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¢-boson stars are static, spherical, multifield self-gravitating solitons. They are asymptotically flat, finite
energy solutions of Einstein’s gravity minimally coupled to an odd number of massive, complex scalar
fields. A previous study assessed the stability of £-boson stars under spherical perturbations, finding that
there are both stable and unstable branches of solutions, as for single-field boson stars (Z = 0). In this work
we probe the stability of Z-boson stars against nonspherical perturbations by performing numerical
evolutions of the Einstein-Klein-Gordon system, with a 3D code. For the timescales explored, the £-boson
stars belonging to the spherical stable branch do not exhibit measurable growing modes. We find, however,
evidence of zero modes; that is, nonspherical perturbations that neither grow nor decay. This suggests the
branching off toward a larger family of equilibrium solutions: we conjecture that £-boson stars are the
enhanced isometry point of a larger family of static (and possibly stationary), nonspherical multifield self-

gravitating solitons.
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I. INTRODUCTION

Boson stars [1,2] (see [3,4] for reviews) are remarkable
gravitational solitons. These self-gravitating, localized
energy lumps of a complex, massive scalar field have
appealing theoretical properties. A key one is their dynami-
cal stability. For spherical boson stars there is a stable
branch of solutions against perturbations. Indeed, a variety
of studies including linear perturbation theory [5-7],
catastrophe theory [8] and numerical simulations [9-13]
agree that boson stars are perturbatively stable, as long as
the amplitude of the scalar field is smaller than a critical
value. When the latter is attained, boson stars acquire their
maximum mass.

Being dynamically stable legitimates inquiring about the
possible (astro)physical role of boson stars. Albeit exotic,
lacking undisputed observational evidence, boson stars
have found important applications in strong gravity and
astrophysics. For instance, boson stars provide a common
model for a black hole mimicker [14—17]. Being dynami-
cally tractable, one can then compare dynamical spacetime
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properties, such as waveforms of binary boson star systems,
with those of black holes [18-21]. This is particularly
timely in view of the recently initiated gravitational-wave
astronomy era [22,23], which provides data for both
models to be compared with.

A second important application is in relation to a central
mystery of contemporary science: the nature of dark matter.
An increasing attention has been dedicated to models
that consider dark matter as an ultralight bosonic particle
[24-27]. The bosonic nature allows this sort of dark matter
to form coherent macroscopic excitations. In this context,
bosons stars can model, in particular, the core of dark
matter galactic halos [28-31].

In their original guise, the Einstein-Klein-Gordon (EKG)
model contains a massive, free scalar field, and the solitonic
solutions are called mini-boson stars. A variety of gener-
alizations ensued. Boson stars for scalar field theories with
self-interactions have been reported, starting with the case
of quartic self-interactions considered by Colpi et al. [32].
Spacetime angular momentum was introduced for mini-
boson stars in [33,34], giving rise to stationary (but not

© 2020 American Physical Society
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static) self-gravitating solitons. A cousin model with a
complex, massive vector (rather than scalar) field yields
Proca stars [35]. These and other examples use single
(complex) field models; however, multifield boson stars
have also been reported. One example is given by multi-
state boson stars [29,30,36]. More recently, multifield
boson stars with an arbitrary odd number, N =27 + 1,
¢ € Ny, of equal mass, uncoupled (except through gravity)
complex scalar fields with harmonic time dependence were
introduced [37]; they are dubbed £-boson stars and they
will be the focus of this paper.

¢-boson stars are described by spherically symmetric
and static metrics. For #Z = 0 they are simply the usual
mini-boson stars. For Z > 1, the 2¢ + 1 scalar fields have
an angular dependence given by the corresponding 27 + 1
spherical harmonics Y. Then, if the radial dependence for
all fields is the same, corresponding to choosing the
amplitude of the spherical harmonics equal at all radial
distances, static, spherical configurations are obtained,
regardless of the energy-momentum tensor of each indi-
vidual field being angular dependent. This is an example of
symmetry noninheritance: the (spherical) spacetime and the
(nonspherical) individual matter fields do not share spheri-
cal symmetry. The usual boson stars already have a version
of symmetry noninheritance: the (time oscillating) scalar
field and the (static) spacetime do not share time-translation
symmetry. Consistency requires only that the spacetime
geometry and the total energy-momentum tensor share the
same symmetries, not the individual matter fields.

Generic Z-boson stars have been shown to exhibit similar
properties to those of the standard # = 0 stars. In particular,
¢-boson stars have a stable branch of solutions against
spherical perturbations [38]. The main goal of this paper is
to assess the stability of Z-boson stars (in this branch)
against generic, nonspherical perturbations. As we shall
see, our analysis will show that, in this respect, generic
¢-boson star do not exactly mimic the £ =0 -case.
Although no instabilities are observed, the analysis pro-
vides a glimpse of a larger landscape of solutions, of which
Z-boson stars are just the enhanced symmetry point.

