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We study the gravitational field of the NUT-like source in the linearized (ghost-free) infinite derivative
gravity. Such a source is equivalent to the spinning semi-infinite cosmic string with no tension. In general
relativity, the linearized (massless) Taub-NUT solution has a curvature singularity as well as a topological
defect corresponding to distributional curvature on one half of the symmetry axis called the Misner string.
We find the NUT-charged spacetime in the linearized infinite derivative gravity. We show that it is free from
curvature singularities as well as Misner strings. We also discuss an asymptotic limit along the symmetry
axis that leads to the spacetime of a spinning cosmic string of infinite length.
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I. INTRODUCTION

General relativity is a very successful theory of gravity at
the scales of our solar system [1]. However, the theory is
incomplete in the ultraviolet regime, i.e., for very short
distances and time intervals. It contains black-hole and
cosmological singularities and fails to be perturbatively
renormalizable at the quantum level. It is well known that if
quadratic terms in the curvature are added to the Einstein-
Hilbert action [2], the resulting gravitational theory is
renormalizable [3]. Inclusion of further higher-order and
higher-derivative terms leads to super-renormalizable mod-
els of quantum gravity [4]. In addition, the gravitational
potential becomes regular [5,6]. Unfortunately, these the-
ories suffer from the presence of ghost degree of freedom in
the physical spectrum.
The (ghost-free) infinite derivative gravity theories

provide an interesting solution to this problem. Their action
involves nonlocal terms containing form factors with
infinitely many derivatives (similar to those which appear
frequently in effective descriptions of the string field theory
[7] or the p-adic string theory [8–11]). A proper choice of
the form factors ensures that no additional degrees of
freedom appear in these theories (see, e.g., [12–16], or [17],
for a model proposed earlier). Furthermore, the quantum
aspects and the renormalizability of the infinite derivative
gravity theories was discussed in [17–22]. Considering that
the quantum fluctuations appear at much larger scales than
the scale of nonlocality of these theories, the metric can be
treated as classical. The studies from this classical point of
view show that the infinite derivative gravity may actually
resolve the cosmological, black-hole, and other gravita-
tional singularities [12,23–40].

In particular, it was shown that the nonlocality admits a
bouncing cosmological universe [23], inflationary solu-
tion [24,25], while the Kasner-type solution with the
anisotropic collapse is not permitted [28]. The bouncing
solution turns out to be free from perturbative instabilities
[26,27]. In the context of black-hole singularities, it was
argued that the Schwarzschild-type metric cannot be a
vacuum solution of the infinite derivative gravity [34,35].
It is well known that the 1=r behavior of the gravitational
potential of the pointlike source is regularized in the linear
theory [12,32] because the delta source is effectively
smeared by the nonlocal operator. As a result, the
curvature of the metric is finite everywhere [33]. A similar
feature remains true for electrically charged sources [36],
rotating ring-type sources [37], and other extended
objects associated with topological defects such as the
p-branes, cosmic strings, and gyratons [38–40]. It was
also demonstrated that there exists a mass gap for mini-
black-hole production by a spherical gravitational col-
lapse [30,31] and head-on collision of ultrarelativistic
particles [29], so the theory never develops a singularity at
the linear level. Let us also note that the results in the
linearized theory are actually more significant in the
infinite derivative gravity than in the general relativity
because the nonlocalities tend to weaken the gravitational
interaction at short distances.
The Taub-NUT spacetime [41,42] is arguably one of the

