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We study the absorption of massless scalar waves in a geometry that interpolates between the
Schwarzschild solution and a wormhole that belongs to the Morris-Thorne class of solutions. In the middle
of the interpolation branch, this geometry describes a regular black hole. We use the partial wave approach
to compute the scalar absorption cross section in this geometry. Our results show that black holes and
wormholes present distinctive absorption spectra. We conclude, for instance, that the wormhole results are
characterized by the existence of quasibound states which generate Breit-Wigner-like resonances in the
absorption spectrum.
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I. INTRODUCTION

Recently, an increasing number of observations con-
cerning gravity in the strong field regime have been
presented in the literature. The LIGO/VIRGO collabora-
tions have cataloged many gravitational wave (GW) detec-
tions, mostly associated to binary black hole (BH) mergers
(see, for instance, [1–4]). On the other hand, the inter-
national collaboration Event Horizon Telescope (EHT)
presented the first ever image of the shadow of a super-
massive BH [5]. These observations of GWs and the
shadow of a BH confirmed the results predicted by the
theory of general relativity (GR).
Within GR, BHs are solutions of the Einstein’s field

equations that possess an event horizon. The first exact
solution of Einstein’s equation is known as Schwarzschild
geometry [6], which describes a spherically symmetric,
electrically uncharged and nonrotating BH. The spherically
symmetric, electrically charged and nonrotating BH geom-
etry is known as the Reissner-Nordström solution [7,8].
The first exact uncharged rotating BH solution was
obtained by Kerr [9], while the charged rotating BH was
presented in Ref. [10]. Such standard BH solutions of GR
are cursed with singularities, where geometrical quantities
diverge and physics predictability breaks down. Under
some conditions, singularities are expected to exist within
GR, as stated by the so-called singularity theorems [11,12].
Regular BHs, i.e., nonsingular BH solutions, were pro-

posed as an alternative to avoid the singularity problem.
The geometric quantities associated to such solutions are
finite everywhere. The first regular BH solution was
proposed by Bardeen [13]. After that, many other

regular BH solutions were presented (see, for instance,
Refs. [14–16]).
Wormholes are solutions that connect two asymptoti-

cally flat regions by a throat [17]. In fact, the Schwarzschild
solution itself can be associated to a wormhole, known as
Einstein-Rosen bridge, which is not traversable [18,19].
A well-known class of wormhole solutions was proposed
by Morris and Thorne [20], and they can be, in principle,
traversable. The traversability of the Morris-Thorne class of
solutions can be understood as a consequence of exotic
matter violating the weak energy condition at the wormhole
throat [20–22].
Absorption of matter and fields is of great interest in GR,

for instance, in explaining the role of accretion by BHs in
active galactic nuclei [23–25]. Besides that, the results for
the absorption cross section in the high-frequency limit are
related to the shadows of BHs. The absorption of scalar
waves by a Schwarzschild BH was studied in Ref. [26].
Similar studies for Reissner-Nordström [27,28], Bardeen
[29], Kerr [30], and Kerr-Newman [31–33] BHs can also be
found in the literature. In comparison to BHs, few results
for the absorption of scalar waves by wormhole spacetimes
are available (see, for instance, Refs. [34,35]).
We investigate the propagation of planar massless scalar

waves in the geometry proposed by Simpson and Visser in
Ref. [36]. The line element of this geometry depends on
two parameters. Depending on the values of such para-
meters, this geometry describes a Schwarzschild BH, a
regular BH, or a wormhole spacetime belonging to the
Morris-Thorne class. In the regular BH branch of inter-
polation, instead of a singularity there is a spacelike
hypersurface, which represents a bounce into a future
incarnation of the universe. The quasinormal modes
of this solution were recently analyzed in Ref. [37] and
similar black-bounce solutions were proposed in Ref. [38].
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We study the scalar absorption for Schwarzschild and
regular BHs, as well as for Morris-Thorne wormholes,
considering the Simpson-Visser line element.
The absorption spectrum of this geometry presents

interesting features. For instance, the wormhole solution
can show imprints of quasibound states around the throat,
leading to narrow peaks in the absorption spectrum. Similar
results appear for extreme/exotic compact objects (ECOs)
[39] and BH remnants in the context of metric-affine
gravity [35].
The remainder of this paper is organized as follows: In

