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The Laser Interferometer Space Antenna (LISA) will be able to detect massive black hole mergers
throughout the visible Universe. These observations will provide unique information about black hole
formation and growth, and the role black holes play in galaxy evolution. Here we develop several key
building blocks for detecting and characterizing black hole binary mergers with LISA, including fast
heterodyned likelihood evaluations, and efficient stochastic search techniques.
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I. INTRODUCTION

The first detection by LIGO of gravitational waves from
a binary black hole merger [1] has been followed by dozens
of additional detections [2] that are revealing insights into
stellar evolution and black hole formation [3]. In the next
decade, the launch of the Laser Interferometer Space
Antenna (LISA) [4,5] will allow for similar studies of
much more massive black holes, potentially allowing us to
unravel the interplay between massive black hole growth
and galaxy evolution.
The detection and characterization of binary black hole

mergers was investigated two decades ago [6–14] as part of
the planning for an earlier incarnation of the LISA mission.
In the intervening years there have been several improve-
ments in both the modeling of the signals and the
techniques used to detect and characterize the signals.
The most significant changes are that the signal models
now include inspiral, merger and ringdown, as opposed to
just the inspiral, and a range of techniques have been
developed that greatly speed up the calculation of the
likelihood function, which plays a central role in the
analysis. These techniques have recently been used in a
study of Bayesian parameter estimation for LISA obser-
vation of massive black hole binaries, with an emphasis on
the impact of including higher harmonics in the signal
model [15,16].
The goal of this work is to develop several key building

blocks for detecting massive black hole mergers with LISA
and inferring their physical properties. The effort is part of
the LISA Data Challenge [17], a successor to the original
series of Mock LISA Data Challenges [18–20], where
simulated LISA data is used as a playground for developing
analysis algorithms that can be used once the mission is
operational. The LISA Data Challenges are following a
staged development, starting with relatively simple data
sets and progressively building in additional realism. In the
first round of the new challenges, dubbed Radler, the data

sets are broken out by source type. For massive black holes
the simulated data set contains a single binary merger in
uninterrupted stationary, Gaussian noise. The next chal-
lenge, Sangria, will include simulated data with multiple
black hole binaries. Future challenges will add gaps,
nonstationary and non-Gaussian noise, and will include
multiple signals of different types, as well as increasing the
complexity of the simulated signals. The techniques
described here are sufficient to handle the Radler and
Sangria Challenges, and will serve as a foundation for the
development of the more advanced techniques needed to
handle more realistic data sets that will ultimately form part
of the global solution that simultaneously models thou-
sands of overlapping signals of different types. Our
approach is similar to that in Ref. [15], but with a greater
emphasis on the initial search. Another key difference is
that our analysis accommodates instrument noise, while the
analysis in Ref. [15] is limited to noise-free data. The GPU
accelerated likelihood approached used in Ref. [16] is able
to account for instrument noise.
To avoid getting bogged down in details, most of the

technical aspects of the analysis, such as the instrument
response function, noise spectra etc., are relegated to
appendixes. Geometric units with G ¼ c ¼ 1 are used
throughout. The code used to produce the results shown
here can be downloaded from GitHub [21].

II. THE QUARRY

The black hole mergers we are considering have total
masses between 105 M⊙ and 108 M⊙. Lower mass sys-
tems, including the stellar origin black holes detected by
LIGO and Virgo, will require slightly different search
techniques due to their longer duration. For the signal
model we use a phenomenological model (PhenomD),
which describes the dominant harmonic of a quasicircular
binary with spins aligned with the orbital angular
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momentum [22,23]. The model attaches an augmented post-
Newtonian inspiral to a parameterizedmerger and ringdown,
and the model is calibrated against a suite of numerical
relativity simulations. Including additional harmonic content
in the signal model will have little impact on the search
strategy, however allowing for misaligned spins and orbital
precession would require modifications to the search.
The search strategy is guided by the fact that systems in

the mass range being considered only spend a short amount
of time in the LISA band relative to the mission duration
(years) and orbital modulation time scale (months). It is
conventional to define “time in band” as the time to merger
from some fiducial frequency, but a more meaningful
measure is the time until merger during which a large
fraction of the signal-to-noise ratio, or SNR, is accumu-
lated. Since the Bayes factor between signal and noise
scales as the signal-to-noise ratio squared, we define the
time in-band, T99, to be the time before merger taken to
accumulate 99% of the SNR2. Figure 1 shows the time in-
band as a function of the detector-frame total mass M for
two different mass ratios q ¼ m2=m1. The source was
simulated with ecliptic co-latitude θ ¼ π=3 and longitude
ϕ ¼ 0, with polarization angle ψ ¼ π=3 and inclination
angle ι ¼ π=3. The choice of source location and orienta-
tion is largely irrelevant here since the time in-band is so
short—the LISA antenna is roughly constant on durations
shorter than one month. Here we are using the LISA
mission configuration and noise model described in the
LDC manual [24]. Details of the noise model are given in
Appendix A.

