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A static black hole with spherical symmetry is obtained and examined in the framework of Einstein-
Yang-Mills-dilaton theory. The obtained black hole solution allowed us to derive and investigate entropy,
temperature, and heat capacity. To better examine the thermodynamics of the black hole, extended phase
space is also used. On this ground, the equation of state is obtained and studied. We also investigate the
Gibbs free energy and it is shown that below the critical temperature the system demonstrates phase
transitions of the first as well as of the zeroth order, which is a notable feature for other types of dilaton
black holes. At the end, critical exponents for the black hole are calculated.
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I. INTRODUCTION

Black holes are one of the most fascinating objects of
investigations in general relativity as well as in other
approaches to gravity [1–3]. This deep and longstanding
interest to various aspects of black holes’ physics can be
explained not only by their great importance for astro-
physics [4], but also due to numerous applications of the
techniques and methods initially developed in gravity to
various nongravitational systems. For instance, the appli-
cation of these methods is motivated by AdS=CFT corre-
spondence [5,6], which established the correspondence
between gravity in the bulk and conformal field theory
on its boundary.
Apart the well-known vacuum solutions such as

Schwarzschild or Kerr black holes and which can be
treated as one of the simplest toy models, the great interest
is attracted to the black holes where additional material
fields are taken into consideration. The most widely
investigated are scalar fields, which appear, for instance,
in scalar-tensor theories of gravity [1,3] or have mainly
string theory origin as well-known dilaton or axion fields.
Deep interest is attracted also to black holes with electro-
magnetic field, for which the simplest solution, namely, the
Reissner-Nordstrom (RN) black hole is known from the
early days of general relativity. The black hole solutions
with both scalar and Maxwell fields were also considered,
in particular in the framework of Einstein-Maxwell-dilaton
theory [7–28].
Non-Abelian gauge fields can be treated as some kind of

generalization of the Maxwell one, and thus the inves-
tigation of the black hole solutions with non-Abelian fields

is a task of great importance. We also point out here that
black holes with Yang-Mills fields have also a relatively
long history, but due to complicated structure of non-
Abelian fields they were not so widely studied in com-
parison with the Maxwell field. The first black hole
solution with non-Abelian field with SOð3Þ gauge group
was obtained and examined by Yasskin in 1975 [29]; here
we also point out to the work of Kasuya where non-Abelian
rotating dyon black hole solution was derived [30]. Several
years later, soliton [31] and black hole [32,33] solutions
were obtained in Einstein-Yang-Mills theory with SUð2Þ
gauge group. The latter solutions were observed to be
unstable [34], but they stimulated a deep interest to
solutions in Einstein-Yang-Mills theory [35–38]. Stable
black holes were shown to exist in case of anti–de Sitter
(AdS) space [39–41]. The existence of stable solutions in
Einstein-Yang-Mills theory stimulated deeper interest for
seeking new solutions and their examination. Namely, Wu-
Yang ansatz was applied in higher-dimensional case and
the so-called magnetically charged solutions were derived
[42,43]. Black holes in Einsteinian gravity with nonlinear
Yang-Mills field of Born-Infeld type [44] as well as their
extension to dilaton theory [45] were studied. Wu-Yang
ansatz was also utilized in case of third order Lovelock
gravity with non-Abelian gauge field [46]. Black holes in
FðRÞ gravity coupled with Yang-Mills field as well as in
the presence of a scalar field were obtained [47,48].
Topological black holes in the framework of Einstein-
Yang-Mills theory were derived and investigated [49,50].
Black hole solution in Einstein-dilaton theory with SUð2Þ
non-Abelian field was obtained in [51]. Colored black
holes with higher order curvature terms were also derived
and studied [52]. Higher-dimensional Einstein-Yang-Mills
black hole with gauge field terms belonging to higher order*mstetsko@gmail.com
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Yang-Mills hierarchy was studied [53]. Non-Abelian black
hole with superconducting horizons in AdS space was
examined [54]. Soliton and black hole solutions of suðNÞ
Yang-Mills black hole in AdS space were derived [55].
Particlelike and black hole solutions were considered
in Einstein-Yang-Mills-Chern-Simons theory [56]. Five-
dimensional radiating black holes were studied in case of
Einstein-Yang-Mills-Gauss-Bonnet gravity [57] and rotat-
ing solution was derived [58]. Five-dimensional non-
Abelian black holes in the framework of supergravity were
obtained and examined [59,60]. Non-Abelian solutions
with NUT charges were obtained and investigated [61].
Four- and five-dimensional charged black holes were
studied in colored Lifshitz space-time [62]. Magnetic black
holes in nonminimal Einstein-Yang-Mills theory were
considered [63]. Charged Einstein-Yang-Mills black hole
in the framework of gravity’s rainbow was examined and its
thermodynamics was studied [64]. Black hole solution with
nonlinear Abelian and non-Abelian fields was obtained
within the massive gravity; its thermodynamics and qua-
sinormal modes were studied [65]. Black hole with Yang-
Mills field was examined in dimensionally continued
gravity [66].
In our work, we consider a static black hole with

spherical symmetry in Einstein-Yang-Mills-dilaton theory.
Black holes with non-Abelian and dilaton fields were
studied in various papers, in particular [45,51,59,67–72]
and some others. The character of solution one is to obtain
in case of Yang-Mills theory substantially depends on the
chosen gauge group. In this paper, we take SOðnÞ group
and the non-Abelian field potential is chosen in the so-
called magnetic Wu-Yang form [42,43]. We point out that
SOðnÞ non-Abelian dilaton black hole solution was
obtained in [45], but that solution is of the so-called
Bertotti-Robinson (BR) class, which in case of a charged
black hole is closer to the extremal case rather than to the
nonextreme Reissner-Nordstrom (RN) solution. In our
work, the solution we obtain is not of the BR type, it is
closer to nonextreme solution. To obtain an exact solution,
we also choose the dilation potential in a Liouville-type
form. It should be pointed out here that the Liouville-type
potentials for the dilaton fields were used in most of the
papers where dilaton solutions were obtained. In our case,
the chosen form of the Liouville potential has some
peculiarities, namely, one of its terms is chosen to take
into account cosmological constant and the other one is

related to the gauge filed. In contrast, in the paper [45], the
dilaton potential is not introduced, because the solution as it
has just been noted is of the Bertotti-Robinson class and
due to the fact that the cosmological constant is not taken
into account. We also point out that black holes with SOðnÞ
gauge field were examined also in [44,46,47], but in those
works, the gravitational part of the action was different and
the dilaton field was not taken into account, although the
gauge potential was the same as in [42,45]. From the other
side, the solutions which are close to the mentioned ones
were obtained in [50], where topological solutions were
derived. Using the obtained solution, we also consider
thermodynamics of the black hole, namely, we obtain and
investigate temperature and heat capacity and the latter one,
as it is known, allows us to study thermal stability of the
black hole. Then we use extended thermodynamics concept
[73,74] and obtain thermal equation of state and investigate
critical behavior. We also note here that the extended
thermodynamics approach, which is widely applied to
the black holes with the Maxwell field, is not so actively
used in case of the black holes with the Yang-Mills fields;
this work is one of those where the extended thermody-
namics of the black hole is extensively studied.
This paper is organized as follows. In the next section,

we obtain the equations of motion for Einstein-Yang-Mills-
dilaton theory, then we derive static black hole solution and
analyze it. The third section is devoted to the standard
black hole thermodynamics, namely, we calculate temper-
ature, entropy, and write the first law of black hole
thermodynamics, and we also obtain and examine heat
capacity of the black hole. In the fourth section, we use the
extended thermodynamics concept, namely, we derive and
investigate the equation of state and we also study the
behavior of the Gibbs free energy. In the fifth section, we
calculate critical exponents. The sixth section contains
some conclusions.

