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The memory effect at null infinity, Iþ, can be defined in terms of the permanent relative displacement of
test particles (at leading order in 1=r) resulting from the passage of a burst of gravitational radiation. In
D ¼ 4 spacetime dimensions, the memory effect can be characterized by the supertranslation relating the
“good cuts” of Iþ in the stationary eras at early and late retarded times. It also can be characterized in terms
of charges and fluxes associated with supertranslations. Black hole event horizons are in many ways
analogous to Iþ. We consider here analogous definitions of memory for a black hole, assuming that the
black hole is approximately stationary at early and late advanced times, so that its event horizon is
described by a Killing horizon (assumed nonextremal) at early and late times. We give prescriptions for
defining preferred foliations of nonextremal Killing horizons. We give a definition of the memory tensor for
a black hole in terms of the “permanent relative displacement” of the null geodesic generators of the event
horizon between the early and late time stationary eras. We show that preferred foliations of the event
horizon in the early and late time eras are related by a Chandrasekaran-Flanagan-Prabhu (CFP)
supertranslation. However, we find that the memory tensor for a black hole horizon does not appear
to be related to the CFP symmetries or their charges and fluxes in a manner similar to that occurring at Iþ.
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I. INTRODUCTION

A gravitational wave in an asymptotically flat spacetime
passing through a system of test particles near null infinity,
Iþ, will induce oscillations in the relative positions of these
test particles. It has long been known that, after the wave
has passed by, the relative positions of the particles need not
return to their original values [1,2]. This fact is known as
the gravitational memory effect. The memory effect has
received considerable interest in recent years due to its
connections with asymptotic symmetries, conservation
laws, and infrared divergences [3–5].
Memory at null infinity can be characterized in a number

of different ways. As we shall review in Sec. II, memory at
null infinity is defined in terms of the leading order in 1=r
change in the relative displacement of test particles (ini-
tially at rest) between stationary eras. In D ¼ 4 spacetime
dimensions, the memory tensor, ΔAB, defined in this way is
given by a formula that expresses it in terms of a super-
translation, T, [6,7] (see Eq. (9) below). The supertrans-
lation, T, also describes the relationship between the “good
cuts” [8] of Iþ in the initial and final stationary eras, where
the good cuts are those for which the shear of the “ingoing”
(i.e., transverse to Iþ) orthogonal null geodesics vanishes

at Iþ in the unphysical spacetime.1 Thus, memory at Iþ
can also be characterized in terms of the asymptotic
symmetry that relates the good cuts of Iþ in the stationary
eras at early and late times. In addition, memory at Iþ can
also be characterized in the following way: Asymptotic
symmetries at Iþ have associated charges and fluxes [9].
The integrated flux associated with a supertranslation has a
contribution arising from the Bondi flux (the “hard”
integrated flux), but it also has a contribution from the
memory tensor (the “soft” integrated flux); see, e.g., section
F1 of [4]. Thus, the memory tensor characterizes the
“soft” contribution to the integrated flux associated with
supertranslation charges.
Black hole horizons have many features in common

with Iþ. Both, of course, are null boundaries of the domain
of outer communications of the black hole. The event
horizon of a stationary black hole is a Killing horizon, and
thus its null geodesic generators have vanishing expansion
and shear, similar to Iþ. As shown in [10], for perturba-
tions of a stationary black hole, the canonical energy flux
through the horizon is given by a formula that exactly
mirrors the formula for Bondi energy flux through Iþ, with
the perturbed shear of the horizon playing the role of Bondi
news at Iþ. These close analogies suggest that there might
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1In the physical spacetime, this corresponds to the vanishing of
the shear at order 1=r2.
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be a notion of memory for black hole event horizons that
has similar features to memory at Iþ. A notion of black
hole memory and its properties could potentially be of
interest for the investigation of classical and quantum
aspects of black holes, particularly in view of the sugges-
tion of [11] that “soft hair” on black holes could play a role
in the black hole information issue.
In this paper, we will consider notions of black hole

memory2 and their properties. We consider a black hole
that becomes (approximately) stationary at early and late
retarded times—so that its event horizon, Hþ, is well
approximated by a Killing horizon (assumed to be non-
extremal) in these eras—and we investigate the extent to
which black hole memory can be defined and characterized
in a manner analogous to memory at null infinity. We find
the following: (1) One can define a memory tensor, ΔAB, at
the event horizon, Hþ, of a black hole analogous to the
memory tensor at Iþ. The black hole memory tensor
directly describes the net change in the relative displace-
ment of the null generators of the horizon between the early
and late time stationary eras. (2) We show that natural
analogs of “good cuts” can be defined for any nonextremal
Killing horizon. Indeed, we find two inequivalent pre-
scriptions for defining good cuts. Using either of these
prescriptions, we show that the early time good cuts are
related to the late time good cuts by a Chandrasekaran-
Flanagan-Prabhu (CFP) [14] supertranslation, T. However,
unlike the situation at Iþ, there does not appear to be any
relation between T and the memory tensor ΔAB. There
also does not appear to be any relationship between the
charges and fluxes associated with CFP supertranslations
and the memory tensor ΔAB.
Thus, we find that many of the facets of memory at Iþ

have close analogs at the event horizon of a black hole.
However, the relationships between these facets that hold
at Iþ do not appear to hold at the horizon of a black hole. It
is not difficult to identify the mathematical reason why this
is so. A gravitational wave at Iþ does not affect the “zeroth
order” structure of Iþ, i.e., it affects the metric only at
“radiative order,” 1=rðD=2−1Þ, and faster fall-off, where D is
the spacetime dimension. In particular, the geometry of Iþ
itself is unchanged by the passage of a gravitational wave.
By contrast, a gravitational wave passing through the event
horizon of a black hole has a “zeroth order” effect on the
geometry of the horizon. Black hole memory affects the
horizon itself rather than being a “perturbative effect” away
from the horizon. For this reason, relationships between
aspects of memory at a black hole horizon have a very
different mathematical structure from those at Iþ.

In Sec. II we briefly review the notion and properties of
memory at Iþ, focusing attention on D ¼ 4 spacetime
dimensions. In Sec. III, we briefly review properties of null
hypersurfaces and the construction of Gaussian null coor-
dinates. We also briefly review the notion of supertrans-
lation symmetries of null hypersurfaces recently introduced
by Chandrasekaran, Flanagan, and Prabhu (CFP) [14].
Preferred foliations of Killing horizons by “good cuts”

are analyzed in Sec. IV. We cannot define good cuts of a
Killing horizon by requiring the vanishing of the shear of
the orthogonal null geodesics transverse to the cut, since,
in general, no such cuts will exist. Nevertheless, we will
show that any nonextremal Killing horizon admits a unique
foliation by cuts whose transverse expansion is uniform
over the cut. We also show that nonextremal Killing
horizons in spacetimes admitting a t–ϕ reflection isometry
also possesses a unique foliation associated with this
reflection symmetry. In addition, Ashtekar, Beetle, and
Lewandowski (ABL) [15,16] have also given a prescription
for obtaining a unique foliation of a nonextremal Killing
horizon.3 We show in Sec. IV that (where it is defined) the
t–ϕ reflection foliation agrees with the ABL foliation, but
that these foliations do not, in general, agree with the
uniform expansion foliation. Thus, we have two inequiva-
lent prescriptions for defining a preferred foliation of a
Killing horizon by good cuts.
Black hole memory is then analyzed in Sec. V. We define

a memory tensor for black holes in Sec. VA. We show in
Sec. V B that the early and late time preferred foliations
(using either of the above prescriptions) are related by a
CFP supertranslation.
We conclude in Sec. VI with a brief discussion of the

differences between black hole memory and memory at
null infinity.
For the most part, our conventions and notations follow

those of [18]. In particular, we use the “mostly pluses”
convention for the signature ð−þþ � � � þÞ of the metric,
work in geometrized units with c ¼ GN ¼ 1, and employ
abstract index notation (see Sec. 2.4 of [18]) for tensor
fields on spacetime and its submanifolds. Greek indices
(e.g., μ; ν; ρ;…) will be used to denote coordinates xμ on
spacetime and components of spacetime tensors in the
corresponding coordinate bases. Tensors on spacetime will
be denoted by lowercase Latin indices from the beginning
of the alphabet (e.g., a; b; c;…). Tensors on codimension-
one hypersurfaces will be denoted by lowercase Latin
indices from the middle of the alphabet (e.g., i; j; k;…).
Tensors on surfaces of codimension two, such as cross
sections of a null hypersurface, will be denoted by upper-
case early Latin indices (e.g., A; B;C;…). In order to avoid
using an additional alphabet, we will also use capital Latin
indices from the beginning of the alphabet to denote