most puzzling solutions of general relativity. It carries
the NUT charge, which is a gravitational analog to the
magnetic monopole [43]. The metric is endowed with a
very peculiar type of singularity on the symmetry axis
(similar to Dirac’s string [44]), called theMisner string, that
is surrounded by a region with closed timelike curves.
There exist two prominent proposals for the interpretation
of this geometry. In Misner’s interpretation [45], the string
is rendered unobservable by assuming the periodicity in
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time. This approach not only leads to the existence of
closed timelike curves in the whole spacetime, but it also
causes severe issues with an analytic extension of the
spacetime. In an alternative approach suggested by Bonnor
[46] (see also [47–50]), the periodicity in time is aban-
doned, and the Misner string is treated as a topological
defect caused by a linear material source of angular
momentum. In recent years, the Taub-NUT spacetime with
Bonnor’s interpretation has received increasing interest
because the significant obstructions to consider this sol-
ution unphysical have been removed. Specifically, it was
shown that the Misner string is fully transparent for
geodesics (which makes the spacetime geodesically com-
plete) and there is no violation of causality for timelike
and null geodesics [51].1 Another evidence supporting its
possible physical significance is the recent construction of
the consistent black-hole thermodynamics with NUT
charge [53,54]. The Taub-NUT metric was also studied
in the context of the Kerr-Schild double copy [55], where it
was mapped to a dyon whose electric and magnetic charges
copy to mass and NUT charge.
The aim of this paper is to extend the class of linearized

solutions [12,36–39] by finding an analytic solution
describing the gravitation field of the NUT charge.
Following the Bonnor’s interpretation, we view the (mass-
less) Taub-NUT solution in the linearized regime for small
NUT charge as the spacetime of a spinning semi-infinite
cosmic string. We show that the distributional source is
smeared by the nonlocality. The resulting solution is
regular everywhere. In the local limit and far from the
source, we recover the solution of general relativity.
Exploring the asymptotic limit of the metric along the
symmetry axis, we obtain the nonlocal solution for spin-
ning cosmic string of infinite length.
The paper is organized as follows: In Sec. II, we

review the ghost-free infinite derivative gravity and some
properties of the linearized Taub-NUT solution. The
main results of the paper are in Sec. III, where we find
the NUT-charged solution, compute its curvature, and
examine the asymptotic region along the symmetry axis.
We conclude the paper with a brief discussion of our
results in Sec. IV.

II. PRELIMINARIES

A. Infinite derivative gravity

The most general four-dimensional (parity-invariant and
torsionless) gravity action that is quadratic in curvature can
be written in the form [12,56,57]2

SQG ¼ 1

16π

Z
M

ffiffiffiffiffiffi
−g

p �
Rþ 1

2
ðRF1ð□ÞR

þ RμνF2ð□ÞRμν þ RμνκλF3ð□ÞRμνκλÞ
�
; ð2:1Þ

where the form factors Fið□Þ are given by the analytic
functions of d’Alembertian □ ¼ ∇μ∇μ. In what follows,
we focus on the lowest order expansion of this action
around Minkowski background ημν ¼ diagð−1; 1; 1; 1Þ in
Cartesian coordinates ðt; x; y; zÞ,

gμν ¼ ημν þ hμν; jhμνj ≪ 1: ð2:2Þ

Note that we can freely set F3ð□Þ ¼ 0 because all the
second order perturbations in hμν can be absorbed in terms
involving F1ð□Þ and F2ð□Þ (see, e.g., [29]). Let us further
assume that

1 − F1ð□Þ□ ¼ 1þ 1

2
F2ð□Þ□ ¼ e−□=M2

s : ð2:3Þ

This choice leads to a particular simple example of the
infinite derivative gravity [12],

SIDG ¼ 1

16π

Z
M

ffiffiffiffiffiffi
−g

p �
Rþ Gμν

e−□=M2
s − 1

□
Rμν

�
: ð2:4Þ

The nonlocal exponential operator guarantees that this
theory is ghost free and has the same number of perturba-
tive degrees of freedom as the general relativity. Indeed, the
propagator of the infinite derivative gravity in the Fourier
space,3

ΠIDGðkÞ ¼
ΠGRðkÞ
ek

2=M2
s
; ð2:5Þ

has the same poles as the propagator of the general
relativity ΠGRðkÞ since the exponential function is an entire
function with no zeros in the complex plane. Therefore, the
only propagating degree of freedom is the massless spin-2
graviton corresponding to the pole k2 ¼ 0. The action (2.4)
reduces to the Einstein-Hilbert action of the general
relativity in the local limit Ms → ∞. The equation of
motion of the infinite derivative gravity to the first order
in metric perturbation hμν is

1A different approach to solving the problems with the Misner
string was proposed in [52].

