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Quasinormal modes of scalar field and electromagnetic field in a specific Finslerian-Schwarzschild
spacetime have been investigated in this paper. The equations of motion for scalar field and electromagnetic
field have been constructed by Finslerian-Laplace operator and divergence operator. The solutions of the
equations of motion are presented. The solutions of angular part for scalar field and electromagnetic field
are different. The solutions of radial part are numerically analyzed via WKB approximation and finite
difference method, which give the quasinormal frequencies and dynamic evolution of quasinormal modes,
respectively. The spectrum splitting generated from spherical symmetry breaking of the Finslerian-
Schwarzschild spacetime is shown. The analysis of the dynamical evolution of quasinormal modes shows
that the Finslerian-Schwarzschild black hole is stable if the Finslerian parameter ϵ2 < 0.8.
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I. INTRODUCTION

The black hole, as one of the important predictions of
general relativity, has been discussed intensively by phys-
icists and tested by astronomical observations. Recent
observations on gravitational waves have opened a new
window to investigate the properties of black holes [1].
Currently, the first and second observing runs of Advanced
LIGO detectors have identified ten gravitational wave
events produced by the merge of binary black holes [2].
The ringdown phase, as one of the three processes of the
merge of binary black holes, has deep connection with
the quasinormal modes (QNMs). QNMs, described as the
“characteristic sound” of black holes, have been studied to
analyze the intrinsic properties of black holes [3–5] for a
long time. The frequencies of QNMs, derived from the
perturbed gravitational field equations on a black hole
background, play an important role in determining the
frequencies of gravitational waves in ringdown phase
[3–5]. Ongoing third generation of gravitational wave
detectors, such as Einstein Telescope [6], will provide more
precise observations on the ringdownphase.However, space
detectors, such as LISA [7] and Taiji [8], will give the
observations on the ringdown phase in different frequency
band. Recently, black hole detectability of LISA has been
discussed [9] and Tso [10] studied to detect black hole
spectroscopy by optimizing LIGO with LISA.
Though general relativity has been tested by various

observations with high precisions [11], it is a classical
theory and not compatible with standard quantum field

theory. This fact is one of the major motivations that
physicists constructed modified theories of gravity. Various
modified theories of gravity have been tested by present
astronomical observations [12]. The observations of gravi-
tational waves open a window to test general relativity in
strong gravity region. Different modified theories of gravity
would give different modified gravitational field equations
and generate different eigenfrequencies of QNMs. Thus,
observations of the ringdown phase of gravitational waves
provide an approach to test modified theories of gravity.
In the framework of gauge-gravity duality, QNMs are
reviewed in Refs. [13,14]. QNMs in extra dimensions
are discussed in Refs. [15,16]. QNMs in higher-derivative
gravity, such as fðRÞ gravity and Horndeski gravity, are
discussed in Refs. [17–19]. In the modified theories of
gravity mentioned above, they share one common feature,
namely, the background geometry which is Riemannian.
And QNMs are derived from the Riemannian spacetime
with spherical symmetry or axial symmetry.
Finsler geometry is a natural extension of Riemann

geometry with latter as its special case [20]. Chern [20]
has indicated that Finsler geometry is Riemannian geometry
without the quadratic restriction. Generally, the Finslerian
extension of a given Riemannian spacetime has less sym-
metry than the Riemannian spacetime [21,22]. By this basic
feature of Finsler geometry, Finsler geometry is used to
describe violation of Lorentz invariance [23–26] and study
the anisotropy of our universe [27–29]. The constructions of
the Finslerian gravitational field equation have been inves-
tigated in Refs. [30–35]. However, these equations are not
equivalent to each other. At present, it is still an open debate
that Finslerian generalizations of gravitational field equa-
tions are physically relevant. Thus, it is significant to
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investigate physical predictions of these Finslerian gravita-
tional field equations and constrain them by observations.
Starting from the Finslerian gravitational field equa-

tion given by Rutz [32], we have presented a class of
Finslerian-Schwarzschild solutions [36] and Finslerian
Reissner-Nordström solutions [37], and we have shown
that the Finslerian spacetime possesses an event horizon.
In this paper, we will investigate QNMs originated from
the Finslerian-Schwarzschild solutions. The scalar and
electromagnetic QNM spectrum will be derived. The
Finslerian Schwarzschild black hole breaks the spherical
symmetry. It is expected that the QNM spectrum of
Finslerian-Schwarzschild black hole possesses a similar
property with QNM spectrum of Kerr black hole in general
relativity, namely, spherical symmetry breaking causes the
spectrum splitting.
This paper is organized as follows. In Sec. II, we briefly

introduce the Finslerian-Schwarzschild solutions and
present the Finslerian-Laplace operator and divergence
operator. Then, we derive the solutions of equations of
motion of scalar field and electromagnetic field, respec-
tively. In Sec. III, we utilize WKB approximation and finite
difference method to analyze quasinormal frequencies and
dynamic evolution of QNMs, respectively. Finally, dis-
cussions and conclusions are presented in Sec. IV.