Sec. II, we review the main properties of the Simpson-
Visser geometry. In Sec. III, we outline the partial wave
method, valid for both the BH and the wormhole cases. In
Sec. IV, we investigate the high-frequency regime. In
Sec. V, we present the results for the absorption of massless
scalar waves by the BH branch of interpolation, while the
results for the wormhole case are presented in Sec. VI. Our
final remarks are presented in Sec. VII. We use natural
units, such that G ¼ c ¼ ℏ ¼ 1, and we adopt the metric
signature ð−;þ;þ;þÞ.

II. SPACETIME DESCRIPTION

The Simpson-Visser spacetime is described by the
following line element [36]:

ds2 ¼ −
�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
�
dt2 þ

�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
�

−1
dr2

þ ðr2 þ a2Þðdθ2 þ sin2θdφ2Þ: ð1Þ

Depending on the value of the parameter a ≥ 0, we
have [36]

(i) a Schwarzschild BH spacetime (a ¼ 0);
(ii) a regular BH spacetime (0 < a < 2M);
(iii) a one-way traversable wormhole geometry with a

null throat (a ¼ 2M);
(iv) a two-way traversable wormhole geometry belong-

ing to the Morris-Thorne class (a > 2M).
For the regular BH branch of interpolation, the BH event

horizon is located where grr ¼ 0, corresponding to

rh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2MÞ2 − a2

q
: ð2Þ

As pointed out in Ref. [36], the curvature invariants of the
Simpson-Visser geometry are regular everywhere for
a ≠ 0. We can analyze massless scalar waves propagating
in this Simpson-Visser geometry, using a unified descrip-
tion, which can be applied to a BH or a wormhole by
choosing the appropriate values for the parameter a.

III. PARTIAL WAVE ANALYSIS

In a curved spacetime, the Lagrangian for the minimally
coupled massless scalar field Φ is

L ¼ 1

2
∇μΦ∇μΦ: ð3Þ

The equations of motion for the massless scalar field are
obtained through the Euler-Lagrange procedure, resulting
in

∇μ∇μΦ ¼ 0; ð4Þ

which we may rewrite as

1ffiffiffiffiffijgjp ∂μð
ffiffiffiffiffi
jgj

p
gμν∂νΦÞ ¼ 0; ð5Þ

where gμν are the contravariant components of the metric
tensor and g is the metric determinant. A monochromatic
scalar wave with frequency ω propagating in the spacetime
described by Eq. (1) may be written as

Φ ¼
X
l;m

ϕðrÞ
ðr2 þ a2Þ12 Ylmðθ;φÞe−iωt; ð6Þ

where Ylmðθ;φÞ are the scalar spherical harmonics.
Substituting Eq. (6) in Eq. (5), and using the well-known
properties of the scalar spherical harmonics, we find an
ordinary differential equation for ϕðrÞ, namely

fðrÞ d
dr

�
fðrÞ dϕðrÞ

dr

�
þ ½ω2 − Veff �ϕðrÞ ¼ 0; ð7Þ

where

fðrÞ≡
�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
�
; ð8Þ

and Veff is the effective scattering potential for the massless
scalar waves, given by