Departure from spherical symmetry is physically rel-
evant. First, spherical objects—such as #-boson stars—
need to be stable against nonspherical perturbations, in
order to be dynamically viable. Second, astrophysical
bodies are not, typically, perfectly spherical, in particular
due to angular momentum. So one must assess if some
perturbations actually deform #-boson stars into acquiring
new degrees of freedom. In this respect, it was recently
proposed that multifield boson stars, in the nonrelativistic
regime, could have nonspherical stable configurations [39].
This provides an extra motivation to inquire about the
behavior of relativistic £-boson stars under nonspherical
perturbations Finally, assessing nonspherical configura-
tions and perturbations often yields a richer phenomenol-
ogy. As a fruitful example, it was recently found that

spinning, single-field miniboson stars are unstable against
nonaxisymmetric perturbations, either decaying into a
nonrotating boson star or collapsing into a Kerr black hole
[20,40]. By contrast, spinning Proca stars do not present
instabilities under nonaxisymmetric perturbations and fur-
thermore, they can form dynamically [40]. This example
shows how the study on nonspherical perturbations
unveiled a new relevant dynamical property of boson stars.

We shall investigate the behavior of #-boson stars under
nonspherical perturbations using fully nonlinear numerical
simulations of the corresponding Einstein-Klein-Gordon
system. As initial data, we use configurations found in [37]
which are then perturbed in two different ways. The first
type of perturbation tests the stability against nonaxially
symmetric perturbations, targeting potential bar-mode
instabilities. The second type of perturbation tests the
stability against a relative change in the amplitude of the
internal fields. In none of the two cases measurable
growing modes were found, either by perturbing the total
mass density or by perturbing each of the constituent fields,
as long the Z-boson star belongs to the stable branch against
spherical perturbations. By following the evolution of
distortion parameters (defined below) we found, however,
evidence for long-lived perturbations, which we interpret as
zero modes. These modes, in turn, are interpreted as
evidence for a larger family of equilibrium solutions.

Consider the Schwarzschild black hole of vacuum
general relativity. It has been shown to be mode stable
in the renowned works of Regge and Wheeler [41] and
Zerilli [42]. No gravitational perturbations grow. However,
a perturbation that carries angular momentum yield not
decay. The Schwarzschild solution migrates to a small
angular momentum Kerr solution and oscillates around this
new ground state. Similarly, a perturbation which electric
charge will not decay and the spacetime will oscillate
around a small charge Reissner-Nordstrom solution. These
special perturbations are zero modes. Such modes are often
found when a spacetime is unstable against some sort of
perturbations, at the threshold between stable and unstable
modes. An example occurs for the superradiant instability
of the Kerr spacetime due to a massive bosonic field. The
zero modes indicate the bifurcation of the Kerr family
toward a new family of black holes with bosonic hair
[43,44]. But zero modes can also occur even if there is no
instability, as in the Schwarzschild example, indicating,
nonetheless, an enlarged family of solutions (Kerr or
Reissner-Nordstrom), of which the initial spacetime
(Schwarzschild) is a special case. Thus, one of the out-
comes of our analysis is the conjecture that Z-boson stars
are the enhanced isometry point of a larger family of static
(and possibly stationary), nonspherical multifield self-
gravitating solitons.

In the rest of this work we will focus on configurations
with £ = 1. Such Z-boson stars are described by N =3
fields, with m = —1, 0, 1 respectively. In order to follow the
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dynamics of the perturbed system a numerical code that
solves the Einstein-N-Klein-Gordon system is required. We
have used the EINSTEIN TOOLKIT framework [45-47] with
the CARPET package [48,49] for mesh-refinement capabil-
ities to achieve our goal.

As a technical step we perform a Cauchy (3+ 1)
decomposition on each scalar field that constitutes the star
and solve the full Einstein-N-Klein-Gordon system. This is
done implementing an arrangement in the EINSTEIN
TOOLKIT, a thorn, to solve N scalar fields using finite
differences [40].

This paper is organized as follows: Section II addresses
the construction of initial data to set up perturbed £-boson
stars. Section III describes the diagnostic tools used to
monitor the evolution and some aspects used to decide on
whether instabilities are present. The numerical results are
described in Sec. IV and in Sec. V our conclusions and final
remarks are presented. In this work we use units where
G=1=c.

II. INITIAL DATA

Following previous works on #-boson stars

[37,38], we consider a set of N = 2¢ + 1 complex scalar
fields, with mass g and no self-interaction within the
Einstein theory of gravity, for which the energy-momentum
tensor is given by:

N
Tap =Y Ty, (2.1)
i=1

where the index i labels each field and the stress-energy-
momentum for each field is given by

T((zlﬁ) = (votq)lvﬁq);< + vﬁcblvaq)?)