II. QUASINORMAL MODES IN
FINSLERIAN-SCHWARZSCHILD SPACETIME

A. Finslerian-Schwarzschild spacetime

Instead of defining an inner product structure over the
tangent bundle in Riemann geometry, Finsler geometry is
based on the so-called Finsler structure F with the property
Fðx; λyÞ ¼ λFðx; yÞ for all λ > 0, where x ∈ M represents
position and y≡ dx

dτ represents velocity. The Finslerian
metric is given as [20]

gμν ≡ ∂
∂yμ

∂
∂yν

�
1

2
F2

�
: ð1Þ

In Ref. [20], the Finsler structure is positive definite.
However, in physics, the Finsler structure F is not positive
definite at every point of the Finsler manifold. A positive,
zero, or negative F corresponds to timelike, null, or spacelike
curves, respectively. Recently, Javaloyes and Sanch [38]
have presented a well-defined definition on the Finsler
structure with Finsler metric of Lorentzian signature.
Rutz [32] has suggested that Finslerian vacuum gravi-

tational field equation is vanishing from the Ricci scalar.
The Ricci scalar is given as

Ric≡ 1

F2

�
2
∂Gμ

∂xμ −yλ
∂2Gμ

∂xλ∂yμþ2Gλ ∂2Gμ

∂yλ∂yμ−
∂Gμ

∂yλ
∂Gλ

∂yμ
�
;

ð2Þ

where

Gμ ¼ 1

4
gμν

� ∂2F2

∂xλ∂yν y
λ −

∂F2

∂xν
�

ð3Þ

is called geodesic spray coefficients. In our previous
research [36], we obtained the following Finslerian-
Schwarzschild solution from the Finslerian vacuum gravi-
tational field equation:

F2¼−
�
1−

2GM
r

�
ytytþ

�
1−

2GM
r

�
−1
yryrþr2F̄2; ð4Þ

where F̄ is a two-dimensional Finsler space with positive
constant flag curvature. Unlike Riemann geometry, Finsler
spacetime with positive constant flag curvature is not
equivalent to each other. For example, we obtained a
Finsler spacetime with constant flag curvature [37], which
admits four independent Killing vectors. In Ref. [22], we
have shown that a projectively flat Randers spacetime with
a constant flag curvature admits six independent Killing
vectors, which implies these two Finsler spacetimes are
not equivalent. As for two-dimensional Finsler space,
Byrant [39] has given a projectively flat Finsler two-sphere
of constant flag curvature. It is not equivalent to the Finsler
space given by Shen [40]. Therefore, the Finslerian-
Schwarzschild solution represents a class of black hole
solutions in Finsler spacetime. Thus, physical observations,
such as QNMs, could tell us which Finsler space with
constant curvature is preferred.
In this paper, we only consider the Finslerian-

Schwarzschild spacetime in which its subspace F̄ takes
the special form as follows [36,40]:

F̄¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− ϵ2sin2θÞyθyθþ sin2θyφyφ

p
1− ϵ2sin2θ

−
ϵsin2θyφ

1−ϵ2sin2θ
; ð5Þ

where ϵ is the Finslerian parameter and 0 ≤ ϵ < 1. While
ϵ ¼ 0, the Finslerian-Schwarzschild spacetime reduces to
Schwarzschild spacetime.

B. Scalar field perturbation of
Finslerian-Schwarzschild black hole

In general relativity, most QNMs of Schwarzschild
black hole can be unitarily described by the following
wave function [14]:

Ψ ¼ e−iωtYm
l ðθ;φÞRðrÞ: ð6Þ

The term e−iωt in formula (6) represents the temporal
translation symmetry preserved in Schwarzschild spacetime.
The spherical harmonics Ym

l ðθ;φÞ in formula (6) represent
the spherical symmetry preserved in Schwarzschild space-
time, which is derived from the Riemannian-Laplace
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operator. The term RðrÞ satisfies the Schrödinger-like
equation where its effective potential is of the form [14]

