PHYSICAL REVIEW D 101, 124015 (2020)

Gravitational and electromagnetic memory
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We present a unified investigation of memory effect in Einstein-Maxwell theory. We specify two types
of memory effect, a velocity kick and a position displacement, by examining the motion of a single free-
falling charged test particle. Our result recovers the two known gravitational memory effect formulas and
the two known electromagnetic memory effect formulas.
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I. INTRODUCTION

In the last few years, there has been renewed interest
on gravitational [1-7] and electromagnetic [8] memory
effects. Although both of them have been investigated for a
long time (see also Refs. [9-16] for the realization in
experimental detections), the new enthusiasm comes
from a purely theoretical side. In 2014, Strominger and
Zhiboedov discovered a fundamental connection between
the gravitational memory effect and Weinberg’s soft
graviton theorem [17]. They are mathematically equivalent.
This equivalence was shortly extended to gauge theories
[18-20]. Inspired by this fascinating equivalence, new
gravitational [21] and new electromagnetic [22] memory
effects were reported.

The investigation in the literature on memory effect
are performed independently for different theories, either
gravitational memory in Einstein theory or electromagnetic
memory in Maxwell theory.l A unified treatment of differ-
ent types of memory effects in a coupled theory is still
missing. Though gravitational memory effect and electro-
magnetic memory effect seem to be present at an order in
which there is no coupling between the gravitational term
and electromagnetic term, the main gap of connecting
memory in different theories is encoded in the different
types of observation. In Einstein or Maxwell theory,
memory effect is interpreted as a change in the waveform
of gravitational or electromagnetic wave burst. The
memory effect is completely determined by the solution
of Einstein equation or Maxwell’s equation. The gravita-
tional memory [7] and the new gravitational memory [21]
are characterized by the change of the asymptotic shear of
the outgoing null surfaces Ac” and its u integral [ ¢°du.
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lMemory effect was investigated in Ref. [23] in Einstein-
Maxwell theory. But only gravitational effect was involved.
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The electromagnetic memory [8] and the new electromag-
netic memory [22] are characterized by the change of the
asymptotic data of the gauge field AA? and its u integral
Ik Aldu. In general relativity, it is important to focus upon
the coordinate invariant observable. The gravitational
memory effect [17] is a relative displacement of nearby
observers, while the new gravitational memory effect [21]
is a relative time delay between different orbiting light rays.
When we turn to the electromagnetic memory, a single
charged test particle is utilized. The electromagnetic
memory effect [8] is a change of the velocity (a “kick™)
of the charged particle, while the new electromagnetic
memory effect [22] is a position displacement of the
charged particle. Hence, one has to implement completely
different detections to explore gravitational and electro-
magnetic memory effects. The aim of the present work is to
provide a unified treatment for gravitational and electro-
magnetic memory effects in Einstein-Maxwell theory. To
achieve this, we will give up the requirement of coordinate
invariant observable, e.g., the proper separation between
two test particles or the proper time of a single test particle.
Alternatively, we will study the motion of charged particles.

Free-falling observers receive a velocity kick when
gravitational waves with memory pass by [24-30] (see
also Refs. [31-34] for earlier but less relevant investiga-
tions). This is the observational effect we will adopt from
the gravitational side to connect with the electromagnetic
memory effect. In this work, we examine the memory effect
via studying the motion of a charged free-falling pat‘ticle.2
By solving the equations of motion, we find that the
charged particle, which is initially static, is forced to orbit
over some tiny angle about the “center” of the spacetime
by the gravitational and electromagnetic radiation. The
velocity change of the charged particle induced by
gravitational and electromagnetic radiation is determined

*These are test particles. We do not consider them as a local
source of the Einstein-Maxwell theory.
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by Ac® and AAY. Hence, they recover the gravitational
and electromagnetic memory formulas, respectively. The
position displacement of the charged particle involves the
u integral of ¢° and A?. The gravitational and electro-
magnetic contributions reproduce the spin memory formula
in Ref. [21] and the new electromagnetic memory formula
in Ref. [22], respectively.3 The charged particle receives a
time delay. The contributions to the time delay are from the
massive objects with or without electric charge in the
spacetime [35-37], gravitational radiation [29,30], and
electromagnetic radiation. The gravitational and electro-
magnetic memory effects happen at the same order, while
the contribution of electromagnetic radiation to the time
delay of the charged particle shows up at one order higher
than gravitational radiation.

