
 

Synchrotron geodesic radiation in Schwarzschild–de Sitter spacetime
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We analyze the scalar radiation emitted by a source in geodesic circular orbits around a Schwarzschild–
de Sitter black hole. We obtain the emitted power using quantum field theory in curved spacetimes
framework at tree level. We compare our results with the scalar synchrotron radiation in Schwarzschild
spacetime.
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I. INTRODUCTION

The recent detection of gravitational waves [1,2], emitted
by binary black hole systems, and the first visualization of a
black hole shadow [3] has drawn increasing attention to
black hole physics. Moreover, the strong gravity regime,
close to these compact objects, plays an important role in
general relativity (GR) [4] and alternative theories of
gravity [5], yielding a wealthy scenario for the study of
fundamental fields in curved spacetimes, including both
their classical and quantum behavior.
On one hand, GR is a very successful classical field

theory, both theoretically and experimentally. On the other
hand, it is a theory unable to describe the spacetime physics
near the singularities appearing in many of its black hole
solutions. A quantum theory of gravity is believed to be
able to circumvent such problems. There have been several
attempts to quantize gravity, with varying degrees of
success so far (see the review in Ref. [6]). In the absence
of a final quantum theory of gravity, a more modest
approach is the semiclassical framework [7,8], in which
one considers quantum fields propagating in background
spacetimes, which are classical solutions of GR. The
quantum field theory (QFT) in curved spacetimes approach
has been successful in describing some quantum aspects of
gravity, such as the particle creation in dynamic spacetimes
[9] or near black holes (Hawking radiation) [10]. These
findings help in the connection between gravity and
quantum theory, leading to important issues such as the
black hole information paradox [11] and may even point
towards their resolution. QFT in curved spacetimes has
provided insights even in flat spacetime, where the Unruh
effect, i.e., the fact that accelerated observers in flat
spacetime notice the Minkowski vacuum as a thermal bath
of particles, is the prime example [12,13].

The phenomenon of radiation emitted by objects moving
along geodesics in a black hole spacetime may be analyzed
using the semiclassical framework. The study of such
phenomena is important, as black holes found in nature
are usually surrounded by accretion disks. This radiation
mechanism was originally investigated in Refs. [14,15], in
which the scalar radiation emitted by sources orbiting a
Schwarzschild black hole is studied. The scalar field
constitutes a simple model that presents many qualitative
results similar to the electromagnetic (vector) and gravita-
tional (tensor) fields. When the source is close to the
photon sphere, the radiation is of the synchrotron type,
the so-called synchrotron geodesic radiation. Using the
QFT in curved spacetimes framework, this type of scalar
radiation in asymptotically flat black hole spacetimes
was investigated in Refs. [16–21], the electromagnetic
radiation emission in Ref. [22] and the gravitational
radiation emission in Refs. [23,24]. Regarding black holes
with nonvanishing cosmological constant, geodesic syn-
chrotron radiation was studied using the Green function
framework in Ref. [25].
The de Sitter (dS) solution is the simplest solution of GR

field equations with a nonvanishing cosmological constant
[26–29]. The study of phenomena in spacetimes asymp-
totically dS is of great interest, since there is experimental
evidence that our Universe is undergoing an accelerated
expansion [30,31]. In this more realistic scenario, the
black hole solutions are asymptotically dS, rather than
asymptotically flat, so that a static chargeless black hole is
associated to the Schwarzschild–de Sitter (SdS) spacetime,
described by the cosmological constant Λ, additionally to
the geometric mass M of the central Schwarzschild black
hole [32–35].
In this paper, we use QFT in curved spacetime at tree

level to investigate the scalar radiation emitted by a source
in geodesic circular motion around a SdS black hole. The
remaining of this paper is organized as follows. In Sec. II,
we review some features of the SdS spacetime, including
the circular geodesic analysis. In Sec. III, we revisit some
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aspects of the scalar field theory in this curved background,
including the field quantization in the static patch of the
SdS spacetime. In Sec. IV, using lowest order perturbation
theory and numerically obtained solutions for the Klein-
Gordon equation, we compute the one-particle-emission
amplitude to obtain the power emitted by the source. In the
Sec. VI, we present our final remarks. We adopt geom-
etrized units in which c ¼ G ¼ ℏ ¼ 1 and the signature
(−;þ;þ;þ) for the spacetime metric.