VGR ¼ f
�
lðlþ 1Þ

r2
þ 1

r
df
dr

ð1 − s2Þ
�
; ð7Þ

where s denotes spin of the investigated field. It is worth
investigating whether the form of effective potential still
holds or not in Finslerian-Schwarzschild spacetime.
In general relativity, the equations of motion of the scalar

field and electromagnetic field relate to the Laplace
operator and divergence operator, respectively. Thus, to
find the equations of motion of the scalar field and
electromagnetic field in Finslerian gravity, we should first
investigate these operators in Finsler geometry. The
Laplace operator in Riemannian geometry has good prop-
erty that Laplace operators defined from several different
ways [41] are equivalent to each other. However, Finslerian
extension of these definitions will lead to different
Laplace operators. Various Finslerian-Laplace operators
are, respectively, defined by Bao and Lackey [42], Shen
[43], Barthelme [44], and Mo [45]. In Ref. [46], another
definition of Finslerian operator is given, namely, the mean
Laplace operator. It proves that this Finslerian operator is
equivalent to the one defined in Refs. [44,45]. The
Finslerian-Laplace operator defined in Ref. [43] is not
linear. Thus, it cannot be used to discuss QNMs. Since the
Finslerian operator defined by Mo [45] is a linear operator
and is equivalent to other two definitions [44,46], we
consider Mo’s definition [45] for convenience to discuss
QNMs in this paper.
For any one form A ¼ Aμdxμ and smooth function ϕ, the

Finslerian-Laplace operator and divergence operator [45]
are given as

Δϕ ¼ σ−1∂μðḡμνσ∂νϕÞ; ð8Þ

divA ¼ σ−1∂μðḡμνσ∂AνÞ; ð9Þ

where σ denotes the Holmes-Thompson volume element in
Finsler geometry [43]. ḡμν is defined in terms of the Finsler
metric gμν,

ḡμν ¼ σ−1c−1n−1

Z
SxM

gμν detðgμν=FÞdη; ð10Þ

where cn−1 denotes the volume of the unit Euclidean
(n − 1) sphere, SxM ¼ fy ∈ TxMjFðyÞ ¼ 1g, and

dη ¼
Xn
i¼1

ð−1Þi−1yidy1 ∧ � � � ∧ cdyi ∧ � � � ∧ dyn: ð11Þ

However, the Holmes-Thompson volume element is
given as

σ ¼ c−1n−1

Z
SxM

detðgμν=FÞdη: ð12Þ

It should be noticed that ḡμν is the Riemannian metric.
Thus, the Finslerian-Laplace operator defined in
Refs. [44–46] is a weighted Riemannian-Laplace operator.
Though the Finslerian-Laplace operator and divergence
operator are very similar to the Riemannian one, they still
carry important information on Finsler spacetime, such as
the Holmes-Thompson volume element σ. And the
Riemannian metric ḡμν can be regarded as an average
one of Finsler metric gμν.
In two-dimensional Randers space [47], i.e.,

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aijðxÞyiyj

q
þ biðxÞyi, the mean Riemannian metric

can be derived from the formula (10) [46]

ḡij ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

p

2
aij −

1

2
bibj; ð13Þ

where b2 ≡ aijbibj. The Holmes-Thompson volume
element σ for Randers space is given as

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
det aij

q
: ð14Þ

Making use of the formulas (13) and (14), one can derive
the Finslerian-Laplace operator for Randers space,

ΔF̄ ¼
2ð1− ϵ2sin2θÞ3=2

sin2θð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ϵ2sin2θ

p
Þ
∂2

∂φ2
þ 2ð1− ϵ2sin2θÞ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ϵ2sin2θ

p ∂2

∂θ2

þ2cosθðϵ2sin2θþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ϵ2sin2θ

p
Þ

sinθð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ϵ2sin2θ

p
Þ

∂
∂θ : ð15Þ

In this paper, we only consider the Finslerian effect for
QNMs as a perturbation. Thus, we expand the Finslerian-
Laplace operator ΔF̄ in powers of ϵ. To first order in ϵ2, the
Finslerian-Laplace operator is given as

ΔF̄ ¼ 1

sin θ

�
1 −

3

2
ϵ2sin2θ

��
∂θ sin θ

�
1þ 3

4
ϵ2sin2θ

�
∂θ

�
þ 1

sin2θ

�
1 −

5

4
ϵ2sin2θ

�
∂2
φ: ð16Þ

From the definition of mean Riemannian metric, one
can find that ḡμν ¼ gμν if gμν is Riemannian metric.
The Finslerian-Schwarzschild metric is a warp product
metric. And nonquadratic components of the Finslerian-
Schwarzschild metric only appear in angular part of this
spacetime. Thus, the Finslerian-Laplace operator for the
Finslerian-Schwarzschild spacetime has the form

ΔF ¼ −f−1∂2
t þ r−2∂rðfr2∂rÞ þ ΔF̄; ð17Þ
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where f ≡ 1–2GM=r. Then, the equation of motion of the
massless scalar field Ψ in Finslerian-Schwarzschild space-
time satisfies

