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We study the new massive gravity extended by the curvature cubed invariant and the cosmological
constant (C.C.) using the tree-level exchange amplitudes on a maximally symmetric space-time. We
identify the parameter space, consisting of the ratio between C.C. and graviton mass squared and the
relative coupling strength between curvature squared and cubed invariants, for which the massive spin-2 is
a ghost. Different phases of this model are also discussed.
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I. INTRODUCTION AND SUMMARY

Higher curvature modifications of general relativity (GR)
are important in order to understand the quantum nature of
gravity. It has been long known that GR in 3þ 1 dimen-
sions is perturbatively nonrenormalizable [1]. Adding
terms that are quadratic in curvature solves this problem
at the expense of introducing a massive scalar and a
massive spin-2 ghost [2].
In 2þ 1-dimensional space-time, GR does not suffer the

nonrenormalizability problem, simply because it does not
propagate any degrees of freedom (d.o.f.) [3]. The massive
spin-2 generated through higher curvature modifications
can be healthy if one chooses the massless mode to be
ghost. The wrong sign kinetic term of the massless spin-2
does not lead to any problems (not considering nonpositive
central charges of the dual conformal field theories [4])
since in three dimensions (3D) this mode is a pure gauge,
but in this case the unitarity is violated through the massive
scalar. The conformal mode in GR is a ghost, but a closer
look reveals that it is not propagating. Addition of higher
curvature terms to the action modifies the dynamics of the
conformal mode as well. In general, its equation of motion
becomes of quartic order and a massive scalar gets
generated. The kinetic terms of massive scalar and the
massless spin-2 have the same sign, so if one chooses
massless spin-2 to be a ghost, so has to be the massive
scalar. In general, it seems that one cannot build a unitary
theory in 2þ 1 dimensions by introducing higher curvature
invariants.

Ten years ago, Bergshoef et al. found a curvature squared
invariant that, linearly, is equivalent to Fierz-Pauli and does
not violate unitarity [5]. Sinha found its curvature cubed
extension [6] (see also [7]). Within this model, now referred
as “extended new massive gravity (ENMG)”, the conformal
mode of the metric has the structure of a Galileon [8], so its
equation of motion is of second order. As a consequence,
the massive scalar is absent and one is free to choose
the massless spin-2 to have the wrong sign kinetic term. The
authors of [9] addressed the nonlinear unitarity for the
curvature squared term and proved that the model was ghost
free to all orders. In [10], it is argued that full ENMG is free
of scalar ghosts. There are other works addressing the
causality problem for this model [11,12]. The author of
this paper is not familiar with any previous works done that
addresses the complete unitarity of ENMG.
While writing this paper, I found out that some of my

results coincide with [10], so I feel it is necessary to point
out the differences. First of all, our common results agree
with each other. The disjoint part is that they include the
square of Cotton tensor, which makes the spectrum richer,
but necessarily leads to ghosts and tachyons. My analysis is
restricted to (2.1), but it is more detailed. Their analysis
relies on the Lagrangian formalism, while I will be using
the equations of motion and classical exchange amplitudes.
I will also identify additional phases missed in [10].
This paper is structured as follows: In Sec. II, I will argue

that a model containing any power of Ricci tensor can
propagate a maximum of 3 degrees of freedom in 3D. Then
I will argue that the extended new massive gravity defined
by (2.1) propagates only 2 degrees of freedom. In Sec. III, I
will do linear analysis of (2.1) on a maximally symmetric
background and show that the model does indeed propagate
only one massive spin-2, i.e., 2 d.o.f. In Sec. IV, different
phases of (2.1) are discussed. I will argue that there exists a
choice of parameters, within the limits of effective field
theory (EFT), for which the massive spin-2 is a ghost.
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Conventions: The flat metric is mostly negative
ημν ¼ diagð1;−1;−1Þ. Ricci tensor is Rμν ¼ ∂ρΓ

ρ
μν þ � � �.

Except Sec. IV, the Planck mass will be set to one.