Veff ≡ fðrÞ
�

f0ðrÞr
ðr2 þ a2Þ þ

a2fðrÞ
ðr2 þ a2Þ2 þ

lðlþ 1Þ
ðr2 þ a2Þ

�
: ð9Þ

Here the prime denotes differentiation with respect to the
radial coordinate r. Plots of the effective potential Veff for
different choices of a are shown in Figs. 1 and 2. In Fig. 1
we show the effective potential for the BH branch of
interpolation, while in Fig. 2 we show the effective
potential for the wormhole case.
In order to study the solutions of Eq. (7), we define the

tortoise coordinate x, given by

dx≡ f−1ðrÞdr: ð10Þ

The radial equation (7), in terms of the tortoise coordinate,
can be rewritten as
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�
d2

dx2
þ ω2 − Veff

�
ϕðxÞ ¼ 0; ð11Þ

which is a Schrödinger-like equation subjected to the radial
scattering potential Veff . In the next sections we treat in
detail the absorption of massless scalar waves by the BH
and the wormhole cases, both described by Eq. (11).
In order to solve Eq. (11), we need to impose boundary

conditions. Such boundary conditions must be consistent
with the physical problem that we are handling. For the BH
branch of interpolation, we are interested in solutions
representing a scalar wave incoming from the past null
infinity (I−). Moreover, we assume that there are only
ingoing scalar waves at the future event horizon (Hþ), since
it is a one-way membrane. The waves reflected by the
scattering potential propagate to the future null infinity

(Iþ). This may be expressed in terms of the in modes,
described by

ϕðrÞ ≈
�
e−iωx þ eiωxRωl; r → þ∞ðx → þ∞Þ;
Tωle−iωx; r → rhðx → −∞Þ: ð12Þ

The Carter-Penrose diagram, outside the event horizon of
the BH, with the illustration of this BH scattering problem,
is presented in Fig. 3. The reflection and transmission
coefficients are given by jRωlj2 and jTωlj2, respectively.
For the wormhole branch of interpolation, there is no

event horizon. In this case, we are interested in solutions
representing a scalar wave incoming from the past null
infinity I−

I , being transmitted through the wormhole’s
throat to the future null infinity Iþ

II, or reflected to the
future null infinity Iþ

I . The Carter-Penrose diagram with
the illustration of this wormhole scattering problem is
represented in Fig. 4. Such boundary conditions may be
expressed as

ϕðrÞ ≈
�
e−iωx þ Rωleiωx; r → þ∞ðx → þ∞Þ;
Tωle−iωx; r → −∞ðx → −∞Þ: ð13Þ

Using the partial wave method [40], the total absorption
cross section for the BH, as well as for the wormhole, can
be written as

σabs ¼
X∞
l¼0

σl; ð14Þ
FIG. 2. Effective potential, given by Eq. (9), for the massless
scalar field ϕ in the wormhole case, as a function of the radial
coordinate r in units of M. In this figure, we have selected
different values for the parameter a, obeying a ≥ 2M.

FIG. 3. Carter-Penrose diagram for the BH branch of inter-
polation (0 ≤ a < 2M). The arrows represent the scattering
problem of the massless scalar waves, being partly absorbed
by the BH and partly reflected to the future null infinity.

FIG. 1. Effective potential, given by Eq. (9), for the massless
scalar field ϕ in the BH case, as a function of the radial coordinate
r in units of the event horizon rh, described in Eq. (2). In this
figure, we have selected different values for the parameter a,
obeying 0 ≤ a < 2M.
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where

σl ¼
π

ω2
ð2lþ 1ÞjTωlj2 ð15Þ

is the partial absorption cross section, i.e., the absorption
cross section for a fixed l.

IV. HIGH-FREQUENCY REGIME

In the high-frequency regime, the massless scalar field
can be described by the null geodesic equation. Within this
regime, the absorption cross section tends to the classical
capture cross section of null geodesics.
Here, we summarize the main results of the propagation

of null geodesics in the spacetime described by the line
element (1). We consider the Lagrangian Lgeo that obeys

2Lgeo ¼ gμν _xμ _xν ∴ ð16Þ

2Lgeo ¼ −fðrÞ_t2 þ f−1ðrÞ_r2 þ ðr2 þ a2Þ _φ2 ¼ 0; ð17Þ

where we set, without loss of generality, θ ¼ π=2. The
overdots represent derivatives with respect to the affine
parameter along the null geodesics. Since the Lagrangian
Lgeo does not depend on t and φ, we have two conserved
quantities, namely