2We use the geometric unit system in which c ¼ 1 and G ¼ 1,
and mostly positive metric signature ð−;þ;þ;þÞ.

3Our convention for n-dimensional Fourier transform is

F ½f�ðkÞ ¼ 1

ð2πÞn=2
Z
Rn

dnxfðxÞe−ik·x;

F−1½f�ðxÞ ¼ 1

ð2πÞn=2
Z
Rn

dnkfðkÞeik·x:
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e−□=M2
s ½□hμν þ ημν∂ρ∂σhρσ þ ∂μ∂νh

− ∂σð∂νhσμ þ ∂μhσνÞ − ημν□h� ¼ −16πTμν; ð2:6Þ

where Tμν is the stress-energy tensor. Imposing the har-
monic gauge condition,

∂μh
μ
ν ¼ 1

2
∂νh; ð2:7Þ

the field equations (2.6) take the form

e−□=M2
s□hμν ¼ −16πTμν: ð2:8Þ

It differs from the linearized general relativity by the
additional nonlocal form factor e−□=M2

s , which disappears
in the local limit Ms → ∞.

B. Taub-NUT spacetime

Let us consider the metric of the (massless) Taub-NUT
spacetime [41,42] (see also [49] and references therein),

g ¼ −
r2 − N2

r2 þ N2
ðdtþ 2NðCþ cosϑÞdφÞ2

þ r2 þ N2

r2 − N2
dr2 þ ðr2 þ N2Þðdϑ2 þ sin2ϑdφ2Þ; ð2:9Þ

where N is the NUT charge. The parameter C characterizes
the location of the Misner string describing a topological
defect resembling the spinning semi-infinite cosmic string.
The choice C ¼ 1, considered in this paper, corresponds to
the Misner string located at the top semiaxis ϑ ¼ 0. The
bottom part of the axis ϑ ¼ π is regular for this choice.4

Because of this topological defect, the spacetime cannot be
asymptotically flat. The analytically extended geometry
has two horizons r ¼ �jNj. Apart from the Misner string,
the nonlinear Taub-NUT geometry has no scalar curvature
singularity.
However, we are more interested in the linearized

version of the Taub-NUT spacetime. If we rewrite (2.9)
with C ¼ 1 in the Cartesian coordinates ðt; x; y; zÞ,

x ¼ r sin ϑ cosφ;

y ¼ r sin ϑ sinφ;

z ¼ r cos ϑ; ð2:10Þ

and expand it to the first order in the NUT charge N, we
obtain (2.2) with

htx ¼
2Ny
ρ2

�
1þ z

r

�
; hty ¼ −

2Nx
ρ2

�
1þ z

r

�
; ð2:11Þ

where we employ the short notation ρ2 ¼ x2 þ y2 and
r2 ¼ x2 þ y2 þ z2. The linearized metric (2.11) describes
a spacetime with a small NUT charge. It has a scalar
curvature singularity at the origin r ¼ 0 and distributional
curvature at the symmetry axis for z > 0 due to the
presence of the Misner string. Following the Bonnor’s
interpretation, one can show (see, e.g., [58]) that this
geometry can be generated by the stress-energy tensor

Ttx¼−
N
2
δðxÞδ0ðyÞθðzÞ; Tty¼

N
2
δ0ðxÞδðyÞθðzÞ; ð2:12Þ

which corresponds to the semi-infinite spinning cosmic
string with no tension. To show this, we consider the
Minkowski spacetime in cylindrical coordinates ðτ; ρ;φ; zÞ,

g ¼ −dτ2 þ dρ2 þ ρ2dφ2 þ dz2; ð2:13Þ

where we assume that the points ðτ; ρ;φ ¼ 0; zÞ are
identified with ðτ þ 8πJ; ρ;φ ¼ 2π; zÞ. This identification
can be reformulated by introducing the smooth temporal
coordinate

t ¼ τ − 4Jφ: ð2:14Þ

The above construction gives rise to the spinning cosmic
string spacetime [59,60] of infinite length, angular momen-
tum J, and zero tension,