II. FIELD EQUATIONS FOR EINSTEIN-DILATON-
YANG-MILLS THEORY AND STATIC BLACK

HOLE SOLUTION

We consider nþ 1-dimensional (n ≥ 3) Einstein-
dilaton-Yang-Mills theory where dilaton and Yang-Mills
fields are coupled and coupling for these fields to gravity is
minimal. The action integral for the system takes the form

S ¼ 1

16π

Z
M

dnþ1x
ffiffiffiffiffiffi
−g

p �
R −

4

n − 1
∇μΦ∇μΦ − VðΦÞ − e−4αΦ=ðn−1ÞTrðFðaÞ

μν FðaÞμνÞ
�
þ 1

8π

Z
∂M

dnx
ffiffiffiffiffiffi
−h

p
K; ð1Þ

and here g denotes the determinant of the metric tensor gμν,
R is the scalar curvature, Φ is the dilaton field, VðΦÞ
denotes the dilaton potential, FðaÞ

μν is the gauge field tensor,

parameter α is the coupling constant between dilaton and
Yang-Mills fields. The second integral in the action (1) is
the boundary Gibbons-Hawking-York (GHY) term which
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is introduced to make the variation problem well defined. In
the GHY term, h denotes the determinant of the boundary
metric hμν and K is the trace of extrinsic curvature tensor.
The gauge field tensor is defined in the following way:

FðaÞ
μν ¼ ∂μA

ðaÞ
ν − ∂νA

ðaÞ
μ þ 1

2κ̄
CðaÞ
ðbÞðcÞA

ðbÞ
μ AðcÞ

ν ; ð2Þ

where AðaÞ is the gauge field potential, CðaÞ
ðbÞðcÞ are the

structure constants for the corresponding gauge group, and
κ̄ is the coupling constant for the non-Abelian field. In this
paper, we consider the gauge group to be SOðnÞ.
Having used the least action principle, we derive

equations of motion for the system described by the action
(1) which can be written in the form

Rμν ¼
gμν
n − 1

ðVðΦÞ − e−4αΦ=ðn−1ÞTrðFðaÞ
ρσ FðaÞρσÞÞ þ 4

n − 1
∂μΦ∂νΦþ 2e−4αΦ=ðn−1ÞTrðFðaÞ

μσ F
ðaÞσ
ν Þ; ð3Þ

∇μ∇μΦ ¼ n − 1

8

∂V
∂Φ −

α

2
e−4αΦ=ðn−1ÞTrðFðaÞ

ρσ FðaÞρσÞ; ð4Þ

∇μðe−4αΦ=ðn−1ÞFðaÞμνÞ þ 1

κ̄
e−4αΦ=ðn−1ÞCðaÞ

ðbÞðcÞA
ðbÞ
μ FðcÞμν ¼ 0: ð5Þ

In this work, we consider a static spherically symmetric
solution of the field equations, so we take the metric in the
following form:

ds2 ¼ −WðrÞdt2 þ dr2

WðrÞ þ r2R2ðrÞdΩ2
n−1; ð6Þ

where dΩ2
n−1 is the line element of n − 1-dimensional unit

hypersphere.
For the gauge field potential AðaÞ

μ , we choose Wu-Yang
ansatz and write components of the gauge potential form

AðaÞ ¼ q
r2
CðaÞ
ðiÞðjÞx

idxj; r2 ¼
Xn
j¼1

x2j ; ð7Þ

and here indices a, i, and j run the following ranges
2 ≤ jþ 1 < i ≤ n and 1 ≤ a ≤ nðn − 1Þ=2 and here new
parameter q is taken to be equal to the Yang-Mills
coupling constant κ̄ (q ¼ κ̄). The coordinates xi in the
relation (7) can be represented by virtue of the following
relation:

x1 ¼ r cos χn−1 sin χn−2… sin χ1; x2 ¼ r sin χn−1 sin χn−2… sin χ1;

x3 ¼ r cos χn−2 sin χn−3… sin χ1; x4 ¼ r sin χn−2 sin χn−3… cos χ1;

� � �
xn ¼ r cos χ1: ð8Þ

The angular variables χ1;…; χn−1 also allow us to define
the line element of the unit hypersphere in metric (6).
Namely, we write

dΩ2
n−1 ¼ dχ21 þ

Xn−1
j¼2

Yj−1
i¼1

sin2 χidχ2j ; ð9Þ

and the angular variables vary in the ranges 0 ≤ χi ≤ π,
i ¼ 1;…; n − 2, 0 ≤ χn−1 ≤ 2π.
Having used the Wu-Yang ansatz for the gauge potential

(7) and definition of the gauge field (2), one can verify that
the gauge field equations (5) are satisfied. One can calculate
gauge field invariant which takes the form

TrðFðaÞ
ρσ FðaÞρσÞ ¼ ðn − 1Þðn − 2Þ q2

r4R4
: ð10Þ

To solve field equations (3) and (4), an evident form of the
dilaton potential VðΦÞ should be given. We choose the
potential VðΦÞ in the so-called Liouville form,

VðΦÞ ¼ ΛeλΦ þ Λ1eλ1Φ þ Λ2eλ2Φ; ð11Þ

where parameters λ; λi and Λi, i ¼ 1, 2 will be obtained to
fulfill the equations of motion. We point out here that
Liouville-type potentials were used in numerous papers
where dilaton field was coupled to Maxwell one [22,28].
Here we also use the following ansatz for the function RðrÞ:

RðrÞ ¼ e2αΦ=ðn−1Þ: ð12Þ

Having used this ansatz, we obtain the solution of the field
equations in the following form:
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WðrÞ¼−mr1þð1−nÞð1−γÞ þ ðn−2Þð1þα2Þ2
ð1−α2Þðα2þn−2Þb