2A notion of black hole memory has been previously consid-
ered by Donnay, Giribet, González, and Puhm [12] from a
perspective quite different from ours. The idea that changes in
horizon foliation may play a role in obtaining a notion of black
hole memory was previously suggested in [13].

3The prescription was given in [15–17] in the slightly more
general context of a nonextremal weakly isolated horizon.
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coordinates xA on codimension-two submanifolds of M
and components of tensors in the corresponding coordinate
bases. We will also use uppercase early Latin indices to
denote tensors in the tensor algebra W of a null hypersur-
face introduced in Sec. III A. Φ� and Φ� will denote,
respectively, pushforward and pullback by a smooth
map Φ, and £X will denote the Lie derivative with respect
to the vector field Xa. The symbol ¼̂ will denote equality
when both sides are restricted to a given null hypersurface.
Our discussion and results on null hypersurfaces, Killing

horizon foliations, and black hole memory apply to all
spacetime dimensions D ≥ 4. However, for simplicity, we
will restrict the discussion of results on memory at null
infinity that we review in Sec. II to the 4-dimensional case.

II. MEMORY AT NULL INFINITY

Asymptotic flatness at null infinity in even dimensional
spacetimes can be defined in terms of the ability to do a
“conformal compactification” of spacetime in null direc-
tions. More precisely, a spacetime ðM; gabÞ is said to be
asymptotically flat at null infinity if there exists an
“unphysical” spacetime ðM̃; g̃abÞ and an embedding
i∶M ↪ M̃, with g̃ab ¼ Ω2ði�gÞab [for some highly non-
unique “conformal factor” Ω ∈ C∞ðM̃Þ] satisfying the
properties discussed in e.g., [7,18,19]. Future null infinity,
Iþ, is (a component of) the smooth hypersurface Ω ¼ 0
(the conformal boundary of M) in the unphysical space-
time. We may chooseΩ so that Iþ has vanishing expansion
and shear in the unphysical spacetime. Using Ω as a
coordinate, we may put the unphysical metric near Iþ
in the form4

ds̃2¼ 2dudΩ−2Ωα̃du2−2Ωβ̃AdudxAþ γ̃ABdxAdxB ð1Þ

where

Ω−1α̃jIþ ¼ 1=2; γ̃ABjIþ ¼ sAB ð2Þ

with sAB the “round sphere” metric on S2. Using Einstein’s
equation, we then have βAjIþ ¼ 0 [20]. “Bondi coordi-
nates” ðu; r; xAÞ in the physical spacetime can be obtained
by replacing the coordinate Ω with r ≔ 1=Ω, i.e.,

ds2 ¼ −2dudr − 2rα̃du2 − 2rβ̃AdudxA þ r2γ̃ABdxAdxB

ð3Þ

where α̃, β̃A, and γ̃AB can be (asymptotically) expanded
in powers of 1=r (since they are smooth in Ω). A smooth
conformal compactification cannot be done for odd-
dimensional radiating spacetimes [21], but asymptotic

flatness at null infinity can be defined in odd dimensions
in terms of the ability to perform a suitable 1=r expansion
of the metric [4]. In the remainder of this section, we will
restrict consideration to D ¼ 4 spacetime dimensions. A
discussion of all aspects of memory at null infinity in higher
dimensions can be found in [4].
Asymptotic symmetries at Iþ are defined to be diffeo-

morphisms which preserve the asymptotic form of the
metric modulo the diffeomorphisms that are degeneracies
of the symplectic form [9]. The group of asymptotic
symmetries at Iþ inD ¼ 4 spacetime dimensions is known
as the BMS Group [22,23] and has the group structure

GBMS ¼ SOð3; 1Þ ⋉ SBMS ð4Þ

where the group of BMS supertranslations SBMS acts
on Iþ as

u ↦ uþ TðxAÞ ð5Þ

The 4-dimensional subgroup T of SBMS with T equal to
some linear combination of the l ¼ 0, 1 spherical har-
monics is simply the ordinary translation group, while the
remaining elements ofSBMS are referred to as the nontrivial
BMS supertranslations.
The Bondi news tensor, NAB, at Iþ is given by

NAB ≔
�
sACsBD −

1

2
sABsCD

�
∂uγ̃

ð1Þ
CD ð6Þ

where γ̃ð1ÞCD denotes the order 1=r part of γ̃CD. As originally
shown in [8], if the Bondi news tensor vanishes—i.e, in the
absence of outgoing radiative modes—one can find cross
sections of Iþ that have the property that, in the physical
spacetime, the shear of the ingoing orthogonal null geo-
desics (i.e., the orthogonal null geodesics transverse to Iþ

in the unphysical spacetime) vanishes at order 1=r2 (or,
equivalently, that the shear of the orthogonal null geodesics
transverse to Iþ vanishes at Iþ when computed using the
unphysical spacetime metric). Such cross sections are
called “good cuts” and are unique up to ordinary trans-
lations. In an era where the Bondi news vanishes, the good
cuts can be used to pick out a preferred Poincaré subgroup
of GBMS.
The memory effect at Iþ refers to the net relative

displacement attained by a collection of inertial test masses
near Iþ in an asymptotically flat spacetime after the
passage of a burst of gravitational radiation [1,2]. More
precisely, suppose that an asymptotically flat spacetime
ðM; gabÞ is stationary at order 1=r at early times, u < u0,
and at late times, u > u1, so that, in particular, the Bondi
news vanishes in these eras. Suppose that two nearby
inertial (i.e., geodesic) test masses at large r have world-
lines initially tangent to ð∂=∂uÞa and have initial angular
deviation vector ξA0 . During the nonstationary era, the
time-evolved deviation vector, ξAðuÞ, will differ from the

4This form may be obtained by using Gaussian null coor-
dinates (see Sec. III A below) in the unphysical spacetime.
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parallel transport of ξA0 at order 1=r. In the late time
stationary era u > u1, the deviation vector will again
become time independent at order 1=r, but there will
remain an Oð1=rÞ difference between ξA and the parallel
transport of ξA0 . The memory tensor, ΔAB, is defined by

ξð1ÞA ¼ ΔA
Bξ

B
0 ð7Þ

where the ξð1ÞA denotes the difference at order 1=r between
ξA and the parallel transport of ξA0 in the late time
stationary era.
The memory tensor can be computed by integrating the

geodesic deviation equation through the radiating era. One
finds that [2]

ΔAB ¼ 1

2
γ̃ð1ÞAB

���u¼∞

u¼−∞
ð8Þ

where any coordinates compatible with a suitable 1=r
expansion can be used to compute the right side of
Eq. (8) [4]. In higher dimensions, a direct generalization
of this formula holds if we use “comoving coordinates”
near null infinity for the family of geodesics initially
tangent to ð∂=∂uÞa, i.e., coordinates in which ðr; xAÞ are
constant along these geodesics (see Sec. III E of [4]).
It can further be shown that—in the absence of magnetic

parity memory [4]—ΔAB takes the form [6,7]