ΔFΨ ¼ 0: ð18Þ

The solution of Eq. (18) is given as

Ψ ¼ e−iωtȲm
l ðθ;φÞRSðrÞ=r: ð19Þ

The Ȳm
l ðθ;φÞ in Eq. (19) is the eigenfunction of the

Finslerian-Laplace operator ΔF̄,

Ȳm
l ¼ Ym

l þ ϵ2ðC̄m
lþ2Y

m
lþ2 þ C̄m

l−2Y
m
l−2Þ; ð20Þ

where

C̄m
lþ2 ¼−

3lðl−1Þ
8ð2lþ3Þ2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmþ1Þðl−mþ1Þðlþmþ2Þðl−mþ2Þ

ð2lþ1Þð2lþ5Þ

s
;

ð21Þ

C̄m
l−2¼

3ðlþ1Þðlþ2Þ
8ð2l−1Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞðl−mÞðlþm−1Þðl−m−1Þ

ð2lþ1Þð2l−3Þ

s
:

ð22Þ

Moreover, the corresponding eigenvalue of the Finslerian-
Laplace operator ΔF̄ is given as [37]

λS ¼ lðlþ 1Þ þ λSM; ð23Þ

where λSM ¼ −ϵ2ð3ðl−1Þlðlþ1Þðlþ2Þ
2ð2l−1Þð2lþ3Þ þ m2ð7l2þ7lþ6Þ

2ð2l−1Þð2lþ3ÞÞ is the modi-

fied eigenvalue of scalar field perturbations derived from
the Finslerian-Schwarzschild spacetime.
TheRSðrÞ in Eq. (18) satisfies the following Schrödinger-

like equation:

d2RS

dr2�
þ ðω2 − VSÞRS ¼ 0; ð24Þ

where dr� ¼ dr=f is the tortoise coordinate, and the
effective scalar potential is given as

VS ¼ f

�
λS

r2
þ 1

r
df
dr

�
: ð25Þ

The difference between the Finslerian-Schwarzschild
spacetime and Schwarzschild spacetime lies on angular
components of spacetime metric. It also reflects on the
solution of equation of motion of massless scalar field.
However, in standard process of dealing with QNMs, only

the nonangular solution is physically important, i.e.,
e−iωtRSðrÞ=r. The Schrödinger-like equation will give a
wavelike solution. And it possesses a complex frequency
generated from the effective scalar potential VS. This is
the reason why physicists call such phenomena QNMs.
The effective scalar potential VS implies the Finslerian
effect on QNMs comes from the eigenvalue λS of the
Finslerian-Laplace operator ΔF̄, which depends on multi-
pole quantum number l, magnetic quantum number m, and
the Finslerian parameter ϵ.

C. Electromagnetic field perturbation of
Finslerian-Schwarzschild black hole

The electromagnetic field on Finslerian spherical bundle
has been studied in Ref. [48]. Unlike the researches in
Ref. [48], we investigate electromagnetic field in terms of
the mean Riemannian metric ḡμν. Following the same
reason of constructing the Finslerian-Laplace operator
for the Finslerian-Schwarzschild spacetime, the equation
of motion of electromagnetic field can be constructed by
the Finslerian divergence operator. It is of the form

1ffiffiffiffiffiffi−gp ð∂ν
ffiffiffiffiffiffi
−g

p
FνμÞ ¼ 0; ð26Þ

where g ¼ r2σ denotes the determinant of the mean
Riemannian metric ḡμν of Finslerian-Schwarzschild space-
time, and Fνμ ¼ ḡναḡμβFαβ. The electromagnetic tensor Fμν

is given via vector potential Aμ,

Fμν ¼ ∂μAν − ∂νAμ: ð27Þ

In Schwarzschild spacetime, the equation of motion
of electromagnetic field can be solved by Ruffni’s approach
[49], namely, expanding vector potential Aμ in vector
spherical harmonics. However, the spherical symmetry
does not hold in Finslerian-Schwarzschild spacetime. It
is difficult to find an exact solution of Eq. (26). In this
paper, we find a perturbed solution of Eq. (26). The vector
potential Aμ is an extension of the axial mode of Ruffini’s
solution [49]. The nonvanishing components of Aμ are of
the form

Aθ ¼ e−iωtRAðrÞ 1

sin θ

�
1 −

3

4
ϵ2sin2θ

�
∂φỸm

l ðθ;φÞ; ð28Þ

Aφ ¼ −e−iωtRAðrÞ sin θ
�
1 −

1

4
ϵ2sin2θ

�
∂θỸm

l ðθ;φÞ: ð29Þ

By making use of the Finslerian-Schwarzschild metric, and
substituting the formulas of vector potential Aμ into
Eq. (26), to first order in ϵ2, one can find that Eq. (26)
can be simplified into the following equations:
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d2RA

dr2�
þ ðω2 − VAÞRA ¼ 0; ð30Þ

ΔA
F̄Ỹ

m
l ðθ;φÞ þ λAỸm

l ðθ;φÞ ¼ 0; ð31Þ

where the effective potential of axial mode of electromag-
netic field VA is given as

