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We show that a spin-5=2 field can be consistently coupled to gravitation without cosmological constant
in five-dimensional spacetimes. The fermionic gauge “hypersymmetry” requires the presence of a finite
number of additional fields, including a couple ofUð1Þ fields, a spinorial two-form, the dual of the graviton
(of mixed (2,1) Young symmetry) and a spin-3 field. The gravitational sector of the action is described by
the purely quadratic Gauss-Bonnet term, so that the field equations for the metric are of second order. The
local gauge symmetries of the full action principle close, without the need of auxiliary fields, for a suitable
extension of the “hyper-Poincaré” algebra. Apart from the Poincaré and spin-3=2 generators, it includes a
generator of spin 2 and a Uð1Þ central extension. Noteworthy, the algebra admits an invariant trilinear
form, and its generators allow us to precisely accommodate the entire field content within a single
connection, so that the hypergravity action can be formulated as a gauge theory described by a Chern-
Simons form in five dimensions.
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I. INTRODUCTION

Soon after the advent of supersymmetry, it was natural to
wonder about the possible superpartners of the graviton [1].
According to the basic rules of supersymmetry, there are
just two possibilities. One of them corresponds to a
massless spin-3=2 Rarita-Schwinger field, which can be
consistently coupled to gravitation. The full theory is
widely known as supergravity [2,3] and it has been ex-
tensively explored in different contexts (see e.g., [4–8]).
One has barely heard about the remaining possibility,
which involves a massless field of spin 5=2, and there is
a good reason for that: in four spacetime dimensions the
theory is inconsistent [9,10] (in agreement with the no-
go theorems for interacting higher spin theories, see e.g.,
[11–13]). The obstructions to achieve a consistent coupling
can be seen as follows. The action for a massless spin-5=2
field on flat space [14–18] possesses a fermionic gauge
symmetry, that is not preserved once the spin-5=2 field is
minimally coupled to gravity [9,10]. In few words, the
variation of the fermionic action under the fermionic gauge

symmetry goes like the Riemann tensor, while the variation
of the Einstein-Hilbert action becomes proportional to the
Einstein tensor, leading no room for cancellation. Besides,
the consistency of the fermionic field equation implies the
vanishing of the Weyl tensor [9,19], which is certainly too
stringent as a condition to be imposed on four-dimensional
spacetimes. It has also been shown that neither the addition
of cosmological constant nor including nonminimal cou-
plings help in order to circumvent these obstructions
[9,19,20] (for related discussions see e.g., [25–27], and
references therein). A well-known proposal to surmount
these obstacles at least at the cubic level is to turn on the
cosmological constant [28,29] and proceed to construc-
ting “formally consistent” classical equations of motion
[30–32]. Other approaches to construct consistent inter-
actions of higher spin fields include holographic recon-
struction [33–35], light-front approach [36–38] and also
examples in 3D [39–49].
In three spacetime dimensions the situation is radically

different. Indeed, the Weyl tensor identically vanishes in
D ¼ 3, which allows to express the Riemann tensor in
terms of the Ricci tensor and the Ricci scalar. Hence, the
aforementioned obstructions to couple a spin-5=2 field to
gravitation can be successfully bypassed.
Thus, in the next section we summarize the state of the

art of hypergravity in three-dimensional spacetimes, aiming
to identify some of its key features that can be extended to
higher dimensions. Section III is then devoted to analyze
some of the identified structures that can indeed be lifted to
higher-dimensional spacetimes, paying special attention in
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a particular nonstandard formulation of supergravity in five
dimensions that is endowed with further interesting struc-
tures for our purposes. The moral of the aforementioned
results allows to formulate certain mild and reasonable
hypotheses, so that in Sec. IV we show that, once relying on
them, an action for hypergravity in five dimensions can be
readily found through the standard Noether procedure.
Remarkably, we obtain a local field theory described by a
finite number of fields, of spin up to 3, on standard
Riemann-Cartan geometry. The local gauge symmetries
of the action principle are also unveiled, and then, we also
show that the hypergravity action can be formulated as a
gauge theory with standard fiber bundle structure,
described by a Chern-Simons form in five dimensions.
We conclude with some ending remarks in Sec. V, where
we briefly analyze the spectrum of the theory around a
braneworld-like background configuration, and also pos-
sible extensions of our results to higher odd dimensions.