−2γr2γ−
Λð1þα2Þ2

ðn−1Þðn−α2Þb
2γr2ð1−γÞ þ ðn−2Þq2ð1þα2Þ2

ðα2−1Þðnþ3α2−4Þb
−6γr6γ−2; ð13Þ

where γ ¼ α2=ð1þ α2Þ. And the dilaton field Φ takes the
form

ΦðrÞ ¼ αðn − 1Þ
2ð1þ α2Þ ln

�
b
r

�
: ð14Þ

Here we note that in the expression written above for the
metric function (13), the parameter m is an integration
constant related to black hole’s mass, and the other
parameter b is also an integration constant, but its physical
meaning is not so transparent; from its form, we suppose
that it might be related to some rescaling properties for the
obtained solution. As it has been noted above, the param-
eters of Liouville potential are taken to satisfy the equations
of motion. It can be easily verified that these parameters
should take the form

λ0 ¼
4α

ðn − 1Þ ; λ1 ¼
4

αðn − 1Þ ; λ2 ¼
4ð2 − α2Þ
αðn − 1Þ

ð15Þ

Λ1¼
α2ðn−1Þðn−2Þ

b2ðα2−1Þ ; Λ2 ¼−
αðn−1Þðn−2Þ

α2−1
q2b−4;

ð16Þ
and the parameter Λ can be taken arbitrary and it will be
treated as an effective cosmological constant, similarly as it
was done for Einstein-Maxwell-dilaton black holes [28]. It
should be also pointed out that the metric function (13) is
not well defined when α ¼ 1, which is the so-called string
singularity, and when α ¼ ffiffiffi

n
p

. Similar peculiarities take
place for the already mentioned Einstein-Maxwell-dilaton
black hole [22,28] and they are related to the dilaton part. In
the limit when α ¼ 0, we arrive at the metric of Einstein-
Yang-Mills solution [49],

WðrÞ ¼ 1 −
m
rn−2

þ Λ
nðn − 1Þ r

2 −
ðn − 2Þq2
ðn − 4Þr2 : ð17Þ

We remark that here n ≠ 4 and if n ¼ 4 the last term in the
latter relation becomes logarithmic instead of the power-
law one.
The evident form of the metric functionWðrÞ (13) is not

so simple to characterize its behavior in full generality, but
nevertheless some general conclusions can be made. First,
when n > 3, its behavior for small distances (r → 0) is
defined mainly by the term ∼mr1þð1−nÞð1−γÞ (Schwarzschild
term). If n ¼ 3 for small values of the coupling parameter α,
the gauge field term in the solution (13) also might give
considerable contribution, so the resulting behavior of the
metric would be defined by the relation between these two
terms. For large distances (asymptotic infinity), dominating
terms might be the second or the third terms in the metric
function WðrÞ depending on the value or α; actually, this
behavior is not exactly of the dS or AdS type, but the metric
also is not asymptotically flat. The metric would be close to
the dS or AdS type in the limit case; when the coupling
parameter α is very small (α → 0), then the third term in
(13) approaches the dS- or AdS-type term depending on the
sign of Λ. To better understand the behavior of the metric
for some intermediate distances, we show it graphically.
Namely, Fig. 1 demonstrates that the variation of the
parameter α considerably affects the behavior of the metric
function WðrÞ for all distances and it is well explained by
the fact that the parameter α is present in all the terms in the
metric function WðrÞ. Whereas the influence of the
parameter Λ becomes important for large distances,
namely, at the asymptotic infinity, at the same time its
influence for small distances might be negligibly small,
since the parameter Λ is present in the third term of the
functionWðrÞ only and it would be substantial just for large
distances.
Coordinate and physical singularities of the metric are

revealed if one examines the behavior of Kretschmann
scalar,

RμνρσRμνρσ ¼ ðW00Þ2 þ ðn − 1Þ
ðrRÞ2 ½ððrRÞ0Þ2ðW0Þ2 þ ð2ðrRÞ00W − ðrRÞ0W0Þ2� þ 2ðn − 1Þðn − 2Þ

ðrRÞ4 ð1 − ððrRÞ0Þ2WÞ2: ð18Þ

It is easy to check that at the horizon the Kretschmann scalar (18) is not singular, and it means that the horizon is the point of
a coordinate singularity as it should be for a black hole. Taking the leading terms of the metric function WðrÞ (13) at the
origin and calculating the Kretschmann scalar, we arrive at the following expression:

RμνρσRμνρσ ≃
ðn − 1Þ
ð1þ α2Þ4 ððnþ 1Þð2þ α2 − nÞ2 þ 2ðn − 2Þ þ 4α2ð2 − nþ 2α2ÞÞm2r2ð1−nÞð1−γÞ−2: ð19Þ
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The latter expression shows singular behavior when r → 0
and as a consequence the origin (r ¼ 0) is the point of true
physical singularity. It should also be noted that if α ¼ 0 the
latter relation is reduced to corresponding expression of the

Kretschmann scalar near the origin for nþ 1-dimensional
Schwarzschild (or Schwarzschild-Tangherlini) black hole,
as it has to be. We can also estimate the Kretschmann scalar
for large distances (r → ∞), and as a result we obtain

RμνρσRμνρσ ≃
2Λ2

ðn − 1Þ2ðn − α2Þ2 ð2ð1 − α2Þ2 þ nðn − 1Þ þ 2ðn − 1Þð1þ α2Þ2Þb4γr−4γ: ð20Þ

The expression written above goes to zero when r → ∞,
but in the limit when α ¼ 0 it takes finite value and it can be
checked easily that the corresponding relation for AdS case
is recovered.

III. THERMODYNAMICS OF THE BLACK HOLE

To investigate thermodynamics of the black hole, we
start from the derivation of the temperature, which is
defined by virtue of surface gravity and we write it in
the form

κ2 ¼ −
1

2
∇aχb∇aχb; ð21Þ

where χa is a Killing vector, which is null on the
horizon. Since we consider the static solution, the
Killing vector can be taken to be the time translation
vector χa ¼ ∂=∂t. Using the relation written above for the
surface gravity, we can write the relation for the temper-
ature in the following form:

T ¼ κ

2π
¼ ð1þ α2Þ

4π

�
n − 2

1 − α2
b−2γr2γ−1þ −

Λ
n − 1

b2γr1−2γþ −
n − 2

1 − α2
q2b−6γr6γ−3þ

�
; ð22Þ

where rþ denotes the radius of the event horizon of the
black hole. The character of the obtained relation for
temperature is rather complicated, but several quite general
conclusions can be made from the formula (22). First, we
would like to describe the behavior of the temperature for
small as well as large values of the horizon radii rþ;
obviously, it is defined by the parameters given in the

relation (22). Here and in the following, we assume that the
effective cosmological constant Λ is negative to avoid the
existence of cosmological horizon and we also suppose that
the coupling constant varies in the interval 0 < α < 1.
Taking into account the assumptions given above, we can
conclude that for large rþ the dominant term in the relation
(22) is the second one and in this case the temperature