VA ¼ fλA

r2
; ð32Þ

and the operator ΔA
F̄ is defined as

ΔA
F̄ ≡ 1

sin θ

�
1 −

1

2
ϵ2sin2θ

��
∂θ sin θ

�
1 −

1

4
ϵ2sin2θ

�
∂θ

�
þ 1

sin2θ

�
1 −

5

4
ϵ2sin2θ

�
∂2
φ: ð33Þ

The Ỹm
l ðθ;φÞ in Eqs. (28) and (29) is the eigenfunction of

the operator ΔA
F̄,

Ỹm
l ¼ Ym

l þ ϵ2ðC̃m
lþ2Y

m
lþ2 þ C̃m

l−2Y
m
l−2Þ; ð34Þ

where

C̃m
lþ2 ¼−

lð3lþ5Þ
8ð2lþ3Þ2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmþ1Þðl−mþ1Þðlþmþ2Þðl−mþ2Þ

ð2lþ1Þð2lþ5Þ

s
;

ð35Þ

C̃m
l−2¼

ð3l−2Þðlþ1Þ
8ð2l−1Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞðl−mÞðlþm−1Þðl−m−1Þ

ð2lþ1Þð2l−3Þ

s
:

ð36Þ

Moreover, the corresponding eigenvalue of the operator ΔA
F̄

is given as

λA ¼ lðlþ 1Þ þ λAM; ð37Þ

where λAM ¼ −ϵ2ðlðlþ1Þð3l2þ3l−2Þ
2ð2l−1Þð2lþ3Þ þ m2ð7l2þ7l−6Þ

2ð2l−1Þð2lþ3ÞÞ is the modi-

fied eigenvalue of electromagnetic field perturbations
derived from the Finslerian-Schwarzschild spacetime.
One should notice that the operator ΔA

F̄ differs from the
Finslerian-Laplace operator ΔF̄. It means that the solutions
of angular part for scalar field and electromagnetic field are
different. This is another feature of QNMs in Finslerian-
Schwarzschild spacetime.
In the above discussion, we have presented the extension

of the axial mode of Ruffini’s solution [49]. Now, we will
give an extension of the polar mode of Ruffini’s solution.

The nonvanishing components of Āμ for the polar mode
extension are of the form

ĀT
μ ¼

�
a1ðr; tÞȲm

l ;a2ðr;tÞȲm
l ;a3ðr;tÞ

∂Ȳm
l

∂θ ;a3ðr; tÞ
∂Ȳm

l

∂φ
�
;

ð38Þ

where Ȳm
l is the same with the one in scalar perturbation

and satisfies the equation (20). Following the method
proposed in Ref. [49], a master variable is defined as

RPðrÞ≡ eiωt
r2

λS

�∂a2
∂t −

∂a1
∂r

�
: ð39Þ

By making use of the Finslerian-Schwarzschild metric,
and substituting the formulas of vector potential Āμ into
Eq. (26), to first order in ϵ2, one can find that the master
variable RP satisfies the following equation:

d2RP

dr2�
þ ðω2 − VPÞRP ¼ 0; ð40Þ

where the effective potential of polar mode of electromag-
netic field VP is given as

VP ¼ fλS

r2
: ð41Þ

III. NUMERICAL RESULTS

A. Dependence of parameters from WKB
approximation

In Sec. II, we found that both the scalar field
and electromagnetic field satisfy the Schrödinger-like
equations (24), (30), and (40), respectively. Therefore,
the characteristic frequency of the corresponding QNMs
can be obtained from the WKB approximation. Such
method was proposed by Schutz and Will [50] and then
promoted by Iyer and Will [51] and Konoplya [52]. Here,
we use sixth order WKB approximation [52] with high
accuracy, which has the form

iðω2−V0Þffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00

0

p ����
r¼r0

¼ nþ1

2
þ
X6
i¼2

Λi; ðn¼ 0;1;2;…Þ; ð42Þ

where V0 is the maximum value of effective potential, Λi is
the ith order correction terms depending on the effective
potential, and the specific forms of the corrections can be
found in Refs. [50–52]. In this paper, we mainly consider
the fundamental QNMs frequencies which are described by
overtone number n ¼ 0.
WKB approximation is directly related to the effective

potential. In Finslerian-Schwarzschild black hole, the
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effective scalar potential and electromagnetic potential are
given by Eqs. (25), (32), and (41), as illustrated in Fig. 1. It
is obvious that the effective electromagnetic potential is
smaller than scalar potential under the same parameters.
Both the effective potentials of scalar field and electro-
magnetic field vanish while r approaches to event horizon
of Finslerian-Schwarzschild black hole and infinity.
Following the discussion in the review paper [13], one
can find that our Schrödinger-like equations should pos-
sess the same boundary condition with the one in
Schwarzschild spacetime. Thus, the Schrödinger-like
equations satisfy the following ingoing and outgoing
boundary conditions:

lim
r�→∓∞

� R expð�iωr�Þ ¼ 1: ð43Þ

The complex frequencies of QNMs in Finslerian-
Schwarzschild spacetime are related to the effective poten-
tial that depends on four parameters, i.e., the mass of black
hole GM, Finslerian parameter ϵ2, and multipole quantum
number l and magnetic quantum number m. In this paper,
we just analyze dimensionless quasinormal frequencies.
The mass of black hole has been set as GM ¼ 1 in the
following numerical calculations. The Finslerian parameter
ϵ2 is an essential quantity that measures the deviation from
Schwarzschild spacetime to Finslerian spacetime. Thus, we

TABLE I. Fundamental quasinormal frequencies for scalar field and axial and polar modes of electromagnetic field perturbations with
various values of l and ϵ2. It is calculated by sixth order WKB approximation and the parameters used in the calculation were GM ¼ 1
and m ¼ 0.

Electromagnetic

Scalar Axial Polar

l ϵ2 Reðω0Þ Imðω0Þ Reðω0Þ Imðω0Þ Reðω0Þ Imðω0Þ
0 0.1 0.110460 −0.1008230 … … … …
1 0.1 0.292910 −0.0977616 0.242191 −0.0924927 0.248191 −0.0926370

0.2 0.292910 −0.0977616 0.236041 −0.0923365 0.248191 −0.0926370
0.3 0.292910 −0.0977616 0.229731 −0.0921671 0.248191 −0.0926370
0.4 0.292910 −0.0977616 0.223247 −0.0919826 0.248191 −0.0926370
0.5 0.292910 −0.0977616 0.216574 −0.0917810 0.248191 −0.0926370

2 0.1 0.477033 −0.0967815 0.448256 −0.0949633 0.450609 −0.0949756
0.2 0.470332 −0.0967978 0.438721 −0.0949115 0.443514 −0.0949379
0.3 0.463534 −0.0968151 0.428975 −0.0948553 0.436305 −0.0948979
0.4 0.456635 −0.0968335 0.419003 −0.0947940 0.428975 −0.0948553
0.5 0.449630 −0.0968531 0.408789 −0.0947271 0.421518 −0.0948099

3 0.1 0.664308 −0.0965099 0.643995 −0.0955933 0.645526 −0.0955962
0.2 0.653062 −0.0965198 0.630828 −0.0955675 0.633950 −0.0955737
0.3 0.641620 −0.0965305 0.617380 −0.0955395 0.622159 −0.0955497
0.4 0.629970 −0.0965420 0.603633 −0.0955091 0.610141 −0.0955237
0.5 0.618100 −0.0965543 0.589566 −0.0954758 0.597881 −0.0954957
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FIG. 1. The effective scalar potential, axial and polar modes of electromagnetic potential in Finslerian-Schwarzschild spacetime with
different ϵ2. The parameters used in the calculation were GM ¼ 1, m ¼ 0, l ¼ 3.
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first analyze the dependence of fundamental quasinormal
frequencies with ϵ2. The numerical results are listed in
Table I. For scalar field, the magnitude of Reðω0Þ decreases
as ϵ2 increases, the magnitude of jImðω0Þj increases as ϵ2
increase. For axial mode of electromagnetic field and polar
mode of electromagnetic field with l > 1, the magnitudes
of Reðω0Þ and jImðω0Þj are both suppressed with higher ϵ2.
The different behaviors of the magnitude of jImðω0Þj
between scalar field and electromagnetic field just reflect
the difference between the eigenvalues of operator ΔF̄ and
ΔA

F̄. It should be noticed that, in Table I, the fundamental
QNM frequencies of scaler field perturbations and polar

mode of electromagnetic field perturbations in Finslerian-
Schwarzschild spacetime are the same with the one in
Schwarzschild spacetime if l ¼ 0, 1 and m ¼ 0, which just
reflects that the eigenvalue λS ¼ λGR if l ¼ 0, 1 and m ¼ 0.
Similar to the Kerr QNM spectrum, spherical symmetry

breaking causes Zeeman-like splitting of QNM spectrum in
Finslerian-Schwarzschild spacetime. The impacts of m on
the fundamental quasinormal frequencies are shown in
Figs. 2–4. The numerical results calculated by the WKB
approximation are reported in Table II. For scalar field,
the magnitude of Reðω0Þ decreases with higher m, and
the magnitude of jImðω0Þj increases as m increases.
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FIG. 2. Real and imaginary part of fundamental quasinormal frequencies of scalar field perturbations with l ¼ 1, 2, 3, 4 and varyingm.
Lines refer to m ¼ 0;…; l from top to bottom for Reðω0Þ, and from bottom to top for jImðω0Þj.
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FIG. 3. Real and imaginary part of fundamental quasinormal frequencies of axial mode of electromagnetic field perturbations with
l ¼ 1, 2, 3, 4 and varying m. Lines refer to m ¼ 0;…; l from top to bottom for Reðω0Þ and jImðω0Þj.
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For axial and polar modes of electromagnetic field, the
magnitudes of Reðω0Þ and jImðω0Þj both decrease with
higher m.