Our plan is as follows. In the next section, we study the
Einstein-Maxwell theory in the Newman-Penrose (NP)
formalism [38]. We work in the NP formalism because it
makes the geometrical property of the spacetime more
transparent. Hence, we can easily find the connection
between the memory formula and the geometrical prop-
erty of the spacetime. The NP formalism also has a
natural connection with the spinor formalism, which is
the most satisfactory way of investigating fermion
coupled theories. We obtain the most general asymptotic
solutions of Einstein-Maxwell theory that asymptotically
approach flatness. The solution space generalizes the
result of Refs. [39,40] by relaxing the unit 2-sphere
boundary to the case of an arbitrary 2-surface boundary,
although such relaxation is not really needed for deriving
the memory formulas in the present work. The solution
space of Einstein-Maxwell theory allows us to derive the
memory formulas and to compute the time delay of the
charged particle in Sec. III. Finally, the two known
gravitational memory effects and the two known electro-
magnetic memory effects are recovered. We then con-
clude with a discussion. The NP equations are listed in
the Appendix.

II. EINSTEIN-MAXWELL THEORY
IN THE NP FORMALISM

The NP formalism is a tetrad formalism where two
real null vectors e; = [, e, = n, one complex null vector
e; = m and its complex conjugate vector e, = m are
chosen as the basis vectors. The metric is constructed
from the basis vectors as

The displacement effect is from a single test particle, while
the displacement discovered in Refs. [1-3] is a relative displace-
ment of nearby observers. So, they are different types of memory
effect.

G = Myl + L, — m,m, —m,m,. (2.1)
In a hyperbolic Riemannian manifold [38], it is always
possible to introduce a coordinate system (u, r, x*) where
(A=2z7z)and z = e cot?,z = e~ cot{ are the standard
stereographic coordinates, such that the basis vectors and
the cotetrad have the form

+ (O)EA + &)LA)dxA,
Ldx" = du, mydx* = —XALydu + Lydx*,  (2.2)
where L,LA = 0, L,L* = —1. The connection coefficients
are called spin coefficients in the NP formalism with special
greek symbols (we will follow the convention of Ref. [41]),

= —l"m*V n

k=13 =1m'V,1, m=-Ty WMy

1 1 _
€=5 (T =Ty31) = 3 ('nV, 1, = PN ,ym,,),
T = F312 = n”m"vylﬂ, UV = —F422 = —n”n_i”v,,nﬂ,

1 1 )
r=s (To12 = Tuzp) = 3 (' nV, L, = n*m*V, m,,),

o =T33 =m"m"V,l,, u=—Typ3 =—-m"m"V,n,
1 1 _
p= 2 (T3 = Ty33) = 3 (m*n*V 1, — m*m*V,m,),

p =T34 =m"m'V,,
1

= —(Toig —Tuas) =
a 2(214 434)

A= —F424 = —rh"ﬁiﬂv,/nﬂ,

(m*nV 1, — m*m'V m,).

N =

The freedom of the rotations of the basis vectors allows one
to set

r=x=¢=0, p =P, T=a+p. (2.3)
Ten independent components of the Weyl tensors are
represented by five complex scalars

¥y = —Cia13, ¥ =-Cis,
¥, = —Cia4, W3 = —Ci,
Wy = —Cozy.

Ricci tensors are defined in terms of four real and three
complex scalars:
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q)oo——%Rn, q’zzz—%Rzz’ ‘Doz:—%Rs& q)ZO:_%RMv
Dy ——1(R12+R34)’ Dy :_lRl% cI912:—11’323,
4 2 2
iR = L<R12 — Ra4) Dy = —1R14 ®y = —1R24-
24 12 o 2 ’ 2

The Maxwell tensor is replaced by three complex scalars:
_ (1% _ 1 U,V Tl 3aV _ Tl 1V
o = Fl'm", ¢1—§Fﬂy(ln + mtm”), ¢, = F,,im"n".

The Lagrangian of four-dimensional Einstein-Maxwell theory is

L',:\/—_g{R—%FZ}, F = dA. (2.4)

For the coupled theory, R = 0 and ®,;, should be replaced by ¢,¢,. As directional derivatives, the basis vectors are
designated with special symbols

D = I'0,, A =n"d,, §=m'd,. (2.5)

The Newman-Penrose equations that we will deal with are listed in the Appendix.