II. SCHWARZSCHILD-DE SITTER
BLACK HOLES

In this section, we review some important features of the
SdS spacetime, which is a spherically symmetric vacuum
solution of GR field equations with a positive cosmological
constant Λ > 0 and a black hole with mass M. In static
coordinates, the SdS line element can be written as [33–35]

ds2 ¼ −fΛðrÞdt2 þ
dr2

fΛðrÞ
þ r2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ

with

fΛðrÞ≡ 1 −
2M
r

−
Λ
3
r2: ð2Þ

We note that the spacetime described by Eq. (2) has
the Killing vectors ∂t, associated to translations along t,
and ∂ϕ, as well as K1 ≡ cosϕ∂θ − cot θ sinϕ∂ϕ and K2 ≡
− sinϕ∂θ − cot θ cosϕ∂ϕ, associated to rotations on the
2—sphere.
The SdS black hole spacetime presents a cosmological

(outer) horizon (Hc) and an event (inner) horizon (Hh). The
radial positions of these hypersurfaces, rc and rh, respec-
tively, are obtained by solving

fΛðrÞ ¼ 0: ð3Þ

For a black hole solution, we must consider the cosmo-
logical constant values in the interval,

0 ≤ Λ < 1=9M2: ð4Þ

In this case, there are up to three real solutions of
Eq. (3), two of them are positive (corresponding to the
horizons’ radial positions, rh and rc) and one is negative
[r− ¼ −ðrh þ rcÞ]. We obtain the Schwarzschild solution
in the limit Λ → 0, for which rh → 2M and rc → þ∞. We
obtain the dS solution in the limitM → 0, for which rh → 0

and rc →
ffiffiffiffiffiffiffiffiffi
3=Λ

p
(dS radius). As the Λ term increases from

zero (Schwarzschild solution), the two horizons get closer,
until they degenerate at the radial position rh ¼ rc ¼ 3M,
when Λ ¼ Λext ¼ 1=9M2 (extreme case). The behavior of
the function fΛðrÞ is illustrated in Fig. 1. The spacetime is
static in the region rh<r<rc. ForΛ>Λext, the spacetime is
dynamic for all r > 0 [33].

We shall consider a scalar source rotating around the SdS
black hole. In the next subsection, we analyze circular
geodesics in the SdS spacetime.

A. Circular geodesics

The equations governing the geodesic trajectories in SdS
spacetime can be derived from the Lagrangian,

L ¼ 1

2
gμν _xμ _xν; ð5Þ

where the metric components gμν can be obtained from
Eq. (1), and the overdot denotes differentiation with
respect to an affine parameter (for timelike geodesics,
we identify the affine parameter with the free particle’s
proper time).
The Lagrangian, given by Eq. (5), is independent of t and

ϕ, so that we have the following integrals of motion:

pt ¼ −
∂L
∂_t ¼ fΛðrÞ_t≡ E; ð6Þ

pϕ ¼ ∂L
∂ _ϕ ¼ r2 _ϕ≡ L: ð7Þ

Without loss of generality, we shall consider the motion
in the equatorial plane (θ ¼ 0 and _θ ¼ 0). Noting that 2L≡
ϵ ¼ −1 (0) for timelike (null) geodesics and using Eqs. (6)

FIG. 1. Top: The function fΛðrÞ, given by Eq. (2), for two
different choices of the cosmological constant Λ, as indicated.
The shaded region encompasses all values of Λ in the interval
0 < Λ < 1=9M2. Bottom: The function fΛðrÞ for a given value of
Λ > 0, from the interval (4), with its maximum occurring at the
radial position rmax.
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and (7), we find that the particle motion is entirely
described by the energy-balance equation, written as

_r2 ¼ E2 − 2VΛðrÞ; ð8Þ

with the central potential,

VΛðrÞ≡ 1

2
fΛðrÞ

�
−ϵþ L2

r2

�
: ð9Þ

We note that the potential given by Eq. (9) vanishes at both
cosmological and event horizons. For massive particles,
there are points of minimum and maximum of the potential
(9), corresponding to stable and unstable circular orbits,
respectively. For massless particles, the potential (9) has a
maximum at the radial position r ¼ 3M.
For timelike circular orbits, i.e., _r ¼ ̈r ¼ 0, we have the

following conserved quantities:

