!j0αm;vi∈Kv∶jzvi¼ezva
†
v−z̄vav j0αm;vi≕ jzv;0αm;vi:

ð28Þ

The graph coherent states induced by the operator Cv with
an ancestor graph ΓA are then defined as

jZΓA ; 0ΓAi ≔ ⊗
v∈ΓA

jzv; 0αm;vi: ð29Þ

As mentioned at the end of Sec. II, since the graph coherent
states are by construction canonical coherent states, they

satisfy the standard coherence and peakedness properties
with respect to the canonical operators av and a†v, and a
similar result as in (14) holds for the operators C̃v. The
further interesting aspects to look into would be the
coherence properties with respect to specific operators of
interest. One such operator would be the Euclidean part of
the gravity Hamiltonian HE

v in (16), and also the operators
Cv and their adjoints C†v. We will present the results of the
analysis of the coherence properties with respect to these
operators and their combination in a follow-up article. This
concludes the construction of the graph coherent states
associated to the generalized canonical structure induced by
the nonsymmetric Euclidean operator Cv.
Finally, let us make some comments about the con-

struction of a canonical structure when a different graph
change for the Hamiltonian is considered. As mentioned
earlier, one can consider different regularizations for the
Hamiltonian, inducing an Euclidean operator which gen-
erates different graph changes, namely the indistinguish-
able special loop, the distinguishable special loop, or the
special edge. The indistinguishable special loops corre-
sponds to the graph change we considered in the con-
struction above. From the framework detailed above, one
can deduce that the construction can also be realized with
the distinguishable special loops, with no difference with
respect to the indistinguishable special loops case. This is
mainly because the nonsymmetric Euclidean operator Cv at
a vertex remains an injective operator when considering
distinguishable special loops. However, in the case of the
special edge prescription, if we consider the proper operator
Cv whether defined on Hkin or Hdiff, the coupling induced
by the overlapping holonomies generates a much more
complex structure at the vertex, and we do not know
whether the injectivity would be satisfied. In particular, for
certain ancestor graphs, the repetitive action of the Cv
would produce components where the edges at the vertex
get annihilated once the representations associated to them
vanish. Some of such components could eventually lead to
a saturated structure, where the vertex itself is annihilated.
At the moment, it is not yet clear how to deal with such
components in our framework. We leave this question for
future studies.

IV. SUMMARY AND OUTLOOKS

In this article, we reviewed briefly the general con-
struction of graph coherent states in loop quantum theories
introduced in [1], and we further constructed a family of
graph coherent states adapted to the gravity Hamiltonian
operator, regularized following the special loops pre-
scription. We approached the construction of these graph
coherent states from the perspective of using the non
symmetric Euclidean operator as a generator of the gen-
eralized canonical structure on the vertex Hilbert
space Hvtx.
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We first established that for the vacuum gravity con-
straint operator, the construction may not go through
because of the presence of the volume operator (or the
inverse volume operator), which makes the Euclidean
operator not injective. In this case, the condition in order
to realize the construction on the relevant subspaces is for
the Euclidean operator to preserve the orthogonal comple-
ment of the kernel of the volume operator. However, we so
far did not establish the validity or not of this statement. We
hence moved to considering a modified Euclidean operator
Cv, which retains part of the intertwiner mappings of the
Euclidean operator in the general Hamiltonian constraint,
and which is also present in the physical Hamiltonian
obtained in the context of the deparametrized model with
respect to a massless scalar field. Since Cv is injective on the
relevant subspaces of Hvtx, we were able to introduce a
generalized canonical structure, associating a pair of
canonical operators to each (nondegenerate) vertex of a
given graph, which retains fully the intertwiner mapping
induced by the operator Cv. Consequently, we defined the
new family of graph coherent states for gravity compatible
with the gravity Hamiltonian operator.
The coherence properties of this new family of graph

coherent states with respect to the non symmetric Euclidean
operator Cv, in addition to other operators of interest such as
the symmetric Euclidean and Lorentzian parts of the
Hamiltonian constraint, are currently under investigation.
The results will be presented in a follow-up article.
Finally, it would be of great interest to further explore the

role and potential of such graph coherent states in the
context of constructing a semiclassical limit for graph
changing operators in general, and in the analysis of the
dynamics generated by the graph changing Hamiltonian
operators in particular. We leave these questions for future
research.
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APPENDIX: PROOF OF THE PROPERTIES OF
THE OPERATOR Cv WITH SPECIAL LOOPS

We present the proofs that the operator Cv defined in
(22), namely

Cv ¼
X
I;J

ðTrðlÞN ½hαIJτkYk
IJ��Þ†; ðA1Þ

is closed, densely defined on Hvtx, and its restrictions are
injective on the Hilbert spaces HΓA

associated to the
ancestor graphs ΓA where the vertex v is not degenerate.