II. HYPERGRAVITY IN THREE SPACETIME
DIMENSIONS

The consistent coupling of a spin-5=2 field to general
relativity in D ¼ 3 was achieved by Aragone and Deser
[50], who dubbed the theory as “hypergravity.” It is the first
and one of the simplest theories describing a higher spin
field coupled to gravitation. The theory can be conveniently
formulated in a local frame, so that the action reads

I ¼ k
4π

Z
2Raea þ iψaDψa ; ð1Þ

where ea stands for the dreibein, and Ra ¼ dωa þ
1
2
ϵabcωbωc for the curvature two-form in terms of the

dualized spin connection ωa ¼ 1
2
ϵabcωbc. The irreducible

spin-5=2 field ψa ¼ ψa
μdxμ is assumed to be “Γ-traceless,”

i.e., Γaψa ¼ 0, whose Lorentz covariant derivative is given
by Dψa ¼ dψa þ 1

2
ωbΓbψ

a þ ϵabcωbψc [51].
Following the “1.5 formalism” (see, e.g., [4]) it is simple

to verify that the theory described by (1) is invariant under

δψa ¼ Dϵa and δea ¼ 3

2
iϵ̄bΓaψb; ð2Þ

where the spin-3=2 parameter ϵa ¼ ϵaðxμÞ is also Γ-
traceless. In analogy with supergravity [3], the spin con-
nection was proposed to transform as [50]

δωa ¼ 3ie−1ϵ̄bΓcfνb

�
1

2
ecνea − eaνec

�
; ð3Þ

with fνb ¼ ενρλDρψλb.
In [52], it was shown that hypergravity can be refor-

mulated so that the field content corresponds to the
components of a gauge field that takes values in the
“hyper-Poincaré” algebra

A ¼ eaPa þ ωaJa þ ψα
aQa

α; ð4Þ

where the fermionic generators Qa
α are Γ-traceless, and its

nonvanishing (anti)commutators read

½Ja; Jb� ¼ εabcJc; ½Ja; Pb� ¼ εabcPc;

½Ja;Qαb� ¼
1

2
ðΓaÞβαQβb þ εabcQc

α;

fQa
α; Qb

βg ¼ −
2

3
ðCΓcÞαβPcη

ab þ 5

6
εabcCαβPc

þ 1

3
ðCΓðajÞαβPjbÞ: ð5Þ

The hyper-Poincaré algebra (5) admits an invariant bilinear
form, whose nonvanishing components are given by

hJa; Pbi ¼ ηab; hQa
α; Qb

βi ¼
2

3
Cαβη

ab −
1

3
εabcðCΓcÞαβ;

ð6Þ

and hence the hypergravity action (1) can be written in
terms of a Chern-Simons form

I ¼ k
4π

Z �
AdAþ 2

3
A3

�
; ð7Þ

up to a boundary term. The local fermionic hypersymmetry
is then spanned by δA ¼ dλþ ½A; λ�, with λ ¼ ϵαaQa

α, so that

δψa ¼ Dϵa; δωa ¼ 0; δea ¼ 3

2
iϵ̄bΓaψb; ð8Þ

which agree with (2), (3) only on-shell.
It is worth emphasizing that since the dynamical fields

belong to the components of the connection (4), instead of a
multiplet, the full set of transformation laws closes in the
hyper-Poincaré algebra without the need of auxiliary fields.
Having formulated hypergravity in terms of a Chern-

Simons action certainly helps in order to unveil the
structure of the theory. Indeed, its uniqueness has been
recently established by virtue of Becchi-Rouet-Stora-
Tyutin-cohomological techniques [54]. Besides, it was also
possible to analyze the asymptotic structure of the theory in
[53]. The canonical generators of the asymptotic sym-
metries were shown to span a hypersymmetric nonlinear
extension of the BMS3 algebra (endowed with fermionic
generators of conformal weight 5=2), with the same central
extension as in the bosonic case [55]. This hyper-BMS3
algebra was also shown to admit unitary representations
[56–58]. Interestingly, as it occurs for N ¼ 1 supergravity
[59], the anticommutator of the fermionic generators
also allows to find (an infinite number of) BPS-like bounds
for the bosonic charges, which in the hypersymmetric
case turn out to be nonlinear. Circularly symmetric solu-
tions describing both cosmological spacetimes [60–62]
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and conical singularities [63,64] fulfill all of the
bounds without saturating them (broken hypersymmetries),
while configurationswith conical surpluses (angular excess)
do not satisfy the bounds. Hypersymmetry bounds saturate
for configurations with unbroken hypersymmetries, pos-
sessing globally well-defined Killing vector-spinors that
fulfill