1
g (Vo070 + 30 ). (22)

Complex conjugation is denoted by “*”. Following
[37,50] we propose a set of scalar fields of the form
OO(t,7.9.0) = wo(r. Y™ (8.9).  (23)
where the angular momentum number 7 is fixed, and m,
which plays the role of index i in Eq. (2.3), takes the values
m=—-¢,—¢+1,...,¢ (hence the total number of fields
needed for a fixed value of # will be 2¢ + 1), Y™ are the
spherical harmonics defined over the unitary 2D-sphere.
Then we assume that the amplitudes y,(r, t) are the same
for all m. It was shown in [37] that if the N fields have all
the same amplitude y,, the stress-energy tensor (2.1) has
spherical symmetry regardless if the fields have angular
dependence. See also [50] and for a detailed discussion on
the procedure, see [51].

Assuming the harmonic time dependence

welr.1) = do(r)e o, (2.4)
where ¢,(r) and the frequency w are both real-valued, the
stress-energy tensor becomes time independent. Under
these assumptions it is possible to find self-gravitating
static, spherically symmetric equilibrium configurations by
solving the EKG system of equations. Those configurations
are parametrized by the angular momentum number 7,
hence the name, Z-boson stars.

In order to obtain initial data suitable for numerical
evolution, we construct equilibrium #-boson stars, to be
subsequently perturbed. Considering a spherically sym-
metric spacetime with a line element given by:
ds®> =—a(r)?dr? + A(r)dr* + r*(d9* +sin* 9dg?),  (2.5)
where a and A, are functions of r, and the assumptions
mentioned above for y,, the EKG system yields

2 Oda 0,A
v} _ “ r% Y
ar¢f - ar¢f<r+ a 2A>

HE+1) @
+A¢K<M2+(;)—2}2>, (2.6)

0,A = A{M + 4xrA {M
r A
(0 +1 2
+¢§<u2+7( - )+%>” (2.7)
ara:a{(A;l)-l-azf

— 4dnrAd? <,bt2 - f(frjl))] : (2.8)

By studying the Klein-Gordon equation in the vicinity of
r = 0 one finds that the scalar field behaves as ¢ ~ ¢y 7 in
that region. For a fixed value of the angular momentum
number 7, a given value of the parameter ¢, and the
boundary condition at infinity requesting that ¢, decays
exponentially, the system of equations (2.6)—(2.8) becomes
a nonlinear eigenvalue problem for the frequency @w. We
solve this set of equations in a finite size grid by means of a
shooting method using the frequency w as the shooting
parameter. For numerical purposes we take the mass
parameter y = 1.

Fig. 1 shows a plot of the Arnowitt-Deser-Misner
(ADM) mass M versus the frequency @ for the #-boson
stars. In Ref. [37] it was shown that Z-boson stars with
¢ > 0 have similar properties to those of single-field mini-
boson stars, i.e., the £ = 0 case. For instance, given a value
of ¢, the mass M of the equilibrium configurations as a
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FIG. 1. ADM mass vs frequency for static Z-boson stars. The

properties of models M1, M2 and M3 are listed in Table L

function of @ has a maximum, which gets larger as ¢
increases, yielding more compact stars. Furthermore, as in
the case of 0-boson stars, the maximum value of the mass
separates the space of solutions into two branches. These
branches correspond to stable and unstable configurations
against spherical perturbations, as shown in [38].

As mentioned above, the hypothesis that all the fields
must have the same amplitude is essential to keep the
spherical symmetry of the configuration. If one wants to
consider different amplitudes of each constituent field, the
assumption of spherical symmetry has to be relaxed.
However, hitherto there has been no evidence that the
resulting states may be equilibrium solutions of the
Einstein-N-Klein-Gordon system. In this work we will
show that deviations from spherical symmetry may indeed
lead to new equilibrium solutions.

To proceed further with our nonspherical analysis
we transform the solutions of the previous system of equ-
ations to Cartesian coordinates, x* = (¢,r,8,¢) - x* =
(t,x,y,z). Then we perform a full nonlinear numerical
evolution of the perturbed stationary solutions.

II1. DIAGNOSTICS

In order to test the stability of the static solutions we

perform two different types of perturbations:

(1) The first type consists in perturbing the energy
density of the star given by p = n“n/’T,,ﬂ, where
n® is the four velocity of Eulerian observers in the
341 space time decomposition. The perturbed
energy density is obtained by adding a nonspheri-
cally symmetric small amplitude term to the homo-
geneous density in the following way [52]:

2y
r=mfiex( )]
R3,

where p, is the energy density of the equilibrium
configuration, obtained from the solution of

(3.1)

Egs. (2.6)—(2.8), and Ry is the radius enclosing
99% of the configuration’s mass. In our simulations
we choose x = 0.1. This type of perturbations could
trigger a potential bar-mode instability because it
only affects the /., and I,, components of the
quadrupole moment defined as

I, = //J(y“rzz)dV, Ly = //’(x2+z2)dv-

(3.2)

Since the value of « is small k < 1, this perturbation
can be considered linear, initially; more importantly,
it breaks the spherical symmetry of the original
solution.