II. COUNTING THE DEGREES OF FREEDOM

In what follows, I will call the extended new massive
gravity to the model defined by the following action:

S ¼
Z

d3x
ffiffiffi
g

p �
R −

1

3
Λþ 1

m2

�
RμνRμν −

3

8
R2

�

−
1

κm4

�
Rρ
λR

σ
ρRλ

σ −
9

8
RRρ

λR
λ
ρ þ

17

64
R3

��
: ð2:1Þ

In the limit when Λ → 0, Minkowski space-time is a
solution to the equations of motion. When linearized on
this background, the spectrum consists of one massless and
one massive (with mass¼ m) spin-2 modes. In this section,
I will argue that this is the case for an arbitrary background.
A general diffeomorphism invariant action involving

any degree of curvatures1 can propagate a maximum of
3 degrees of freedom in 2þ 1 dimensions. In order to see
this, let us decompose the metric in the following way:

gμν ¼ ḡμν þ hμν þ ∇̄ðμAνÞ þ ∇̄μ∇̄νφþ e2π ḡμν: ð2:2Þ

Here ḡμν is arbitrary solution to (2.1) and ∇̄ is covariant
derivative with respect to this background. hμν, Aμ, and φ
are tensor, vector, and scalar perturbations on this metric
(linear response to matter). The last piece, exp ð2πÞ, is the
conformal mode. Because of the diffeomorphism invari-
ance of the action, neither Aμ nor φ can be physical. The
equations of motion, in general, involve quartic time
derivatives; therefore, there are two spin-2 modes and
one massive scalar. The massless spin-2 in 2þ 1 dimen-
sions is a pure gauge, so we are left with 2 degrees of
freedom associated with massive spin-2 and one d.o.f.
coming from the massive conformal scalar.
The combination (2.1) is special in a sense that the

conformal mode turns out to be a Galileon [8]. The equations
of motion corresponding to the variation of π are of second
order (with respect to π) and the massive scalar disappears
from the spectrum, so the model defined by (2.1) propagates
only 2 degrees of freedom. In three dimensions, this is the
unique combination with nontrivial conformal mode having
this property, any higher order ð>3Þ curvature invariant
should either have a trivial conformal mode or will propagate
3 degrees of freedom and will not be unitary.2

The overall sign of the action in (2.1) guarantees that,
when linearized around flat background ðΛ ¼ 0Þ, the
kinetic term of the massive spin-2 has the right sign. In
the following sections, I will positively answer the follow-
ing question: is there a choice of parameters ðΛ=m2; κÞ,
within the limits of EFT, on which the kinetic terms of
spin-2 modes flip the sign?

III. ANALYSIS OF THE LINEAR
PERTURBATIONS

A. A Toy Model for Linear Perturbations

Understanding the physical meaning of an expression
with complex tensorial structure is not an easy task. The
analysis gets even more complicated when calculations are
done on a curved background. In the next section, while
calculating exchange amplitudes, I will rely on the equa-
tions of motion and will avoid dealing with Lagrangians. In
order to gain some intuition for the conclusions I am going
to make, it is useful to first consider the following toy
model of a scalar field:

L ¼ 1

2
ϕ∂2ϕþ 1

4
aϕ2∂2ϕ −

1

2
bð∂2ϕÞ2 − 1

2
cϕð∂2ϕÞ2:

ð3:1Þ

Here a, b, c are dimensionfull constants. An arbitrary ϕ ¼
ϕ0 ¼ const is a solution of (3.1). Let us introduce some
source ρ and study the linear response on this background
ðϕ ¼ ϕ0 þ χÞ,

Lð2Þ ¼ 1

2
ð1þ aϕ0Þχ∂2χ −

1

2
ðbþ cϕ0Þð∂2χÞ2 þ χρ:

ð3:2Þ

Solution to this Lagrangian and the exchange amplitude
between two sources are, respectively, given by

χ ¼ −
1

1þ aϕ0

�
1

∂2
−

1

∂2 − 1þaϕ0

bþcϕ0

�
ρ; ð3:3Þ

A ¼
Z

d3xρ̃χ ¼ −
1

1þ aϕ0

×
Z

d3x

�
ρ̃
1

∂2
ρ − ρ̃

1

∂2 − 1þaϕ0

bþcϕ0

ρ

�
: ð3:4Þ

Mediators are massless and massive scalars (see Fig. 1);
one of them is necessarily a ghost. When a ≠ 0, the
amplitude has a peculiar overall factor due to the renorm-
alization of the coupling strength on a nontrivial back-
ground. The matter of which mode is ghost depends on the
sign of this factor. To see this more clearly, let us introduce
a Lagrange multiplier and rewrite (3.2) in an equivalent
form

1Terms involving the derivatives of curvatures are not con-
sidered.