g ¼ −ðdtþ 4JdφÞ2 þ dρ2 þ ρ2dφ2 þ dz2: ð2:15Þ

This spacetime is locally flat everywhere except for the axis
of symmetry. It differs from the Minkowski spacetime in
the presence of the topological defect at the symmetry axis,
which changes the global properties of the geometry. (For
instance, the spacetime admits closed timelike curves in the
region ρ < 2jJj, where the Killing vector ∂φ is timelike.5)
Let us write the metric (2.15) in the Cartesian coordinates,

x ¼ ρ cosφ; y ¼ ρ sinφ; ð2:16Þ

and expand it to the first order in angular momentum J. The
resulting linearized metric (2.2) takes the form

htx ¼
4Jy
ρ2

; hty ¼ −
4Jx
ρ2

; ð2:17Þ

which can be generated by the stress-energy tensor
4The choice C ¼ −1 describes a spacetime with the Misner

string at the bottom semiaxis and C ¼ 0 a symmetrical placement
of two counterrotating Misner strings on both semiaxes.

5For further details on the spinning cosmic strings and related
topological defects, we refer the reader to [61–65].
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Ttx ¼ −
J
2
δðxÞδ0ðyÞ; Tty ¼

J
2
δ0ðxÞδðyÞ: ð2:18Þ

Comparing (2.12) with (2.18), we see that the source for the
weakly NUT-charged Taub-NUT spacetime is equivalent to
the source of the slowly spinning semi-infinite string with
angular momentum N localized on the top semiaxis, z > 0.
It is also not surprising that (2.17) can be obtained directly
from (2.11) by taking the asymptotic limit z → ∞.
Finally, it is worth noting that the Taub–NUT spacetime

and the spinning cosmic string spacetime are also related at
the full nonlinear level. Particularly, taking the limitN → 0,
NC ¼ 2J ¼ const, of (2.9), we obtain exactly (2.15). In
what follows, we focus solely on the linearized metrics.

III. NUT-CHARGED SOURCE IN INFINITE
DERIVATIVE GRAVITY

A. Metric

In order to solve the linearized infinite derivative gravity
equations (2.8), we use the following ansatz:

g¼−dt2þdx2þdy2þdz2þXdt∨dxþYdt∨dy; ð3:1Þ

where X ¼ Xðx; y; zÞ and Y ¼ Yðx; y; zÞ. Furthermore, the
functions X and Y are subject to the harmonic gauge (2.7),

∂xX þ ∂yY ¼ 0: ð3:2Þ

Using this ansatz, the field equations (2.8) reduce to

e−Δ=M
2
sΔX ¼ 8πNδðxÞδ0ðyÞθðzÞ;

e−Δ=M
2
sΔY ¼ −8πNδ0ðxÞδðyÞθðzÞ; ð3:3Þ

where we denote the three-dimensional Laplacian by
Δ≡ ∂2

x þ ∂2
y þ ∂2

z . We can get rid of the nonlocal expo-
nential operator by going to the Fourier space ðkx; ky; kzÞ,

eðk2xþk2yþk2zÞ=M2
sF ½ΔX� ¼ 2

ffiffiffi
2

p
Nkyffiffiffi
π

p
�
p:v:

1

kz
þ iπδðkzÞ

�
;

eðk2xþk2yþk2zÞ=M2
sF ½ΔY� ¼−

2
ffiffiffi
2

p
Nkxffiffiffi
π

p
�
p:v:

1

kz
þ iπδðkzÞ

�
:

ð3:4Þ

If we now divide both sides of these two equations by
eðk2xþk2yþk2zÞ=M2

s and take the inverse Fourier transform, we
arrive at the Poisson equations

ΔX ¼ −
NM4

sy
2

ð1þ erfðMsz=2ÞÞe−M2
sρ

2=4;

ΔY ¼ NM4
sx

2
ð1þ erfðMsz=2ÞÞe−M2

sρ
2=4: ð3:5Þ

Considering the axial symmetry of the problem, we can
assume that the solution takes the form

Xðx; y; zÞ ¼ y
ρ2

Vðρ2=4; zÞ;