E ¼
�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
�
_t; ð18Þ

L ¼ ðr2 þ a2Þ _φ: ð19Þ

E and L are the energy and angular momentum, respec-
tively, measured by an observer at infinity. By substituting
Eqs. (18) and (17) in Eq. (16), we find

_r2 þ Vgeo ¼ E2; ð20Þ

which is an energy balance equation, with Vgeo being the
effective potential for null geodesics, given by

Vgeo ≡
�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
�

L2

ðr2 þ a2Þ : ð21Þ

In Figs. 5 and 6, we show the effective potential for null
geodesics, for the BH and the wormhole cases, respectively.
In Fig. 6, we note the existence of a minimum in the
effective potential Vgeo, which is associated to stable null
geodesics at r ¼ 0.

FIG. 4. Carter-Penrose diagram for the wormhole branch of
interpolation (a ≥ 2M). The arrows represent the scattering
problem of the massless scalar waves, being partly transmitted
through the wormhole’s throat, located at r ¼ 0, and partly
reflected to the future null infinity.

FIG. 5. Effective potential, given by Eq. (21), for null geodesics
in the BH case, as a function of the radial coordinate r. In this
figure, we have selected different values for the parameter
a (0 ≤ a < 2M).

FIG. 6. Effective potential, given by Eq. (21), for null geodesics
in the wormhole case, as a function of the radial coordinate r. In
this figure, we have selected different values for the parameter
a (a ≥ 2M).
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In the high-frequency limit, the absorption cross section
of the massless scalar field tends to the capture cross
section, also called geometric cross section (σgeo), which is
given by [41]

σgeo ¼ πb2c; ð22Þ

where bc ≡ L=Ejrph is the critical impact parameter, com-
puted through

Vgeojr¼rph
¼ E2; ð23Þ

dVgeo

dr

����
r¼rph

¼ 0: ð24Þ

The value r ¼ rph corresponds to the location of unstable
circular photon orbits in the Simpson-Visser spacetime.
The solutions of Eqs. (23)–(24) are

rph ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − a2

p
; if 0 ≤ a < 2M;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − a2

p
; if 2M ≤ a ≤ 3M;

0; if a > 3M:

ð25Þ

Therefore, we may have two different critical impact
parameters b0 and b1 associated to unstable circular photon
orbits, depending on the value of the parameter a. The
expressions for b0 and b1 are given by

b0 ¼
L
E

����
r¼0

¼ a
3
2

ða − 2MÞ12 ; ð26Þ

b1 ¼
L
E

����
r¼

ffiffiffiffiffiffiffiffiffiffiffiffi
9M2−a2

p ¼ 3
ffiffiffi
3

p
M: ð27Þ

Thus, the geometric cross section is given by

σgeo ¼
8<
:

πb21 ¼ 27πM2; if 0 ≤ a ≤ 3M

πb20 ¼ π
	

a3
a−2M



; if a > 3M:

ð28Þ

We point out that for 0 ≤ a ≤ 3M, the geometric cross
section is independent of a and coincides with the
Schwarzschild result. On the other hand if a > 3M, the
geometric cross section depends on a.

V. BLACK HOLE RESULTS

A. Low-frequency regime

It is known that in the low-frequency regime the
absorption cross section of massless scalar fields for
spherically symmetric BHs tends to the area of the BH
horizon [42]. In fact, this result is also true for stationary

BHs [43]. The area of the BH horizon associated to the line
element (1) is given by

Ah ¼
Z

π

0

Z
π

−π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gθθgφφ

p
dφdθ

����
r¼rh

∴ ð29Þ

Ah ¼ 4πðr2 þ a2Þjr¼rh ¼ 16πM2: ð30Þ

We conclude that the area of the regular Simpson-
Visser BH horizon is independent of a and equal to the
Schwarzschild one. Therefore, in the low-frequency
regime, we expect the total BH absorption cross section
to have the same limit regardless of the parameter a.