E2 ¼ r
fΛðrÞ2
r − 3M

; L2 ¼ r2
M − r3Λ=3
r − 3M

: ð10Þ

Since E and L must be real quantities, circular geodesics
exist in the region,

3M < r ≤
�
3M
Λ

�
1=3 ≡ rmax; ð11Þ

where r ¼ rmax denotes the radial position of the maximum
of fΛðrÞ. We note that, for 0 < Λ < 1=9M2, we have
rh < rmax < rc.
The stability condition for the circular timelike geodesics

is obtained considering small radial perturbations on the
orbits, as well as by a direct analysis of the potential VΛðrÞ.
This condition is found to be [33,36]

FðΛ; rÞ≡ −4Λr4 þ 15ΛMr3 þ 3Mr − 18M2 ≥ 0: ð12Þ

The function FðΛ; rÞ is illustrated in Fig. 2. The points of
the surface above the hatched plane select the parameters Λ
and r for which stable circular orbits can occur. For
M2Λ ≤ ð64=9Þ × 10−4, we have an innermost stable cir-
cular orbit, at the radial position risco, and an outermost
stable circular orbit, at the radial position rosco (see, e.g.,
Ref. [37]). In the case of Λ ¼ 0, we have FðΛ; rÞ ≥ 0 in the
interval 6M ≤ r < ∞.
The orbital angular velocity of the circular timelike

geodesics is given by

Ω ¼ dϕ
dt

¼
_ϕ
_t
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
r3

−
Λ
3

r
; ð13Þ

which goes to zero as the circular orbit radial position tends
to rmax, defined in Eq. (11). At the radial position rmax, the
gravitational attraction of the central object is balanced by

the contribution from the cosmological constant. We can
invert Eq. (13) to obtain r as a function of Ω and Λ.
Considering ϵ ¼ 0 in Eqs. (8)–(9), we find that the radial

position r0 of the lightlike circular geodesic is given by the
lower limit of the interval in Eq. (11), i.e., r0 ¼ 3M. Note
that r0 is independent of the value of the cosmological
constant.
In the next section we analyze the massless scalar field in

the SdS background. The field quantization procedure is
very similar to that of a Schwarzschild spacetime [38].

III. SCALAR FIELD QUANTIZATION

The dynamics of the minimally coupled massless scalar
field ΦðxÞ in SdS spacetime is governed by the action,

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ∇μΦðxÞ∇μΦðxÞ; ð14Þ

from which the equation of motion is obtained to be

∇μ∇μΦðxÞ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0; ð15Þ

where g ¼ −r4 sin2 θ is the determinant of the SdS space-
time metric. The positive-frequency solutions to Eq. (15),
with respect to the timelike Killing vector field ∂t, can be
written in the form,

ukωlmðxÞ ¼
ffiffiffiffi
ω

π

r
Ψk

ωlðrÞ
r

Ylmðθ;ϕÞe−iωtðω > 0Þ; ð16Þ

in which Ylmðθ;ϕÞ are the scalar spherical harmonics andffiffiffiffiffiffiffiffiffi
ω=π

p
is a normalization constant. The k index in Eq. (16)

stands for (i) k ¼ up, denoting modes purely incoming

FIG. 2. The function FðΛ; rÞ, given by Eq. (12). The inter-
section with the hatched plane marks the zeros of the function.
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from the past event horizon (H−
h ); and (ii) k ¼ in, denoting

modes purely incoming from the past cosmological horizon
(H−

c ). From Eqs. (15) and (16), we find that the function
Ψk

ωlðrÞ must satisfy the following ordinary differential
equation:

�
−fΛðrÞ

d
dr

�
fΛðrÞ

d
dr

�
þ VeffðrÞ

�
Ψk

ωlðrÞ ¼ ω2Ψk
ωlðrÞ;

ð17Þ

with the effective potential defined by

VeffðrÞ≡ fΛðrÞ
�
lðlþ 1Þ

r2
þ 2M

r3
−
2Λ
3

�
: ð18Þ

For l ¼ 0, the potential VeffðrÞ changes sign at r ¼ rmax
and has a point of minimum in the static region. For l ¼ 1,
the potential (18) is illustrated in Fig. 3. We see that as the
parameter Λ increases, the potential barrier decreases.
Noting that the effective potential (18) vanishes for both

r ¼ rh and r ¼ rc, we can write the asymptotic solutions of
Eq. (17) in the form,