ΔAB ¼ −
�
DADB −

1

2
sABDCDC

�
T ð9Þ

whereDA is the derivative operator on S2 with round metric
sAB, and T is a function on S2. We can naturally identify T
with a supertranslation via Eq. (5).
As mentioned above, in the stationary eras u < u0 and

u > u1 we may define good cuts of Iþ, which are unique
up to translations in these eras. However, the good cuts in
the region u < u0 will not, in general, be related to the good
cuts of the region u > u1 by an ordinary translation alone.
Indeed, they are related by the same supertranslation that
appears in Eq. (9). To see this, consider Bondi coordinates
Eq. (3) chosen so that for u < u0 the cross sections of
constant u are good cuts of Iþ. Under a supertranslation
u ↦ uþ f, we have

γ̃ð1ÞAB ↦ γ̃ð1ÞAB þ 2DADBf ð10Þ

so that σ̃ð2ÞAB, the order 1=r
2 part of the shear of the ingoing

orthogonal null geodesics, transforms as,

σ̃ð2ÞAB ¼ 1

2

�
γ̃ð1ÞAB −

1

2
sABsCDγ̃

ð1Þ
CD

�
↦ σ̃0ð2ÞAB

¼ σ̃ð2ÞAB þ
�
DADB −

1

2
sABDCDC

�
f ð11Þ

Since σ̃ð2ÞAB ¼ 0 at early times, we have by Eq. (8) that

ΔAB ¼ σ̃ð2ÞABjlate times ð12Þ
The late time good cuts, on the other hand, will be given
by the surfaces of constant u0 ¼ uþ fðxAÞ, where, via
Eq. (11) and Eq. (12),

0 ¼ σ̃0ð2ÞAB ¼ ΔAB þ
�
DADB −

1

2
sABDCDC

�
f ð13Þ

Thus, the supertranslation f relating the early and late time
good cuts of Iþ coincides with the supertranslation T
appearing in Eq. (9).
Finally, we note that associated with any asymptotic

symmetry at Iþ is a corresponding charge and flux [9].
The integrated flux associated with a supertranslation u ↦
uþ αðxAÞ is given by (see Eq. (218) of [4])
Z
Iþ

F ðαÞ ¼ −
1

32π

Z
Iþ

αNABNAB þ 1

8π

Z
S2

αDADBΔAB

ð14Þ
This gives another characterization of memory as a con-
tribution to the integrated fluxes associated with super-
translation charges. This contribution is usually referred to
as the “soft” part of the integrated flux. Note that the soft
integrated flux associated with α ¼ T itself is

Z
Iþ

F soft
ðTÞ ¼ −

1

8π

Z
S2

ΔABΔAB ð15Þ

III. NULL HYPERSURFACES

In this section, we will review some basic definitions
and constructions for null hypersurfaces in D-dimensional
spacetimes, as well as the recent work of Chandrasekaran,
Flanagan, and Prabhu [14] on the symmetry group of a null
surface.

A. Basic notions and constructions

Let ðM; gabÞ be a D-dimensional, time oriented
Lorentzian spacetime and let N be a null hypersurface
in M—i.e., a smooth codimension-one submanifold of M
whose normal is a smooth future-directed null vector field,
ka, which is defined on N up to scaling by a strictly
positive function ka → efka, f ∈ C∞ðN Þ. The integral
curves of ka are null geodesics (which are not necessarily
affinely parametrized and may be incomplete), and we
assume that each point in N lies on a unique such integral
curve, or “null generator.” We further assume that N is in
fact diffeomorphic to a productN ≃ S̄ × R, where S̄ is the
manifold of integral curves of ka.
N inherits from ðM; gabÞ a (degenerate) metric qij and a

qij compatible connection Di. For a given choice of ka,
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we also obtain a volume form ϵðD−1Þ on N via
k ∧ ϵðD−1Þ ¼ ϵðDÞ. (Note that since qij is degenerate, we
do not obtain a unique Levi-Civita connection or volume
form from the induced metric alone.) We define the second

fundamental form, KðkÞ
ij , of N relative to ka by

KðkÞ
ij ¼ 1

2
£kqij ð16Þ

The “surface gravity” (or “nonaffinity”), κðkÞ, of ka, which
measures the failure of ka to be affinely parameterized, is
given by

kb∇bka ¼ κðkÞka ð17Þ

The tensor field qij onN satisfies5 qijkj ¼ qjikj ¼ 0 and
is thus, in this sense, a “lower dimensional object.” It is
useful to define a tensor algebra W of such quantities as
follows6: At each point p ∈ N , let V̂p be the equivalence
class of tangent vectors to N where two vectors are
equivalent if they differ by a multiple of ki. The dual space,
V̂�
p, to V̂p may then be identified with dual vectors μi at p

that satisfy μiki ¼ 0. Let Wp be the tensor algebra over V̂p

and V̂�
p and let W be the space of such tensor fields on N .

Wewill denote tensor fields inWwith capitalized early Latin
indices, i.e., the same notation as we would use for tensor
fields on a cross section, S, ofN . It is not unreasonable to do
this since the restriction to any cross section S of a tensor
field inW is in natural correspondence with a tensor field on
S, and it will be convenient to avoid having to make a choice
in every instance of whether we are viewing it as a tensor
field on S or as the restriction of a tensor field in W.

The tensor fields qij and KðkÞ
ij are in W and will be

denoted as qAB and KðkÞ
AB when thought of in this manner.

Since ka is hypersurface orthogonal, the second funda-

mental form obeys KðkÞ
½AB� ¼ 0, and we can decompose it as

KðkÞ
AB ¼ 1

ðD − 2Þ ϑ
ðkÞqAB þ σðkÞAB ð18Þ

where

ϑðkÞ ¼ Diki ð19Þ

is known as the expansion of N , and the symmetric,

tracefree7 tensor σðkÞAB is known as the shear of N . To avoid

confusion with the expansion and shear of the families of
null geodesics transverse to N that we shall consider later,
we will refer to these quantities as the “parallel expansion”
and “parallel shear” of N in the following.
It is very useful to introduce Gaussian null coordinates

(GNCs) [20,24,25] covering a neighborhood of N in
spacetime. To do so, we first fix a choice of normal vector
field, ka, on N and choose a cross section, S, of N . We
then choose coordinates xA ¼ ðx1;…; xD−2Þ on S. We will,
of course, in general need more than one coordinate patch
to cover S, but, since it is entirely straightforward to sew
these patches together in the usual way, we will treat the
coordinates xA in our discussion below as though they
cover all of S. We extend the coordinates xA toN by taking
them to be constant along the orbits of ki, and we define the
coordinate v on N by setting v ¼ 0 on S and setting
£kv ¼ 1. Each surface of constant v then defines a cross
section, Sv, of N . We then define the transverse vector
field, la, on N by the conditions that la is a past directed
and null, orthogonal to each of the Sv, and normalized via

kala ¼ 1 ð20Þ

These conditions uniquely determine la on N . We then
extend la off N geodesically (lb∇bla ¼ 0) and let r
denote the affine parameter along these geodesics with
rjN ¼ 0. Finally, we extend the coordinates ðv; xAÞ off of
N by holding them constant along orbits of la. The
quantities ðv; r; xAÞ define coordinates in some open
neighborhood of N . These are the desired Gaussian null
coordinates. Note that, given N , the construction of
Gaussian null coordinates requires a choice of normaliza-
tion of ka and a choice of cross section S, but it is otherwise
unique up to a (for our purposes, irrelevant) choice of
coordinates on S.
The metric in Gaussian null coordinates takes the form

ds2 ¼ 2dvdr − 2rαdv2 − 2rβAdvdxA þ γABdxAdxB ð21Þ

with α, βA, and γAB smooth. Note that we have

la ¼ ð∂=∂rÞa ð22Þ

everywhere, and we have, on N , that

ka ¼̂ ð∂=∂vÞa; α ¼̂ κðkÞ ð23Þ

where ¼̂ denotes that equality holds when both sides are
restricted to N . The inverse metric takes the form

gab ¼ 2kðalbÞ þ rð2αþ rβAβAÞlalb

þ 2rβAlðaXbÞ
A þ γABXa

AX
b
B ð24Þ

5Note that we use the notation ki when we wish to view ka as a
vector in the tangent space toN rather than a vector in the tangent
space to M.