III. THE HUNT

Because the time in-band is short for systems with total
mass greater than 105 M⊙, an efficient search strategy is to

analyze shorter stretches of data. During the mission this
could be done on a rolling basis, with the data segment
being advanced day-by-day as the data arrives in an effort
to provide low-latency alerts to aid searches for electro-
magnetic counterparts. Note though that there is little hope
of providing advanced warning of a merger for systems
with moderate mass ratios and detector frame total masses
above 3 × 105 M⊙.
The short duration of the signals allows us to ignore the

antenna response in the first stage of the search, cutting the
search space from eleven dimensions (two masses, two
spins, merger time and phase, distance, sky location and
orbital orientation) to just four—the two massesm1,m2 and
the two dimensionless spins χ1, χ2. The waveform ampli-
tude, phase and merger time are maximized over analyti-
cally using the methods described in Section 8 of the LIGO
Data Analysis guide [25]. In the LISA setting we analyze
two channels of data, the signal-orthogonal A and E time-
delay-interferometry (TDI) channels. The merger time
maximization is performed simultaneously for both chan-
nels, while the amplitude and phase maximization is
performed individually in each channel. The search over
masses and spins could be performed using a LIGO-style
template bank, but we prefer to use a stochastic search that
is a variant of the Markov Chain Monte Carlo (MCMC)
method we use for parameter estimation.
The PhenomD [22,23] waveform code provides the

frequency domain amplitude AðfÞ and phase ΦðfÞ for the
gravitationalwave signalhðfÞ ¼ AðfÞeiΦðfÞ. To convert this
to the fractional-frequency TDI response used in the LDC
data sets we have to multiply the amplitude by a factor of
8ðf=f�Þ sinðf=f�Þ, where f� ¼ 1=2πL ≃ 19.1 mHz is the
transfer frequency and L is the arm-length. The factor of
2 sinðf=f�Þ accounts for the time-delay interferometry,while
the factor of 4f=f� accounts for the fractional frequency
response. The time delay interferometry also introduces a
phase shift of π=2 and a time shift of L, but these are taken
care of by the analytic maximization.
The full 222 × 10 seconds of the LDCmassive black hole

data set was divided into 16 chunks, each roughly a month
in duration (Tseg ¼ 2621440 seconds). Each chunk was
searched using a variant of the replica exchange MCMC
[26] that we use for parameter estimation. The search used a
total of twelve chains, geometrically spaced in “temper-
ature” by a factor of 1.5. The parameters of the cold chain
were cloned to the hottest chain every 100 iterations. A
mixture of proposals were used, including uniform draws
from the prior range for each parameter, and draws along
eigendirections of the Fisher information matrix, scaled by
the inverse square root of the eigenvalues. The Fisher
matrix was computed using the masses and spins, in
addition to the merger time and phase. The merger time
and phase were included in the Fisher matrix calculation,
even though they were maximized over in the likelihood,
since there are covariances between them and the masses
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FIG. 1. The time interval before merger to accumulate 99% of
the signal-to-noise ratio squared, T99, as a function of the
detector-frame total mass for two different mass ratios. For
binaries with total mass above 105 M⊙ the bulk of the signal-
to-noise is accumulated in less than one month.
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and spins. Leaving out the merger time and phase in the
Fisher matrix results in jump proposals that are inefficient.
The maximization over merger time tc in the calculation of
the likelihood was restricted to be at most �Tseg=8.0 so as
not to go too far outside the frequency range of the
reference signal, which was set to be from fðTstartÞ to
fðTstart þ TsegÞ where Tstart is the start time of the segment
[the mapping between time and frequency is given in
Eq. (B1)]. The prior for the merger time was set to be
tc ∈ ½Tstart; Tstart þ 2Tseg�, so that the merger could occur in
the current segment or the next segment over, allowing for
the possibility of picking up the signal prior to merger. The
stochastic search is not Markovian (reversible) since the
likelihood is maximized and the proposal densities are not
included in the Metropolis-Hastings jump acceptance
probability.
Figure 2 shows a trace plot of the merger time, masses

and spins from the cold chain in the stochastic search of
data chunk 10 of 16. As expected, the search rapidly locked
onto the merger time, followed by the masses and then the
spins. Searches of the other 15 segments yielded no
additional significant candidate signals with SNR > 8.
The search of each segment takes less than four minutes
using a quad-core 2.9 GHz Macbook Pro. The 12 chains
were run in parallel using OpenMP.
The initial stage of the search provides a starting solution

for the masses, spins and the detector frame merger time.
The next stage of the search finds a good starting solution
for the sky location ðθ;ϕÞ, luminosity distance DL,
Barycenter merger time tc, merger phase ϕc, and orbital
orientation (expressed in terms of the polarization angle ψ
and inclination angle ι). The intrinsic parameters (masses
and spins) are held fixed, while the other parameters are
explored using a stochastic search algorithm. For the
second stage of the search we need to apply the full
instrument response to the PhenomD templates. The

response is computed directly in the frequency domain using
the method described in Appendix B. The likelihood is
computed using the F-statistic [27] maximization described
in Ref. [8], which uses a set of four filters found by setting
ι ¼ π=2 and (i) ðϕc;ψÞ ¼ ð0; 0Þ; (ii) ðϕc;ψÞ ¼ ðπ=2; π=4Þ;
(iii) ðϕc;ψÞ ¼ ð3π=4; 0Þ; (iv) ðϕc;ψÞ ¼ ðπ=4; π=4Þ; in the
full response. The F-statistic maximizes the likelihood over
themerger phase, luminosity distance, polarization angle and
inclination angle, thus reducing the search to be over the sky
location and barycenter merger time. The barycenter and
detector frame merger times are related by tBc ¼ tDc þ k̂ ·
x0ðtcÞ, where k̂ is the direction of propagation of the
gravitational wave and x0ðtÞ is the center of the LISA
constellation. For a given sky location for the source, this
mapping can be used to estimate the barycenter merger time.
We allow the barycenter merger time to vary a little from this
value to account for the time delays introduced by the full
instrument response. Figure 3 shows a sky map of the F-
statistic likelihood computed using the masses and spins
found during the first stage of the search. The F-statistic
based search typically locks onto the true sky location in less
than a hundred iterations.
The same search technique can be used on data sets