Yðx; y; zÞ ¼ −
x
ρ2

Vðρ2=4; zÞ; ð3:6Þ

which automatically satisfy the condition (3.2). The
particular choice of the radial dependence allows us to
rewrite the two 3-dimensional Poisson equations as one
2-dimensional partial differential equation (of Keldysh type
[66]) for function V ¼ Vðv; zÞ of variables v ¼ ρ2=4 and z,

ðv∂2
v þ ∂2

zÞV ¼ −2NM4
s ð1þ erfðMsz=2ÞÞve−M2

sv: ð3:7Þ

We can reduce the degree of the derivative in v by taking
the Laplace transform in variable v,6

ðs2∂sþ2s−∂2
zÞL½V�ðs;zÞ¼

2M4
sN

ðsþM2
s Þ2

ð1þ erfðMsz=2ÞÞ;

ð3:8Þ

where we set the boundary condition at the symmetry axis
Vð0; zÞ ¼ 0, because we are interested in solutions for
which X and Y are finite. Employing the substitution

Uðt; zÞ ¼ 1

t2
L½V�

�
−
1

t
; z
�
; ð3:9Þ

it is simple to show that (3.8) can be cast in the form of the
heat equation

ð∂t − ∂2
zÞU ¼ 2M4

sN
ðM2

s t − 1Þ2 ð1þ erfðMsz=2ÞÞ≡Φ: ð3:10Þ

We solve this equation by the method of Green’s
function Gðt; z; t̃; z̃Þ, which satisfies

ð∂t − ∂2
zÞGðt; z; t̃; z̃Þ ¼ δðt − t̃Þδðz − z̃Þ: ð3:11Þ

6We use the following convention for the Laplace transform:

L½f�ðsÞ ¼
Z

∞

0

dvfðvÞe−sv;

L−1½f�ðvÞ ¼ 1

2πi

Z
γþi∞

γ−i∞
dsfðsÞesv;

where γ > 0 is an arbitrary constant.
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The function satisfying this equation is given by the
expression

Gðt; z; t̃; z̃Þ ¼ e−ðz−z̃Þ2=4ðt−t̃Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πðt − t̃Þp θðt − t̃Þ; ð3:12Þ

which is commonly referred to as the heat kernel. The
solution of the inhomogeneous equation (3.10) is then
given by the right-hand side Φ with the heat kernel,

Uðt; zÞ ¼
Z
R2

dt̃dz̃Gðt; z; t̃; z̃ÞΦðt̃; z̃Þ; ð3:13Þ

or explicitly,

Uðt;zÞ¼ 4M3
sNffiffiffi
π

p
Z

∞

0

dp
Z
R
dq

ð1þ erfðqÞÞe−ðq=Msp−z=2pÞ2

ð1þM2
s ðp2− tÞÞ2 ;

ð3:14Þ
wherewe used substitutionsp¼

ffiffiffiffiffiffiffiffi
t− t̃

p
andq ¼ Msz̃=2. The

inner integral can be found with the help of the identity [67]Z
R
dq erfðqÞe−ðaqþbÞ2 ¼ −

ffiffiffi
π

p
a

erf

�
bffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p

�
ð3:15Þ

and the standard formula for the integral of the Gaussian
function,

R
R dq e−ðaqþbÞ2 ¼ ffiffiffi

π
p

=a. We arrive at the integral

Uðt; zÞ ¼ 4M4
sN

Z
∞

0

dp
p
h
1þ erf

�
Msz

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

sp2
p

�i

ð1þM2
s ðp2 − tÞÞ2 : ð3:16Þ

It turns out that it is much easier to first calculate the
simple inverse Laplace transform of Uð−1=s; zÞ=s2 and
then deal with the integration in p. Interchanging the
integration in p with the integration in the Laplace variable
s, we can write Vðv; zÞ as follows:

Vðv; zÞ ¼ 4M4
sNv

Z
∞

0

dp
p
h
1þ erf

�
Msz

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

sp2
p

�i
e
−

M2
s v

1þM2
s p

2

ð1þM2
sp2Þ2 :

