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The worldline of a uniformly accelerated localized observer in Minkowski space is restricted in the
Rindler wedge, where the observer can in principle arrange experiments repeatedly, and the Cauchy
problem for quantum fields in that Rindler wedge can be well defined. However, the observer can still
receive the signals sourced by the events behind the past horizon, and coordinatize those events in terms of
some kind of observational coordinates. We construct such observational coordinates in some simple cases
with the localized observers in Minkowski, de Sitter, and Schwarzschild-like spacetimes, and compare
them with radar coordinates for the same observers.
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I. INTRODUCTION

In special relativity, an observer is considered to be
localized in space with a clock [1].1 Such a localized
observer moving at a constant velocity in Minkowski space
can operationally define a reference frame, called “radar
coordinates,” for the events in spacetime by sending a radar
pulse at her proper time τi to some event and then recording
the receiving time τf of the echo from the event.
Accordingly, each event can be coordinatized in terms of
radar time t ¼ ðτf þ τiÞ=2, radar distance r ¼ ðτf − τiÞ=2,
and the direction of sending/receiving the radar signal.
The principle of special relativity (encoded in Bondi’s
k-calculus) [2,4,5] implies that the radar coordinates
constructed in this way coincide with the Minkowski
coordinates Lorentz transformed from those for a rest
observer.
A similar coordinatization scheme also works for an

accelerated localized observer with an ideal clock unaf-
fected by its acceleration [2,6–8] if the acceleration is not
too large to invalidate the hypothesis of locality [3].
In particular, for a uniformly accelerated observer at proper
acceleration a in ð1þ 1ÞD Minkowski space, radar coor-
dinates are exactly the conventional Rindler coordinates
[9–11]

ds2 ¼ e2aζð−dη2 þ dζ2Þ; ð1Þ

defined only in the wedge containing the observer’s world-
line (wedge R in Fig. 1), with radar time η ∈ ð−∞;∞Þ,
radar distance jζj ∈ ½0;∞Þ, and the directions of the radar
signals indicated by the sign of ζ. There are some
advantages in applying Rindler radar coordinates to field
theory, e.g., a Lorentz boost about the origin in the
Minkowski coordinates is simply a time translation
in Rindler radar coordinates, and the Cauchy problem
for quantum fields can be well defined in Rindler
radar coordinates. Nevertheless, the uniformly accelerated
observer in wedge R should be able to receive the classical
signal emitted from an event behind the past horizon of
radar coordinates such as the outcome of a local measure-
ments in wedge P on a field. How could the uniformly
accelerated observer coordinatize that event, which is never
reachable by her radar signals?
When we look into the sky, we are receiving the

information along the past light cones extended from our
eyes. Astronomers can see the classical signals emitted by
an object billions of light years away from the Earth, while
radar was invented only decades ago. To coordinatize an
observed event beyond the reach of any radar signal, one
may follow astronomers and adopt “optical coordinates”
[12], also called “observational coordinates” [13] or
“geodesic light-cone coordinates” [14,15], in terms of
the signal-receiving time in the observer’s clock together
with the distance and the direction of the event seen by the
observer.
In ð3þ 1ÞD, the astronomical distances which may be

useful for observational coordinates include the binocular
(parallax) distance, luminosity distance, angular diameter
distance, and so on [16]. In the ideal cases, the affine
distance and advanced/retarded distance by mathematical
constructions would also be convenient for theorists [17].
To determine the astronomical distance of an object at some
moment, either the observer or the observed object has to
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1The “local” observer in general relativity refers to the one

confined to a finite region where the variation of gravitational
field is unobservably small [2,3]. In addition to this locality, the
“localized” observer considered in this paper has infinitesimal
volume to ensure causality and reduce the ambiguity of the
coordinates determined by her.
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be extended in the directions orthogonal to the null
geodesic connecting the object and the observer at that
moment, while the sizes of the observer and the observed
object/event are considered to be infinitesimal in this paper.
Indeed, the angular diameter distance of an object cannot be
determined if its angular diameter is zero, and one needs a
baseline between two eyes or telescopes to determine the
binocular distance, or an antenna of finite area for meas-
uring the apparent luminosity to determine the luminosity
distance from an event. In ð1þ 1ÞD, however, while radar
distance can still be defined, those astronomical distances
cannot be determined physically, and we have to rely on the
distances by mathematical constructions to depart from
radar coordinates.
The idea of the observational coordinates is not new.