containing multiple black hole mergers. The maximum
likelihood solution from the previous pass is subtracted
from the data and the search repeated. This process is
repeated until no additional significant signals are found.
The collection of maximum likelihood solutions from the
search can be used as a starting point for more refined
parameter estimation, or even better, can be turned into
proposal distributions for performing the full multi-source
global fit.
The simulated signals in the Radler data set only

included the dominant harmonic in the waveform. If the
data contains signals with full harmonic content, it is likely
sufficient to perform the search with templates that only
include the dominant harmonic, since for quasi-circular
systems, the dominant harmonic contributes most of the
SNR. It is possible that some of the chains might

FIG. 3. A sky map showing the F-statistic likelihood computed
using the values for the masses and spins found during the first
phase of the search.
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FIG. 2. Trace plots of the cold chain from the stochastic search.
The horizontal solid lines indicate the true parameter values. The
search rapidly locks onto the signal.
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temporarily lock on to the subharmonics before switching
to the dominant mode.

IV. DRESSING OUT

With the rapid search phase complete and one or more
sources identified, the next step is to refine the estimates for
the source parameters. In reality this will be done while
simultaneously inferring the parameters of many sources,
including hundreds of massive black holes [28–30], tens of
thousands of ultracompact galactic binaries [31,32], hun-
dreds of extreme mass ratio inspirals [33], and a handful of
stellar origin black hole binaries [34]. Additionally it will
be necessary to model the instrument noise and residual
galactic signal, which accounting for gaps in the data and
other real-world complications.
Here we start with the simpler problem of inferring the

parameters of a single massive black hole binary merger in
gapfree data, with stationary, Gaussian noise with a known
power spectrum. We apply Bayesian inference to compute
the posterior distribution for the source parameters. Our
method of choice is the replica exchange (parallel tem-
pered) Markov Chain Monte Carlo (PTMCMC) algorithm.
Over the years we have developed a standard recipe [35] for
implementing PTMCMCs that uses a combination of local
and global proposal distributions, andweadopt that approach
here, while also adding a new ingredient—maximized jumps
—that significantly improves the sampling. The individual
chains are advanced using the Metropolis-Hastings algo-
rithm, whereby a chain is advanced from parameters x to
parameters y with acceptance probability

HðyjxÞ ¼ min

�
1;
pðdjyÞpðyÞqðxjyÞ
pðdjxÞpðxÞqðyjxÞ

�
: ð1Þ

HerepðdjxÞ is the likelihoodof observingdatad givenmodel
parameters x, pðxÞ is the prior distribution for parameters x,
and qðyjxÞ is the proposal density for drawing a new set of
parameters y given the current set of parameters x.
One drawback of stochastic algorithms such as

PTMCMCs is that they require large numbers of likelihood
evaluations. Using the fast frequency domain technique
described in Appendix B, applied to the full Radler data set,
each likelihood evaluation takes roughly one second on a
single 2.6 GHz CPU core. A variety of techniques can be
used to speed up the likelihood evaluation, including
reduced order models [36], reduced-order quadratures
[37] and computational approaches such as GPU accel-
eration [16]. Here we use a different technique [38] that
allows us to compute the likelihood without having to
generate any waveforms aside from the one reference
waveform that is used to heterodyne the data. The hetero-
dyne likelihood has been rediscovered and used in LIGO/
Virgo data analysis, though there the technique has been
called “relative binning” [39]. In the current application, the
heterodyned likelihood takes ∼1 ms to compute—a factor

of one thousand times faster than direct evaluation with the
(already fast) frequency domain waveforms. The method
used to compute the heterodyned likelihood is described in
Appendix C.

A. Priors

We assumed uniform priors on all the parameters. The
detector frame individual masses were taken to be uniform
in the range m1; m2 ∈ ½5 × 104 M⊙; 108 M⊙�. The dimen-
sionless spins were taken to be uniform in the range
χ1; χ2 ∈ ½−1; 1�. The luminosity distance was taken to be
uniform in the range DL ¼ ½0.1 Gpc; 400 Gpc�. The
merger time tc was taken to be uniform in the range
½0; 2Tobs�, where Tobs is the observation time. The cosine of
the ecliptic colatitude, cos θ, and the cosine of the incli-
nation, cos ι, were taken to be uniform in the range ½−1; 1�.
The orbital phase at merger ϕc, and the polarization angle ψ
were taken to be uniform in the range ½0; π�. The ecliptic
longitude, ϕ, was taken to be uniform in the range ½0; 2π�.