FIG. 1. Metric function W(r) for different values of parameter α (the left graph) and cosmological constant Λ (the right one). For both
graphs, we have taken n ¼ 5, b ¼ 1, m ¼ 1, q ¼ 0.2. For the left plot, the parameter α is chosen to be α ¼ 0.1, α ¼ 0.3, α ¼ 0.5 for
solid, dashed, and dotted curves, respectively, and Λ ¼ −4. For the right graph, the varied parameter Λ is taken to be Λ ¼ −1, Λ ¼ −2,
and Λ ¼ −4 for solid, dashed, and dotted lines correspondingly, while α ¼ 0.1.
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increases if the horizon radius rþ goes up. For small
distances, the character of dependence TðrþÞ is determined
mainly by the interrelation between the first and the third
terms. For a better understanding of the function TðrþÞ, we
give graphical representation here, namely, Fig. 2. Looking
at these figures, one can conclude that the variation of the
coupling constant α affects considerably the temperature
for all values of rþ, whereas the variation of the cosmo-
logical constant Λ has a substantial influence on large radii
of the horizon rþ. The above conclusions are rather
expectable, because the parameter α is present in all the
terms in the expression (22), whereas the cosmological
constant Λ is present in the only term, which according to
our assumption about the value of the parameter α
determines the behavior of the temperature for large
horizon radius. We also point out that the temperature
TðrþÞ might be nonmonotonous. This nonmonotonous
behavior gives us hint about some kind of critical behavior
and it will be studied below.
Another important thermodynamic entity is the entropy

which is defined in a standard way and equals to a quarter
of the horizon’s area. So, in our case, we write

S ¼ ωn−1

4
bγðn−1Þrðn−1Þð1−γÞþ : ð23Þ

Using the written relations for the entropy and temperature
and taking into account the first law of black hole
thermodynamics which should take the form

dM ¼ TdS; ð24Þ

where now

T ¼
�∂M
∂S

�
Λ;q

; ð25Þ

we can obtain the mass of the black hole, which can be
written as follows:

M ¼ ðn − 1Þbðn−1Þγωn−1

16πð1þ α2Þ m; ð26Þ

where ωn−1 is the surface area of a n − 1-dimensional unit
hypersphere. From the latter relation, we see that the mass
here is completely defined by the integration constant m
and coincides with the corresponding relation obtained for
Einstein-Maxwell-dilaton black holes [28]. We also point
out here that in case of Einstein-Maxwell-dilaton black
holes the mass was derived by virtue of quasilocal approach
[75]. Similar task can be performed here, but in contrast
with the Einstein-Maxwell-dilaton case here we should take
another reference background, namely, in the reference
metric it might be necessary to take into account the term
corresponding to the Yang-Mills field, whereas in case of
Einstein-Maxwell-dilaton theory the reference background
was related only to the dilaton part.
The relation (26) can be rewritten as a completely

thermodynamic relation, namely, it can be represented as
a function of the entropy,

M ¼ ðn − 1Þð1þ α2Þbðn−1Þγωn−1

16π

� ðn − 2Þb−2γ
ð1 − α2Þðα2 þ n − 2Þ b

−2γ
�

4S

ωn−1bðn−1Þγ

�n−2−ðn−3Þγ
ðn−1Þð1−γÞ

−
Λ

ðn − 1Þðn − α2Þ b
2γ

�
4S

ωn−1bðn−1Þγ

� n−ðnþ1Þγ
ðn−1Þð1−γÞ þ ðn − 2Þq2

ðα2 − 1Þðnþ 3α2 − 4Þ b
−6γ

�
4S

ωn−1bðn−1Þγ

�ðn−1Þð1−γÞþ6γ−3
ðn−1Þð1−γÞ

�
: ð27Þ

FIG. 2. Black hole’s temperature T as a function of horizon radius rþ for several values of parameter α (the left graph) and
cosmological constant Λ (the right one). For both graphs, we have taken n ¼ 5, b ¼ 1, q ¼ 0.4. For the left plot, the parameter α is
chosen to be α ¼ 0.1, α ¼ 0.3, α ¼ 0.5 for solid, dashed, and dotted curves, respectively, and Λ ¼ −4. For the right graph, the varied
parameter Λ is taken to be Λ ¼ −1, Λ ¼ −2, and Λ ¼ −4 for solid, dashed, and dotted lines correspondingly, while α ¼ 0.1.
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To study thermal stability of the black hole, we calculate heat capacity, which is defined as follows:

CΛ;q ¼ T

� ∂S
∂rþ

�
Λ;q

� ∂T
∂rþ

�
−1

Λ;q
: ð28Þ

Having made some elementary calculations, we arrive at the expression

CΛ;q ¼
ðn − 1Þωn−1

4
bγðn−1Þrðn−1Þð1−γÞþ

�
n − 2

1 − α2
b−2γr2γ−1þ −

Λ
n − 1

b2γr1−2γþ −
n − 2

1 − α2
q2b−6γr3ð2γ−1Þþ

�

×

�
−ðn − 2Þb−2γr2γ−1þ −

Λð1 − α2Þ
n − 1

b2γr1−2γþ − 3ðn − 2Þq2b−6γr2ð3γ−2Þþ

�−1
: ð29Þ

Since the temperature (22) is not a monotonous function
and as it was demonstrated graphically (see Fig. 2), it
might have two extrema points what gives rise to the
conclusion that the heat capacity CΛ;q might be discon-
tinuous. The points of discontinuity separate thermody-
namically stable and unstable regions. We can also
conclude that with an increase of the cosmological
constant Λ in absolute value, the nonmonotonicity of
the temperature becomes weaker and with the following
increase it might disappear, and it means that in this case
the heat capacity CΛ;q turns to be a continuous function.
The behavior of the heat capacity CΛ;q as a function of the
horizon radius rþ is demonstrated in Fig. 3. The graphs
depicted in Fig. 3 corroborate the conclusions made
above; in fact, there are two points of discontinuity,
namely, for large horizon radius rþ the black hole is
stable, since the heat capacity is positive CΛ;q, then there is
a discontinuity point which corresponds to an extreme
point of the temperature which is followed by an unstable
domain for intermediate values of rþ, and finally we have
the second discontinuity point and the stable domain for
small horizon radius. It should be pointed out that for very
small radius of horizon the heat capacity again becomes
negative, but here we have continuous transition from
positive to negative values; this fact can be easily

explained by virtue of the relation (28), namely, both
of the derivatives in this relation are positive for these
values of rþ whereas the temperature turns to be negative;
thus, the heat capacity also takes negative values.

FIG. 4. Heat capacity CΛ;q as a function of horizon radius rþ
after disappearance of discontinuity. The correspondence of lines
is as follows: the solid curve corresponds toΛ ¼ −8.4, the dashed
curve corresponds to Λ ¼ −8.6, and the dotted line corresponds
to Λ ¼ −8.8. The other fixed parameters are as follows: n ¼ 5,
α ¼ 0.5, b ¼ 1, and q ¼ 0.4.