B. Stability analysis from finite difference method

The four-dimensional Schwarzschild black hole is
stable under perturbations [53]. The stability of black
hole guarantees its theoretical existence in cosmology.
Thus, it is important to test the stability of Finslerian-
Schwarzschild black hole. The stability is controlled by
the effective potential. The black hole is stable if the
effective potential is positive definite. While the eigen-
values λS > 0 and λA > 0, then the effective potentials of
scalar field and electromagnetic field are positive defi-
nite, respectively. Both the eigenvalues λS and λA have

the same lower bound if m ¼ l and l → ∞, and it is of
the form

lim
l→∞

λS ¼ lim
l→∞

λA ¼ l2ð1 − 5ϵ2=4Þ: ð44Þ
The formula (44) implies that the Finslerian-Schwarzschild
black hole is stable if ϵ2 < 0.8. One should notice that
our analysis for stability is derived from a perturbative
approach. We will test this stability analysis via the
dynamical evolution of QNMs.
Finite difference method [54], extensively used with

discretization and Taylor expansion, has been adopted to
analyze the dynamical evolution of QNMs. Introducing the
light-cone coordinates μ ¼ t − r� and ν ¼ tþ r�, the wave
equations (24), (30) and (40) can be simplified into the
following differential equation:
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FIG. 4. Real and imaginary part of fundamental quasinormal frequencies of polar mode of electromagnetic field perturbations with
l ¼ 1, 2, 3, 4 and varying m. Lines refer to m ¼ 0;…; l from top to bottom for Reðω0Þ and jImðω0Þj.

TABLE II. Fundamental quasinormal frequencies for scalar field and axial and polar modes of electromagnetic field perturbations with
various values of l andm, calculated with the sixth order WKB approximation. For the considered spacetime, the parameters used in the
calculation were GM ¼ 1 and ϵ2 ¼ 0.5.

Electromagnetic

Scalar Axial Polar

l m Reðω0Þ Imðω0Þ Reðω0Þ Imðω0Þ Reðω0Þ Imðω0Þ
0 0 0.110460 −0.1008230 … … … …
1 0 0.292910 −0.0977616 0.216574 −0.0917810 0.248191 −0.0926370

1 0.221047 −0.0988080 0.179657 −0.0904171 0.158145 −0.0893976
2 0 0.449630 −0.0968531 0.408789 −0.0947271 0.421518 −0.0948099

1 0.425448 −0.0969288 0.388919 −0.0945831 0.395653 −0.0946341
2 0.342822 −0.0973295 0.322087 −0.0939193 0.305274 −0.0936923

3 0 0.618100 −0.0965543 0.589566 −0.0954758 0.597881 −0.0954957
1 0.602935 −0.0965712 0.575799 −0.0954409 0.582194 −0.0954574
2 0.554957 −0.0966343 0.532369 −0.0953138 0.532369 −0.0953138
3 0.464104 −0.0968136 0.450804 −0.0949766 0.436910 −0.0949013
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�
4

∂2

∂μ∂νþ Vðμ; νÞ
�
ψðμ; νÞ ¼ 0: ð45Þ

Using Taylor expansion, Eq. (45) can be discretized as

ψðμþ δμ; νþ δνÞ ¼ ψðμ; νþ δνÞ þ ψðμþ δμ; νÞ − ψðμ; νÞ

− ΔμΔνV
�
2ν − 2μþ δν − δμ

4

�
ψðμþ δμ; νÞ þ ψðμ; νþ δνÞ

8
þOðh4Þ; ð46Þ

where h ¼ δμ ¼ δν is the grid cell scale. We set ψðμ; ν ¼
ν0Þ ¼ 0 as a boundary condition in the process of arith-
metic, and the other one is a Gaussian pulse as the initial
condition ψðμ ¼ μ0; νÞ ¼ exp½−ðν − νcÞ2=2ω2�. The con-
stants of Gaussian pulse are fixed in following calculations,
namely, νc ¼ 1 and ω ¼ 1.
The dynamical evolution of QNMs in Finslerian-