(i) The second type of perturbations consist in varying
separately the amplitude of each field. With these
perturbations it is possible to study the stability of
the stars against variations on each mode m and
break the spherical symmetry. We choose the fol-
lowing form

(bf,m = (1 + €)¢fv (33)
where ¢, is the unperturbed solution of the system
of Egs. (2.6)—(2.8). This perturbation introduces an
additional constraint violation, besides the well
known numerical error, but its magnitude is con-
trolled by choosing a small e, which, in general,
depends on the #, m-mode. Note that if € is the same
for all m, the perturbation is spherical.

In order to assess the stability properties of the stars
during the numerical simulation, we monitor the mass of
the star, its angular momentum, and its density. We also
follow the change in the quadrupole moment of the star, as
shown below. Following the technique described in [52,53]
to examine the stability of rotating neutron stars, we
monitor the behavior of the distortion parameter defined as

I.,.—1,,

n= (3.4)
XX yy

which is a good measure of the magnitude of the bar-mode
instability for perturbation (i). This parameter has been
used to study the stability of rapidly, differentially rotating
stars [52]. It has been observed that when the star is
dynamically unstable, 5, grows exponentially up to a
maximum value; then the maximum value of #, remains
constant on dynamical timescales. For stable stars, on the
other hand, the maximum initial value of 7, remains
constant throughout the evolution. Thus the monitoring
of , provides a good tool to determine the properties of the
star against bar-mode perturbations. In this work we
also use
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77y = Ixx IZZ , (35)

I XX + I Z
as a measure of the deformation of the star.

As further diagnostics, the maximum of the density and
the lapse function are used to determine whether the
configuration disperses or is undergoing a collapse. We
have used the thorn AHFINDER [54] to follow the formation
of an apparent horizon (AH) during the evolution. We have
also computed the Hamiltonian constraint [55] to check the
fourth order convergence of the implementation—see the
Appendix for details on this procedure.

IV. TIME EVOLUTION AND NUMERICAL
RESULTS

In this section we present the results from dynamical
spacetime simulations from the perturbed #-boson stars.
We have compared the evolution of the equilibrium
¢-boson stars with the perturbed stars.

We numerically integrate the EKG system using fourth-
order spatial discretization within the EINSTEIN TOOLKIT
framework. The EINSTEIN TOOLKIT solves the Einstein
equations within the ADM 3 4 1 framework and evolves
the spacetime using the Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) formulation of the Einstein equations
[56] through the MCLACHLAN thorn [57,58]. All the
evolutions were made using the 1+ log time slicing
condition for the lapse @, and the Gamma-driver condition
for the shift g [59].

We use the Method of Lines thorn to solve the equations
in time by using a fourth order Runge-Kutta scheme. The
equations for the scalar fields are solved using a finite
difference scheme of fourth order. We also employ the
mesh refinement capabilities provided by the CARPET
arrangements. The fixed mesh refinement grid hierarchy
used consists of nested cubes with 3 levels of refinement.
The finest is set in such a way that it covers the entire star.

We set the spatial resolution on the finest level to
{dx,dy,dz}=0.8 (and the coarsest to {dx,dy,dz} = 3.2)
in order to fully capture the properties of the star. We follow
the formation of an AH after the collapse of unstable stars.

More details on the resolution, as well as numerical
convergence are given in the Appendix.

The three stationary configurations we chose to illustrate
the general behavior of the stars are represented with a
square over the curve in Fig. | denoted as (M1, M2, M3).
Some of the properties of these stars are summarized in
Table L.

Both spherical and nonspherical perturbations to the
stationary solutions are induced by increasing or decreasing
the amplitude of the different constituent fields, see
Eq. (3.3). In our case of study, £ = 1 and thus, for each
configuration M1, M2, M3 there are three fields ¢,,,:
{¢1-1.¢10.$1.1}. We use the position of subindex in the
models (M1,,__ ,,—0.m—1) to label the mode (field) that is

TABLE I. Frequency, radius and ADM mass for the configu-
rations analysed.

Model 4 /p HRgy UM apm

M1 1 0.882 13.45 1.133

M2 1 0.836 12.75 1.176 (maximum)
M3 1 0.783 7.53 1.122

being perturbed. We use 4 or — to ascribe an increase
(e > 0) or decrease (¢ < 0) of the amplitude, we use 0 to
represent that no perturbation was introduced in that mode
(e = 0). In this way, for instance, M1, ,_ means that M1
has been perturbed in the following way: the first scalar
field, ¢, _;, has been perturbed with € > 0; the second field
@1 o has not been perturbed (¢ = 0), and the third field ¢
has been perturbed with ¢ < 0. In summary, we have
perturbed M1, M2, M3 in the following ways: perturbing
all fields with the same amplitude as a test (spherical
perturbation), introducing a nonaxisymmetric bar-mode
perturbation, and finally, we perturbed each constituent
field using different amplitudes.