B. Sinc approximation

We can improve the high-frequency regime analysis for
BHs by taking into consideration the sinc approximation.
As shown in Ref. [44], following the result originally
obtained in Ref. [26], the oscillatory part of the absorption
cross section is given by

σosc ¼ −
8πλl
Ωl

e−
πλl
Ωl sinc

�
2πω

Ωl

�
σgeo; ð31Þ

where sincðxÞ≡ sinðxÞ=x,

λl ¼
1

_t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

d2ð_r2Þ
dr2

s
ð32Þ

is the Lyapunov exponent of the null geodesic [44,45], and

Ωl ¼
dφ
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrphÞ
r2ph þ a2

s
ð33Þ

is the coordinate angular velocity of the null geodesic.
The absorption cross section in the high-frequency

regime can be approximated by [44]

σhf ≈ σgeo þ σosc: ð34Þ

In Fig. 7, we present a comparison between the numeri-
cal result, obtained in Sec. V C, and the sinc approximation.
The results agree remarkably well for high frequencies,
being very close to each other even for intermediate values
of the frequency.

C. Numerical results

Let us now present the results computed numerically for
the absorption of massless scalar waves, in the BH branch
of interpolation of the line element (1). In order to compute
numerically the absorption cross section, we integrate
Eq. (11), using the boundary conditions (12). Then, we
compute the transmission coefficient using the numerical
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solution for ϕðxÞ and its derivative, and, hence, the
absorption cross section is obtained through Eqs. (14)
and (15).
In Fig. 8, we present the total absorption cross

section of massless scalar waves for regular BHs with
a ¼ 0.5M;M; 1.5M, as well as the result for the
Schwarzschild BH, for comparison purposes. The horizon-
tal dashed line is the geometric cross section, which is the
same for any value of 0 ≤ a ≤ 3M. We see in Fig. 8 that in
the low-frequency regime, the total absorption cross section
tends to the same value, regardless of the parameter a. This
value is the area of the BH event horizon given in Eq. (30).
In the high-frequency limit, the total absorption cross
section tends to the same value, which is the geometric
cross section for BHs, given in Eq. (28). This result is in
agreement with the discussion present in Sec. IV.
Furthermore, we see that as we increase the parameter a,
the amplitude of oscillation of the total absorption cross
section increases.

In Fig. 9, we show the partial absorption cross sections
in units of the event horizon area Ah, for regular BHs
with a ¼ 0.5M;M, and 1.5M, as well as for the
Schwarzschild BH. We see that for l ¼ 0 and ω → 0,
the partial absorption cross section σ0 tends to the area of
the BH, in agreement with the results presented in
Sec. VA.

FIG. 8. Total absorption cross section of massless scalar waves
for regular BHs (with different values of a), compared with the
geometric cross section (horizontal dashed line). In this figure, we
also show the total absorption cross section of massless scalar
waves for the Schwarzschild BH, for comparison.

(a)

(b)

(c)

FIG. 9. Partial absorption cross sections of massless scalar
waves for regular BHs with different values of a. We also plot the
partial absorption cross section for the Schwarzschild BH, for
comparison.

FIG. 7. Comparison between the numerical result for the total
absorption cross section of a regular BH described by the
Simpson-Visser line element and the sinc approximation
[Eq. (34)]. In this figure, we have chosen a ¼ 0.5M.
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D. Discussion

The results presented in this section show that the regular
BHs described by Eq. (1) can mimic the Schwarzschild BH
in the low- and high-frequency regimes of the absorption
cross section, regardless of the parameter a. Results in the
high-frequency regime play a representative role in the
EHT observations, since they are directly related to BH
shadows. Moreover, the regular BH absorption resembles
the Schwarzschild BH case in the mid-to-high frequency
regime, as can be seen in Fig. 8. The main difference
between the regular BHs and the Schwarzschild BH is
manifest around the first local maximum of the absorption
cross section. The increasing of the parameter a implies an
increasing of the local maxima and a decreasing of the local
minima of the total absorption cross section.