B. Proposals

Weused a PTMCMCwith a geometrically spaced temper-
ature ladder, with inverse temperatures scaling as βi ¼ α−i.
Samples are recorded from the chain with β0 ¼ 1. A total of
Nc ¼ 16 sixteen chains were used, with each chain running
on a separate computational core. The geometric temperature
spacingα > 1was set so as to give an effective signal to noise
ratio of SNReff ¼ SNR=βNc−1 ¼ 5. More efficient sampling
could probably be achieved using an adaptive temperature
spacing. We did check that all the chains remained “con-
nected,” that is, that the exchange rate between neighboring
chains remained above zero throughout the simulation and
for all temperatures.
A mixture of proposal distributions were used to advance

the chains. As per our standard recipe [35], the mix
included local and global proposals, with the choice of
proposal at each iteration drawn randomly. To the standard
mix we also added a new technique that incorporates
maximization over parameters in a way that maintains
detailed balance (reversibility) in the chains.
The ultimate proposal density would be posterior dis-

tribution itself, but lacking that, we instead use two local
approximations to the posterior: proposals derived from
previous chain samples and proposals that use the quadratic
Fisher information matrix approximation to the likelihood.
A variant of the differential evolution approach [40] is used
to propose jumps based on previously collected samples. A
running history of past samples is collected at each
temperature level. Jumps are proposed from the current
position to a new location found by adding the vector
connecting two points drawn randomly from the history.
The proposal can be shown to be asymptotically Markovian
[40]. Heuristically, the asymptotic reversibility can be
understood from the observation that as the samples
accumulate, the chain history approaches the stationary
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target distribution. Differential evolution is very effective at
exploring strong parameter degeneracies, as the vectors
connecting past samples tend to line up along the degen-
erate directions. The Fisher information matrix provides a
quadratic approximation to the likelihood, which in turn is
a good approximation to the posterior distribution so long
as curvature of the prior is less than the curvature of the
likelihood. The Fisher matrix can be computed using a fast
spline integration method [38]. Writing the signal as
hðfÞ ¼ AðfÞeiΦðfÞ, the Fisher matrix Γij ¼ ðh;ijh;jÞ can
be expressed as

Γij ¼ 4
X
I¼A;E

Z AI
;iA

I
;j þAI2ΦI

;iΦI
;j

SInðfÞ
df: ð2Þ

Here AI and ΦI are the amplitude and phase in the Ith data
channel and SInðfÞ is the noise spectral density in the Ith
data channel. The sum is over the I ¼ A, E TDI channels.
All of the terms appearing in (2) vary slowly in frequency
and can be evaluated on a coarse grid using the spline
integration method described in Appendix C. The eigen-
values and eigenvectors of the Fisher matrix are computed
and used to propose jumps by first randomly selecting an
eigendirection, then drawing the jump size from a normal
distribution with variance equal to the inverse of the
corresponding eigenvalue. The effectiveness of these pro-
posals is predicated on the Fisher matrix providing a
reasonable approximation to the posterior distribution.
Figures 4 and 5 compare the Fisher matrix approximation
to the posterior to the MCMC derived posterior distribu-
tions for the noiseless Radler data set. We see that
the Fisher matrix provides a good approximation for the
parameters shown in Fig. 4 that enter directly into the
gravitational wave phase, but the approximation is poor for
the extrinsic parameters, such as sky location, luminosity
distance and inclination angle shown in Fig. 5. In part, the
poor showing for the extrinsic parameters is because the
distributions are multi-modal whereas the Fisher matrix
approximation is monomodal. The agreement is better in
practice since the Fisher information matrices are updated
as the simulation progresses, so all the modes get covered.
On the other hand, the agreement seen in Figure 4 is
deceiving, as the likelihoods computed using the Fisher
matrix approximation are often very different from those
computed using the full likelihood, mostly due to inaccur-
acies in the merger time and merger phase. These inaccur-
acies were found to severely limit the acceptance rate for
jumps along certain eigendirections. Two strategies were
used to improve the acceptance of the Fisher matrix based
proposals. The first was to break the Fishermatrix into blocks
and sometimes just propose jumps in the subset of parameters
that are well approximated, the second was to use the
likelihood maximization procedure described below.
The posterior distributions encountered in gravitational

wave astronomy are often multimodal. To fully explore all

FIG. 4. Corner plot comparing the MCMC (blue) and Fisher
matrix (red) estimates for the posterior distribution for the
masses, spins, merger phase and merger time. The true values
are indicated by dashed lines. The two estimates agree well for
the masses and spins, but less so for the merger time and phase.

FIG. 5. Corner plot comparing the MCMC (blue) and Fisher
matrix (red) estimates for the posterior distribution for the sky
location, luminosity distance, inclination and polarization. The
true values are indicated by dashed lines. The Fisher matrix
provides a poor approximation to the MCMC derived posterior
distribution for these extrinsic parameters.
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the modes, our approach [35] is to use global proposals
combined with replica exchange (parallel tempering). Here
we use a global proposal based on the F-statistic likelihood.
A similar approach has been used for ultracompact galactic
binaries [41], but here the implementation is different.
Rather than precomputing a collection of F-statistic maps
as was done in Refs. [41,42], here we compute the F-
statistic likelihood on-demand, and use it as part of a
maximized likelihood proposal.
The maximized proposal technique is a general method