A. Spherical perturbation test

First, we perform numerical evolutions of the models
listed in Table I with spherical perturbations. We induce
perturbations in each field of a Z-boson star with all the
perturbations having the same amplitude. In this way we
guarantee that the spherical symmetry is preserved. This
type of perturbations is done in order to compare and
validate our results with those found using a spherically
symmetric 1D code reported in [38]. While perturbing the
initial equilibrium configurations adding perturbations
(with a positive or negative value for €) that preserve the
spherical symmetry, we find that the configuration that was
reported to be stable in Ref. [38] (model M 1) remains stable
in the timescale we reach in the 3D simulations, run M 1.
The values of the amplitude of the perturbations for these
perturbed configurations are reported in Table Il as M1, , |
and M1___, in which we perturb each field adding or
subtracting |e| = 0.01 to each mode.

Our results are also consistent with models of £-boson
stars that are unstable in spherical symmetry. According to
the results in [38], the configuration M3y, is unstable in
the 1D simulations. When we perturb the amplitudes of the
fields adding (run M3, ) or subtracting (run M3___) the
same amount, the configuration collapses or migrates to the
stable branch respectively, as described in Table II. We
monitor the behavior of the metric coefficients during the
evolution, and, in particular, we use the lapse and the
formation of an AH as an indicator of the collapse of the
star and the formation of a black hole.

The model M2 deserves special mention since it corre-
sponds to the critical solution: the star with maximum mass.
We found that perturbations increasing the amplitude of the
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TABLE II.  List of simulations performed for the case where all
fields are perturbed with the same amplitude (spherical pertur-
bations). These cases are similar to the simulations performed
in [38].

Run m=+4+1 m=0 m=—1

Model M1 (w/u = 0.882) € Collapse
MlOO() 0 0 0 No
M1, . +0.01 +0.01 +0.01 No
MI1___ -0.01 -0.01 -0.01 No
Model M2 (w/u = 0.836) € Collapse
M2000 0 0 0 No
M2, . +0.01 +0.01 +0.01 Yes
M2___ -0.01 -0.01 -0.01 No
Model M3 (w/p = 0.783) € Collapse
M3000 0 0 0 Yes
M3, ., +0.01 +0.01 +0.01 Yes
M3___ -0.01 -0.01 -0.01 No

field (¢ > 0, run M2, ) make the star collapse whereas
perturbations that decrease the amplitude (¢ <0, run
M?2___) drive the configuration to a new stable state as
described in Table II. These results are consistent with the
results reported in [38] for perturbations that increase of
decrease the mass of the star.

B. Nonspherical perturbation: Perturbing
the energy density

In order to determine whether Z-boson stars develop a
bar mode instability, we took as initial data a stationary
model and modified the energy density in accordance with
Eq. (3.1). We have performed this analysis for configura-
tions with £ = 0 and # = 1, both stable against spherical
perturbations. In the case # =0 we have taken the
equilibrium configuration corresponding to w/u = 0.937
and for # = 1 the configuration with w/u = 0.882, M1 in
Table. I. By choosing x = 0.01, the momenta of inertia /,,
and I,, change by less than 0.5% with respect to the
equilibrium solution, hence we consider that the induced
initial perturbation is small. Then we evolve the perturbed
system via the Einstein-N-Klein-Gordon equations and
monitor the behavior of 7,.

In Fig. 2 we show 7, as a function of time for perturbed
and unperturbed configurations for £ = 0 (top panel) and
¢ = 1 (bottom panel). For £ = 0, the distortion 7, oscillates
around zero for the perturbed case, indicating the star
maintains, essentially, the spherical symmetry.

On the other hand, for # = 1 in the case where the
perturbation was included, the initial perturbation induces a
small deviation from spherical symmetry therefore 7,
acquires a nontrivial value during the evolution. This
nonzero value of #, indicates that the shape of the star
deviates from spherical and becomes oblate.

—— ¢ =0 unperturbed
0.002
—— (=0 perturbed
- I\I\A [\[\I\ I\[\ [\I\I\/\
= 0.000 V V
_o.ool'V UUU UVUU \} V \/VU\/
—0.002
0 5(‘)0 10‘00 15‘00 20’00 25‘00 30'00 3500
time
0.0005 1 —— (¢ =1 unperturbed
—— (=1 perturbed
0.0004
0.0003 1 H H H N
< 0.0002 A
0.0001 4
0.0000 v
AN AR AR
—0.0001 1
0 5(‘)0 10‘00 15‘00 20‘00 25‘00 30‘00 3500
time

FIG. 2. Evolution of 7, as a function of time for unperturbed
(black solid line) and perturbed density as defined by Eq. (3.1)
(red solid line) with x = 0.01. Top panel: the unperturbed
configuration is a single-field boson star (£ = 0). Bottom panel:
the unperturbed configuration is a multifield boson star (£ = 1).
In neither perturbed case has a bar instability been observed.
Instead, a long lived departure from spherical symmetry occurs
for £ = 1, but not for £ = 0, as long as 7, # 0. In contrast, the
unperturbed configurations preserve spherical symmetry as 7,
oscillates around zero in both cases.