6See P.221–222 of [18]
7σAB is tracefree with respect to the unique inverse, qAB, of qAB

in W.
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where γAB is the inverse of γAB, βA ≔ γABβB and
Xa
A ≔ ð∂=∂xAÞa.
We have previously defined the expansion and shear of

the null hypersurface N in Eq. (18). For any cross section
S, the null geodesics orthogonal to S generated by la also
comprise a null hypersurface. We call the expansion, ϑðlÞ,
and shear, σðlÞab , of this hypersurface the transverse expan-
sion and transverse shear respectively. In Gaussian null
coordinates, we have that, on N ,

ϑðkÞ ¼̂ 1

2
γAB∂vγAB ¼ ∂lnð ffiffiffi

γ
p Þ

∂v and

ϑðlÞ ¼̂ 1

2
γAB∂rγAB ¼ ∂lnð ffiffiffi

γ
p Þ

∂r ð25Þ

B. Symmetries of a null hypersurface

Chandrasekaran, Flanagan, and Prabhu (CFP) [14] have
defined the notion of the symmetry group, GN , of a null
surface, N , as the group of diffeomorphisms that preserve
the “universal intrinsic structure” of N , defined as the
equivalence class of ðki; κðkÞÞ, with the equivalence relation
given by

ðki; κðkÞÞ ∼ ðefki; efðκðkÞ þ £kfÞÞ; f ∈ C∞ðN Þ: ð26Þ

This symmetry group has the structure

GN ≃ DiffðS̄Þ ⋉ S ð27Þ

where S̄ is the manifold of orbits of ka. Our interest
here is in the subgroup, S, of “generalized supertransla-
tions” of N . If V denotes the coordinate v of the
previous subsection with ka chosen to be affinely para-
metrized, then S consists of all diffeomorphisms of N of
the form

ðV; xAÞ ↦ ðeϕ1ðxAÞV þ ϕ2ðxAÞ; xAÞ; ð28Þ

where ϕ1 and ϕ2 are arbitrary smooth functions on S̄. The
generalized supertranslations are infinitesimally generated
by the vector fields

ξi¼ðϕ̃2þVϕ1Þ
� ∂
∂V

�
i
where ϕ̃2¼

�
ϕ1

eϕ1 −1

�
ϕ2 ð29Þ

Equivalently, we may write

ξi ¼ fki ð30Þ

where

£kð£k þ κðkÞÞf ¼ 0 ð31Þ

We refer to generalized supertranslations with ϕ1 ¼ 0 as
affine supertranslations and refer to the supertranslations
with ϕ2 ¼ 0 as Killing supertranslations.8 For the affine
supertranslations, we have ð£k þ κðkÞÞf ¼ 0.
CFP have shown [14] that in general relativity, charges

and fluxes can be associated with symmetries of N by the
same procedure as used in [9] to associate charges and
fluxes with symmetries of Iþ. Our interest here is in the
charges and fluxes associated with a generalized super-
translation, ξi, of Eq. (30). The local supertranslation
charge, Qloc

ðξÞ, on a cross section S is given by [14]

Qloc
ðξÞðSÞ ¼

1

8π

Z
S
½ðϑðkÞ − £k − κðkÞÞf�ϵðD−2Þ ð32Þ

where ϵðD−2Þ is the pullback of the spacetime volume form
to S. If we let ΔN denote the region of N bounded by the
cross sections S0 and S1, the integrated supertranslation
flux, F ðξÞðΔN Þ, through this region is given by [14]

F ðξÞðΔN Þ¼ 1

8π

Z
ΔN

�
qACqBDσðkÞABσ

ðkÞ
CD−

1

2
ðϑðkÞÞ2

�
fϵðD−1Þ:

ð33Þ

Note that for a given supertranslation ξi, this formula
does not depend upon the choice of normal ki. Namely, if
ki → ehki with h an arbitrary smooth function on N ,

then σðkÞAB → ehσðkÞAB, ϑðkÞ → ehϑðkÞ, f → e−hf, and
ϵðD−1Þ → e−hϵðD−1Þ, so F ðξÞðΔN Þ remains invariant.

IV. KILLING HORIZON FOLIATIONS

A Killing horizon ðN ; χaÞ is a null surface N with a
normal that is the restriction of a spacetime Killing vector
field, χa, to N . If Einstein’s equation holds with matter
satisfying the dominant energy condition, then the surface
gravity, κ, ofN with respect to the normal χa [see Eq. (17)]
must be constant onN [26]. If κ is constant and κ ≠ 0, then
the Killing horizon is said to be nonextremal.9

As previously noted, in Gaussian null coordinates on any
null surfaceN constructed with respect to some normal ka,
we have that ka ¼ ð∂=∂vÞa on N . In the case of a Killing
horizon, if we choose Gaussian null coordinates with
ka ¼ χajN then the construction of the coordinates r and
xA on spacetime will be invariant under the action of χa. It
follows that χa ¼ ð∂=∂vÞa throughout the domain where
the Gaussian null coordinates are defined. In particular, the
Gaussian null coordinate v will be a Killing parameter on

8The reason for this terminology will be made clear at
the beginning of the next section.

9Any such nonextremal Killing horizon can always be ex-
tended (if necessary) to a bifurcate Killing horizon [27] (see
Sec. IV B below).
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spacetime, i.e., χa∇av ¼ 1. Furthermore, on N , the quan-
tity V ¼ expðκvÞ will be an affine parameter along the null
generators of N . The affine supertranslations of Sec. III B
are then given by

V ↦ V þ ϕ2ðxAÞ ð34Þ

whereas the Killing supertranslations are given by

v ↦ vþ κ−1ϕ1ðxAÞ ð35Þ

A theorem of Hawking [20,28] asserts that the event
horizon of a stationary black hole must be a Killing
horizon. For the analysis of black hole memory, we are
interested in a situation where a black hole initially is
approximately10 stationary, goes through a dynamical era,
and then becomes (asymptotically) stationary again at late
times. Thus, in the early and late time eras, the event
horizon of the black hole should be well described by a
Killing horizon. As discussed in Sec. II, memory at Iþ can
be characterized by the supertranslation that relates the
foliations of good cuts of Iþ in the early and late time
stationary eras. Thus, a similar notion of black hole
memory could be defined if we can define a similar
foliation of good cuts of a Killing horizon and show that
they are related by a supertranslation. The good cuts of Iþ
are characterized by vanishing leading order transverse
shear. However, a general Killing horizon does not, in
general, admit any cross sections of vanishing transverse
shear.11 Therefore, we seek an alternative criterion for
defining preferred foliations of a Killing horizon.
In this section, we will restrict consideration to nonex-

tremal Killing horizons with compact cross sections. In the
following subsections, we will analyze three prescriptions
for defining preferred foliations of such nonextremal
Killing horizons. In Sec. IVA, we show that the require-
ment that the cross sections have uniform transverse
expansion gives rise to a unique foliation. In Sec. IV B,
we consider Killing horizons in spacetimes admitting a t–ϕ
reflection symmetry and use that symmetry to define a
unique foliation. In Sec. IV C, we consider a prescription
previously given by [15,16] which requires the one-form
βAdxA in Eq. (21) to be divergence free onN . We show that
the prescriptions of Sec. IV B (when defined) and Sec. IV C
are equivalent, but that they differ, in general, from the
prescription of Sec. IVA. Thus, we have two distinct
candidates for the good cuts of a Killing horizon to use
in defining a notion of black hole memory.