The main conditions of approaching flatness at infinity are ¥, = ° + O(r®) and ¢y = {/)“ + O(r™*). The solutions of
the NP equations in asymptotic expansions were first obtained in Refs [39,40]. However, a specml choice of the boundary

topology S? was adopted in Ref. [40]. We remove this restriction, and a more general solution space with arbitrary 2-surface
boundary topology is given by4

W(u,z,z)  Wh(u,z,2) M(u.z,2)  Py(u,z,%)

— 0 ’ — _ —
Yo=—5—+ 5 H007), b=+ 00T,
¥, = #i(w.2.2) 3¢°¢0 6‘{‘0 O(r®) ¢ = #lu2.2) O +0(r™)

rt P ' r r ’
W(u,z,7 990 — 39! 1 .
W, — 2(”31 2 i < 2090 + 379 + 30%50WY + 4¥905° + 500
r r 2r
— 200040 — 6470¢ — 34009 + (r° + 37°)p0 + 0. #0)] + O(r7°),
by — ¢g(u, 2,7) @ N 2288 + 6%6°¢9 + 2¢906° + 5°9¢ + 3¢ o
- 3
r r
¢ 999 — 3% P 5P _
lP3—r2 2 r +O( ) T4:7—_2+O( 3)
1 6%° 6% + %) — 6(c°5°)% — 209 _
p=—-- 3 + 0 0 = 070 1 O(r79),
0 = 0.-0-0 _ l\PO LPI
L0 u,2z,z)+6004 250 _ X0 4 o6, (2.6)

“The relaxation is encoded in the leading order of L. We have an arbitrary function P(u, z,Z) rather than a particular choice 1\7;
for a unit 2-sphere. The relaxation in the solution space is mainly shown in the integration constant (2.8) and the evolution
equations (2.9)—(2.14).
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a2 590 05000 6a%6°(5°)2 — @OP0 + 5OP0 — 24040
a = 7 Grz +G (:3 o (6 ) 624 (2 o1 ¢1¢0 + O(V_S),
5= _&_0 B c%a° _ a°5%a0 + %‘P(l) N WY + 3a°¥) —3a°(6%)%5" - 390" o)
r r? r 34 ’
S0 | 1,090 070
= _\P_(I; 0¥y +50 \{;1 —4pody i O(r‘S),
2r 3r
0 040 1 g0 5059,0 4+ 1EPO _ 4070
p=t TR ST IR A o),
r r r
20 59,0 05020 4 15090 _ 1 4070
ﬂ:__O'/; +GG 263 2 2¢2¢0+0(}’_4),
r r r
o5 209 + o'W - AW - 64100
272 6r3
1 _
+ a7 [—3&0‘1‘8 - 362‘1‘8 - 3506‘1‘(1) — 90050‘1‘3 — 12‘1‘?660
4TV — 00T + 2OV - 03 + 8(a’p - )
= 3(y" + 37°) )Y + 1269063 + 24¢%0¢) + 9993 — 3430, 9] + O(r~),
PO 3P) — 20990
_,0_13 2 2?1 (-3
v=v r + 272 +00™),
P¥) P ; _ ]
X=3tm (—0%) — 26°9) + 4¢0¢7) + O(r™).
. @ _ 6°95" + 1) N WY + 66°6°90° + 2670 — 45" o)
r r? 6r° ’
P+ P 3P + 3P0 — 60040 -
U= —r(y0 1+ 70 o_ 2 2 1 1 191 2090 1 700
r(’ +7°) +u 5t e a3 ¥+ 0%

+ &W) + 7P + 52090 + 6" + 36°5° () + ¥9)0,, (430
+A0° +70)p0h0 — 120706 — 120068 — 300 — 3¢00¢] + O(r),

OP(u,z,z7) P 1 Py}
Lz:_w_ﬁggoy&o__q,g)Jr r0+0(r—6)’

. P(u.z.z) o%°P P _ 0 _ B
L= ( . ) + 3 —+ 27 (12(6%6°)% + @)@ — 26°W) — 699 + O(r7%),
r (—701110 + ¢0$0 0.0 o pl
L=t 4050t %P o4y =% 4 0 0| o),
=pt s O = e T TOUT)

where

a’ = %Paz InP, 0 =- %PibazaZ In PP,
2 =09,6°+35"(3" -7,
70:_%8141[113’ W =0(y" +7°).
) —P) = 56 - %50 + 5970 — 620,
P = au’ — a2, PO = a0 — 9,40 — 4000,
Oupy + (r° +37°)0) = 04} + 045,