dϵa þ 1

2
ωbΓbϵ

a þ ϵabcωbϵc ¼ 0: ð9Þ

In the case of fermions with antiperiodic boundary con-
ditions, the BPS-like configuration that is maximally hyper-
symmetric corresponds to Minkowski spacetime; while for
periodic boundary conditions it is given by the null orbifold
[65], possessing a single unbroken hypersymmetry.
It is also worth noting that, as in the case of supergravity

[59,66,67], the hypergravity theory can also be extended
so as to include parity odd terms in the action [52,53],
and consequently, the asymptotic hyper-BMS3 algebra
becomes endowed with an additional independent central
extension along the Virasoro subalgebra.
Hypergravity in 3D also admits a negative cosmological

constant [68–70] and it can be formulated as a Chern-
Simons theory for ospð1j4Þ ⊕ ospð1j4Þ, at the expense of
including an additional spin-4 field and a Lorentz-like field
of mixed symmetry in tangent space. The local Lorentz
algebra is then enlarged from slð2; RÞ to spð4Þ, so that the
metric is not invariant under spin-4 gauge symmetries. The
asymptotic symmetries are given by the direct sum of two
copies of theWð2;5

2
;4Þ algebra, from which nonlinear bounds

for the bosonic charges can also be established [70,71].
In the limit of vanishing cosmological constant the spin-4
and the Lorentz-like field can be consistently decoupled, so
that hypergravity can be suitably formulated in terms of
Riemann-Cartan geometry. Furthermore, as shown in [53],
the hyper-BMS3 algebra also arises from a suitable trun-
cation of Wð2;5

2
;4Þ ⊕ Wð2;5

2
;4Þ in the flat limit.

III. LIFTING TO HIGHER DIMENSIONS

The formulation of hypergravity in 3D as a gauge theory
of the hyper-Poincaré algebra has been shown to be fruitful,
and it is then natural to capture some of its properties that
could be lifted to higher dimensions.
In this sense, it is worth highlighting that the hyper-

Poincaré algebra actually exists for any D > 2 dimensions
[52], whose nonvanishing (anti)commutators read

½Jab; Jcd� ¼ Jadηbc − Jbdηac þ Jcaηbd − Jcbηad

½Jab; Pc� ¼ Paηbc − Pbηac

½Jab; Qα
c� ¼ −

1

2
ðΓabÞαβQβ

c þQα
aηbc −Qα

bηac ð10Þ

½Jab; Q̄αc� ¼
1

2
ðΓabÞβαQ̄βc þ Q̄αaηbc − Q̄αbηac

fQαa; Q̄b
βg ¼ 3ðD − 2Þ

D2
i

�
ðDþ 1ÞðΓcÞαβPcη

ab

−
Dþ 2

D − 2
ðΓabcÞαβPc − 2ðΓðajÞαβPjbÞ

�
ð11Þ

where Q̄a ¼ Q†
aΓ0 generically stands for the Dirac

conjugate [73].
Thus, the very existence of the algebra (10), (11)

suggests the possibility that hypergravity in higher dimen-
sions might be formulated as a gauge theory of some
suitable extension of the hyper-Poincaré group. Indeed, if
such extension admitted an invariant tensor of rank n, a
non-Abelian Chern-Simons action in D ¼ 2n − 1 dimen-
sions might be a good candidate to explore.
Another interesting lesson that can be extracted from the

three-dimensional case without cosmological constant is
that, according to the action principle in (1), the spin-5=2
field couples to the geometry exclusively through the spin
connection (the dreibein is not involved in the Lorentz
covariant derivative). Hence, in our formulation, the fer-
mionic field does not contribute to the stress-energy tensor,
but it is noticed by the geometry due to the torsion
Ta ¼ 3

4
iψ̄bΓaψb. Such type of couplings are certainly

excluded in D ¼ 4 [19], but nonetheless, there is some
evidence suggesting that this kind of couplings could be
realized in higher odd dimensions. Indeed, a class of
supergravity theories featuring fermions that are nonmini-
mally coupled to the curvature, but not to the vielbein, is
known to exist for any odd dimensions [74], from which
one can also extract a helpful moral.