VI. WORMHOLE RESULTS

As an important feature of the Simpson-Visser line
element, it may also represent a wormhole for a ≥ 2M.
In this section, we show the results computed numerically
for the absorption cross section of massless scalar waves for

the wormhole branch of interpolation associated with the
Simpson-Visser line element (1).
Due to the shape of the potential of the wormhole case,

the results are, in general, quite different from the BH ones.
Such difference arises due to the presence of a potential
well, as can be seen in Fig. 2. This potential well allows

TABLE I. Trapped modes frequencies for a ¼ 2.1M.

l ωR −iωI l ωR −iωI

0 0.0753 2.673 × 10−3 1 0.1852 4.249 × 10−5

0 0.1408 8.304 × 10−3 1 0.2464 1.011 × 10−3

1 0.2996 7.578 × 10−3

1 0.3532 9.417 × 10−3

2 0.4147 3.432 × 10−4 3 0.6360 1.222 × 10−3

2 0.4674 3.154 × 10−3 3 0.6834 6.861 × 10−3

2 0.5184 9.281 × 10−3 3 0.5825 1.096 × 10−4

FIG. 10. Total absorption cross section of massless scalar
waves for the wormhole with a ¼ 2.1M, compared with the
geometric cross section (horizontal line). The narrow peaks,
associated to the vertical black dashed lines arise due to the
potential well, which imply in the existence of the trapped modes.
We also exhibit, below the plot, an absorption band composed
with the results for the total absorption cross section.

(a)

(b)

(c)

FIG. 11. Total absorption cross sections of massless scalar
waves for wormholes with different values of a, compared with
the geometric cross section (horizontal lines). In Figs. 11(a),
11(b), and 11(c), we have set a ¼ 2.5M, a ¼ 3M and a ¼ 4M,
respectively.
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quasibound states to exist around r ¼ 0. These quasibound
states are similar to the trapped modes discussed in
Refs. [35,39,46–50], and are associated to stable null
geodesics at the wormhole throat in the eikonal limit.
These trapped modes have complex frequency, and the
imaginary part is usually small, i.e., they are long-lived
modes. They obey the following boundary conditions:

ϕðrÞ ¼
�
eiωx; x → ∞;

e−iωx; x → −∞:
ð35Þ

To find the frequencies associated to these trapped modes,
we employ the numerical method proposed in Ref. [51],
known as direct integration method.1 By using the boun-
dary conditions (35) in Eq. (11), we generate an eigenvalue
problem for the frequency ω. Frequencies that solve this
eigenvalue problem are the trapped mode frequencies we
are searching for. We numerically integrated Eq. (11),
subjected to the boundary conditions (35), and used a

numerical root finding procedure to obtain the frequencies
ω [51,52]. A selection of results for a representative case,
a ¼ 2.1M, are presented in Table I, where ωR and ωI are
the real and imaginary part of the trapped modes frequen-
cies, respectively.
We show in Fig. 10 the total absorption cross section for

the wormhole with a ¼ 2.1M, where we can see the exis-
tence of narrow resonant peaks. In Fig. 10, we also plot, as
vertical dashed lines, the real part of the trapped mode
frequencies, presented in Table I. Hence, we see that the
narrow peaks in the total absorption cross section are asso-
ciated to the trapped modes around the wormhole’s throat.
In Fig. 11, we present the total absorption cross section

of massless scalar waves for wormholes with different
values of the parameter a. We note from Fig. 11 that, as we
increase the value of a, the local maxima become broader
and the trapped modes peaks become less distinctive. This
is an effect of the decreasing in the potential well when a
increases (cf. Fig. 6). We also note that the low-frequency
limit of the total absorption cross section depends on the
parameter a. From Fig. 11(c), we note that the total
absorption cross section behaves similarly to the BH case,
presented in Fig. 8.

(a) (b)

(c) (d)

FIG. 12. Transmission coefficients of massless scalar waves for wormholes with different values of l. In Figs. 12(a), 12(b), 12(c), and
12(d) we have set a ¼ 2.1M, a ¼ 2.5M, a ¼ 3M and a ¼ 4M, respectively. We note that for a ¼ 2.1M, the peaks due to trapped modes
can be easily identified. The peaks become less evident as we increase the value of a.