2In 2þ 1 dimensions, the square of Cotton tensorffiffiffiffiffiffi−gp
CμνρCμνρ has a trivial conformal mode. This term is some-

times considered together with (2.1) [10]; I will ignore it since it
contains the derivatives of curvature.
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Lð2Þ ¼ 1

2
ð1þ aϕ0Þχ∂2χ − ð1þ aϕ0Þφ∂2χ

þ 1

2

ð1þ aϕ0Þ2
bþ cϕ0

φ2 þ χρ: ð3:5Þ

Making a field redefinition, χ ¼ ωþ φ, unmixes the two
modes from each other,

Lð2Þ ¼ 1

2
ð1þ aϕ0Þω∂2ω −

1

2
ð1þ aϕ0Þφ∂2φ

þ 1

2

ð1þ aϕ0Þ2
bþ cϕ0

φ2 þ ωρþ φρ: ð3:6Þ

From this expression, we see that the factor ð1þ aϕ0Þ does
indeed decide which field should be a ghost. When
ð1þ aϕ0Þ ¼ 0, the model is infinitely strongly coupled.
Disclaimer: The model defined by (3.1) is an EFT with

some cutoff. Whether the values of ϕ0 for which ð1þ aϕ0Þ
flips sign are within the range of EFT is another story. I will
ignore this issue for the present case and will come back to
it for ENMG in Sec. IV.

B. Linearized GR on a maximally
symmetric space-time

It is instructive to consider the linearized general
relativity on a maximally symmetric background [13]
before linearizing (2.1). The Einstein-Hilbert action and
vacuum equations of motion are

SEH ¼ −
Z

d3x
ffiffiffi
g

p �
R −

1

3
Λ
�

→ Gμν þ
1

6
Λgμν ¼ 0:

ð3:7Þ
Riemann and Ricci curvatures of a three-dimensional
maximally symmetric space-time satisfy

R̄μρνσ ¼
R̄
6
ðḡμνḡρσ − ḡμσ ḡρνÞ; R̄μν ¼

R̄
3
ḡμν: ð3:8Þ

From (3.7), we also have R̄ ¼ Λ. Here ḡμν is the back-
ground metric and the expressions with a bar are defined
with respect to it. On the next step, let us define the operator
that will simplify future expressions

□̄≡ Δ̄L þ 2

3
R̄: ð3:9Þ

Δ̄L stands for the Lichnerowicz Laplacian [14] (up to a
factor of −1) acting on scalar, vector, and tensor as

Δ̄La ¼ ∇̄2a; Δ̄Lbμ ≡
�
∇̄2 −

1

3
R

�
bμ;

Δ̄Lcμν ≡ ∇̄2cμν − R̄cμν þ
R̄
3
ḡμνc

ρ
ρ: ð3:10Þ

The covariant derivative ∇̄μ and the background metric ḡμν
commute with □̄. The linear response of spin-2 to matter on
this background

∇̄μ∇̄ρh
ρ
ν þ ∇̄ν∇̄ρh

ρ
μ − ∇̄μ∇̄νh − □̄hμν ¼ 2ðTμν − ḡμνTÞ:

ð3:11Þ

Fixing the gauge as

∇̄νhμν ¼
1

2
∇̄μh ð3:12Þ

gives the following solution:

hμν ¼ −
2

□̄
ðTμν − ḡμνTÞ: ð3:13Þ

A covariantly conserved energy-momentum tensor is con-
sistent with linear perturbations around a metric that is
solution to the Einstein equation in vacuum, meaning

A ¼
Z

d3x
ffiffiffī
g

p
T̃μνhμν ¼ −

Z
d3x

ffiffiffī
g

p
T̃μν 2

□̄
ðTμν − ḡμνTÞ

ð3:14Þ

is a gauge invariant amplitude. Even though the pole is
shifted, from the tensorial structure, it is easy to see that we
are dealing with one massless spin-2 particle. Interested
reader is invited to check [13] to see that □̄ does indeed
have the right properties when acted on transverse and
traceless tensors.