Schwarzschild spacetime can be affected by multipole
quantum number l, magnetic quantum number m, and
the Finslerian parameter ϵ2. The effects of these various

parameters on the dynamical evolutions of scalar field and
electromagnetic field are shown in Figs. 5–7, respectively.
Our numerical results of the dynamical evolution of QNMs
show that no instability occurs if ϵ2 < 0.8. It is consistent
with the analysis of the effective potentials.
In the given figures, one can find that the periods of

oscillation of scalar field and electromagnetic field both
increase with higher Finslerian parameter ϵ2 and higher
magnetic quantum number m. And they both decrease with
higher multipole quantum number l. One should notice that
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FIG. 5. The dynamical evolution of fundamental quasinormal of scalar field and axial and polar modes of electromagnetic field in
Finslerian-Schwarzschild spacetime with different ϵ2. The parameters used in the calculation were GM ¼ 1, l ¼ 2, m ¼ 0.
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QUASINORMAL MODES OF A SCALAR AND AN … PHYS. REV. D 101, 124012 (2020)

124012-9



the periods of oscillation are proportional to the inverse
of the real part of the QNMs frequencies. In the above
figures on the dynamical evolution of QNMs, magnitude
of the peak of the dynamical evolution of QNMs
decreases with the increase in time. It denotes the effect
of the imaginary part of the QNMs frequencies. The
dependence between the parameters (ϵ2; l; m) and the
descent speed of the peak are not obvious in the above
figures. Our numerical results of the dynamical evolu-
tion show that such dependence is the same with the
numerical results obtained by the WKB approximation.
Therefore, the results of dynamical evolutions of QNMs
are compatible with the numerical results of WKB
approximations that are presented in Sec. III A.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we investigated QNMs of a specific
Finslerian-Schwarzschild black hole. We adopted the
Finslerian-Laplace operator and divergence operator
defined in Ref. [45] to derive the equations of motion of
scalar field and electromagnetic field. The solutions for
scalar field and electromagnetic field are presented in
Eqs. (19), (28), (29), and (38), respectively. The solutions
of angular part for scalar field Ȳm

l and electromagnetic field
Ỹm
l are different, although both of them reduce to spherical

harmonic function if the Finslerian parameter ϵ ¼ 0. We
found that both solutions of the radial part for scalar field
RS and electromagnetic field RA and RP satisfy the
Schrödinger-like equations, respectively. The difference
between the eigenvalues λS and λA means that the
Schrödinger-like equations cannot be written into a com-
pact form as the one for Schwarzschild black hole.
The Schrödinger-like equations were solved via WKB

approximation and finite difference method. Fundamental
quasinormal frequencies for scalar field and electromag-
netic field with various l and ϵ2 are presented in Table I.
The Finslerian parameter ϵ2 does affect the period of

oscillation of QNMs in Finslerian-Schwarzschild black
hole. And it has less effect on the decay rate of QNMs.
The effective potentials of scalar field and electromagnetic
field depend on the magnetic quantum number m. Such a
fact reflects the spherical symmetry breaking of Finslerian-
Schwarzschild spacetime, and hence it will cause spectrum
splitting. The results are listed in Table II. The difference
between the eigenvalues λS and λA has impacted the
spectrum splitting, shown in Figs. 2–4. One should notice
that the spectrum splitting of QNMs in Finslerian-
Schwarzschild black hole differs from the one in Kerr
black hole. This is due to the fact that the effective
potentials of scalar field and electromagnetic field depend
on m2 in Finslerian-Schwarzschild black hole and the one
depends on m in Kerr black hole.
Both theoretical analysis on the effective potential and

numerical calculations of the dynamical evolution of QNMs
show that the Finslerian-Schwarzschild black hole is stable
if the Finslerian parameter ϵ2 < 0.8. One should notice that
our analysis for stability is derived from a perturbative
approach. In all, our results show that the Finslerian-
Schwarzschild black hole could exist in cosmology and
its QNMs of scalar field and electromagnetic field possess
distinguish properties from the one in Schwarzschild black
hole or Kerr black hole.
At last, we should emphasize that QNMs obtained

in this paper are based on the Finslerian gravitational
field equation that was presented by Rutz [32]. Other
Finslerian gravitational field equations [31,33,34]
will derive different vacuum solutions. All of them
are expected to be different from the Finslerian-
Schwarzschild spacetime [36], since these gravitational
field equations are not equivalent to each other. QNMs
generated from these different vacuum solutions should
be different. Therefore, the observations of QNMs will
be an approach to distinguish which Finslerian gravi-
tational field equations or Einstein’s field equation is
valid.
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FIG. 7. The dynamical evolution of fundamental quasinormal of scalar field and axial and polar modes of electromagnetic field in
Finslerian-Schwarzschild spacetime with different m. And m is a degenerate quantity in Finsler geometry. The parameters used in the
calculation were GM ¼ 1, l ¼ 2, and ϵ2 ¼ 0.5.
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