that can be used with any form of likelihood maximization.
In the current context we applied the technique to the
F-statistic likelihood and also to likelihoods that are maxi-
mized with respect to time offset, overall phase and
amplitude. The method is illustrated in Fig. 6. The first
step is to draw a new set of parameters from some
distribution. For example, when using the F-statistic, a
new sky location is drawn while holding the masses and
spins fixed. The remaining parameters, ftc;ϕc;ψ ; ι; DLg
are analytically maximized using the F-statistic. The bary-
center merger time is adjusted to keep the detector frame
merger time fixed. The new sky location is either drawn
from the prior, or from a wide normal distribution centered
on the current sky location. When coupled with the Fisher
matrix proposal, the maximization is performed on
ftc;ϕc; DLg. If uncorrected for, the maximization over
parameters would violate detailed balance and bias the
posterior distribution. To restore detailed balance a second
step is added to the proposal: the Fisher informationmatrix is
computed at ymax for the subset of parameters that are
maximized over. A second jump Δy is drawn from a normal
distributionwith covariancematrix equal to the inverse of the
Fisher matrix yielding the proposed point y ¼ ymax þ Δy.
The full proposal density qðyjxÞ is then given by
qðyjxÞ ¼ qðΔyjymaxÞqðymaxjxÞ. The proposal density for
the reverse move, qðxjyÞ ¼ qðΔxjxmaxÞqðxmaxjyÞ is com-
puted after finding the point xmax by maximizing the like-
lihood using the fixed parameters at x.

The maximized proposal technique dramatically
improves the mixing of the chains and the discovery of
secondary posterior modes. For example, even without
using dedicated proposals that exploit the symmetries of the
LISA instrument response, maximized jumps using uni-
form draws on the sky location were able to quickly find all
the secondary modes.
The acceptance rates of the proposals and the autocor-

relation length of the Markov chains depend somewhat on
the source being analyzed, sometimes by as much as a
factor of two or three. For the Radler data set, the average
acceptance rate for each proposal were: Fisher matrix 0.6;
differential evolution 0.04; and F-statistic sky move 0.1.
The autocorrelation length of the chains was 150 for the
masses and spins, 300 for the sky location and 500 for the
inclination and distance. A typical run went for two million
iterations, producing thousands of independent samples.

C. Results

The black hole binary system used in the Radler simu-
lation has detector framemassesm1 ¼ 2.599137 × 106 M⊙,
m2 ¼ 1.242860 × 106 M⊙ and dimensionless spins χ1 ¼
0.75348 and χ2 ¼ 0.62159. The system was placed at a
luminosity distance of DL ¼ 56.006 Gpc, corresponding to
a redshift of z ¼ 5.7309 for the assumed cosmological
model. The source frame masses are a much more modest
ms

1 ¼ 3.8615 × 105 M⊙, ms
2 ¼ 1.8465 × 105 M⊙. The rel-

atively high detector frame total mass for this system results
in it becoming detectable less than a day before merger: the
signal reaches SNR ¼ 10 just 11 hours prior to merger. The
modulation of the amplitude and phase of the signal due to
the LISAorbit is essentially irrelevant sincevery little SNR is
accumulated prior to the last few hours before merger.
Figure 7 shows thewhitened signal amplitude for this system
in the TDI A channel, with an inset showing the amplitude
modulation that occurs at low frequencies where the signal is
undetectable. Consequently, the signal is effectively a short
duration burst, andmost of the directional information comes
from differences in the time of arrival of the signal at each
spacecraft, much like the situation for bursts from cosmic
string cusps and kinks [43,44] or generic short duration
bursts [45].
Unless data is downloaded from the LISA constellation

every few hours or so, it is highly unlikely that systems
such as this one will be detected prior to merger. If data
were available in advance, the sky localization would be
poor. To investigate this possibility, we smoothly truncated
the time domain data using a cosine window of the form

WðtÞ ¼

8>>><
>>>:

1 t ≤ Tcut − ΔT
0 t > Tcut

1
2

�
1 − cos

�
πðt−TcutÞ

ΔT

��
otherwise

ð3Þ

FIG. 6. An illustration of the maximized jump proposal
technique. A jump from the current location x to a new location
y proceeds in two steps. First, a new location is proposed and
parameters such as merger time and phase are analytically
maximized over, yielding the new point ymax. Next, a jump is
drawn from a normal distribution from ymax to y. The proposal
densities for the forward and reverse jumps are included in the
Metropolis-Hastings ratio to ensure detailed balance.
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with Tcut ¼ tc − 6.7 × 103 s and ΔT ¼ 5 × 104 s. The
same window was applied to the frequency domain wave-
forms using the time-frequency mapping tðfÞ. This choice
of parameters removes the late inspiral, merger and ring-
down, and reduces the signal-to-noise ratio to SNR ¼ 11.1.
Note that more rapid truncations with smaller ΔT result in
unacceptable spectral leakage and large Gibbs oscillations
in the frequency domain signals.
Posterior distributions for the masses and spins using the

truncated premerger signal are shown in Figure 8. The mass

distribution follows a line of constant chirp mass, as
expected for the inspiral-only portion of the signal. The
spin of the more massive system is already quite well
constrained. The instrument noise pushes the masses and
spins away from their true values. The posterior distribution
for the ecliptic latitude and longitude of the truncated signal
are shown in Fig. 9. The short duration, burst-like nature of
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FIG. 7. The whitened signal amplitude in the TDI A channel for
the Radler black hole binary system. The inset highlights the
amplitude modulation due to the LISA orbital motion.

FIG. 8. Posterior distributions for the masses and spins using
the truncated Radler data. The truncated signal has SNR ¼ 11.1.
The two-dimensional distribution for the masses exhibits the
characteristic “banana” shape along the line of constant chirp
mass. The instrument noise pushes the masses away from their
true values.

FIG. 9. Sky map found using the truncated premerger Radler
data. The truncated signal has SNR ¼ 11.1. The sky map exhibits
the typical multimodality of a short duration signal. The true
source location is indicated by a white star, while the blue stars
mark the locations of the seven secondary maxima expected for a
low frequency, short duration burst signal.