ð3:17Þ
This integral may look intimidating at first, but it can be
found in a few simple steps.7 After returning to the standard
radial variables ρ ¼ 2

ffiffiffi
v

p
and r, we obtain a very compact

result,

V ¼ 2N

�
1þ z

r
erfðMsr=2Þ − ð1þ erfðMsz=2ÞÞe−M2

sρ
2=4

�
:

ð3:18Þ

Far from the axis, the geometry approaches the linearized
Taub-NUT solution of the general relativity (2.11) because

V ≈ 2N
�
1þ z

r

�
≡ V loc; ρ ≫ 1=Ms: ð3:19Þ

The Taub-NUT spacetime is also reproduced in the local
limit Ms → ∞,

lim
Ms→∞

V ¼ V loc; ρ > 0: ð3:20Þ

The functions X and Y,

X ¼ y
ρ2

V; Y ¼ −
x
ρ2

V; ð3:21Þ

are finite everywhere unlike the corresponding Xloc and Y loc
which diverge at ρ ¼ 0, for z ≥ 0 since

lim
ρ→0

V=ρ ¼ 0; lim
ρ→0

V loc=ρ ¼ ∞: ð3:22Þ

(The expressions x=ρ ¼ cosφ and y=ρ ¼ sinφ are finite
and nonzero for general φ.) This already hints that there is
no Misner string present in the nonlocal case. The contour
plots of the function V=ρN are shown in Fig. 1.

B. Curvature

To the first order in metric perturbation hμν, the Riemann
tensor, the Ricci tensor, and the Ricci scalar in the harmonic
gauge (2.7) read

Rμνρσ ¼ ∂ν∂ ½ρhσ�μ − ∂μ∂ ½ρhσ�ν;

Rμν ¼ −
1

2
□hμν; R ¼ −

1

2
□h: ð3:23Þ

Using the metric ansatz (3.1) together with (3.2), we find
the nontrivial component expressed in terms of metric
functions X and Y,

Rtxxy ¼
1

2
∂2Y; Rtyyx ¼

1

2
∂2X;

Rtxxz ¼ −
1

2
∂x∂zX; Rtyyz ¼ −

1

2
∂y∂zY;

Rtxyz ¼ −
1

2
∂x∂zY; Rtyxz ¼ −

1

2
∂y∂zX;

Rtzxz ¼ −
1

2
∂2
zX; Rtzyz ¼ −

1

2
∂2
zY;

Rtzxy ¼
1

2
ð−∂y∂zX þ ∂x∂zYÞ;

Rtx ¼ −
1

2
ΔX; Rty ¼ −

1

2
ΔY; R ¼ 0; ð3:24Þ

where we introduced the two-dimensional Laplacian oper-
ator ∂2 ≡ ∂2

x þ ∂2
y.

7The primitive function is obtained using the integration by
parts where we differentiate the expression in the square bracket.
The two integrals that need to be evaluated are then of the formR
dp expð−fðpÞÞf0ðpÞ and R

dp expð−gðpÞ2Þg0ðpÞ that is suit-
able for the integration by substitution.
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Note that all the components of the Riemann tensor
(including all combinations of covariant and contravariant
indices) are finite everywhere. This already implies that
there is no curvature singularity or topological defect such
as the Misner string in the spacetime. Nevertheless, to get
simple invariant information about the curvature, we also
compute the Kretschmann scalar K ¼ RμνρσRμνρσ to the
lowest order in metric perturbations. We express it in terms
of the function V by means of (3.6),

K ¼ −2½ð∂2XÞ2 þ ð∂2YÞ2 þ ð∂2
zXÞ2 þ ð∂2

zYÞ2
þ ð∂x∂zXÞ2 þ ð∂y∂zYÞ2 þ ð∂y∂zXÞ2 þ ð∂x∂zYÞ2
þ ð∂y∂zX þ ∂x∂zYÞ2�

¼ −
1

4v2
½2v3ð∂2

vVÞ2 þ 3v2ð∂v∂zVÞ2 þ 2vð∂2
zVÞ2

þ ðv∂v∂zV − ∂zVÞ2�; ð3:25Þ
where we can observe thatK ≤ 0. Inserting (3.18) in (3.25),
we obtain