0u] +2(r° +7°)¢) = 3¢5,
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TABLE I. Spin weights.
0 Dy 7° W I o’ 2 ¥ ¥ ¥ ¥ v 9 ¢! #)
S 1 0 0 -1 0 2 -2 -2 -1 0 1 2 -1 0 1
00 + (7° + 57°)95 = W) + 369 + 39045,  (2.11) A0 . .
0, PP = 0,(0,A? + 0;A?), (2.17)
0P +2(7° 4+ 27") W9 = 09 + 26" + 2499, (2.12)
0, W0+ 3(/° + 70) W = W0 + 0°W) + ¢4, (2.13)  Where
- 0 -
0,9 +2(2° + 7)) = 9. (2.14) A = A(u, z,2) Lou),
r
The “d” operator is defined as Al -
A = A%u,2,7) + @ +O0).  (2.18)
on® = PP=50:(P*n®) = PO:n* + 2sa’y°,
on® = PP*0,(P~*n*) = PO.n* — 25a°°, (2.15)

where s is the spin weight of the field . The spin weights of
relevant fields are listed in Table I.

We will work in retarded radial gauge A, = 0. In terms of
the gauge fields A,, the solution of the electromagnetic

III. MEMORY EFFECTS

The memory effects are all encoded in the solution space
derived in the previous section. To specify the observational
effects, we will examine the motion of a massive charged
particle. The charged particle will be constrained to a fixed

fields is radial distance r( that is very far from the gravitational and
0 electromagnetic source, for instance, constrained on the
(@9 + ¢, 9,A? = _h Earth. The r = ry hypersurface is timelike; its induced
_ P’ _ metric can be derived easily by inserting the solution space
Al — _¢;8 G A0 _ 9. AQ) = 45(1) —_45(1) (2.16) in the previous section into (2.1) and (2.2). The induced
¢ P’ gre e PP’ ' metric in series expansions is given by
|
5 W+ O + 0% - 64040 .. [0 2% >
ds* = [1 32 + O(r )} du* =2 [ P T3P, + O(ry )} dudz
2‘1‘0 &'r ‘PO o'r w
3P "0 + O(rgz)} dudz — {2 P3P, + O(ry )} dz* - {2 P?O - 3P§0r0 + O(rgz)] dz*

L

— 14zZ
where P, VR

P2 (rgz)} dzdz,

hypersurface is

Fu: ¢0 6¢0—_0¢2

‘ Ps Pgrg (rO )’ FuZ:_

f7>(z)+5¢0— °¢2
Ps P sTo

(3.1)

We now work in the unit 2-sphere case by setting P = P = P,. The induced Maxwell field on the r = r,

R0, 0=
Pg PQI”O

O(ry?), Fi= O(r5?). (3.2)

A free-falling charged particle with a net charge g on this hypersurface will of course not travel along the geodesic.

The tangent vector V of the particle worldline satisfies

V’/(vDVﬂ =+ qpvﬂ) =0,

(3.3)

where V is the covariant derivative on this three-dimensional hypersurface. Following Ref. [29], we impose that V is given

in series expansion as
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(3.4)

© u Sl Z
v":1+zr—;, vzzzr—;.
a=1 a=2

Then, we can solve (3.3) order by order. The solution up to
relevant order is

) + P9
yro 2280 (3.5)
2
u = 0 p0 ~0x5 -0 3 0 p0)2
Vi =2 (39 +0%}) - 35%30° + 2 (V5 + ¥9)
— P90 + *PRAAL, (3.6)
V5 = —P,dc° + qP?A?, (3.7)
Z =0 0 2 0 = 0 g0 p0
Vi = P, |206"¢ +§‘P1 +§60 (P35 +¥3)
o /dva(wg + P9 + 2¢AY)
: 2
—2gP26°A% + qP2A.. (3.8)

We have set all integration constants of u to zero as we
require that the charged particle is initially static.