FIG. 10. Slices through the posterior distribution for the
masses, spins, merger phase and merger time. The true values
are indicated by dashed lines. Here the offsets from the true
values is mostly due to projection effects and not noise—the peak
of the posterior in the full D ¼ 11 dimensions can align with the
true values but appear offset in the one and two dimensional
projections shown here.
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the signal results in four distinct modes. The 90% credible
interval covers 630 square degrees. The four modes follow
the eight-fold symmetry of the static, low frequency
antenna pattern [15], (the seven secondary modes are
marked by blue stars in Fig. 9).
Including the merger and ringdown boosts the signal-to-

noise ratio to SNR ¼ 405 and reduces the 90% credible
interval for the sky location to 47 square degrees. Of the
original four modes for the sky location only one survives,
with the surviving mode resolving into two closely space
modes as seen in Fig. 10. The instrument noise moves the
extrinsic parameters away from their true values, but the
effect on the projected posterior distribution is small
compared to the apparent displacements caused by the
projections. To see this, compare the noisefree distributions
shown in Fig. 5 to the analysis with noise shown in Fig. 10.
The luminosity distance is significantly impacted by these
projection effects.
The parameters that directly enter the phase, shown in

Fig. 11 are shifted slightly by including the instrument
noise. The smallness of the shifts is just luck of the draw—
repeating the analysis with different noise realizations
yielded larger shifts on average.

V. DISCUSSION

We have presented an early prototype for detecting and
characterizing massive black holes with LISA. A key

feature of the methods we have developed is speed. All
the analyses were conducted on a 2016 vintage laptop, with
the search stage taking tens of minutes and the characteri-
zation stage taking a few hours.
The search phase is accelerated by using smaller seg-

ments of data and a fast approximate likelihood that ignores
the LISA instrument response and maximizes over ampli-
tude, merger time and merger phase. The characterization
phase is accelerated by using a hetrodyning procedure to
speed up the likelihood evaluation by three orders of
magnitude. A novel jump proposal was introduced to
improve the mixing of the MCMC algorithm. The new
proposal employs a two stage scheme where some param-
eters are first maximized over, followed by a stochastic
jump in those parameters to preserve detailed balance.
The problem tackled here is considerably simpler than

will be encountered with real LISA data. In reality we will
have to contend with nonstationary and non-Gaussian
noise, data gaps, more complex waveforms and multiple
overlapping signals. Some of the techniques we have used
will need to be generalized to handle these complications.
For example, spin precession causes the orientation of the
orbital plane, and hence the inclination and polarization
angles, to vary with time, thus rendering the F-statistic
approximate. Data gaps and nonstationary noise will
require a shift from frequency domain to time-frequency
(wavelet) domain methods, necessitating a generalization
to the heterodyned likelihood approach. We aim to tackle
each of these complications in future work that builds on
the foundation we have laid here.
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APPENDIX A: NOISE MODEL

The noise spectral density in the fractional-frequency A,
E TDI channels is modeled as

SnðfÞ ¼
64

3L2

�
f
f�

sin

�
f
f�

��
2
��

2þ cos

�
f
f�

��
Sps

þ
�
6þ 4 cos

�
f
f�

�
þ 2 cos

�
2f
f�

��

×
Sacc

ð2πfÞ4
�
1þ 16

�
10−4

f

�
2
��

: ðA1Þ

with position noise level Sps ¼ 2.25 × 10−22 m2Hz−1 and
acceleration noise level Sacc ¼ 9 × 10−30 m2 s−4Hz−1.

FIG. 11. Slices through the posterior distribution for the
masses, spins, merger phase and merger time. The true values
are indicated by dashed lines. The peak of the posterior
distribution is offset from the true values by the noise. The
offsets are relatively small for the particular noise realization used
in the Radler data set.
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APPENDIX B: FREQUENCY DOMAIN
INSTRUMENT RESPONSE

The LISA constellation cartwheels around the Sun
resulting in a time dependent instrument response function.
Since the likelihood is computed in the frequency domain,
and the PhenomD waveform is already expressed in the
frequency domain, it is most efficient to map the frequency
to time and compute the response directly in the frequency
domain, as was first proposed by Cutler [46]. The mapping
is given by

tðfÞ ¼ 1

2π

dΦðfÞ
df

þ tc: ðB1Þ

The time-frequency mapping is computed by taking
numerical derivatives of the PhenomD phase function. In
the expressions below it is understood that the time t is
mapped to the frequency f by tðfÞ.
The fractional frequency shift imparted by a gravitational

wave to the laser light propagating along one spacecraft to
another is given in Eq. (B11) of Ref. [47], which can be
written in full generality as

δνijðtÞ
ν0

¼ r̂ij ⊗ r̂ij
2ð1 − k̂ · r̂ijÞ

∶ðhðt; xjÞ − hðt − L; xiÞÞ: ðB2Þ

This expression describes the Doppler shift of the laser light
in going from the spacecraft at xi to the spacecraft at xj,
arriving at barycenter time t. Here r̂ij ¼ ðxj − xiÞ=L,
where L is the armlength, which we are assuming is
constant. The gravitational wave is propagating in the k̂
direction with surfaces of constant phase given by
ξ ¼ t − k̂ · x. The full TDI response is formed out of a
linear combination of one-arm Doppler shifts along various
arms at various times. In order to be able to add together
these Doppler shifts in a consistent way, it is helpful to
reference all of expression to the gravitational wave signal
at the center of the constellation, given by x0 ¼ ðx1þ
x2 þ x3Þ=3. Working in the rigid-adiabatic approximation
[47] for a GW signal with instantaneous frequency f we
have