During the evolution time considered (¢ ~ 3500) we did
not find any signal of a bar-mode instability for the models
considered: no exponential growth in 7, was measured.
Most importantly 7, does not grow as it happens for
unstable stars [40]. This change in the shape of the
¢ =1 configuration, illustrated by 7, # 0, is compared
with the case where M1 is not perturbed (black solid line).
For the unperturbed case, 5, simply oscillates around
zero. The conclusion, therefore, is that the perturbed
configuration lingers, neither collapsing nor dissipating,
thus showing a nonspherical distribution that is either stable
or long-lived, without signs of instability. It is worth
emphasizing the key difference with the £ = 0 case, for
which the evolution oscillates around a spherical distribu-
tion, in agreement with the fact that such a distribution is
the only equilibrium configuration.

We found that after some time, the stars acquire a small
linear momentum due to the numerical error and thus the
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deviation parameters can not be obtained accurately. Once
this becomes noticeable we stop the evolution.

C. Nonspherical perturbation: Perturbing the
amplitude of each mode

In this section, we describe the evolutions we have
performed implementing nonspherical perturbation by
varying the amplitude of each field of the Z-boson star.

1. Nonspherical perturbation of M1

In order to illustrate the procedure to perturb the star, let
us consider first model M1. Different perturbations have
been applied to M1 and all them are summarized in
Table III. Subscripts indicate which fields have been
perturbed and if the amplitude is increased by e > 0
(subscript +), decreased by € < O (subscript —) or it has
been left without perturbation ¢ =0 (subscript 0), as
described before.

All our evolutions show that M1 remains stable without
collapsing (no AH was found), independently of the
perturbation. Thus, from the results summarized in
Table III we can conclude that the configurations in the
stable branch (against spherical perturbations), that is, to
the right of configuration M2 in Fig. 1, are also stable under
nonspherical perturbations, against collapse.

Let us now turn to another result that can be extracted by
studying the distortion parameters 7, and 7,. For spherical
configurations and for those configurations that are spheri-
cally perturbed, these are zero. On the other hand, for
nonspherical perturbations a small deviation from spherical
symmetry is induced. In other words, nontrivial values of 7,
are obtained throughout the evolution of M 1. This behavior
of n, as a function of time is shown in Fig. 3. Indeed,
nonzero values of 7, for the evolution of M1y, M1y 4,
M1_yy, M1y_, M1y,y, and M1,_,, are obtained. No

TABLE III.  List of simulations performed for model M1 under
the second type of perturbations. The parenthesis indicate a larger
amplitude on the perturbations. Notice that gravitational collapse
was not observed in any of the simulations.

Model M1 (w/u = 0.882) € Collapse
Run m=+1 m=0 m=-1

M1 +0.01 0 0 No
M1_y, -0.01 0 0 No
M1y, 0 +0.01 0 No
Ml 0 -0.01 0 No
M100+ 0 0 +001 No
Ml()()_ O 0 —001 No
M1, +0.01 +0.01 0 No
M1, +0.01 -0.01 +0.01 No
M1y, +0.01 0 +0.01 No
M1_o, -0.01 0 +0.01 No
M]O(—)O 0 -0.1 0 No

0.006 47 4 1

\ |
000a4 YUYV YUY
0.002 M/VV\/\/\/VVVVVV\/\/VVV\/V\/\/_ Moo

0.000 — M1 g9, Mlgo-
——= Mloyo

MWWV e
vvvyvvvyy vy
- ) A
00043 AR A A ARANAANfppfif "f\r\f\;"\,"ﬁ/\l‘\”‘n"\l\
\ ] [YATAVAY] \
vv\]\l\.\lv\]\,\I\J‘I\J\"J‘\I\I'\J\vl\]\'l\l

Ty

/ v
—0.006 4" Vv

0 500 1000 1500 2000 2500 3000 3500
time

FIG. 3. Distortion parameter #,, for model M1 for runs shown
in Table III. Departure from spherical symmetry is shown for
those configurations that have been perturbed differently in all the
three fields ¢p; _y, ¢; ¢ and ¢ ;. On the contrary, the configuration
M1y, has the same perturbation for all the fields (spherical
perturbation), and it shows », = 0 at all times.

instability is observed, but the deformation does not die
off either. These long-lived deformed configurations, aris-
ing as dynamical solutions of the Einstein-N-Klein-Gordon
with three fields with different m are not spherically
symmetric. The corresponding perturbations appear to be
zero modes, suggesting a larger family of solutions.

As expected, we observe that the equilibrium configu-
ration M1y has 7, =0 at all times of the evolution.
Besides, we have found that the behavior of 7, and 7,
during the evolution is the same for perturbations in the
modes m = 1 and m = —1 with the same values of ¢. This
suggests that the resulting configurations are axially
symmetric.