1The computation of the complex frequencies of these trapped
modes is analogous to what is done for quasinormal mode
problems.
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We point out that for a > 3M, the total absorption cross
section, in the high-frequency limit, depends on the value of
the parameter a [see, for instance, Fig. 11(c)]. This result is
in agreement with Eq. (28).
In Fig. 12, we present the results for the transmission

coefficient, as a function of the frequency, for different
values of a. We note that, as we increase the value of a, the
number of peaks in the transmission coefficient decreases.
Using an approximation based on the Breit-Wigner expres-
sion for nuclei scattering, one can relate the amplitude of
the transmission factor with the frequency of the trapped
modes through [39,53,54]

jTωlj2 ¼
Aωl

ðω − ωRÞ2 þ ω2
I
; ð36Þ

where Aωl are constants, for a given ω and l, evaluated
around each peak where ω ≈ ωR. From Eq. (36), we can see
that the peaks of the transmission coefficient happen at
ω ≈ ωR, and the form of the peaks is related to ωI .
In Fig. 13, we plot the partial absorption cross sections

of massless scalar waves for wormholes, with different
choices of the parameter a. The partial absorption cross

sections are related to the transmission coefficient, as given
in Eq. (15).

A. Discussion

From Fig. 13, we see that the resonant peaks become
broader and less distinct as the parameter a increases,
which is consistent with the behavior of the potential shown
in Fig. 2. These resonances can make the wormhole
absorption spectrum quite distinctive from the BH one.
Similar results are also manifest in extreme compact objects
(ECOs) [39] and in BH remnants [35] emerging on
quadratic and Born-Infeld theories of gravity. Moreover,
we note that the trapped modes, associated to the resonant
peaks, are slowly decaying modes, since the imaginary part
is always negative and small, as can be seen in Table I. It is
worth mentioning that trapped modes in wormhole space-
times also play a role in gravitational waveforms, giving
rise to echoes (see, e.g., Refs. [50,55]).

VII. FINAL REMARKS

We have studied the propagation of massless scalar
waves in the spacetime configuration proposed by
Simpson and Visser [36]. This Simpson-Visser geometry

(a) (b)

(c) (d)

FIG. 13. Partial absorption cross sections of massless scalar waves for the wormhole, with different values of a. In Figs. 13(a), 13(b),
13(c), and 13(d) we have set a ¼ 2.1M, a ¼ 2.5M, a ¼ 3M and a ¼ 4M, respectively. As in Fig. 12, for a ¼ 2.1M and a ¼ 2.5M, we
see that the peaks due to trapped modes are easy to identify. The peaks become less evident as we increase the value of a.
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is characterized by a parameter that allows the interpolation
from BH to wormhole configurations.
We have investigated the scalar absorption by BHs and

wormholes associated to the Simpson-Visser configuration.
For the BH branch of interpolation, we have shown that the
low- and high-frequency results are equivalent to the
Schwarzschild BH ones, namely, they are equal to the
BH horizon area and tend to the geometric capture cross
section, respectively. Moreover, the generic oscillation
behavior around the high-frequency limit of spherical
BHs is manifest. Our numerical results are in full agree-
ment with the low- and high-frequency regime approx-
imations, and also with the sinc approximation.
We found that the BH and the wormhole configurations

can be quite distinctive concerning the absorption of
scalar waves. The distinction is due to the presence of
trapped modes around the wormhole’s throat and to the
different values of the total absorption cross section in the
low- and high-frequency limits. The absorption cross
section of the wormhole branch of interpolation can
present narrow resonant peaks due to a potential well at

the throat of the wormhole. Moreover, these peaks
become broader as we increase the parameter a, due to
the decreasing of the depth of the potential well around
the wormhole throat. Similar resonance effects in the
absorption cross section were reported for ECOs [39] and
for BH remnants [35], where the partial transmission
amplitudes also present Breit-Wigner-type resonances,
analogously to the phenomenon present in nuclear scat-
tering theory [53,54].
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