C. Linearized ENMG

In this section, we discuss the linearized version of the
extended new massive gravity (2.1) on a maximally sym-
metric space-time. We can write the equation of motion as

Gμν þ
1

6
Λgμν þ

1

m2
Kμν −

1

κm4
Qμν ¼ 0; ð3:15Þ

where Kμν and Qμν are given in the Appendix A. To the
lowest order, we assume the matter to be absent. Since we

FIG. 1. Diagrammatic representation of the exchange amplitude (3.4).
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are dealing with maximally symmetric space-time, the
background satisfies a scalar equation

R̄3 þ 8κm2R̄2 þ 192κm4R̄ − 192κm4Λ ¼ 0: ð3:16Þ

After fixing the gauge (3.12), the linear response to matter
becomes

γ

�
□̄

2hμν −
1

4
ḡμν□̄2h −

1

4
∇̄μ∇̄ν□̄h

�
þ βm2

□̄hμν

−
1

2
αm2ḡμν□̄h ¼ −2m2Tμν; ð3:17Þ

with

α ¼ 1þ R̄
12m2

þ R̄2

64κm4
; β ¼ 1 −

R̄
12m2

−
R̄2

192κm4
;

γ ¼ 1þ R̄
8κm2

: ð3:18Þ

Note that the trace of (3.17) is of second order as a
consequence of the conformal mode being a Galileon,

α□̄h ¼ 4T: ð3:19Þ
Since the full theory is gauge invariant, lhs of Eq. (3.17) is
consistent with covariantly conserved energy-momentum
tensor. Solution to (3.17) and gauge invariant amplitude are,
respectively,

hμν ¼ −
1

β

�
2

□̄
ðTμν − ḡμνTÞ −

2

□̄þ β
γ m

2

�
Tμν −

�
1 −

β

2α

�
ḡμνT

�
−
β

α
∇̄μ∇̄ν

1

□̄ð□̄þ β
γ m

2ÞT
�
; ð3:20Þ

A ¼ −
Z

d3x
ffiffiffī
g

p
T̃μνhμν ¼

1

β

Z
d3x

ffiffiffī
g

p �
T̃μν 2

□̄
ðTμν − ḡμνTÞ − T̃μν 2

□̄þ β
γ m

2

�
Tμν −

�
1 −

β

2α

�
ḡμνT

��
: ð3:21Þ

From the last expression, we see that the spectrum consists
of massless and massive spin-2 modes. As we saw in the
toy model, the matter of which one is ghost and which one
is particle depends on the sign of β.

IV. DIFFERENT PHASES OF ENMG

Let us discuss how ENMG behaves for the different
choice of parametersm2;Λ, and κ. Since the massless mode
does not propagate, we can ignore it and concentrate on the
massive spin-2. Absence of tachyonic instabilities and
dynamical ghosts requires β

γ m
2 > 0 and β > 0, respec-

tively. First of all, let us focus on the case when κ → ∞, i.e.,
new massive gravity amended by the C.C. For this case, the
above conditions translate to [see Fig. 2(a)]

−6 ≤
Λ
m2

< 18: ð4:1Þ

Lower bound comes by demanding (3.16) to have real
roots. Λ ¼ −6m2 is special at this point α ¼ 0, and from
(3.19) we see that so does T. Linear model acquires
scale invariance and diffeomorphism transformations get
enhanced by a Weyl piece [15],

hμν → hμν þ ∇̄μξν þ ∇̄νξμ þ πḡμν: ð4:2Þ

In the NMG limit, γ ¼ 1. When C.C. is absent, β ¼ 1 or
β ¼ 3 and around a maximally symmetric background, the
model is free of dynamical ghosts and tachyonic insta-
bilities ðm2 > 0Þ. As we can see from (4.1), this is not true
for general Λ. Let us see what changes if we regard (2.1) as

an EFT. The lowest cutoff of this EFT is (after recovering
the Planck mass) Λ5=2 ¼ ð ffiffiffiffiffiffiffi