K¼−
2N2

πr6z2

�
M6

sρ
2r4

�
r2β

�
Msz
2

�
2

−2ρ2β

�
Msz
2

�
þr2

�

þ12z2α

�
Msr
2

��
2α

�
Msr
2

�
−M3

sρ
2rβ

�
Msz
2

���
e−M

2
s r2=2;

ð3:26Þ

where α and β are functions defined by

αðwÞ ¼ ffiffiffi
π

p
erfðwÞew2 − 2w;

βðwÞ ¼ ffiffiffi
π

p ð1þ erfðwÞÞwew2 þ 1: ð3:27Þ
Examining the limits r → 0 and z → 0, one can verify that
the Kretschmann scalar is also finite everywhere.
It is interesting to investigate the local limit of the

Kretschmann scalar. Outside the axis of symmetry, we see
that it reduces to the Kretschmann scalar of the Taub-NUT
spacetime,

lim
Ms→∞

K ¼ Kloc ¼ −
48N2

r3
; ρ > 0; ð3:28Þ

which diverges toward the origin r ¼ 0. Note that this is
a feature of the linearized Taub-NUT only.8 The
Kretschmann scalar is depicted in the contour plots in
Fig. 2. Inspecting the graphs for increasing values of the
nonlocal scale Ms, we see that the curvature really
accumulates around the top axis. This can be viewed as
a process in which the Misner string corresponding to
distributional curvature arises in the local limit.
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FIG. 1. The metric function of the NUT-charged spacetime in the infinite derivative gravity. We plot the contours of V=ρN for different
values of the nonlocal scale Ms. The function is finite everywhere for finite values of Ms, but diverges toward the top semiaxis (the
Misner string) in the local limit, Ms ¼ ∞.

8The Kretschmann scalar of the full Taub-NUT metric (2.9) is

Kloc ¼
48N2ðN6−15N4r2þ15N2r4− r6Þ

ðN2þ r2Þ6 ¼−
48N2

r3
þOðN4Þ:

IVAN KOLÁŘ and ANUPAM MAZUMDAR PHYS. REV. D 101, 124005 (2020)

124005-6



C. Asymptotic regions: z → �∞
Let us explore asymptotic limits of the spacetime for

large positive and negatives values of coordinate z, which
correspond to the far region around the top and the bottom
semiaxes, respectively. In these asymptotic regions, the
function V becomes independent of z, and it can be simply
approximated by its limits,

lim
z→�∞

V ¼
	
4Nð1 − e−M

2
sρ

2=4Þ≡ V̄;

0.
ð3:29Þ

The geometry approaches Minkowski spacetime in the
bottom part and the spacetime of the spinning cosmic string
of an infinite length in the top section. The latter is generated
by the infinite linear source (2.18) with angular momen-
tum J ¼ N, which was recently found in [39].9 The asymp-
totic geometry given by V̄ approaches the solution of the
local theory (2.17) with J ¼ N far from the axis because

V̄ ≈ 4N ≡ V̄ loc; ρ ≫ 1=Ms: ð3:30Þ
Naturally, V̄ reduces to this solution in the local limit
Ms → ∞ as well,

lim
Ms→∞

V̄ ¼ V̄loc; ρ > 0: ð3:31Þ

As before, the functions X̄ and Ȳ are finite everywhere in
contrast to X̄loc and Ȳ loc. The function V̄=ρN is visualized
in Fig. 3.
The Kretschmann scalar can be obtained by ignoring the

terms with ∂z in (3.25),
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FIG. 2. The Kretschmann scalar of the NUT-charged spacetime in the infinite derivative gravity. We plot the contours of
ffiffiffiffiffiffiffi
−K

p
=jNj for

different values of the nonlocal scaleMs. The Kretschmann scalar is finite everywhere for finiteMs. With the increasing value ofMs, the
curvature accumulates along the top semiaxis and gives rise to distributional curvature (the Misner string) in the local limit,Ms ¼ ∞, for
which the Kretschmann scalar also diverges at the origin.
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FIG. 3. The metric function of the spinning cosmic string
spacetime in the infinite derivative gravity. We plot the function
V̄=ρN for different values of nonlocal scale Ms. The function is
finite everywhere for finite values of Ms, but diverges toward
ρ ¼ 0 in the local limit, Ms ¼ ∞.