A. Nonstandard supergravity in five dimensions

For the sake of simplicity, let us consider the case of
(nonstandard) supergravity in five dimensions, whose
action reads

I ¼ IGB − 3Ib þ Iψ ; ð12Þ

where

IGB ¼ 1

2

Z
εabcdfRabRcdef; ð13Þ

Ib ¼
Z

RabRabb; ð14Þ

Iψ ¼ 3

Z
ψ̄RbcΓbcDψ þ H:c: ð15Þ

Here, the gravitational sector is described by the pure
Gauss-Bonnet action IGB in (13). Since IGB corresponds to
a particular case of Lovelock theory, devoid of the
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Einstein-Hilbert and cosmological terms, the field equa-
tions for the metric are of second order.
Invariance under local supersymmetry requires the

presence of an additional bosonic term Ib (14), where b ¼
bμdxμ stands for an Abelian 1-form.
The dynamics of the spin-3=2 field ψ ¼ ψμdxμ, whose

Lorentz covariant derivative is given by Dψ ¼ dψþ
1
4
ωabΓabψ , is described by the fermionic term Iψ in (15).

Note that the fermionic field nonminimally couples to the
spacetime geometry through the curvature two-form Rab

(instead of the vielbein).
The action (12) is invariant under the following local

supersymmetry transformations

δψa ¼ Dϵa; δωab ¼ 0; ð16Þ

δea ¼ 3iϵ̄Γaψ þ H:c:; δb ¼ ϵ̄ψ þ H:c: ð17Þ

It is worth noting that since IGB in (13) is linear in the
vielbein instead of the curvature, the local Lorentz sym-
metry is extended to the local Poincaré group in five
dimensions. The full set of local symmetries also includes
the gauge transformation associated to the bosonic Abelian
field b, and hence, their algebra corresponds to super-
Poincaré with a Uð1Þ central extension, so that the
anticommutator of the fermionic generators reads

fQα; Q̄βg ¼ 3iðΓaÞαβPa þ δαβK: ð18Þ

The presence of the central extension plays a relevant role,
since in this case the super-Poincaré algebra admits an
invariant (anti)symmetric form of rank three, whose non-
vanishing components are given by

hJab; Jcd; Pfi ¼
2

3
εabcdf; ð19Þ

hJab; Jcd; Ki ¼ −4ηa½cηd�b;

hQα; Jab; Q̄βi ¼ −2ðΓabÞαβ; ð20Þ

which is crucial in order to formulate this class of super-
gravity as a gauge theory. Indeed, the field content
corresponds to the components of a connection for the
centrally extended super-Poincaré algebra

A ¼ eaPa þ
1

2
ωabJab þ bK þ ψ̄Q − Q̄ψ ; ð21Þ

so that the local (super)symmetries are obtained from a
gauge transformation δA ¼ dλþ ½A; λ�, where λ takes
values on the super-Poincaré algebra with a Uð1Þ central
extension. Thus, up to a boundary term, the supergravity
action (12) can be written as a Chern-Simons form

I ¼
Z �

AF2 −
1

2
A3F þ 1

10
A5

�
; ð22Þ

where F ¼ dAþ A2.
In the next section we construct a hypergravity theory in

five dimensions that shares some of these features.

IV. HYPERGRAVITY IN FIVE DIMENSIONS

Following the morals outlined in the previous sections,
for a fermionic field ψa ¼ ψa

μdxμ that fulfills Γaψa ¼ 0, we
look for a kinetic term whose coupling to the geometry
does not involve the vielbein, being of the form

ψ̄aXabDψb þ H:c: ð23Þ

Local Lorentz invariance then implies that Xab must be
necessarily proportional to the curvature two-form Rcd. It is
then simple to verify that there are just five possibilities, so
that Xab is given by a combination of the following terms:

Rab; ηabRcdΓcd ð24Þ

Ra
cΓcb; Γa

cRcb; ϵabcdeRcdΓe ð25Þ

Nonetheless, since the fermionic field is Γ-traceless, the last
three possibilities in (25) become redundant, and the
relevant ones then reduce to the remaining two in (24).
Hence, Xab must be of the form

Xa
b ¼ δabRcdΓcd þ αRa

b: ð26Þ

We also assume that the local fermionic gauge symmetry
(hypersymmetry) is spanned by a spin-3=2 parameter ϵa

subject to the Γ-traceless condition (Γaϵa ¼ 0), so that the
transformation law of the fermionic field and the spin
connection agree with those in the three-dimensional
case, i.e.,

δψa ¼ Dϵa; δωab ¼ 0: ð27Þ

As explained below, it is useful to fix the arbitrary
constant in Xa

b according to α ¼ −4, since it minimizes the
number of additional bosonic fields, and in particular, it
avoids the introduction of extra fields with mixed symmetry
on tangent space.