Finally, we report in Fig. 4 the time evolution of the total
mass of M1 under different spherical and nonspherical
perturbations. As expected, the mass of the perturbed

1.16

Ll === e __

P e
- ———————— -
- T e g =~

1.12

E T R e N ey )
< 110 —
— Moo
1.08 4 —== M1,90, M1oyo, M1gos
=== M1_go, M1g_g, M1go-
1.06 == Ml
——= M1___
1.04 T T T T T T
0 500 1000 1500 2000 2500 3000 3500
time

FIG. 4. Evolution of the mass of the model M1 subjected to
spherical and nonspherical perturbations listed in Tables II and I1I
respectively. The mass, as expected, is increased for those
perturbations with € > 0 and decreases when € < 0.
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configurations decreases or increases when ¢ < 0 or ¢ > 0.
Notice, however, the change in mass is the same whether
we perturb the m = —1 or m = 1 modes, for the same the
sign of €. This fact supports the assertion that the resulting
configurations are axially symmetric.

The total mass of the models decreases with time,
showing a small drift, even for the unperturbed solution.
‘We have checked that this drift is due to the numerical error,
since it is reduced when the grid resolution is increased (see
Appendix A).

Fig. 5 displays a series of snapshots of projections in the
planes xy and xz of the energy density for the run M1y_)o
(With a large amplitude in the perturbation in the mode
m = 0). The initial perturbation is introduced in the mode
m = 0, decreasing the mass of the star and inducing a small
deformation. Notice that we have taken the largest pertur-
bation presented in this section (model M1_),), so that the
deformation can be appreciated in these projections of the
energy density. At later times the system evolves and settles
down into a configuration without collapsing or exploding.
Although the configuration looks almost spherical, the
value of 7, at late times is slightly different from zero
(ny, ~0.05). We have evolved this configuration for 7~
10000 and it remains in the same state not showing any
signs of instability, or returning to a £-boson star.

" 0.0006051

0.000
t=0

t =408

FIG. 5. Three snapshots of the projection of the rest mass
density in two planes. In the second snapshot the star expands and
thus the maximum value of the density decreases. In the third
snapshot the star returns to its original state. This repetitive
behavior is present during all the evolution time. The mesh
represent a box with sides %Rgg of the unperturbed star.

At this point it is important to mention that perturbations
in the mode m = 0 do not modify the value of the total
angular momentum, while perturbations in the modes
m=1 or m=—1 do. Specifically, M1_gy and M1y,
(M1,9y and M1,_) have a positive (negative), nontrivial
and constant value of total angular momentum. As we
could expect, runs like M1, have zero angular momen-
tum. This particular result was also obtained for the
perturbations of the models that will be presented below.

2. Nonspherical perturbation of M2 and M3

The results of the previous section indicate that those
configurations (M1) that are stable under spherical pertur-
bations do not show nonspherical growing modes.
Furthermore, perturbations to the fields ¢; _; and ¢,
applied to those configurations provide evidence for zero
modes, producing new equilibrium configurations that are
dynamically stable, and have small departures from the
spherical configurations.

Now we are interested in studying nonspherical pertur-
bations on configurations that might undergo gravitational
collapse to a black hole. Those configurations are M2 and
M3. In particular M2, as we have mentioned, corresponds
to the critical configuration with maximum ADM mass.
Configuration M2, as is shown in Sec. IV A and reported in
the literature [38], divides stable from unstable configura-
tions. The latter are those configurations that can collapse
into a black hole. We now go one step further and study
them under nonspherical perturbations.

The list of perturbation applied to each field of M2 is
summarized in Table IV and the result of the evolution is
reported in the fifth column of the same table. The results
confirm that M2 is the configuration that separates stable
from unstable configurations. Indeed, as it can be observe
in the results of Table IV, all those configurations which

TABLE IV. List of simulations performed from the model M2
under nonspherical perturbations. Those configurations that
increased the total mass by the addition of the perturbation
did collapse to a black hole. Configurations that did not change
the total mass or did not decrease the total mass of the
configuration did not collapse.

Model M2 (w/p = 0.836) € Collapse
Run m=+1 m=0 m=-1

M2 o +0.01 0 0 Yes
M2_y —-0.01 0 0 No
M2y, 0 +0.01 0 Yes
M2y_, 0 —-0.01 0 No
M200+ 0 0 +001 Yes
M2¢,_ 0 0 —0.01 No
M2, +0.01 +0.01 0 Yes
M2, . +0.01 -0.01 +40.01 Yes
M2, +0.01 0 +0.01 Yes
M2_y, -0.01 0 +0.01 No
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TABLE V. List of simulations performed form the model M3
under nonspherical perturbations. Those configurations that
increased the total mass by the addition of the perturbation
did collapse to a black hole. Configurations that decreased the
total mass of the initial configuration, migrated to the stable
branch. The run M3_,, that did not change the total mass did
collapse to a black hole.