Ψup
ωl ≈

�
Aup
ωlðeiωr

� þRup
ωle

−iωr� Þ; r≳ rh;

Aup
ωlT

up
ωle

iωr�; r≲ rc;
ð19Þ

Ψin
ωl ≈

�
Ain
ωlðe−iωr

� þRin
ωle

iωr� Þ; r≲ rc;

Ain
ωlT

in
ωle

−iωr� ; r≳ rh;
ð20Þ

where Ak
ωl are overall normalization constants to be

determined. The tortoise coordinate r� is implicitly defined
by dr� ≡ fΛðrÞ−1dr. Hence, r� goes to −∞ (þ∞) in the
limit r → rh (r → rc). By considering the Wronskian of
Eqs. (19) and (20), one can show that

jT k
ωlj2 þ jRk

ωlj2 ¼ 1: ð21Þ

Following the canonical quantization procedure
[7,8,16,39,40], we may expand the quantum field operator
Φ̂ðxÞ in terms of the creation (âk†ωlm) and annihilation (â

k
ωlm)

operators, as

Φ̂ðxÞ ¼
X
k;l;m

Z
∞

0

dω½ukωlmðxÞâkωlm þ uk�ωlmðxÞâk†ωlm�: ð22Þ

To normalize the modes ukωlm, we use the Klein-Gordon
inner product [7],

ðΦ;ΨÞ≡ i
Z
Σ
dΣμðΦ�ð∇μΨÞ −Ψð∇μΦ�ÞÞ; ð23Þ

in which dΣμ ¼ dΣnμ, with nμ being a future directed unit
vector orthogonal to the Cauchy surface Σ (e.g., the t ¼
constant hypersurface Σt). Since Φ̂ and Ψ̂ satisfy Eq. (15),
one can show that the inner product (23) is independent of
the choice of the hypersurface Σ [8,28]. By requiring the
orthogonality conditions,

ðukωlm; uk
0
ω0l0m0 Þ ¼ δkk0δll0δmm0δðω − ω0Þ ð24Þ

and

ðukωlm; uk
0�
ω0l0m0 Þ ¼ ðuk�ωlm; uk

0
ω0l0m0 Þ ¼ 0; ð25Þ

one can show that the creation and annihilation operators
satisfy the usual nonvanishing commutation relations,

½âkωlm; âk†ωlm� ¼ δkk0δll0δmm0δðω − ω0Þ: ð26Þ

The vacuum state is defined as the quantum state
annihilated by all âkωlm [41],

âkωlmj0i≡ 0; ∀ ðk;ω; l; mÞ; ð27Þ

and the one-particle-state is constructed as

âk†ωlmj0i ¼ jk;ωlmi: ð28Þ

Using Eqs. (23)–(25) and the differential equation for
Ψk

ωl written in terms of the tortoise coordinate, we can
readily obtain (up to a phase) the overall normalization
constants of Eqs. (19) and (20), namely

Aup
ωlm ¼ Ain

ωlm ¼ 1

2ω
: ð29Þ

In the next section, we consider the scalar field coupled
to a classical matter source in a SdS spacetime, performing
a geodesic circular orbit around the black hole.

FIG. 3. The effective potential Veff , given by Eq. (18), with
l ¼ 1 and different choices of the cosmological constant Λ.
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IV. SCALAR RADIATION AND
EMITTED POWER

We consider the scalar source moving along an equa-
torial circular (timelike) geodesic at r ¼ R, with constant
angular velocity ΩðRÞ, given by Eq. (13). The source is
described by

jðxÞ ¼ σffiffiffiffiffiffi−gp
u0

δðr − RÞδðθ − π=2Þδðϕ − ΩtÞ; ð30Þ

such that
R
dβð3ÞjðxÞ ¼ σ, where βð3Þ is a hypersurface

orthogonal to the particle’s 4—velocity. The constant σ
determines the magnitude of the source-field interaction.
The particle’s 4—velocity is given by

uμðRÞ ¼ γð1; 0; 0;ΩÞ; ð31Þ

with the normalization factor,

γ ¼ 1

ðfΛðRÞ − R2Ω2Þ1=2 : ð32Þ

The source-field coupling is described by the following
interaction action:

ŜI ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
jðxÞΦ̂ðxÞ; ð33Þ

where σ can be regarded as a coupling constant that
determines the magnitude of the interaction between the
field and the source.
Due to the interaction between the field and the source,

there exists a nonvanishing probability for the radiation of
scalar quanta. To lowest order in perturbation theory, the
transition amplitude from the vacuum-state, defined in
Eq. (27), to the one-particle-state, with quantum numbers
k, l, m and energy ω, is given by [42]

Ak;ωlm
em ¼ hk;ωlmjiŜIj0i ¼ i

Z
d4x

ffiffiffiffiffiffi
−g

p
jðxÞuk�ωlmðxÞ: ð34Þ

It follows that the probability amplitude, given by Eq. (34),
is proportional to δðω −mΩÞ, i.e., there is only emission of
scalar particles with ωm ≡mΩ. Since ωm and Ω are
positive quantities, we have that m ≥ 1.
The emitted power (with fixed k, l and m) is

Wk;lm
em ¼

Z
∞

0

dωω
jAk;ωlm

em j2
T

: ð35Þ

Assuming that the source radiates during the whole range
of coordinate time t, with −∞ < t < ∞, we can write
T ¼ R

dt ¼ 2πδð0Þ [43,44].

The emitted power (35) is found to be

Wk;lm
em ¼ 2σ2ω2

mðfΛðRÞ − R2Ω2Þ
����Ψ

k
ωml

R

����
2����Ylm

�
π

2
;Ωt

�����
2

;

ð36Þ
where the total power is obtained by summing over k (in
and up), l ≥ 1 and 1 ≤ m ≤ l, namely

Wem ¼
Xup
k¼in

X∞
l¼1

Xl

m¼1

Wk;lm
em : ð37Þ

We note that there is no emission for odd values of lþm,
since the time independent quantity jYlmðπ=2;ΩtÞj2 van-
ishes in these cases. For even values of lþm, we have [45]

jYlmðπ=2;ΩtÞj2¼
2lþ1

4π

ðlþm−1Þ!!ðl−m−1Þ!!
ðlþmÞ!!ðl−mÞ!! : ð38Þ

For the computation of the (total) emitted power, we
obtained the quantity jΨk

ωml
j by solving Eq. (17) numeri-

cally [23]. In the next section, we present a selection of our
results.

V. RESULTS

We numerically integrate Eq. (17) for each k ¼ in and
k ¼ up modes. The boundary conditions to be satisfied are
given by Eqs. (19) and (20), with suitable values of r. We
choose r=M ≥ rh=M þ δ for r values near the event
horizon, and r ≤ rc=M − δ, for r values near the cosmo-
logical horizon, with

δ ¼ 10−5: ð39Þ
The numerical error is related to the magnitude of δ.
In order to obtain the transmission and reflection

coefficients, jT k
ωlj2 and jRk

ωlj2, respectively, we compare
the solutions obtained numerically for Ψk

ωl and
d
dr ðΨk

ωlÞ,
with the asymptotic solutions expressed by Eqs. (19) and
(20), requiring the usual probability flux conservation,
given by Eq. (21), to be satisfied.
As an estimation of the numerical error, we may define

the quantity,

Errkωl ≡ jT k
ωlj2 þ jRk

ωlj2 − 1; ð40Þ
which was kept as Errkωl ≪ 1.
To exemplify the numerical errors, in Fig. 4 we plot

ðErrkωÞmax, i.e., the maximum value of the error Errkωl,
considering all values of l in the interval 1 ≤ l ≤ 20, for a
givenΛ, as a function of ω. We see that this maximum error
is of the order 10−6, for all values of ω. Analogously, in
Fig. 5, we plot ðErrkl Þmax, i.e., the maximum value of the
error Errkωl, considering all values of ω in the interval
0 < ω ≤ lΩðr0Þ, for a given Λ, as a function of l.
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In general, the emitted power of radiation starts increas-
ing from zero, at R ¼ rmax, reaches a maximum and then
decreases to zero again as R → 3M. The radial position of
the peak of emission approaches r ¼ 3M as we increase the
multipole number l. The emitted power associated to in
modes is generally dominant, except for the region close to
r ¼ 3M, in which the up modes start to give a significant
contribution. We note that, for orbits close to r ¼ 3M, the
major contribution (> 97%) to the emitted power, for a
given multipole number l, comes from the l ¼ m mode,
similarly to what happens in asymptotically flat space-
times [46,47].