δνijðtÞ
ν0

¼ iðr̂ij ⊗ r̂ijÞ∶hðt;x0Þ
�
sinc

�
f
2f�

ð1 − k̂ · r̂ijÞ
�

× e−i
f

2f�ð1þk̂·r̂ij− 2ffiffi
3

p k̂·r̂i0Þ
�

ðB3Þ

where f� ¼ 1=ð2πLÞ is the transfer frequency. The gravi-
tational wave signal is given by

hðξÞ ¼ hþðξÞϵþ þ h×ðξÞϵ×: ðB4Þ

For the leading order 22-mode of a nonprecessing circular
binary we have

hðξÞ ¼ hðξÞðAþϵþ þ iA×ϵ×Þ; ðB5Þ

where

Aþ ¼ 1þ cos2ι
2

; A× ¼ − cos ι; ðB6Þ

and ι is the inclination of the binary orbit.
In the rigid adiabatic approximation the time delay

interferometry introduces an overall transfer function given
by

T ¼ ð1 − e−4πifLÞ ¼ 2ie−i
f
f� sinðf=f�Þ: ðB7Þ

Putting all the pieces together, the X channel TDI variable
extracted from vertex 1 is given by

XðtÞ ¼ −
f
f�

e−i
f
f� sin

�
f
f�

�
½ðr̂12 ⊗ r̂12ÞT 12ðtÞ

−ðr̂13 ⊗ r̂13ÞT 13ðtÞ�∶hðt;x0Þ ðB8Þ

where

T ijðtÞ ¼ sinc

�
f
2f�

ð1 − k̂ · r̂ijÞ
�
e−i

f
2f�ð3þk̂·r̂ij− 2ffiffi

3
p k̂·r̂i0Þ

þ sinc

�
f
2f�

ð1þ k̂ · r̂ijÞ
�
e−i

f
2f�ð1þk̂·r̂ij− 2ffiffi

3
p k̂·r̂i0Þ:

ðB9Þ

If we define dþ;×
ij ¼ ðr̂ij ⊗ r̂ijÞ∶ϵþ;×, the 22-mode

response can be written as

XðtÞ ¼ ½Fþ
X ðtÞAþ þ iF×

XðtÞA×�hðt;x0Þ; ðB10Þ

where the complex antenna patterns are given by

Fþ;×
X ¼ −

f
f�

e−i
f
f� sin

�
f
f�

�
ðdþ;×

12 T 12 − dþ;×
13 T 13Þ: ðB11Þ

Expressions for the Y and Z channels follow by cyclic
permutation of the labels (1,2,3) in the expression for X.
The signal orthogonal A, E, T can be formed out of linear
combinations of X, Y, Z:

A ¼ 1

3
ð2X − Y − ZÞ

E ¼ 1ffiffiffi
3

p ðZ − YÞ

T ¼ 1

3
ðX þ Y þ ZÞ: ðB12Þ

For the A, E channels used in the analysis, the miss-match
between the noiseless Radler data and the frequency
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domain rigid adiabatic waveforms was MMA ¼ 3.6 × 10−7

for the A channel and MME ¼ 7.7 × 10−7 for the E
channel. These systematic mis-matches are well below
the expected statistical mis-matches due to noise,
E½MM� ¼ ðD − 1Þ=ð2SNR2Þ, for a signal with dimension
D ¼ 11 and SNRA ¼ 360.9, SNRE ¼ 184.9.

APPENDIX C: HETERODYNED LIKELIHOOD

The log-likelihood in Gaussian noise is given by

logL ¼ 1

2
ðd − hjd − hÞ − 1

2

Z
2πSnðfÞdf; ðC1Þ

where d is the data, h is the waveform model, SnðfÞ is the
noise spectral density and the notation ðajbÞ indicates that
usual noise weighted inner product. In an effort to reduce
clutter in the notation we will suppress the sum over
channels in what follows.
The idea behind the heterodyned likelihood [38] is that

given a good reference model h̄, such as the maximum
likelihood waveform found in the search phase, the like-
lihood for waveforms “close” to h can be computed by
heterodyning the residual, r̄ ¼ d − h̄, against the signal h̄.
This results in a likelihood that can be computed very
cheaply using a coarse spline interpolation of the amplitude
and phase. In an MCMC, any parameters that are in the
central 99.9+% of the posterior will generate waveforms
that are close enough to the reference waveform for the
heterodyned likelihood to be used. In fact, the heterodyned
likelihood itself is exact. It is the approximations used to
make the computation fast that introduce error, and the size
of the error can be controlled by how many terms are kept
in the splines and FFTs used to speed up the evaluation.
The heterodyne method can be applied to signals with

multiple harmonics from higher order modes or orbital
eccentricity. The heterodyning procedure is applied mode-
by-mode and the results are summed to give the full like-
lihood. The result is exact when the overlap between modes
vanishes, and is a very good approximation in general.
In contrast to the reduced order quadrature method for

accelerating the likelihood evaluation, the heterodyned
likelihood is able to accommodate updates to the noise
model. While the noise model was held fixed in the current
application, noise updates are included here for complete-
ness. Given a reference waveform h̄ and noise model S̄nðfÞ.
The second term in the likelihood can be computed directly
using a spline integration. The first term in the likelihood
requires more attention:

ðd − hjd − hÞ ¼ 4

Z ðr̄þ ΔhÞðr̄þ ΔhÞ�
SnðfÞ

df

¼ 4

Z
ΔhΔh� þ ðr̄Δh� þ r̄�ΔhÞ þ r̄r̄�

SnðfÞ
df;

ðC2Þ

where Δh ¼ h̄ − h. Writing h ¼ AðfÞeiΦðfÞ, and similarly
for h̄, we have

Z
ΔhΔh�

SnðfÞ
df ¼

Z
Ā2 þA2 − 2ĀA cosΔΦ

SnðfÞ
df: ðC3Þ

with ΔΦðfÞ ¼ Φ̄ðfÞ −ΦðfÞ. This expression is exact. So
long ash is close to h̄, all the terms in the integrand are slowly
varying and can be evaluated using a coarse spline inter-
polation. Figure 12 shows the integrand ðfΔhΔh�Þ=SnðfÞ
for the TDI A-channel evaluated between the parameters for
themaximum likelihood solution from the search and the true
source parameters. To better illustrate the structure of the
integrand we have switched to a logarithmic scale in
frequency and correspondingly scaled the integrand by f.
The spline points used to compute the integrand are
shown. The method used to select the spline points is
described below.
The next term in the likelihood can be written as

Z
r̄Δh� þ r̄�Δh

SnðfÞ
df ¼

Z
ðr̄wΔh�w þ r̄�wΔhwÞdf; ðC4Þ

where

r̄w ¼ r̄e−iΦ̄ðfÞ

S̄1=2n ðfÞ
ðC5Þ

is the whitened reference residual heterodyned by the
reference phase and

Δhw ¼ ðĀðfÞ −AðfÞe−iΔΦðfÞÞS̄1=2n ðfÞ
SnðfÞ

ðC6Þ
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FIG. 12. The integrand ðfΔhΔh�Þ=SnðfÞ for the TDI A-
channel evaluated between the parameters for the maximum
likelihood solution from the search and the true source param-
eters. The spline points used to compute the integral are indicated
by crosses.
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is the heterodyned and whitened difference in the wave-
forms. Writing

r̄wðfÞ ¼
Z

e2πiτr̄wðτÞdτ; ðC7Þ

and similarly for ΔhwðfÞ we have

Z
r̄Δh� þ r̄�Δh

SnðfÞ
df ¼

Z
ðr̄wðτÞΔh�wðτÞ þ r̄�wðτÞΔhwðτÞÞdτ:

ðC8Þ

This expression is exact. It can be approximated by using a
FFT to compute the Fourier transform and using a restricted
range for the τ parameter. Note that the more expensive to
compute r̄wðτÞ can be evaluated once and stored. Figure 13
shows the integrand of equation (C8) for the TDI A-
channel evaluated between the parameters for the maxi-
mum likelihood solution from the search and the true
source parameters. The integrand is rapidly oscillating
within an exponentially damped envelope. The fast decay
of the envelope allows us to truncate the τ integral to one
thousandth of its full extent, which accounts for the

increase in speed between the full and heterodyned
likelihood.
The final term in the likelihood can be handled in a

similar fashion to the previous term:

Z
r̄r̄�

SnðfÞ
df ¼

Z
RðfÞSðfÞdf ¼

Z
R�ðτÞSðτÞdτ; ðC9Þ

where RðfÞ ¼ r̄r̄�=S̄nðfÞ, SðfÞ ¼ S̄nðfÞ=SnðfÞ and RðτÞ
and SðτÞ are their Fourier transforms. As with r̄wðτÞ, the
expensive to compute RðτÞ can be evaluated once and
stored.
The reference integrals r̄wðτÞ and RðτÞ are calculated at

the full sample cadence of the data, while the slowly
varying terms such as (C3) are computed on a coarse spline
in frequency. In the LISA context wewant to ensure that the
orbital motion of the constellation is adequately sampled,
so we use the leading post-Newtonian expression for _f to
set the frequency spacing df:

df ¼ _fdT ¼ ð8πÞ8=3 3

40
M5=3dT: ðC10Þ

Setting dT ¼ 3 × 105 seconds yields rough 100 hundred
samples per year during the early inspiral. To ensure that
the dynamic frequency spacing is never to fine or too coarse
we set dfmin ¼ 1=Tobs and dfmax ¼ fmax=100, where fmax
is the maximum frequency reached by the signal (set equal
to fmax ¼ 2fring, where fring is the ringdown frequency,
when the merger occurs within the observation time). With
these choices, the frequency stencil typically has between
100 and 500 points for a one year data set.
For the discrete FFTused to computeΔhwðτÞwe settled on

N ¼ 4096 points in a trade-off between speed accuracy.
This choice delivered at accuracy of order �0.3 for the
ðnjΔhÞ term, with an evaluation time of 5 ms on a single
2.6 GHz core. The accuracy should be compared to the
expected value and variance for this term, E½ðnjΔhÞ�≃
E½ðnjh;iðnjh;jÞΓijÞ� ¼ D, and Var½ðnjΔhÞ� ¼ D. The stan-
dard deviation of the ðnjΔhÞ term, σðnjΔhÞ ¼

ffiffiffiffi
D

p ¼ 3.3, is
much larger than the numerical error.
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