Model M3 (w/p = 0.783) € Collapse
Run m=+1 m=0 m=-1
M3+0() +0.01 0 0 Yes
M3_00 —0.01 0 0 No
M30+0 O +001 0 Yes
M3_ 0 -0.01 0 No
M3, 0 0 +0.01 Yes
M3g_ 0 0 —-0.01 No
M3, ., +0.01 +0.01 0 Yes
M3, _, +0.01 —-0.01 +0.01 Yes
M3, +0.01 0 +0.01 Yes
M3_, —-0.01 0 +0.01 Yes

have perturbations that increased the total mass of the
configuration undergo a collapse, while those configura-
tions which have been perturbed and reduced the total mass
of the configuration did not collapse to a black hole. In this
respect, run M2_, is of special interest. The perturbation
did not change the total mass of the configuration, and the
result of their evolution is that it did not collapse.
Finally, we have considered nonspherical perturbations
of model M3. The results of the evolution of the different
models studied are summarized in Table V. This configu-
ration is on the so called unstable branch. The results
mimic, to some extent, those observed for M?2.
Perturbations that reduced the total mass of the configu-
ration led to a migration to the stable branch. On the other
hand, those that increased the mass of the configuration let
to a collapse into a black hole. But a key difference is seen
for M3_, . This perturbation did not change the total mass
of the configuration, and contrary to M2_, , it did collapse
to a black hole. This result, combined with the spherical
perturbations mentioned in IVA, further confirms the
special status of the maximum mass configuration M2: it
marks the threshold of unstable configurations of Z-boson
stars, for both spherical and nonspherical perturbations.

V. DISCUSSION AND OUTLOOK

In this paper we performed dynamical simulations in the
fully nonlinear EKG model to investigate the stability of
¢-boson stars. Unlike previous works we have considered
nonspherical perturbations. An expected result is that those
configurations known to be unstable under spherical
perturbations, are also unstable under more general per-
turbations. The most interesting question, however, was if
the configurations known to be stable under spherical

perturbations would remain stable under more general
ones. Here, our conclusions are two-fold. First, no growing
modes have been measured in our simulations. In this sense
£-boson stars are stable against nonspherical perturbations.
However, when deformed away from sphericity, Z-boson
stars do not return to a spherical state. They appear to
oscillate around a new (slightly) nonspherical state. We
take this as evidence that new, multifield, equilibrium
configurations of the Einstein-N-Klein Gordon system
exist, which are nonspherical. This conjecture is our second
conclusion.

If our conjecture is proven correct, the spherically
symmetric £-boson stars are only an enhanced isometry
point of a larger family of solutions of the Einstein-N-Klein
Gordon. As discussed in the introduction, this is analogous
to the Schwarzschild BH being the isometry enhancement
point of the Kerr family. It is well known that the Kerr
solution brings about qualitatively novel features with
respect to the Schwarzschild solution. So it will be quite
interesting to understand the novelties brought by the
enlarged family of solutions that this work is suggesting.

The conjecture on the existence of these new nonspheri-
cal, multifield configurations can be tested by solving the
Einstein-N-Klein Gordon system for static or stationary
(i.e., spinning) configurations, without assuming spherical
symmetry. Research in this direction is already ongoing.
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APPENDIX: CODE VALIDATION

For run M1y, we report the time evolution of the mass
and violations of the Hamiltonian constraint, with different
resolutions, {dx, dy, dz} = 3.2, {dx,dy,dz} = v/21.6 and
{dx, dy,dz} = 1.6, where dx, dy and dz are the sizes of the
coarsest level of refinement.
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FIG. 6. Convergence for run M1y,: Evolution of the L2-norm
of the Hamiltonian constraint for three different resolutions
rescaled to show fourth order convergence. Green line shows
L2-norm of the Hamiltonian constrain for a perturbed run,
initially, the violation of the constraint due to the perturbation
is evident, as time passes the magnitude of the error is comparable
with the error of the unperturbed runs.

The L2-norm of the Hamiltonian constraint, given by

>N B . o
|H|? = \/~5—~, where N is the number of points in the

grid, is shown in Fig. 6. Here we conclude that the
constraint equations converge as H reduces when the
resolution is increased, the black (solid) and the blue
(dashed) line have been multiplied by the factors 4 and
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FIG. 7. Convergence for run M1,: Evolution of the mass for

three different resolutions.

16, showing fourth order convergence. The low resolution
(solid line, coarsest grid dx = 3.2) corresponds to the one
used in all the simulations presented in this work. The L2-
norm of H increases with time, however tends to a constant
value which approaches zero as {dx, dy,dz} — 0.

We plot the mass for run M1yy,. As the resolution is
increased the mass converge to a constant value and the
overall drift is reduced. In Figs. 6 and 7 we have plotted
until time equal to 1300, however the ({dx, dy, dz} = 3.2)
simulation extends up to ¢~ 3500, where the final total
mass differs from the initial value by 0.6%.
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