Mp
p

m2Þ2=5 [9].3 Recovering
the Planck mass does not affect (4.1). The values of Λ for
which β < 0 are within the EFT regime, Λ ≪ Λ2

5=2, as long

as 104m ≪ Mp. The latter condition seems reasonable and
is expected to hold; therefore, (2.1) with κ → ∞ can host a
massive spin-2 ghost.
The phase diagram for finite κ is shown in Fig. 2(b). Here

the red and orange regions are healthy (the kinetic term has
the right sign, but it can be tachyonic), and for the blue and
purple regions, we get ghosts. On the boundary between
red and purple or orange and blue, the model is infinitely
strongly coupled. Once again, there exist parameter choices
within the EFT for which the massive spin-2 is a ghost, i.e.,
some parts of the blue and purple regions belong to EFT.
For Λ ¼ −8κm2 there exists a solution of (3.16) for

which γ ¼ 0 and we get an exotic phase. The equation of
motion (3.17) becomes second order and massive spin-2
disappears from the spectrum. From the identity

α − β ¼ γ
R̄

6m2
; ð4:3Þ

it follows that, when γ ¼ 0, α ¼ β ¼ ðκ þ 3Þ=3, further
choosing κ ¼ −3, complete lhs of (3.17) vanishes and all
the linear dynamics is lost. In Appendix B, I will show that

3Λ5=2 is the lowest scale of this model, it appears in the
decoupling limit of “new massive gravity” [9] and defines the
cutoff for cubic Galileon. Even lower cuttoff scale would be m,
but in this case it makes no sense to talk about the massive spin-2.
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even though for γ ¼ 0 the massive mode is absent linearly,
it reappears nonlinearly. Therefore, γ ¼ 0 phase is infinitely
strongly coupled.
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APPENDIX A: EQUATIONS OF MOTION

The variation of the curvature squared and curvature
cubed parts of (3.17) are, respectively,

Kμν ¼ ∇2Rμν −
1

4
ðgμν∇2Rþ∇μ∇νRÞ − 4RμρR

ρ
ν þ 9

4
RRμν þ

1

2
gμν

�
3RρσRρσ −

13

8
R2

�
; ðA1Þ

Qμν ¼ gμν

�
5

2
Rρ
λR

σ
ρRλ

σ −
51

16
RRρ

λR
λ
ρ þ

127

128
R3

�
þ 3

2
gμν∇ρ∇σVρσ þ

3

2
∇2Vμν

−
3

2
∇μ∇ρV

ρ
ν −

3

2
∇ν∇ρV

ρ
μ −

9

8
gμν∇2

�
Rρ
λR

λ
ρ −

17

24
R2

�

þ 9

8
∇μ∇ν

�
Rρ
λR

λ
ρ −

17

24
R2

�
− 6R3

μν þ 6RR2
μν þ

15

8
Rρ
λR

λ
ρRμν −

165

64
R2Rμν; ðA2Þ

where

Vμν ≡ R2
μν −

3

4
RRμν and Rnþ1

μν ≡ Rρ1
μ R

ρ2
ρ1 � � �Rρnν: ðA3Þ

FIG. 2. Left: the new massive gravity limit ðκ → ∞Þ. For the red region, solutions of (3.16) are real and corresponding βs are positive.
For the purple region, solutions are real and one of the βs is negative. In the gray region, there are no maximally symmetric solutions.
The green line corresponds to the enhanced symmetry phase (4.2). The units are arbitrary. Right: phases of the ENMG. For the red
region, all solutions of (3.16) are real and corresponding βs are positive. For the purple region, all solutions are real and at least one of the
βs is negative. For the orange region, one solution of (3.16) is real and corresponding β is positive. For the blue region, one solution is
real and corresponding β is negative. This figure is produced by doing numerical analysis of (3.16). The discontinuity of thin blue region
around κ ¼ 0 is a numerical artifact and it should be connected.
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Linearized versions of the different parts of (3.15)