FIG. 3. Heat capacity of the black hole CΛ;q as a function of horizon radius rþ which demonstrates two discontinuity points. The fixed
parameters are as follows: n ¼ 5, α ¼ 0.1, Λ ¼ −4, b ¼ 1, and q ¼ 0.4.
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If the cosmological constant Λ increases in absolute
value, the discontinuity points get closer and finally they
merge into one point with the following transformation of
the discontinuity into a peak of finite height. With further
increase of the module of Λ, the height of the peak
decreases and then it disappears. This behavior is demon-
strated in Fig. 4. Finally, if the module of the cosmological
constant Λ is large enough, the heat capacity might trans-
form into a monotonous function, which is positive for all
the values of the horizon radius larger than the point
mentioned above when the temperature becomes negative,
and as a consequence, the system becomes thermodynami-
cally stable for all these values of the horizon radius. We
note that similar behavior of heat capacity takes place for
Einstein-Maxwell-dilaton black hole [28].

IV. THERMODYNAMICS IN EXTENDED
PHASE SPACE

In contrast to the previous section, where the cosmo-
logical constant was assumed to be fixed here we suppose
that it might be varied [73,76,77]. This assumption has far
reaching consequences since it allows us to develop very
close ties with many aspects of thermodynamics of con-
densed matter systems that were beyond the scope before.
Namely, it gives opportunity to apply well-established
techniques related to critical phenomena to characterize
thermodynamic behavior of the black holes [74,78]. If the
cosmological constant is supposed to be a thermodynamic
variable, it is identified with thermodynamic pressure [73].
Since the new thermodynamic value is introduced, it means
that the black hole’s mass should not be considered as the
internal energy as it was in the previous section, but now it
is identified with the enthalpy function. The extension of
the thermodynamic phase space allows us to derive an

equation of state which is an analog of the well-known van
der Waals equation of state. In addition, in the extended
space, one can establish Smarr relation what is not always
possible in the standard framework.
In our case, we introduce thermodynamic pressure

similarly as it was done for other dilaton black holes [28],

P ¼ −
Λ
16π

�
b
rþ

�
2γ

: ð30Þ

We have mentioned above that now the black hole’s mass
should be identified with the enthalpy M ¼ H. Taking this
fact into account, we derive thermodynamic volume by
virtue of well-known thermodynamic relation

V ¼
�∂H
∂P

�
S
¼

�∂M
∂P

�
S
: ð31Þ

Having used the latter relation, we obtain the evident form
for the thermodynamic volume

V ¼ ωn−1ð1þ α2Þ
n − α2

bðn−1Þγrðn−1Þð1−γÞþ1
þ : ð32Þ

It can be checked easily that in the limit α ¼ 0, the latter
relation leads to the volume of a ball with the radius equal
to the horizon radius rþ.
It is known that for Einstein-Maxwell-dilaton black

holes, the total charge of the black holes can be treated
as a thermodynamic value. In our case of Einstein-Yang-
Mills-dilaton theory, there are some peculiarities since the
charge related to the Yang-Mills field is defined in a
different way in comparison with the Maxwell field case.
We introduce Yang-Mills charge in the following way:

Q ¼ 1

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn − 1Þðn − 2Þp

Z
Σ
dn−1χJðΩÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðFðaÞ

μν F
ðaÞ
μν Þ

q
¼ ωn−1

4π
q: ð33Þ

This integral should be taken over angular variables of a
sphere that encloses the black hole and in the integral JðΩÞ
written above denotes corresponding Jacobian for the
spherical variables. Similarly, to the given above thermo-
dynamic volume V as a conjugate to pressure P, we
introduce Yang-Mills potential as a conjugate to the charge
Q. Namely, we can write

U ¼
�∂M
∂Q

�
S;P

: ð34Þ

Having used the thermodynamic values defined above,
namely, the pressure P, the Yang-Mills charge Q, and
their conjugates, we can write the extended first law for the
black hole,

dM ¼ TdSþ VdPþUdQ: ð35Þ
It has been pointed out above that within the extended
thermodynamics one can derive the Smarr relation which
shows the relation between all the thermodynamic values.
In our case, the Smarr relation takes the form

ðnþα2−2ÞM¼ðn−1ÞTSþ2ðα2−1ÞVPþð1−α2ÞUQ:

ð36Þ

In the limit, when α ¼ 0, the latter equation can be
rewritten in the form

ðn − 2ÞM ¼ ðn − 1ÞTS − 2VPþ UQ: ð37Þ
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It is easy to see that the factors on the left-hand side of the
written equation as well as near the TS and VP terms are
the same as for other types of the black holes in the
framework of standard general relativity [78].
The relations (22), (30), and (31) allow one to obtain the

equation of state which can be considered as an analog of

the van der Waals equation [74,78]. For convenience, we do
not express pressure as an evident function of the thermo-
dynamic volume V but keep the dependence of the horizon
radius rþ. Thus, we write the equation of state in the
following form:

P ¼ ðn − 1Þ
4ð1þ α2Þ

T
rþ

−
ðn − 1Þðn − 2Þ
16πð1 − α2Þ b−2γr2ðγ−1Þþ ð1 − q2b−4γr2ð2γ−1Þþ Þ: ð38Þ

To establish a closer relation between the equation of state
(38) written above and the van der Waals equation of state
instead of our “geometrical” pressure P and the temper-
ature T, we can introduce the “physical” pressure and
temperature as follows [74]:

½P� ¼ ℏc
ln−1Pl

P; ½T� ¼ ℏc
k
T; ð39Þ

where lPl is the Planck length in n-dimensional space and k
is the Boltzmann constant. It should be pointed out that
after redefinition of the thermodynamic quantities a new
specific volume appears in the equation of state (38); this
volume is proportional to the product of the horizon radius
rþ over ln−1Pl . Keeping the geometrical units, we can rewrite
the equation of state (38) in the form

P ¼ T
v
−
ðn − 2Þð1þ α2Þ
4πð1 − α2Þ κ2γ−1b−2γv2ðγ−1Þð1 − q2b−4γκ2ð2γ−1Þv2ð2γ−1ÞÞ; ð40Þ

where we have introduced new specific “volume” v of the
form

v ¼ 4ð1þ α2Þ
n − 1

rþ ð41Þ

and in the upper equation of state κ ¼ ðn − 1Þ=ð4ð1þ α2ÞÞ.
The rewritten equation of state (40) is now treated as the
analog of the van der Waals equation and it can be
examined in a similar way. Namely, what is interesting
for us is the critical behavior of the black hole and
appearance of a phase transition which takes place between
the so-called small and large black holes as it is for
ordinary charged or Einstein-Maxwell-dilaton black holes
[28,74,78]. To investigate this issue, one should find an
inflection point which is defined as follows:

�∂P
∂v

�
T
¼ 0;