It is worth noting that none of the prescriptions below
can be applied to get preferred cross sections of Iþ in
stationary eras. The transverse expansion of any cross
section of Iþ is given by ðD − 2Þ=r at order 1=r, whereas
the transverse expansion is entirely gauge dependent at
order 1=r2. Thus, the condition of uniform transverse
expansion cannot be used to pick out preferred cross
sections of Iþ. The construction of the t–ϕ reflection
foliation depends on having a regular bifurcation surface
and the construction of the ABL foliation is based on
properties of βA, which vanishes at Iþ. Thus, neither the
t–ϕ construction nor the ABL construction can be applied
to Iþ (nor can they be applied to extremal Killing
horizons). Thus, none of the constructions below can be
used to replace the vanishing of the transverse shear as a
condition defining “good cuts” of Iþ.

A. The uniform expansion foliation

Let ðN ; χaÞ be a nonextremal Killing horizon of constant
surface gravity κ, and let ðv; r; xAÞ be Gaussian null
coordinates constructed with respect to the normal
ka ¼̂ χa and some arbitrary cross section, S, of N . In
these coordinates, the transverse expansion of S is given by

ϑðlÞ ¼ 1

2
γAB∂rγAB

����
r¼0

ð36Þ

[see Eq. (25)]. Note that any other cross section, S̃, of N
can be written in these coordinates as the surface on which
ṽ ¼ vþ f ¼ 0, where f is some smooth function on N
with £χf ¼ 0. In other words, any other cross section S̃ can
be written as the image of S under a Killing super-
translation. We wish to find such an S̃ whose transverse

expansion, ϑ̃ðl̃Þ, is uniform over all of S̃. We can then
extend S̃ to a χa-invariant foliation ofN via rigid transport
along the Killing isometry.
To this end, let ðṽ; r̃; x̃AÞ be new Gaussian null coor-

dinates constructed with respect to ka¼̂ χa and the
new cross section S̃. We have ṽ ¼̂ vþ f for some f with
£χf ¼ 0 and we have r̃ ¼̂ 0, where, again, ¼̂ indicates
equality onN . We choose x̃A¼̂ xA. In order to calculate the

transverse expansion ϑ̃ðl̃Þ of S̃ using the “tilded” analog of
Eq. (36), we need to relate the new coordinate functions,
ðṽ; r̃; x̃AÞ, to the old coordinate functions, ðv; r; xAÞ, to
leading order in r. We write

ṽ ¼ vþ f þ rFðvÞ þOðr2Þ ð37Þ

r̃ ¼ rFðrÞ þOðr2Þ ð38Þ

x̃A ¼ xA þ rFðAÞ þOðr2Þ ð39Þ

10Unless the black hole is exactly stationary at all times,
Raychaudhuri’s equation implies that the expansion must be
positive at early times, so the black hole cannot be exactly
stationary at early times.

11This can be seen from (44) below, which yields an over-
determined equation for the function f if one sets the left-hand
side to zero.
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where the expansion coefficients FðμÞ are, of course,
independent of r. Since χa ¼ ð∂=∂vÞa ¼ ð∂=∂ṽÞa (as both
the old and new coordinates are Gaussian null coordinates
with ka ¼ χa), we also have £χFðμÞ ¼ 0, i.e., the coeffi-
cients FðμÞ are functions of xA only.
It is convenient to work with the inverse metric gab rather

than gab. In the original Gaussian null coordinates, gab

takes the form Eq. (24). Applying the coordinate trans-
formation Eq. (37)-Eq. (39) and imposing the conditions

g̃ṽ r̃ ¼ 1; g̃ṽ ṽ ¼ 0; g̃ṽ Ã ¼ 0 ð40Þ

we obtain12

FðvÞ ¼−
1

2
DAfDAf; FðrÞ ¼1; FA¼−DAf: ð41Þ

The remaining components of the inverse metric in the new
Gaussian null coordinates are

g̃r̃ r̃ ¼ r̃ð2α̃þ r̃γ̃Ã B̃β̃Ãβ̃B̃Þ; g̃r̃ B̃ ¼ 2r̃γ̃Ã B̃β̃B̃;

g̃Ã B̃ ¼ γ̃Ã B̃ ¼ ½γ̃−1·· �Ã B̃: ð42Þ

We now apply the coordinate transformation Eqs. (37)–(39),
with FðμÞ given by Eq. (41), to the components of the inverse
metric in the original Gaussian null coordinates and match
the result with Eq. (42). We obtain

α̃ ¼̂ α; β̃A ¼̂ βA − 2κDAf; γ̃AB ¼̂ γAB ð43Þ

and (by a lengthier calculation)

∂ r̃γ̃AB ¼̂ ∂rγAB þ 2DADBf − 2κDAfDBf þ 2βðADBÞf

ð44Þ

Using Eqs. (36) and (44), we see that the expansion of S̃ is
given by

ϑ̃ðl̃ÞjS̃ ¼ ½ϑðlÞ þ ðDADAf − κDAfDAf þ βADAfÞ�
����
S

ð45Þ

Thus, N will possess a cross section of uniform transverse
expansion if and only if one can find a function, f, on S such
that

−DADAf þ κDAfDAf − βADAf ¼ ðϑðlÞ − ϑ̃Þ ð46Þ

with ϑ̃ constant (i.e., independent of xA). Equation (46) is
nonlinear, but the change of variables

f → −κ−1 lnðFÞ ð47Þ

converts it to the linear equation

LF ¼ κϑ̃F; L ¼ ð−DADA − βADA þ κϑðlÞÞ ð48Þ

subject to the restriction that F be real and strictly positive.
Since we allow ϑ̃ to be any real constant, Eq. (48) will be
solved if and only if we can find an eigenfunction, F, of L
that is everywhere real and positive. Since L is a second-
order linear elliptic operator on a compact Riemannian
manifold ðS; γABÞ, it is well known [29] that it has a unique
minimal real eigenvalue λ—the so called principal eigen-
value—with real, positive eigenfunction F. Thus, Eq. (48)
can be solved. The desired foliation of N by cross sections
of uniform transverse expansion will then be given by the
surfaces of constant ṽ ¼ v − κ−1 lnðFÞ.
It is not difficult to show that this foliation is unique. To

prove this, let S̃ be a cross section of N which generates a
foliation of constant transverse expansion ϑ̃, and let S0 be
any other cross section of N that also has constant
transverse expansion. Expressing S0 as the surface ṽ ¼
v − κ−1 lnðF̃Þ for some strictly positive F̃, we find, by the
same steps as led to Eq. (48), that F̃ must satisfy

L̃ F̃ ¼ κðϑ0 − ϑ̃ÞF̃; L̃ ¼ ð−DADA − β̃ADAÞ ð49Þ

where now both ϑ̃ and ϑ0 are constant. Since S̃ is compact,
F̃ attains maximum and minimum values on S̃. By
Eq. (49), at any critical point p�, F̃ satisfies

−DADAF̃jp� ¼ κðϑ0 − ϑ̃ÞF̃ðp�Þ: ð50Þ

If ϑ0 > ϑ̃, then the right side of Eq. (50) is everywhere
positive and we obtain a contradiction when p� is chosen to
be a point at which F̃ achieves its minimum value. If
ϑ0 < ϑ̃, then the right side of Eq. (50) is everywhere
negative and we obtain a contradiction when p� is chosen
to be a point at which F̃ achieves its maximum value. Thus,
we must have ϑ0 ¼ ϑ̃, in which case Eq. (49) reduces to

L̃ F̃ ¼ 0; ð51Þ

Since F̃ attains its global maximum on S̃ ¼ intðS̃Þ, it
follows immediately from the strong maximum principle
that the only solutions to Eq. (51) are F̃ ¼ const. Thus, S0
must be a member of the original transverse expansion
foliation, and this foliation is unique.