In Fig. 6, we plot the emitted power by the orbiting
source as a function of Ω, for a fixed value of l ¼ m, for
different choices of Λ. We see that, for l ¼ m ¼ 1, the peak
of emission starts increasing with Λ, but after a certain
value of the cosmological constant (Λ ∼ 30−1M−2) the peak
starts to decrease. This behavior changes for higher values
of l ¼ m, with the peak of emission monotonically
decreasing, as the value of Λ is increased.
In Fig. 7, we plot separately the contribution from the in

and upmodes to the emitted power, for different choices of
the cosmological constant Λ and of the multipole numbers

FIG. 5. The quantity ðErrkl Þmax, as a function of l, for k ¼ up
and k ¼ in withM2Λ ¼ 150−1 (top);M2Λ ¼ 50−1 (middle); and
M2Λ ¼ 15−1 (bottom). We consider the interval 0 < ω ≤ lΩðr0Þ.

FIG. 6. The emitted power as a function of Ω, given by the sum
of the in and upmodes, for l ¼ m ¼ 1 (top), l ¼ m ¼ 2 (middle)
and l ¼ m ¼ 5 (bottom), with different choices of the parameter
Λ. The curves are plotted up to the values of MΩ corresponding
to the radial position R ¼ 3M (indicated by the vertical lines).

FIG. 4. The quantity ðErrkωÞmax, as a function of ω, for k ¼ up
and k ¼ in withM2Λ ¼ 150−1 (top);M2Λ ¼ 50−1 (middle); and
M2Λ ¼ 15−1 (bottom). We consider the interval 1 ≤ l ≤ 20.
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FIG. 7. The emitted power, as a function ofΩ, given by Eq. (36), with different choices of l ¼ m, for in (left) and up (right) modes. We
consider the black hole with different choices of the parameter Λ, as indicated.
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l ¼ m. We see that, when M2Λ < 150−1, the behavior of
the emitted power, as a function of the angular velocity (Ω)
of the source is similar to that of the Schwarzschild case
[18]. On the other hand, for M2Λ > 150−1, we have an
amplification of the power emitted by modes with lower
values of l ¼ m. This effect is more evident for the in
modes, i.e., the modes purely incoming from the cosmo-
logical horizon (Hc).
In Fig. 8, we plot the total emitted power, given by

Eq. (37), for two choices of the cosmological constant. The
l summation was truncated at a maximum value l ¼ lmax.
We see that, when the source lies relatively far from the
black hole (where the l ¼ 1 mode contribution is domi-
nant), the emitted power is basically the same for any
choice of lmax, but as the orbit of the source approaches
r ¼ 3M, higher multipole modes start to contribute
significantly, exhibiting a synchrotronic behavior of the
emitted power.

VI. FINAL REMARKS

In this paper we have used QFT in curved spacetime at
tree level to investigate the scalar radiation emitted by a
source orbiting a Schwarzschild–de Sitter (SdS) black hole.
We have presented numerical results for the partial (with
fixed l and m) and total emitted powers, as functions of the
angular velocity of the source.
We have found that the emitted power strongly

depends on the value of the cosmological constant when
Λ > 150−1M−2. We have also shown that the emitted

power associated to lower values of the multipole number
l is amplified as Λ increases. In the Schwarzschild–anti–
de Sitter geometry (for which Λ < 0), for sufficiently
higher values of jΛj, an enhancement in the emitted power
associated to higher values l ¼ m has been reported [25].
The scalar radiation considered in this paper have

qualitative features similar to more realistic scenarios, as
the ones of electromagnetic and gravitational radiation.
Nevertheless, it is known that, in asymptotically flat
spacetimes, the contribution of the high multipoles to the
emitted power depends on the spin of the radiation field
[23,24,46,48]. Thus, a similar investigation of fields with
nonzero spin in asymptotically dS solutions, such as the SdS
spacetime, will reveal the highmultipoles behavior and their
contribution to the emitted power, together with their
relation to the black hole size. It will also be interesting
to extend this work to more general black hole spacetimes
that are asymptotically dS, characterized by additional
parameters, such as electric charge and angular momentum.
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FIG. 8. The total emitted power, given by Eq. (37), as a function of Ω, in the SdS spacetime with (a) M2Λ ¼ 150−1 and
(b) M2Λ ¼ 15−1. The summations in l were truncated at l ¼ lmax, as indicated.
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