�∂2P
∂v2

�
T
¼ 0: ð42Þ

Using the latter relations, we obtain critical specific volume
vc and critical temperature Tc,

vc ¼
4ð1þ α2Þ
n − 1

ð3ð2 − α2Þq2b−4γÞ 1
2ð1−2γÞ; ð43Þ

Tc ¼
ðn − 1Þðn − 2Þ

12πð1 − α2Þð1þ α2Þ κ
2ðγ−1Þb−2γv2γ−1c : ð44Þ

As a consequence, for the critical pressure, we arrive at

Pc ¼
ðn − 1Þðn − 2Þð1 − α2Þ
16πð1þ α2Þð2 − α2Þ κ2ðγ−1Þb−2γv2ðγ−1Þc : ð45Þ

From the relations written above, we obtain critical ratio in
the form

ρc ¼
Pcvc
Tc

¼ 3ð1 − α2Þ2
4ð2 − α2Þ : ð46Þ

It should be pointed out here that the critical ratio does not
depend on the dimension n and the limit α ¼ 0, the well-
known critical ratio for van der Waals gas in three-dimen-
sional space, is recovered (for arbitrary dimension of black
hole’s space-time),

Pcvc
Tc

����
α¼0

¼ 3

8
: ð47Þ

Having performed a Legendre transformation for the
enthalpy, we obtain the Gibbs free energy
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GðT;PÞ¼ωn−1ð1þα2Þbðn−1Þγ
16π

rðn−1Þð1−γÞþ

�
n−2

α2þn−2
b−2γr2γ−1þ −

16πð1−α2ÞP
ðn−1Þðn−α2Þrþ−

3ðn−2Þ
ðnþ3α2−4Þq

2b−6γr3ð2γ−1Þþ

�
: ð48Þ

The dependence G ¼ GðTÞ for some fixed values of the
pressure P is shown graphically in Fig. 5. The left graph
on Fig. 5 shows the specific swallow-tail behavior of the
Gibbs free energy for the pressures below the critical one,
when the coupling constant is relatively small (α ¼ 0.1),
and when the pressure equals to the critical value Pc the
Gibbs free energy is piecewise smooth function. The
swallow-tail behavior of the Gibbs free energy is known
to take place for van der Waals systems (e.g., a liquid-
gas system) in condensed matter systems; this kind of
behavior also appears in the framework of extended
thermodynamics for RN-AdS black hole [74,78] or
for Einstein-Maxwell-dilaton black holes [28]. If the

parameter α increases (α ¼ 0.5), an additional feature
appears for the pressures below and equal to the critical
one. Namely, for the critical pressure Pc, we have specific
maximum at the critical point (T ¼ Tc) and for the
pressures below the critical one, there is specific loop
forming domain, when the swallow tail is not yet formed,
and the following decrease of the pressure gives rise to the
appearance of the swallow tail, but with an additional
closed loop (see Fig. 6). Similar behavior of the Gibbs free
energy for various values of the parameter α takes place
for the Einstein-Maxwell-dilaton black hole [27,28]. It
was shown that in addition to the first order phase
transition, which happens for the van der Waals systems,

FIG. 6. Gibbs free energy G as a function of temperature T which shows instability region given by dashed parts of the curves.

FIG. 5. Gibbs free energy G as a function of temperature for fixed values of pressure. For both graphs, we have n ¼ 5, b ¼ 1 and
correspondence of the lines is the following: the dotted, solid, dashed, and dash-dotted lines correspond to the pressures P ¼ 3=2Pc,
P ¼ Pc, P ¼ Pc=2, and P ¼ Pc=3, respectively, and here Pc denotes the critical pressure, which is defined for given values of n, α, b,
and q. We also note that for the left graph we have α ¼ 0.1 and q ¼ 0.1, whereas for the right graph α ¼ 0.5 and q ¼ 0.12.
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the dilaton field gives rise to the appearance of the zeroth
order phase transition [27,28] when the Gibbs free energy
becomes discontinuous.
To investigate the domain of instability, which is related

to the swallow-tail behavior, we introduce isothermal
compressibility which is defined as follows:

κT ¼ −
1

V

�∂V
∂P

�
T
: ð49Þ

Since our system fulfills the equation of state (40), we
obtain the evident form for the isothermal compressibility,

κT ¼ nþ α2

1þ α2

�
P −

n − 2

4π
κ2γ−1b−2γv2ðγ−1Þð1 − 3q2b−4γκ2ð2γ−1Þv2ð2γ−1ÞÞ

�
−1
: ð50Þ

We note here that the isothermal compressibility is con-
sidered as a function of the pressure P and the temperature
T. It can be verified easily that for the isobars above the
critical one (P > Pc), the isothermal compressibility κT is
positive for all temperatures and it gives rise to the
conclusion about the stability of the system in this range
of pressures. Similar conclusion can be made if one
examines the isotherms for the temperatures above the
critical one T > Tc. At the critical point (P ¼ Pc, T ¼ Tc),
there is a phase transition of the second order which takes
place for the van der Waals systems.
For the isobars below, the critical one we have is similar

with Einstein-Maxwell-dilaton black holes, namely, when
the closed loop is not formed yet there is a domain where
the Gibbs free energy is discontinuous and there is the
phase transition of the zeroth order in this domain [27,28].
Figure 6 demonstrates this discontinuity, namely, on the
left graph where the loop is not closed yet we have

discontinuity of the Gibbs free energy, whereas on the
right graph when the loop becomes closed the discontinuity
of the Gibbs free energy disappears.
After the closing of the loop when swallow tail appears,

we have the phase transition of the first order and the Gibbs
free energy is constant during the phase transition. This fact
helps us to derive the coexistence curve for two phases (the
so-called small and large black holes). Namely, we make
use of the Maxwell’s equal areas law, which can be written
in the form

P0ðv2 − v1Þ ¼
Z

v2

v1

Pdv; ð51Þ

where v1 and v2 denote some volumes corresponding to the
first (small) and the second (large) phases which are at the
same pressure P0. Using Eq. (40) and after integration, we
obtain

P0ðv2 − v1Þ ¼ T ln

�
v2
v1

�
þ 1þ α2

1 − α2
Aðv2γ−12 − v2γ−11 Þ − 1þ α2

3ð1 − α2ÞBðv
3ð2γ−1Þ
2 − v3ð2γ−1Þ1 Þ; ð52Þ

where we use the following notations:

A ¼ ðn − 2Þð1þ α2Þ
4πð1 − α2Þ κ2γ−1b−2γ; B ¼ ðn − 2Þð1þ α2Þ

4πð1 − α2Þ κ3ð2γ−1Þb−6γq2: ð53Þ

Using the equation of state (40), we can write

T

�
1

v2
−

1

v1

�
− Aðv2ðγ−1Þ2 − v2ðγ−1Þ1 Þ þ Bðv2ð3γ−2Þ2 − v2ð3γ−2Þ1 Þ ¼ 0: ð54Þ

Since we are going to find a coexistence curve, we introduce a new parameter as a ratio of two volumes, namely, x ¼ v1=v2
and it is clear that 0 < x < 1. Now, we rewrite the latter relation in the following form:

T ¼ x
x − 1

ðAv2γ−12 ð1 − x2ðγ−1ÞÞ − Bv3ð2γ−1Þ2 ð1 − x2ð3γ−2ÞÞÞ: ð55Þ
The volume of a phase (in our case the volume v2) can be expressed as a function of the parameter x,

v2ð2γ−1Þ2 ¼ A
B

ð 2
1−α2 ð1 − x2γ−1Þ − x

x−1 ln xð1 − x2ðγ−1ÞÞÞ
ð2ð2−α2Þ
3ð1−α2Þ ð1 − x3ð2γ−1ÞÞ − x

x−1 ln xð1 − x2ð3γ−2ÞÞÞ
: ð56Þ

We also use the relation (55) to rewrite the equation of state (40) in the following form:

P ¼ 1

x − 1
ðAv2ðγ−1Þ2 ð1 − x2γ−1Þ − Bv2ð3γ−2Þ2 ð1 − x3ð2γ−1ÞÞÞ: ð57Þ
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It should be noted that when x ¼ 1 the relations (57) and
(55) give rise to the critical values for the pressure Pc and
the temperature previously obtained Tc. Using the relations
(55) and (57) written above, we can obtain coexistence
relation (P − T relation) for two phases where the first
order phase transition takes place (see Fig. 7). In general, the
character of P − T dependence is similar to the correspond-
ing dependence for the Einstein-Maxwell-dilaton black
hole [28]. Similarly, to the Einstein-Maxwell-dilaton case,
when the parameter α increases, the domain where the
discontinuity of the Gibbs free energy takes place widens.
If the dilaton parameter α → 0, the domain with the
discontinuity of the Gibbs free energy disappears. The slope
of the coexistence curve can be obtained by virtue of the
Clapeyron equations which takes the form

dP
dT

¼ L
Tðv2 − v1Þ

; ð58Þ

and here L ¼ Tðs2 − s1Þ is the latent heat of the phase
change and si are the entropies of two phases which in our
case represent the small and large black holes, and the latent
heat shows gain or loss of themass. The latter relation can be
also used to find this latent heat, namely, we rewrite the latter
relation in the form

L ¼ v2ð1 − xÞTðxÞ dP
dx

dx
dT

: ð59Þ

Using the relations (55)–(57), we can write it in evident
form, but due to its complicated structure we do not show
this evident form here; the dependence L ¼ LðTÞ is given
graphically, namely, Fig. 8 shows these dependences for
various values of the coupling constant α and dimension n.
Both graphs in Fig. 8 demonstrate slight nonmonotonous
dependence, which shows that for small temperatures the
latent heat increases as the temperature rises, whereas for
higher temperatures the latent heat decreases when the
temperature goes up. We also see that the latent heat
increases in absolute values with increase of the coupling
parameter α and the dimension n, but general character of
L ¼ LðTÞ dependence is the same. It should be also pointed
out that similar behavior of the latent heat takes place for
Einstein-Maxwell-dilaton black hole [28].

V. CRITICAL EXPONENTS

In this section, we examine the thermodynamic behavior
of the system in the vicinity of the critical point. The method
we follow here was applied to black holes for the first time
in the papers [74], but it is well-known in the condensed
matter physics for a longer period of time [79].

FIG. 8. Latent heat L as a function of temperature T, for several values of the parameter α (the left graph) and the dimension n (the
right graph). For the both graphs, we have b ¼ 1 and q ¼ 0.12. For the left graphs, the parameter α takes the values α ¼ 0.1, α ¼ 0.2,
and α ¼ 0.3 for the dotted, dashed, and solid curves, respectively, and n ¼ 5. For the right graph, we have taken n ¼ 5, n ¼ 6, and n ¼ 7
for the dotted, dashed, and solid curves, respectively, and α ¼ 0.1.

FIG. 7. P − T diagram (coexistence diagram) for two phases.
Here the solid parts of the curves represent the domain where the
first order phase transition takes places, whereas the dashed parts
correspond to the domain of the zeroth order phase transition. For
both curves n ¼ 5, b ¼ 1, q ¼ 0.12, for the left curve α ¼ 0.1,
for the right one α ¼ 0.5.
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Here we are going to obtain critical exponents which characterize the phase transition at the critical point. First, to
derive the critical exponent ᾱ, the entropy (23) should be rewritten as a function of the temperature T and thermodynamic
volume V (32),

SðT; VÞ ¼ ωn−1

4
bðn−1Þγ

� ðn − α2Þ
ωn−1ð1þ α2Þ b

−ðn−1ÞγV
�ðn−1Þð1−γÞ=ððn−1Þð1−γÞþ1Þ

: ð60Þ

Since there is no explicit temperature dependence, the heat
capacity under the condition of the constant (fixed) volume
is equal to zero (CV ¼ 0) and as a consequence the critical
exponent ᾱ ¼ 0. Here we also remark that for the critical
exponent mentioned above, we use the notation ᾱ in order
not to get confused with our dilaton coupling parameter
which is denoted as α.
The other critical exponents can be derived if one

rewrites the equation of state (40) using the so-called
reduced variables,

p ¼ P
Pc

; τ ¼ T
Tc

; ν ¼ v
vc

; ð61Þ

and here Pc, Tc, vc are corresponding critical values
defined by the relations (45), (44), and (43), respectively.
As a result, the equation of state takes the form

p¼ 4ð2−α2Þ
3ð1−α2Þ2

τ

ν
−
ð1þα2Þð2−α2Þ

ð1−α2Þ ν2ðγ−1Þ
�
1−

ν2ð2γ−1Þ

3ð2−α2Þ
�
:

ð62Þ

Following the procedure mentioned above, the equation
written above can be cast in the form

p ¼ 1

ρc

τ

ν
þ hðνÞ; ð63Þ

where ρc is the critical ratio given by the relation (46) and
hðνÞ is the function which corresponds to the second term
in the relation (62); thus, the procedure is applicable for
arbitrary form of the function hðνÞ. In the vicinity of the
critical point, we assume that τ ¼ 1þ t, ν ¼ ð1þ ωÞ1z,
where t < 0 and ω < 0 and z > 0. According to definition
of the reduced variables at the critical point, all of them are
equal to one p ¼ τ ¼ ν ¼ 1; thus, the new parameters t and
ω are equal to zero (t ¼ ω ¼ 0). Using these new variables
t and ω and expanding the right-hand side of the relation
(63), we write

p ¼ 1þ At − Btω − Cω3 þOðtω2;ω4Þ ð64Þ

and here

A¼ 1

ρc
; B¼ 1

zρc
; C¼ 1

z3

�
1

ρc
−
1

6
hð3Þð1Þ

�
; ð65Þ

where z ¼ ðnþ α2Þ=ð1þ α2Þ and the parameter C is also
supposed to be positive. Differentiating the equation
written above with respect to the parameter ω, we arrive
at the relation

dP ¼ −PcðBtþ 3Cω2Þdω: ð66Þ

Taking into account the Maxwell’s area law and denoting
ωl and ωs the volumes of different phases (the large and
small black holes), we can write

p¼1þAt−Btωl−Cω3
l ¼1þAt−Btωs−Cω3

s ; ð67Þ

which has a nontrivial solution of the form

ωs ¼ −ωl ¼
ffiffiffiffiffiffiffiffiffi
−
Bt
C

r
: ð68Þ

It allows us to obtain the following behavior for the order
parameter η near the critical point and derive corresponding
critical exponent β̄,