B. The t–ϕ reflection foliation

As previously mentioned, the event horizon of a sta-
tionary black hole must be a Killing horizon [20,28]. If the
black hole is rotating, then the horizon Killing field cannot

12Here we view f as a function on S, with DA the derivative
operator on S associated with the pullback metric γAB, and we
raise and lower capital Latin indices with γAB and γAB.
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coincide with stationary Killing field, and the spacetime
must be axisymmetric as well as stationary [20]. In four
spacetime dimensions, one can prove [30,31] that any
stationary and axisymmetric (asymptotically flat) solution
of Einstein’s equation in vacuum will carry a discrete “t–ϕ
reflection isometry,” which simultaneously reverses the
stationary and axisymmetric Killing fields. This proof does
not generalize to higher dimensions, but under additional
assumptions, the existence of a t–ϕ reflection isometry
can be proven to hold in arbitrary spacetime dimension
[32]. Thus, it is of interest to consider Killing horizons
embedded within spacetimes admitting a reflection isom-
etry of this type.
Let ðN ; χaÞ be any (connected) nonextremal Killing

horizon with constant surface gravity κ. Following [27], we
can define a Kruskal-type extension of a neighborhood of
N to obtain a spacetime with a bifurcate Killing horizon.
To do so, we start with Gaussian null coordinates Eq. (21)
with ka ¼̂ χa. In these coordinates, all metric components
are independent of v. We define13

V ¼ eκv; U ¼ −re−κv exp
�
κ

Z
r

0

1

r0

�
1

αðr0; xAÞ−
1

κ

�
dr0

�

ð52Þ

and eliminate the coordinates ðv; rÞ in favor of ðV;UÞ. Note
that the integrand in the expression for U is smooth at
r0 ¼ 0 by virtue of Eq. (23), so U is well defined and
smooth. The metric then takes the form

ds2 ¼ 2GdUdV þ 2UHAdVdxA þ γABdxAdxB ð53Þ

where all metric components depend on U and V only
through the combination UV. Note that the original
coordinate r can be expressed as a smooth function of
UV and xA, r ¼ rðUV; xAÞ.
The range of the coordinate V of Eq. (52) is V > 0. We

can extend the spacetime by allowing −∞ < V < ∞. The
resulting spacetime contains a “bifurcate Killing horizon”
as the null surfaces V ¼ 0 and U ¼ 0 are both Killing
horizons. The (D − 2)-dimensional intersection surface, B,
at U ¼ V ¼ 0 is called the bifurcation surface.
We now assume that ðN ; χaÞ is the event horizon of a

black hole, and that the exterior of the black hole is
stationary with Killing field ξa and is axisymmetric with
axial Killing fields ψa

Λ,Λ ¼ 1;…; p, where p is the number
of axial Killing fields. We choose the cross section S of the
Gaussian null coordinates Eq. (21) to be invariant under
the axial isometries and choose the coordinates xA to be of
the form xA ¼ ðφΛ; θαÞ, with

£ψΛ
φΓ ¼ δΛΓ; £ψΛ

θα ¼ 0 ð54Þ

(but with θα otherwise arbitrary). All quantities appearing
in the metric forms Eq. (21) and Eq. (53) will then be
independent of φΛ.
It is useful to define a metric ΦΛΣ (which depends on

the spacetime point) on the vector space of axial Killing
fields via

ΦΛΣ ¼ gabψa
Λψ

b
Σ ð55Þ

We may then define

Ψab ¼ ΦΛΣψa
Λψ

b
Σ ð56Þ

where ΦΛΣ is the inverse of ΦΛΣ. Since ψa
Λ is tangent to

the surfaces of constant ðv; rÞ in the original Gaussian null
coordinates Eq. (21), we may view (56) as a tensor field
ΨAB on these surfaces. We define

Aðr; θαÞ ¼ r
2α

ΨABβAβB: ð57Þ

We now further assume that the spacetime possesses a
t–ϕ reflection isometry. The reflection isometry implies
[27,32] that the exterior region can be foliated by spacelike
hypersurfaces, fΣtg, given by the level sets of a function t
with the properties that £ξt ¼ 1, £ψΛ

t ¼ 0, and that ∇at lies
in the span of ξa and the ψa

Λ.
Paralleling the derivation given in [27] for the 4

spacetime dimensional case, we find that the hypersurfaces
fΣtg are given by the solution set of the equation

V þUe2κðt−H̃ðUV;θαÞÞ ¼ 0 ð58Þ

where H̃ is given by14

H̃ðUV; θαÞ ¼
Z

rðUV;xAÞ

0

1

2r0αðr0; θαÞ ·
Aðr0; θαÞ

1þ Aðr0; θαÞ dr
0

þ BðθαÞ ð59Þ

where A was defined by Eq. (57) and BðθαÞ is determined
up to addition of a constant by15

DAB ¼ 1

2κ
ΘABβ

B

����
Hþ

ð60Þ

where ΘAB is the tensor field on Hþ defined
by ΘAB ¼ γAB − ΨAB.

13Note that U and V are reversed relative to the conventions
of [27].

14Note that there is a typo in the corresponding equation,
(57), of [27], where the factor of 1=ð2r0αÞ in the integrand was
omitted.

15That a B satisfying Eq. (60) exists is a consequence of our
initial assumption of a t–ϕ reflection isometry, which implied the
existence of the foliation fΣtg.
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The key point is that H̃ is a smooth function of ðUV; θαÞ.
It follows [27] that, for each t, the solution to Eq. (58)
extends smoothly through V ¼ U ¼ 0 and, thus, that each
Σt extends smoothly through the bifurcation surface B. The
normal, na, to Σt at B is given by

najB ¼ −
1ffiffiffiffiffi
2κ

p ðe−κðt−BðθαÞÞðdVÞa þ eκðt−BðθαÞÞðdUÞaÞ ð61Þ

We can define a unique, future-directed normal ηa to the
(extended) Killing horizon at B by the condition

ηanajB ¼ −
ffiffiffiffiffi
2κ

p
ð62Þ

so that, in our coordinates, we have at B

ηajB ¼ e2κðt−BðθαÞÞ
� ∂
∂V

�
a

ð63Þ

We then may define a foliation of N by the surfaces of
constant affine parameter λ along the null geodesics
determined by ηa, with λ ¼ 0 at B. This foliation is
independent of the choice of t–ϕ reflection invariant
surface Σt, since a constant shift of t merely rescales ηa

by a constant and so yields the same foliation. Thus, we
obtain the desired unique foliation defined by the t–ϕ
reflection symmetry.

C. The ABL foliation

A third prescription for foliating a nonextremal Killing
horizon (which we will call the “ABL foliation”) was given
by [15,16]. The defining condition of the ABL foliation is
that a cross section, S, be chosen so that, in Gaussian null
coordinates constructed with respect to the horizon Killing
field and S, the one-form βA of Eq. (21) satisfies

DAβA ¼̂ 0 ð64Þ

The ABL foliation is then the foliation, Sv, of these
Gaussian null coordinates.
As discussed in Sec. IVA, a change in the cross section S

used in the GNC construction corresponds to v ↦ vþ f on
N with £kf ¼ 0. Under the corresponding change in GNC,
βA transforms as βA ↦ βA − 2κDAf [see Eq. (43) above].
Thus, to implement this prescription, we must solve the
Poisson equation

DADAf ¼ 1

2κ
DAβA ð65Þ

for f on S. Since
R
S D

AβA ¼ 0, this equation can always be
solved [33] with solution, f, unique up to the addition of a
constant. Thus, there exists a unique foliation of the Killing
horizon determined by Eq. (64).