Gμν þ
1

6
Λgμν ¼

1

2
Θμν −

R̄
6
ḡμνhþ 1

6
ðΛ − R̄Þhμν þ

1

6
ðΛ − R̄Þḡμν; ðA4Þ

Kμν ¼ −
1

2

�
Φμν þ

R̄
6
ð∇̄μ∇̄νhþ ḡμν∇̄α∇̄βhαβÞ

�
−

R̄
24

Θμν −
R̄2

72
ḡμνh −

R̄2

144
hμν −

R̄2

144
ḡμν; ðA5Þ

Qμν ¼
R̄
16

�
Φμν þ

R̄
6
ð∇̄μ∇̄νhþ ḡμν∇̄α∇̄βhαβÞ

�
þ R̄2

384
Θμν þ

R̄3

384
ḡμνhþ R̄3

1152
hμν þ

R̄3

1152
ḡμν; ðA6Þ

with

Θμν ≡ ∇̄μ∇̄αhαν þ ∇̄ν∇̄αhαμ þ ḡμν□̄h − □̄hμν − ∇̄μ∇̄νh − ḡμν∇̄α∇̄βhαβ; ðA7Þ

Φμν ≡ □̄
2hμν − □̄∇̄μ∇̄αhαν − □̄∇̄ν∇̄αhαμ þ

1

2
□̄∇̄μ∇̄νhþ 1

2
ḡμν□̄∇̄α∇̄βhαβ þ

1

2
∇̄μ∇̄ν∇̄α∇̄βhαβ −

1

2
ḡμν□̄2h: ðA8Þ

Using these, we can write (3.15) as

−
γ

m2

�
Φμν þ

R̄
6
ð∇̄μ∇̄νhþ ḡμν∇̄α∇̄βhαβÞ

�
þ βΘμν −

αR̄
3

ḡμνh ¼ 2Tμν: ðA9Þ

Here we used the background equation (3.16). After fixing the gauge (3.12), we recover (3.17). Setting γ ¼ 0, (A9) reduces
to linearized Einstein equation (3.11) with rescaled Planck mass.

APPENDIX B: NONLINEAR CORRECTIONS

In order to see why γ ¼ 0 phase is strongly coupled, we can study the next order corrections to the equations of motion.
For my purposes, it is enough to study the ∂2h∂4h interactions. This sector only appears in Qμν and its presence is
independent of the value of γ,

Qμν ⊃
3

2
gμν∇ρ∇σVρσ þ

3

2
∇2Vμν −

3

2
∇μ∇ρV

ρ
ν −

3

2
∇ν∇ρV

ρ
μ

−
9

8
gμν∇2

�
Rρ
λR

λ
ρ −

17

24
R2

�
þ 9

8
∇μ∇ν

�
Rρ
λR

λ
ρ −

17

24
R2

�
: ðB1Þ

Since we are only focusing on the ∂2h∂4h interactions, we can set C.C. and the background curvature to zero Λ ¼ R̄ ¼ 0
and linearize this expression around the Minkowski space-time. I will work in the transverse and traceless gauge
∂νhνμ ¼ 0 ¼ h. Relevant part of Qμν,

Qμν ⊃
3

8

�
∂4hμρ∂2hρν þ ∂4hνρ∂2hρμ − ∂μ∂ρ∂2hνλ∂2hρλ − ∂ν∂ρ∂2hμλ∂2hρλ

−
3

2
ημν∂4hρσ∂2hρσ þ 3

2
∂μ∂ν∂2hρσ∂2hρσ

�
: ðB2Þ

Equation for the next order corrections contains quartic derivatives. Even though when γ ¼ 0 the linear equations are of
second order and as a consequence the massive mode disappears, and it will reappear in the next order perturbations. This
shows that γ ¼ 0 phase is infinitely strongly coupled.
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