η ¼ Vcðωl − ωsÞ ¼ 2Vcωl ≃ ð−tÞ1=2 ⇒ β̄ ¼ 1

2
: ð69Þ

Investigating the behavior of the isothermal compressibility
(49) near the critical point, we can find the respective
critical exponent γ̄. Namely, we can write

κT ¼ −
1

V

�∂V
∂P

�
T
∼

1

PcBt
;⇒ γ̄ ¼ 1: ð70Þ

Finally, using the equation of state (64) and considering the
critical isotherm (t ¼ 0), we obtain

p − 1 ¼ −Cω3;⇒ δ̄ ¼ 3: ð71Þ

It should be pointed out that the critical exponents we have
obtained here completely coincide with the corresponding
values derived for Einstein-Maxwell-dilaton black hole
[28,80,81] or even RN black hole [74].

VI. CONCLUSIONS

In this work, we have derived a static spherically
symmetric black hole solution in Einstein-Yang-Mills-
dilaton theory. We take into account dilaton potential
which is chosen in the so-called Liouville form. It has
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been shown that the parameters of this potential are chosen
to satisfy the field equations (3) and (4). It should be also
pointed out here that the Liouville-type potential allows us
not only to fulfill the field equations, but also to introduce
an effective cosmological constant similarly as it was
performed in Einstein-Maxwell-dilaton theory [22,28].
As far as we know, the Liouville-type potential was not
used so often here as in case of Einstein-Maxwell-dilaton
theory, namely, it was utilized in the work [51]. The
Einstein-Yang-Mills-dilaton theory with SOðnÞ gauge
group was examined [45], but there Bertotti-Robinson-
type solution was obtained which allowed the authors not to
introduce dilaton potential VðΦÞ. The Yang-Mills potential
was defined by virtue of the so-called magnetic Wu-Yang
ansatz (7) [29,42,49], which allowed us to immediately
satisfy Eq. (5). The obtained solution (13) is not very
simple, but some general features stem immediately from
its evident form. In particular, it has the only simple root
which is nothing else but the horizon point of the black
holes; it is singular at the origin (r → 0) and the behavior of
the metric function WðrÞ at the origin is mainly defined by
the Schwarzschild term which might be modified a bit by
the Yang-Mills term. Finally, at the infinity, the metric is not
in strict sense anti–de Sitterian, but certainly, it is not
asymptotically flat. To investigate the character of singular
points that appear for our metric, we have calculated the
Kretschmann scalar (18). It might be shown easily that the
horizon point of the black hole is the point of ordinary
coordinate singularity which might be removed by some
new sort of coordinates, as it is usually done for the most
known types of black holes. The only point of physical
singularity is the origin where the Kretschmann scalar has
singular behavior and which cannot be removed by any sort
of new coordinate system. At the infinity, the Kretschmann
scalar was shown to go to zero while recovering the well-
known result for AdS case in the limit α → 0.
We have also studied thermodynamics of the black hole.

First, a standard approach has been utilized, namely,
temperature (22), entropy (23), and first law (24) have
been obtained. We note that the entropy equals to the
quarter of the horizon area, similarly as we have for other
types of black holes in the framework of standard general
relativity. The first law (24) is completely identical to the
corresponding relation for the standard Schwarzschild
black hole, and it is expectable since all the other
parameters such as Λ or q are supposed to be fixed. The
temperature we derived (22) shows nonmonotonous behav-
ior (what has been demonstrated clearly in Fig. 2), and this
fact tells us about some unstability domains and also about
possible criticality. We have also calculated the heat
capacity (29). Figure 3 shows that we have two disconti-
nuity points which separate thermodynamically stable and
unstable domains. We have also shown that increase of
the cosmological constant Λ in absolute value gives rise
first to merging of the discontinuities with their following

transformation into a maximum point and if the module of
Λ continues its rise the peak of this maximum finally
disappears. In general, this character of behavior of the heat
capacity CΛ;q is identical to the situation we have for
Einstein-Maxwell-dilaton black hole [28].
Using the extended phase technique, we have studied

some aspects of thermodynamics. As it is usually per-
formed [28,74,78,81], we introduce the thermodynamic
pressure related to the cosmological constantΛ. In our case,
we have additional parameter q which as we assumed gives
the non-Abelian charge and this value together with its
conjugate are also taken into account in the extended phase
space. Having used these additional thermodynamic values,
we obtained the extended first law (35) and it allowed us to
write the Smarr relation (36). We have also derived the
equation of state (38). It is shown that the equation of state
has an inflection point similarly as it takes place for
Einstein-Maxwell-dilaton black holes [28,81], and corre-
sponding critical values vc, Tc, Pc as well as their critical
ratio (46) have been calculated. What should be stressed
here is the fact that the critical ratio depends on the
coupling parameter α only and if α ¼ 0 we recover the
critical ratio for van der Waals gas. In comparison, the
critical ratio for Einstein-Yang-Mills black hole [28]
depends on the dimension of space n as well as on the
parameter α. We have calculated the Gibbs free energy (48)
and we have shown that it has the so-called swallow-tail
behavior for the temperatures below the critical one. It is
demonstrated that for the temperatures below but quite
close to the critical one there is a phase transition of the
zeroth order which was also observed in case of Einstein-
Maxwell-dilaton theory [28,81]. We also found coexistence
curve (Fig. 7) and numerically calculated the latent heat
(Fig. 8), and we can conclude that in general there are many
common features with Einstein-Maxwell-dilaton black
holes again. Finally, we calculated critical exponents ᾱ,
β̄, γ̄, and δ̄ and as a result they were completely the same as
for the Einstein-Maxwell-dilaton black hole, or even for the
Reissner-Nordstrom black hole [74], but this fact can be
easily explained, since the equations of state in their
reduced forms are very similar for all these cases. To
sum all the described facts up, we can state that being
completely different solution in comparison with the
Einstein-Maxwell-dilaton black holes mentioned many
times the thermodynamics for both Einstein-Maxwell-
dilaton and Einstein-Yang-Mills-dilaton cases show a lot
of similarities.
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