D. Comparison of the foliation prescriptions

In this subsection, we compare the foliation prescriptions
of the previous three subsections. We will show that, where
defined, the t–ϕ reflection foliation coincides with the ABL
foliation. However, we find that the uniform expansion
foliation differs, in general, from the ABL foliation.

1. Comparing the t–ϕ and ABL foliations

Suppose the spacetime possesses a t–ϕ reflection isom-
etry, so that the t–ϕ reflection foliation exists. Start with
Gaussian null coordinates with respect to a cross section
in this foliation. The construction of the t–ϕ reflection
foliation in these coordinates must then simply give back
the original foliation. This implies that, in these coordi-
nates, the null normal Eq. (63) at B that defines the t–ϕ
reflection foliation must be of the form

ηajB ¼ c

� ∂
∂V

�
a

ð66Þ

for some constant c. Hence, by Eq. (63), we must have
BðθαÞ ¼ constant in these coordinates. Then, by Eq. (60),
we haveΘABβ

B ¼̂ 0, which implies that, onHþ, βA must lie
in the span of the axial Killing fields, ψA

Λ,

βA ¼̂
X
Λ

fΛðθαÞψA
Λ ð67Þ

It follows immediately thatDAβ
A ¼̂ 0. Thus, when defined,

the t–ϕ reflection foliation coincides with the ABL
foliation.

2. Comparing the ABL and uniform expansion foliations

In any Gaussian null coordinates on the Killing horizon
ðN ; χaÞ with ka ¼̂ χa, the “angle-angle” components of the
vacuum Einstein’s equation read [20]

0 ¼̂ RAB ¼̂ − κ∂rγAB þRAB −DðAβBÞ −
1

2
βAβB ð68Þ

Here RAB denotes the ð∂=∂xAÞ-components of the space-
time Ricci tensor, while RAB denotes the Ricci tensor of
γAB. Taking the trace (with respect to γAB), we find that

0 ¼̂ − 2κϑðlÞ þR −DAβA −
1

2
βAβA ð69Þ

For the ABL foliation, we have DAβA ¼̂ 0. Thus, for the
ABL foliation, the transverse expansion is given by

ϑðlÞ ¼̂ 1

2κ

�
R −

1

2
βAβA

�
ð70Þ

The right-hand side of Eq. (70) is constant over the ABL
cross sections of Schwarzschild, where both the ABL and
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uniform expansion cross sections coincide with orbits of
spherical symmetry. However, it can be checked that the
right-hand side is not constant over the ABL cross sections
of Kerr. Thus, the uniform expansion and ABL cross
sections do not agree in general, even when the vacuum
Einstein equation is imposed.
Indeed, more generally, γAB and βA are free initial data on

a bifurcate Killing horizon for a solution to the vacuum
Einstein equation (see theorem 2 of [34]). Thus, one can
easily construct examples of Killing horizons for which
DAβA ¼̂ 0 but the right side of Eq. (70) is not constant (e.g.,
one could choose βA ¼ 0 and choose γAB so that R is not
constant). Thus, it is easy to construct examples where the
uniform expansion and ABL foliations differ.

V. BLACK HOLE MEMORY

In this section, we will consider two notions of black
hole memory analogous to the notions of memory at null
infinity based on geodesic deviation and on supertransla-
tions relating good cuts. We consider a black hole that is
initially approximately stationary, goes through a dynami-
cal era, and becomes approximately stationary again at late
times. We will assume that the black hole event horizon,
Hþ, can be well approximated by a nonextremal Killing
horizon in the early and late time approximate station-
ary eras.
In general, during the dynamical era, new horizon

generators may be created on Hþ. If so, this would cause
difficulties for any definition of memory, since some of the
late time generators would have no correspondence with
the early time era. We will ignore any such issues here and
treat Hþ as though it were a smooth null surface.

A. The memory tensor for black hole horizons

As discussed in Sec. II above, the memory effect at Iþ is
defined by considering the relative displacement of test
masses (timelike geodesics) near Iþ that are initially
stationary, i.e., whose worldlines are initially tangent to
ð∂=∂uÞa in the coordinates of Eq. (3). Our first task in
attempting to formulate a notion of black hole memory is to
obtain a corresponding family of worldlines whose relative
displacements could be used to define memory. Initially
stationary timelike geodesics just outside of a stationary
black hole will fall into the black hole almost immediately
and thus cannot be used to define a notion of memory.
Accelerating worldlines outside of a black hole can avoid
falling into the black hole, but the relative displacement of
these worldlines depends on the choice of acceleration, and
there does not appear to be any natural choice during the
nonstationary era. However, the null geodesic generators of
the future event horizon Hþ itself provide a natural family
of worldlines whose relative displacements can be used to
define a notion of memory. Indeed, for the corresponding
notion of memory at null infinity, the initially stationary

timelike geodesics near Iþ limit, as r → ∞, to the null
geodesic generators of Iþ in the unphysical spacetime.
Thus, using the null generators of Hþ to define black hole
memory is closely analogous to using timelike geodesics
near Iþ to define memory at null infinity, with the only
significant difference being that the memory effect for
black holes occurs at “zeroth order” on Hþ, whereas the
memory effect for null infinity does not affect the structure
of Iþ itself.
The infinitesimal displacement vector, ξA, between null

geodesic generators of the horizon satisfies the geodesic
deviation equation on Hþ

kiDiðkjDjξ
AÞ ¼ −RiBj

AkikjξB ð71Þ

Given an initial deviation vector ξA0 in the early time
stationary era, we may solve Eq. (71) to obtain the
deviation vector ξA1 in the late time stationary era. We
may then compare ξA1 with the parallel transport of ξA0 . If
they differ, then the null generators can be said to have
undergone a “permanent relative displacement.” The final
displacement ξA1 will depend linearly on ξA0 , so we could
define a “memory tensor” as the linear map that relates
these quantities, in analogy with Eq. (7). However, if
defined in this manner, the memory tensor would be a
map from vectors in the past stationary era to vectors in the
future stationary era. In order to obtain a map on vectors in
the future stationary era, we would have to transport ξA0 to
the future era16 by some means (e.g., parallel transport).
This would appear to make this approach to defining
memory considerably less useful.
We believe that a more useful notion of a memory tensor

for black holes can be obtained by pursuing analogy with
Eq. (8). Equation (8) holds in 4 dimensions in any choice of
Bondi coordinates (3), and, as previously noted, an analog
of Eq. (8) holds in arbitrary dimensions in any choice of
comoving coordinates (see Sec. III E of [4]). A permanent
change in the relative displacement of a family of geodesics
would be reflected by a change in the components of the
metric in coordinates comoving with these geodesics.
Gaussian null coordinates are suitable “comoving coordi-
nates” for the null generators of Hþ. Therefore, it seems
natural to define the memory tensor for a black hole
horizon to be

ΔAB ¼ 1

2
½γABjv1 − γABjv0 � ð72Þ

where, in this equation, A and B represent components with
respect to (any) Gaussian null coordinates on Hþ. Here
v ¼ v0 is in the early time stationary era while v ¼ v1 is in
the late time stationary era.

16This difficulty does not arise at Iþ because ξA does not vary
at Oð1Þ.
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We adopt Eq. (72) as the definition of the memory tensor
for black holes. Since

£kγAB ¼ 2KðkÞ
AB ¼ 2

ðD − 2Þ ϑ
ðkÞγAB þ 2σðkÞAB ð73Þ

we have that

ΔAB ¼ 2

ðD − 2Þ
Z

v1

v0

ϑðkÞγABdvþ 2

Z
v1

v0

σðkÞABdv ð74Þ

where this equation holds in (any) Gaussian null coordi-
nates on Hþ.