At ry? order, V has angular components due to the
presence of gravitational waves characterized by ¢° and
electromagnetic waves characterized by AY. In other words,
the radiation forces the charged particle to rotate over some
tiny angle about the center of the spacetime r = 0. The
memory effect is the velocity kick of the charged particle

1 _
AVE = ~> (P,0AGY — gP?AAY) + O(rg?).
0

(3.9)
It includes two parts: namely, the gravitational contribution
—P,dAc’ and electromagnetic contribution gP?AAY.
They precisely recover the gravitational memory formula
in Ref. [7] and the electromagnetic memory formula
in Ref. [8].

Both gravitational and electromagnetic radiation have a
decomposition into the E mode and B modes [42]. The
decomposition into electric and magnetic parts is achieved
by relating ¢° or ¢9 to spin-weight-0 fields

o® = [A(u,z,2) + iB(u, z,7)],
#S = 9,0[C(u,z,2) +iD(u, z,7)].
where the second relation is equivalent to

AY = —9,(C +iD).

Z

Inserting those decomposition into (2.10) and (2.13),
one obtains

_ 1 _
PBAC = 5 A + 3.

- 1 -
PPAA = — EA(‘P(Z’ + ¥ +6°9,5° + 5°0,6°)

+ [ au(@,00,5 + 4379, (3.10)
and
- % 1 0_ 70
i00AD = EA(¢1 -4,
- 1 _
i0*8>AB = EA(lpg - +6°9,6° - 5%°0,6°). (3.11)

Note that we now work in the unit 2-sphere case. The
E-mode electromagnetic memory in (3.10) only has the
ordinary part 1 A(¢? + ¢9) following the classification of
Ref. [8], because there is no charged matter coupled to the
theory. Hence, no charged radiation reaches null infinity.
The E-mode gravitational memory has both [43,44] the
ordinary part

1 _
-3 A(YY + ¥ + 6°9,6° + 6°0,6°)

and the null part

/ du(9,6°0,5° + $349).

The B-mode memory (3.11) cannot be studied from a
purely asymptotic argument [42]. The B-mode memory just
recovers the relations
it
(azAg - aEA?) = # ’
3?00 — %60 = P) — PY + 6920 — 5920

in (2.16) and (2.8). However, the B-mode memory can been
seen in the position displacement as we will show below.

Following the treatment in electromagnetism [22], one
can define a second memory effect by a position displace-
ment of the charged particle

1 -
e / Vidu ==~ [ du(Pd" — qPTA?) + O(rg?),

(3.12)

where we have used the fact that du = dy + O(ry') and
is the proper time. It also includes two parts, namely the
gravitational contribution — [(P,36°)du and electromag-
netic contribution [(gP?A?)du. They precisely recover the
spin memory formula in Ref. [21] and the displacement
memory formula in Ref. [22].
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Inserting the B-mode decomposition of electromagnetic
and gravitational radiation into (2.9) and (2.12), we obtain

5050 / Ddu — %A(éq&g —530)
4y [ AP@R) -39 (313)
and
i00020° / Bdu
— %A(é‘l’? - 3PY) + %/ du(6°0,5° — 5°0,,6°)

+ / du[o"305° — 590360 + 3(042) — B(¢°F2)].
(3.14)

Interestingly, the B-mode electromagnetic memory (3.13)
now has a null part. The mixed term 6°¢9 in (2.9) is the
“magnetic” source that reaches null infinity.

Another observational memory effect is a time delay of
the free-falling particle [29,30]. The electromagnetic radi-
ation can also contribute to the time delay of a charged
particle. Since V is timelike, the infinitesimal change of the
proper time can be derived from the covector’

1 _
dy = [1 +— (P +9))
2}’0

1 /1 - R - -
2 <8 (¥9 + 99)° + (999 + 0¥Y) — 305"

— Y9 + qungAg)] du + O(ry?). (3.15)

Clearly, the electromagnetic —contribution ()" —
q*P2A%A?) comes one order higher than the gravitational
contribution 5 (‘¥9 + ¥9) in the .- expansion.