A. Action principle and local (hyper)symmetries

According to the hypotheses outlined at the beginning of
this section, the searched for action principle for hyper-
gravity can then be readily obtained through the standard
Noether procedure, starting from the fermionic kinetic term
in (23), with Xa

b given by (26) and α ¼ −4, and the local
hypersymmetry transformation laws in (27).
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The action is then given by

I ¼ IGB þ 9

5
Ib þ Ieab þ Iψa ; ð28Þ

where IGB stands for the pure Gauss-Bonnet action in (13),
Ib is given by (14), and the remaining terms read

Ieab ¼ −24
Z

Ra
cRcbeab; ð29Þ

Iψa ¼ 3

Z
ψ̄aðδabRcdΓcd − 4Ra

bÞDψb þ H:c: ð30Þ

Apart from the vielbein ea, the spin connection ωab and the
fermionic one-form field ψa, the theory includes additional
bosonic fields described by an Abelian field b ¼ bμdxμ,
and a one-form given by eab ¼ eabμ dxμ, being symmetric
and traceless in tangent space (eab ¼ eba, ηabeab ¼ 0).
The “off-shell” spin can be readily identified through

looking at the irreducible components of the fields under
the pullback of the local Lorentz group. The fermionic one-
form contains a spin-5=2 field ψ ðμνÞ and a spinorial two-
form ψ ½μν�, which are symmetric and antisymmetric under
μ ↔ ν, respectively [75]. Analogously, the one-form eab

decomposes as

eabμ ∶feðμνλÞ; eννμ; eμν;λg; ð31Þ

so that its trace eννμ corresponds to a spin-1 field, while the
fully symmetric part eðμνλÞ describes the highest spin field
(s ¼ 3). The remaining field eμν;λ is of mixed (2,1) Young
symmetry, remarkably coinciding with the dual of the
graviton in five dimensions [77] (see also [78]). It is worth
highlighting that in our context, the field eμν;λ is strictly
required by hypersymmetry, instead of duality at the
linearized level.
We should also emphasize one of the advantages of

keeping all of the irreducible components of the fields
aforementioned. Indeed, if one wanted to project them out,
one might follow the nowadays standard procedure of
enlarging the Lorentz group by introducing additional
fields of mixed symmetry in tangent space (see e.g.,
[18,25,40,76,79,80]). However, when the spacetime geom-
etry becomes dynamical, the price to pay would be that the
metric transforms in a nontrivial way under higher spin
transformations, implying that Riemannian geometry
should be extended in some suitable way, which is hitherto
unknown. Hence, keeping all of the irreducible components
aforementioned, allows us to formulate a consistent theory
of hypergravity in five dimensions in a conservative way,
described by a local field theory with a finite number of
fields (of spin up to three) on standard Riemann-Cartan
geometry.

The action is invariant under the following local hyper-
symmetry transformations

δψa ¼ Dϵa; δωab ¼ 0: ð32Þ

δea ¼ 3iϵ̄bΓaψb þ H:c: ð33Þ

δb ¼ ϵ̄aψa þ H:c: ð34Þ

δeab ¼ ϵ̄ðaψbÞ −
1

5
ηabϵ̄cψ

c þ H:c: ð35Þ

Note that the transformations in (32), (33) agree with
those in the three-dimensional case (extended for Dirac
fermions).
Apart from the manifest local Lorentz invariance, the

action (28) is also invariant under local translations, and
Uð1Þ gauge transformations with parameters λa and λ,
respectively. An additional local bosonic “spin 1-2-3”
symmetry is spanned by a parameter λab, that is symmetric
and traceless. The transformation laws of the fields under
these symmetries are given by

δea ¼ Dλa; δb ¼ dλ; δeab ¼ Dλab; ð36Þ

δωab ¼ 0; δψa ¼ 0: ð37Þ

The whole set of local gauge symmetries of the hyper-
gravity action (28) turns out to close for an extension of the
hyper-Poincaré algebra in (10), (11) in five dimensions,
endowed with an additional Uð1Þ generator K and a
symmetric and traceless spin-2 generator Pab, whose non-
vanishing (anti)commutators manifestly read