B. Horizon memory from supertranslations

As discussed in Sec. II, at null infinity during a stationary
era, there exist good cuts of Iþ, which are unique up to
translations. If the spacetime is stationary at early and late
times, the early time and late time good cuts will be related
by a BMS supertranslation, u ↦ uþ TðxAÞ. Different
choices of the good cuts in the early time and late time
eras will affect T only by a translation. Thus, the l > 1 part
of the supertranslation T is uniquely determined by the
condition that it map an early time foliation by good cuts
into a late time foliation by good cuts. The memory tensor
at Iþ is then given in terms of T by Eq. (9).
We showed in Sec. IV that there are analogous notions of

preferred foliations of a Killing horizon. In fact, we found
two inequivalent such notions of “preferred foliation” in
Sec. IV. We shall not attempt to choose between these here
and, in the following, will simply assume that one of these
notions has been chosen.
We assume that in the early time stationary era, the event

horizon is well described by a nonextremal Killing horizon
of surface gravity κ0 with Killing field χa0, and that in the
late time stationary era, it is well described by a nonex-
tremal Killing horizon of surface gravity κ1 with Killing
field χa1 . We introduce Gaussian null coordinates on all of
Hþ with ka chosen to be an affinely parametrized tangent
to the null generators. We seek a CFP supertranslation, T,
of the form17

T∶ðV; xAÞ ↦ ðeϕ1ðxAÞV þ ϕ2ðxAÞ; xAÞ ð75Þ

[see Eq. (28) above] such that T takes the early time
preferred foliation into the late time preferred foliation.
Since the early time foliation is mapped into itself by χa0

and the late time foliation is mapped into itself by χa1, a
necessary condition for T to take the preferred foliations
into each other is that T map the early time horizon Killing
field χa0 into a constant multiple of the late time horizon
Killing field χa1

T�χa0 ¼ cχa1 ð76Þ

for some constant c. To see the consequences of this, we
note that in the early time era, χa0 takes the form

χa0 ¼ κ0ðV − V0ðxAÞÞka ð77Þ

for some function V0ðxAÞ, whereas in the late time era, χa1
takes the form

χa1 ¼ κ1ðV − V1ðxAÞÞka ð78Þ

for some function V1ðxAÞ. We find that

ðT�χ0ÞjðV;xAÞ ¼ κ0½e−ϕ1ðV − ϕ2Þ − V0�eϕ1ka ð79Þ

¼ κ0½V − eϕ1V0 − ϕ2�ka ð80Þ

Thus, a necessary condition for T to take the preferred
foliations into each other is

κ0ðV − eϕ1V0 − ϕ2Þ ¼ cκ1ðV − V1ðxAÞÞ ð81Þ

i.e., we must have c ¼ κ0=κ1 and18

ϕ2ðxAÞ ¼ V1ðxAÞ − eϕ1ðxAÞV0ðxAÞ: ð82Þ

If Eq. (82) is satisfied, then T will map the early time
preferred foliation into the late time preferred foliation
provided that it also maps a single cross section, S0, of the
early time preferred foliation into a cross section, S1, of the
late time preferred foliation. Let F0ðxAÞ and F1ðxAÞ be such
that S0 is given by V ¼ F0ðxAÞ and S1 is given by
V ¼ F1ðxAÞ. The condition that T map S0 into S1 is then

F1ðxAÞ ¼ eϕ1ðxAÞF0ðxAÞ þ ϕ2ðxAÞ ð83Þ

It is clear that Eq. (82) and Eq. (83) together uniquely
determine ϕ1 and ϕ2, and thus the CFP supertranslation T.
However, there is a remaining freedom in the choice of
cross section, S1, into which S0 is mapped. Instead of
mapping S0 into S1, we could have mapped it into a cross
section S0

1 differing from S1 by a Killing translation
along χa1 , i.e.,

F1ðxAÞ − V1ðxAÞ ↦ C½F1ðxAÞ − V1ðxAÞ� ð84Þ

for some constant C. This change in F1 induces the change

17Recall that, in this context, we denote the affine parameter of
ka by V instead of v.

18Note that V ¼ V0ðxAÞ corresponds to what would be the
bifurcation surface B0 of the early time Killing horizon and
V ¼ V1ðxAÞ corresponds to what would be the bifurcation
surface B1 of the late time Killing horizon, so Eq. (82) simply
states that T maps B0 to B1.
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ϕ1ðxAÞ ↦ ϕ1ðxAÞ þ const: ð85Þ

together with the corresponding change in ϕ2 given by
Eq. (82). This is closely analogous to the translation
freedom in the choice of BMS supertranslation relating
the good cuts of Iþ at early and late times.
In summary, given a notion of “preferred foliation” in the

early and late time eras—such as the uniform expansion
foliation or the ABL foliation discussed in Sec. IV—we
have shown that the early and late time preferred foliations
are related by a CFP supertranslation T given by Eq. (82)
and Eq. (83). Furthermore, T is unique up to Eq. (85) and
the corresponding change in ϕ2. This equivalence class of T
thereby provides a notion of the “supertranslation memory”
of a black hole.

VI. DISCUSSION

We have seen in Sec. VA that a memory tensor,ΔAB, can
be defined for black holes which characterizes the perma-
nent change in the relative displacement of the null
geodesic generators of the event horizon,Hþ. As explained
there, this definition, Eq. (72), of the black hole memory
tensor is closely analogous to Eq. (8) at Iþ. We have seen
in Sec. V B that a CFP supertranslation, T, characterizes the
change in the early and late time preferred foliations ofHþ.
The association of a CFP supertranslation to the change in
the early and late time preferred foliations of Hþ is closely
analogous to the association of a BMS supertranslation to
the change in the early and late time foliations of Iþ by
good cuts.
However, what appears to be entirely missing at Hþ is a

relationship analogous to Eq. (9) between the black hole
memory tensor, ΔAB, of Sec. VA and the CFP super-
translation, T, of Sec. V B. In addition, there does not
appear to be any relationship analogous to Eq. (14) between
the integrated flux Eq. (33) associated with a CFP super-
translation and the black hole memory tensor, ΔAB.
The key reason for this difference can be traced back

to the fact that the dynamical changes to a black hole
occur on the horizon, Hþ, itself. For example, if an

initially Schwarzschild black hole absorbs gravitational
radiation and becomes a Kerr black hole at late times, in
addition to the nontrivial changes to the geometry of Hþ
which occur during the dynamical evolution, there is a
nontrivial permanent change in the horizon geometry
between early and late times. No diffeomorphism can
undo this permanent change and thereby make the late
time Kerr black hole “look like” the initial Schwarzschild
black hole. By contrast, gravitational radiation reaching
Iþ does not change the structure of Iþ itself.
Gravitational radiation first affects the geometry near
Iþ at radiative order 1=rðD=2−1Þ, and permanent changes
near Iþ between early and late times first occur only at
Coulombic order, 1=rðD−3Þ [4]. The permanent change in
the metric at Coulombic order can be undone by a
diffeomorphism [4,35], which, as we saw in Sec. II, is
a supertranslation in D ¼ 4 dimensions. This accounts for
the close relationship between memory and supertransla-
tions at Iþ. However, no such relationship appears to exist
for black holes.
In summary, there is a very strong analogy between a

black hole event horizon, Hþ, and future null infinity, Iþ.
This analogy extends to the ability to define a memory
tensor at Hþ and the ability to assign supertranslations
which characterize the difference between early and late
time preferred foliations of Hþ. However, many of the
interesting interrelations between different facets of
memory at Iþ—such as the relationship between the
memory tensor and supertranslations—do not appear to
extend to Hþ.
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