IV. CONCLUSIONS

In this work, the gravitational memory effect and the
electromagnetic memory effect are investigated in a unified
fashion by examining the motion of a charged test particle.
Some interesting applications and open questions may
cross the reader’s mind. We have only concerned ourselves
with the memory effects that are related to soft theorems in
the present work. However, as reported in Ref. [45], the
memory effect can be defined as infinite towers at every
order. We believe that the unified method we proposed
here is also applicable for the higher-order memory effect.
One just needs to check more orders in (3.4). Since our

>We have used the fact that dz = ‘r/—z{-’du +O(rg?).
0

motivation is to provide a unified treatment of memory
effect in coupled theories. It would be of interest to test our
treatment in more generic theories with more matter fields
coupled in various ways or even string theory [46]. And the
equivalence between soft theorems and memory effects
could be investigated in a systematical way with our
treatment. In the present work, we applied the Newman-
Unti gauge [47], which is the most convenient one to derive
the solution space and hence the memory effect. However,
the universality of the leading soft theorems implies a
gauge-independent deviation of the memory effect, e.g.,
symmetry or conformal structure [48]. It is of interest to
study this issue elsewhere. Another interesting point is
about the double soft theorem (see, e.g., Refs. [49,50]).
Hopefully, our treatment can shine light on the under-
standing of the memory effect which is connected to the
double soft theorem.
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APPENDIX: NP EQUATIONS

Radial equations are

Dp = p* + 66 + pogho. (A1)
Do =2po + ¥y, (A2)

Dt =1p+70+ ¥, + dod;. (A3)
Da = pa + & + ¢1o. (A4)
Dp =oac+pp+ V¥, (A5)
Dy =ta+7f+¥, + ¢y, (A6)
DA = pA+ 6p + $rgho. (A7)
Dy = pp + oA+ ¥, (A8)
Dv =Ty + 1A+ V5 + rop;. (A9)
DU =7to+t0—(y+7), (A10)
DX = 7LA + 7L, (A1)

Dw = pw + od — 7, (A12)
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DL* = pL* + oL*, (A13)
D\Pl - S\PO - 4/)\111 - 4'C(lPO + $1D¢0 - (;506¢0
—26¢1¢0 + 2BPoo. (Al4)

DY, — 8%, = 3p¥, — 2a¥, — 2%, + 150 — oAby
= 2o, + 2pP 1Py + 2rPodo — 2t 1o,
(A15)
DY; — 0¥, = 2p¥; — 20¥ + ¢ Depy — oS,
+ 2udr o — 2BPagbo.
DY, — 6¥; = p¥y + 2a¥; — 30, — PoAd; + ¢,
+ 22, + 2up 1o — 2rhado — 22411,

(A16)

(A17)
Doy — by = 2ppy — 2apy, (A18)
D¢, — 3¢1 = py — M. (A19)

Nonradial equations are
AL=06v—(u+p)d— By —7)A+2av-¥,, (A20)
Ap=6t—pii—cl=2at+ (y+7)p—¥,, (A21)
Aa=6y+pv—(t+p)A+(F—y—p)a—-Y;, (A22)
Ap=06v—p? =2 = (y +7)u+2Bv— dhrgpr,  (A23)
Ap=6y—put+ov+fy—7—p)—ad—did,. (A24)
Ac = 6t —ou—ph—2Bt+ (3y — 7)o — Popr,  (A25)
Aw =8U+Vu-do+(y—7—-po, (A26)

ALY = 6XA =LA + (y —7 — )L, (A27)
6p—d0 =pr—oBa—p) =¥, + dod. (A28)

S — 6B = up — Ao + aa + pp — 20 —¥, + 1y,
(A29)
04— o = ut + Aa—3B) = V5 + ¢y, (A30)
b —bw =p—p—(a=Plo+(@a-pa, (A3l
SLA =LA = (a—p)LA — (a = P)LA,  (A32)

AW, — 6%, = (4y — u)¥, — (47 + 28)¥, + 30%,
— 2Dy + P15pg — 2Pdod1 + 20014,

(A33)
AlP] — 5‘{‘2 = IJ‘I’O + (2]/ - 2/,{)\11] — 3TlP2 + 20‘1’3
+ ¢1Apy — P20 — 2p1 s
=2y + 2111 + 2adod,. (A34)

Alpz - 6‘{’3 = 21/‘{11 - 3,0th2 + (Zﬂ - 2’[)‘1”3 + UlP4
— §2Dpy + 15ps — 2ucp1 Py + 2BPagpy

(A35)
A“P3 - 5“?4 = 31/‘1‘2 - (2}’ + 4/1)"113 —+ (4ﬂ - T)‘“P4
+ P Ay — P20, — 2a¢rh>
= 2w 1 + 2y papy + 224p1 s, (A36)
Ay — 6¢py = 2y — ) — 22y + 65, (A37)
Agy — 8¢y = vepo — 2uepy — (@ — ). (A38)
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