We denote by ðCE
v Þϵ the operator

ðCE
v Þϵ ≔

X
I;J

TrðlÞN ½hϵαIJτkYk
IJ�; ðA2Þ

defined on the kinematical Hilbert space Hkin, where ϵ
stands for the coordinate size of the special loops αIJ. The
dependence on this coordinate size would be eventually
removed by taking the limit ϵ → 0 on the Hilbert space
Hvtx. The operator ðCE

v Þϵ is constructed by regularization
methods using cylindrical functions, i.e., a spin network
function. This means that the action of ðCE

v Þϵ is defined on
all the spin network functions. It follows that the domain D
of ðCE

v Þϵ is taken to be the linear span of the spin network
functions Cyl, which we take to be the inner product space
of which the completion isHkin. Hence, the operator ðCE

v Þϵ
is densely defined by construction, and its image R is a
subspace of Cyl. The inner product space Cyl can be
decomposed into a direct sum of inner product spaces
CylΓA ,

Cyl ¼ ⨁
ΓA

CylΓA ; ðA3Þ

where each CylΓA is the span of spin network states with
graphs consisting of an ancestor graph ΓA with arbitrary
numbers of special loops at the vertices. We then can
introduce the algebraic dual Cyl� of Cyl which, following
from (A3), decomposes as

Cyl� ≅ ⨁
ΓA

Cyl�ΓA ; ðA4Þ

and on which we can define the dual (transpose) operator
ðCE

v Þ�ϵ as

ðCE
v Þ�ϵ∶D�⊂Cyl�→Cyl�jD�
≔fχ∈Cyl�∶∃c≥0∶∀ψ ∈D; jχððCE

v ÞϵψÞj≤cjjψ jjg;
∀χ∈D�; ∀ψ ∈D∶ðCE

v Þ�ϵχðψÞ¼ χððCE
v ÞϵψÞ; ðA5Þ

and we write

ðCE
v Þ�ϵ ¼

X
I;J

TrðlÞN ½hϵαIJτkYk
IJ��: ðA6Þ

Using the definition of the domainD�, one can easily show
that every dual spin network function (every spin network
function in Cyl defines a linear functional in Cyl�, through
the inner product on Cyl, which we call the dual spin
network) belongs to D�. This means that D� is dense in
Cyl�, hence ðCE

v Þ�ϵ is densely defined on Cyl�.
We come now to the implementation of diffeomorphism

invariance and the construction of Hvtx. The Hilbert space
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Hvtx is obtained by averaging the states in each CylΓA with
respect to diffeomorphisms which preserve VerðΓAÞ using
a rigging map η. The images ηðCylΓAÞ≕Cyl�

inv;ΓA are

subspaces of Cyl�. Introducing the space Cyl�inv,

Cyl�inv ≔ ⨁
ΓA

Cyl�
inv;ΓA ; ðA7Þ

the vertex Hilbert space Hvtx is defined as

Hvtx ≔ ⨁
ΓA

Cyl�
inv;ΓA ; ðA8Þ

where the completion is taken with respect to the inner
product induced from the action of elements of Cyl� on
elements of Cyl, namely

∀; χ;ψ ∈ Cyl; ðηðχÞ; ηðψÞÞ ≔ ηðχÞðψÞ: ðA9Þ

One then can show that the limit limϵ→0ðCE
v Þ�ϵ exists on

Hvtx [8],

lim
ϵ→0

ðCE
v Þ�ϵ ¼ ðCE

v Þ� ¼
X
I;J

TrðlÞN ½hαIJτkYk
IJ��; ðA10Þ

and it maps each Cyl�
inv;ΓA to a subspace of Cyl�

inv;ΓA . Since

ðCE
v Þ�ϵ is densely defined on Cyl�, and denoting Dη ≔

D� ∩ Hvtx, it follows that
(i) Proposition 1: ðCE

v Þ�∶Dη → Hvtx is densely defined
on Hvtx, and its adjoint ½ðCE

v Þ��† ≕ Cv is a closed
operator on Hvtx.

Moreover, from the definition of the adjoint one can
show that its domain D†

η contains every (partial) diffeo-
morphism invariant spin network function, hence

(i) Proposition 2: Cv∶ D†
η ⊂ Hvtx → Hvtx is densely

defined on Hvtx, and ðCE
v Þ� is closable.

Note that in this article, we assume that every closable
operator is replaced by its closure.
Going back to the operator ðCE

v Þϵ, one can compute the

action of each operator TrðlÞN ½hϵαIJτkYk
IJ� on a spin network

function [9,18], and using that, one can show that the only
spin network states in the kernelKϵ

v of ðCE
v Þϵ correspond to

states where the vertex v is degenerate, i.e., the vertex has
no more than two collinear classes of edges (see footnote 3
for the definition of a class of edges). Since such states do
not belong to the image of ðCE

v Þϵ, one can establish that the
restrictions of the operator ðCE

v Þϵ to each CylΓA , where the
vertex v in ΓA is not degenerate, are injective operators on
their respective domains CylΓA .
The injectivity of the restrictions of ðCE

v Þϵ on the specific
spaces CylΓA implies that ðCE

v Þ�ϵðCyl�ΓAÞ, the image of
Cyl�ΓA by ðCE

v Þ�ϵ, is dense in Cyl�inv;ΓA and consequently it is

dense in its completion HΓA ≔ Cyl�
inv;ΓA . Hence

ðCE
v Þ�ðCyl�inv;ΓAÞ is also dense in HΓA

. Using the closed
range theorem, it follows that

(i) Proposition 3: For every ΓA where v ∈ VerðΓAÞ is
not a degenerate vertex, the maps

Cv∶ D†
η ∩ HΓA

→ HΓA
;

are injective operators on their domains D†
η ∩ HΓA

.
This concludes the proofs of the properties of the

operator Cv.
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