½Jab; Jcd� ¼ Jadηbc − Jbdηac þ Jcaηbd − Jcbηad;

½Jab; Pc� ¼ Paηbc − Pbηac;

½Jab; Pcd� ¼ Padηbc − Pbdηac þ Pcaηbd − Pcbηad;

½Jab; Qα
c � ¼ −

1

2
ðΓabÞαβQβ

c þQα
aηbc −Qα

bηac;

½Jab; Q̄αc� ¼
1

2
ðΓabÞβαQ̄βc þ Q̄αaηbc − Q̄αbηac;

fQαa; Q̄b
βg ¼ 54

25
iðΓcÞαβPcη

ab −
21

25
iðΓabcÞαβPc

−
18

25
iðΓðajÞαβPjbÞ þ 1

5
ð4ηabδαβ − ðΓabÞαβÞK

þ 1

10
ð3δαβPab þ 2ðΓc

½a�ÞαβPjb�cÞ: ð38Þ

B. Hypergravity as a gauge theory for the extended
hyper-Poincaré algebra

Interestingly, the local gauge symmetries of the
hypergravity action close according to the extended
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hyper-Poincaré algebra in (38) without the need of auxiliary
fields. Indeed, this is a consequence of the fact that the field
content precisely corresponds to the components of a single
connection of the extended hyper-Poincaré algebra

A ¼ eaPa þ
1

2
ωabJab þ bK þ 1

2
eabPab þ ψ̄aQa − Q̄aψ

a;

ð39Þ

and hence, the local gauge symmetries are recovered from
δA ¼ dηþ ½A; η�, where η stands for an extended hyper-
Poincaré-algebra-valued zero-form

η ¼ λaPa þ
1

2
σabJab þ λK þ 1

2
λabPab þ ϵ̄aQa − Q̄aϵ

a:

ð40Þ

Besides, the additional bosonic generators K and Pab
extend the hyper-Poincaré algebra so that it admits an
invariant (anti-)symmetric form of rank three. Their non-
vanishing components are given by

hJab; Jcd; Pfi ¼
2

3
εabcdf;

hJab; Jcd; Ki ¼ 12

5
ηa½cηd�b;

hJab; Jcd; Pefi ¼ −64
�
ηe½aηb�½cηd�f −

1

5
ηc½aηb�dηef

�
;

hQα
c; Jab; Q̄βdi ¼ 2½4Pc½aPb�d − PceΓabPe

d�αβ; ð41Þ

where the Γ-traceless projector ðPabÞαβ ¼ ηabδ
α
β−

1
5
ðΓaΓbÞαβ, ensures Γ-traceless of the fermionic entries

of the bracket.
Therefore, the hypergravity theory (28) can be formu-

lated as a gauge theory with standard fiber bundle structure.
Indeed, by virtue of (39) and (41), the action (28) can be
written in terms of a Chern-Simons form in five dimensions

I ¼
Z �

AF2 −
1

2
A3F þ 1

10
A5

�
; ð42Þ

up to a boundary term. Note that the field equations can
then be compactly expressed in a manifestly covariant way
under the extended hyper-Poincaré algebra, spanned by the
set GI ¼ fJab; Pa; K; Pab; Qa; Q̄ag, according to

hF2GIi ¼ 0: ð43Þ

Here, F ¼ dAþ A2 stands for the field strength, whose
components are given by

F ¼ T̃aPa þ
1

2
RabJab þ T̃K þ 1

2
T̃abPab

þDψ̄aQa − Q̄aDψa; ð44Þ

where

T̃a ¼ Ta − 3iψ̄bΓaψb; ð45Þ

T̃ ¼ db − ψ̄aψ
a; ð46Þ

T̃ab ¼ Deab − ψ̄ ðaψbÞ þ 1

5
ηabψ̄cψ

c; ð47Þ

and Ta ¼ Dea is the torsion.