9Note that we actually obtained this solution independently of
[39] as a particular limiting case of our NUT-charged solution
before the paper appeared.
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K̄ ¼ −2½ð∂2X̄Þ2 þ ð∂2ȲÞ2� ¼ −
v
2
ð∂2

vV̄Þ2

¼ −2M8
sN2ρ2e−M

2
sρ

2=2: ð3:32Þ
As expected, it vanishes everywhere outside the axis in the
local limit

lim
Ms→∞

K̄ ¼ K̄loc ¼ 0; ρ > 0; ð3:33Þ

because the spacetime of the spinning cosmic string is
locally flat for ρ > 0. This analysis again confirms that the
curvature really accumulates along the axis in the local
limit as one can also see from the graphs of the
Kretschmann scalar in Fig. 4.
Finally, it is worth to mention that if we approximate

the Dirac delta function by the Gaussian function δðxÞ≈
e−x

2=ϵ2=
ffiffiffi
π

p
ϵ, 0 < ϵ ≪ 1, then the field equations imply

ffiffiffiffiffiffiffiffiffiffiffiffi
−K̄loc

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ð∂2X̄locÞ2þð∂2Ȳ locÞ2�

q

≈29=2jNjϵ−4ρe−ρ2=ϵ2

≈−8
ffiffiffi
2

p
πjNj∂ρðδðxÞδðyÞÞ; 0< ϵ≪ 1: ð3:34Þ

Comparing (3.34) with (3.32), we can see that ϵ ¼ 2=Ms,
for Ms ≫ 1. This very sloppy calculation indicates how
distributional curvature arises in the local limit.

IV. CONCLUSIONS

TheTaub-NUT spacetimehas recently regained significant
attention as several presumed unphysical properties have
been disproved. In this paper, we studied NUT charge in the

context of linearized infinite derivative gravity. We found an
analytic solution which is regular everywhere due to the
presence of the nonlocal form factor,which effectively smears
the distributional source. Our analysis of the Riemann tensor
and Kretschmann scalar shows the absence of curvature
singularities as well as topological defects such as theMisner
string. The obtained geometry reduces to the linearized Taub-
NUT spacetime far from the source and in the local limit. We
also investigated the asymptotic limit along the axis, which
gives rise to the nonlocal versionof the spinning infinite string
spacetime. Our results extend the set of papers on the
linearized solutions by the NUT-charged solution.
A natural next step is to investigate further properties of

the NUT charge in infinite derivative gravity. An example is
the presence of the closed timelike curves and the existence
of the horizons. Unfortunately, these problems are chal-
lenging since a full nonlinear approach is required. Our
knowledge of the exact solutions in this theory is still very
sparse, but there are already many hints that might help us
make progress in this direction.
Nevertheless, even at the level of linearized theory, there

are still many interesting solutions of the general relativity
that might have their counterparts in the infinite derivative
gravity. As mentioned in the introduction, the linearized
solutions in the nonlocal theories may actually play more
important role than in the local theories.
Our discussion of the presence of singularities is based on

the linearized theory. However, it is expected that even the
full nonlinear theory does not admit singular solutions. The
field equations of the full theory involve nonlocal form
factors acting on the curvature tensors. These operators
typically smear the distribution curvature and produce
smooth functions. It is anticipated that this mechanism could
prevent vacuum solutions (with distributional stress-energy
tensor) of local theories with polynomial form factors to be
vacuum solutions of nonlocal theories. Unfortunately, sat-
isfactory proofs of such statements are still lacking even for
very simple examples of singular spacetimes. Nevertheless,
the absence of singularities is already partially hinted by the
existence of bouncing cosmological solutions [23] and
approximate spherically symmetric solutions that are valid
in the region where nonlocality is important [35].
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