V. ENDING REMARKS

We have proposed an action principle for hypergravity
in five-dimensional spacetimes, that can be formulated
as a field theory with standard fiber bundle structure.
Noteworthy, the theory contains a finite number of higher
spin fields (up to just s ¼ 3), that can be seen as the
components of a connection for the extended hyper-
Poincaré group. Thus, as the fields are not arranged within
the components of an irreducible multiplet, the possible
inconsistencies associated to the Haag-Łopuszański–
Sohnius theorem [81] can be successfully circumvented.
In particular, bosonic and fermionic degrees of freedom are
then not restricted to match.
The theory possesses a simple geometric structure, but as

it is the case of generic non-Abelian Chern-Simons theories
in five dimensions, the analysis of its dynamics is not so
straightforward [82–86], since the constraint structure
changes along phase space. A simple way of visualizing
this is the following. The field equations (43) are trivially
solved by Minkowski spacetime in vacuum, because in that
case the field strength F in (44) vanishes. Nevertheless,
since the field equations are purely quadratic in F, linear
perturbations around this (maximally hypersymmetric)
configuration possess a “linearization instability,” implying
that the analysis necessarily requires to go to higher order.
As pointed out in [87,88], this feature appears to be
welcome, since the theory naturally tends to explore
different vacua. Note that solutions in vacuum, without
torsion, fulfill the analogue of the Einstein equation

εabcdfRabRcd ¼ 0; ð48Þ

with an additional condition on the geometry that comes
from the variation of the action (28) with respect to the
bosonic fields b and eab, given by

Ra
cRcb ¼ 0: ð49Þ

Equations (48) and (49) also emerge from the consis-
tency of the fermionic field equations. It is then worth
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highlighting that the latter condition is not as stringent as
requiring the vanishing of the Weyl tensor. Indeed, it is
simple to verify that the spherically symmetric solution of
(48) (see [89,90]) automatically fulfills (49), without
imposing any additional condition on the geometry.
The field equations (48) and (49) can also be seen to

admit braneworld-like solutions in vacuum, whose metric is
given by [87]

ds2 ¼ e−2ajzjðdz2 þ g̃μνðxÞdxμdxνÞ; ð50Þ

where g̃μν stands for the metric of a maximally symmetric
spacetime along the four-dimensional brane. Remarkably, a
precise jump in the extrinsic curvature is allowed by the
theory in vacuum, i.e., without the need of an induced
stress-energy tensor on the brane. This effect can also be
seen to arise from the fact that the analog of the Israel
junction conditions in this case become quadratic in the
extrinsic curvature, and hence, they admit nontrivial sol-
utions even in vacuum (see e.g., [91]). As in [87], metric
perturbations along the brane turn out to possess a well-
defined propagator, precisely given by that of a Fierz-
Pauli massless graviton, provided that the induced cosmo-
logical constant on the braneworld is strictly positive. In
other words, perturbations of the metric along the brane
reproduce linearized general relativity around a four-
dimensional de Sitter spacetime with curvature radius given
by a−2.
It is also worth pointing out that perturbations of the

fermionic fields on the braneworld-like metric (50) appear
to reproduce a sort of partially massless version of the
Sorokin-Vasiliev doublet [26] (see also [92–94]), on de
Sitter spacetime [95].
It would also be interesting to study new dimensional

reduction schemes that apply for the class of theories under
discussion, as those recently proposed in [96].
Formulating hypergravity in presence of cosmological

constant would also be worth to explore. Nonetheless, as in
the three-dimensional case [68–70], the introduction of
additional bosonic higher spin fields seems to be inevitable.
Indeed, different couplings of higher spin fields to gravi-
tation on AdS5 along these lines have also been proposed in
[97–99]. It might also be of interest to see whether any of

the higher spin algebras already available in the literature
could lead to sensible theories in higher odd dimensions.
Besides, the coupling of fermionic fields of half-integer

spin with gravitation in three-dimensional spacetimes is
also known to be consistent [50], and it has been shown that
the theory possesses a suitable reformulation in terms of the
hyper-Poincaré algebra with fermionic generators of spin
s ¼ nþ 1

2
[52,100]. Lifting these results to higher (odd)

dimensions then certainly deserves consideration. Indeed,
for fermionic generators of spin s ¼ 3=2, preliminary
results suggest that hypergravity theories with a finite
number of bosonic fields can actually be formulated in
odd spacetime dimensions. Interestingly, as in the five-
dimensional case, the bosonic field with the highest spin is
also given by s ¼ 3 in D ¼ 5mod 4 dimensions; while for
D ¼ 7mod 4, no bosonic higher spin fields are required
(s ≤ 2) [105].
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