Similar ideas have been applied to curved spacetimes
to construct the advanced coordinates, which are the
time reversal of the retarded coordinates [18,19]. And
yet, some details of observational coordinates and even

radar coordinates are not fully explored. What would the
events behind the past horizon of Rindler radar coordinates
look like in the viewpoint of a uniformly accelerated
localized observer? Does an accelerated localized observer
always see a past horizon of radar coordinates and the
events behind it? There is no nontrivial coordinate singu-
larity at finite values of Rindler radar coordinates (1). How
about observational coordinates? Is the acceleration of the
localized observer necessary for the presence of nontrivial
coordinate singularities?
To answer these questions, below we study a few simple

cases of the localized observers in various motions and
background geometries. In Sec. II, we look at the localized
observer in uniform acceleration, nonuniform acceleration,
and spinning without center-of-mass motion in ð3þ 1ÞD
Minkowski space. The cases with a comoving localized
observer in de Sitter space and in a noneternal inflation
background are discussed in Sec. III. Then, the case with
the localized observer fixed at a constant radius from the
center of a spherical shell in ð1þ 1ÞD is considered in
Sec. IV. Finally, we summarize our findings with discus-
sion in Sec. V.

II. LOCALIZED OBSERVERS
IN MINKOWSKI SPACE

The observational coordinates with the observer’s clock
τ̃, the distance r̃, and the direction ðθ̃; φ̃Þ of the event seen
by a nonspinning localized observer in inertial motion in
Minkowski space will coincide with the radar coordinates
for the same observer and the conventional Minkowski
coordinates up to a Lorentz transformation if we define
the time coordinate as t ¼ τ̃ − r̃ [Fig. 2 (left)]. Similar

FIG. 1. Rindler coordinates in Minkowski space (left) and its
maximal analytic extension (right).

FIG. 2. The x0x3-plane in Minkowski coordinates now coordinatized by an observer in uniform motion (left), uniform acceleration
(middle), and constant velocity after a period of constant linear acceleration (right) in the observational coordinates. Here, x0 and x3 are
denoted by t and z, respectively. The red curves represent the worldlines of the observer, the black and gray solid lines represent the
constant r̃ (advanced distance to the localized observer) hypersurfaces, and the black and gray dotted lines represent the constant τ̃
(proper time of the localized observer) hypersurfaces. The black dashed lines in the middle plot represent the hypersurfaces x0 − x3 ¼ 0

and x0 þ x3 ¼ 0, which are the event horizon and the past horizon for the uniformly accelerated observer, respectively.
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observational coordinate systems can also be determined
for localized observers in general motions and background
spacetimes, but they usually deviate from radar or other
conventional coordinates for the same observers.

A. Uniformly accelerated observer

Consider the simplest case of noninertial motions, where
the localized observer with proper time τ is uniformly
accelerated with proper acceleration a along the world-
line zμðτÞ ¼ ða−1 sinh aτ; 0; 0; a−1 cosh aτÞ in Minkowski
coordinates xμ in ð3þ 1ÞD Minkowski space. For this
uniformly accelerated localized observer, a conventional,
natural choice of the coordinate system would be Rindler
coordinates

ds2 ¼ e2aζð−dη2 þ dζ2Þ þ ðdx1Þ2 þ ðdx2Þ2; ð2Þ

with −∞ < η < ∞, −∞ < ζ < ∞, and x1 and x2

being identical to those of Minkowski coordinates.
The metric (2) is transformed from Minkowski coordi-
nates ds2 ¼ ημνdxμdxν, ημν ¼ diagð−1; 1; 1; 1Þ by x0 ¼
a−1eaζ sinh aη and x3 ¼ a−1eaζ coshaη. The uniformly
accelerated observer appears to be at rest along the world-
line ðτ; 0; 0; 0Þ in Rindler coordinates ðη; x1; x2; ζÞ. Unlike
the case in ð1þ 1ÞD, however, Rindler coordinates (2) in
ð3þ 1ÞD is not a radar coordinate system as ζ is not the
radar distance of any event off the plane of the observer’s
motion x1 ¼ x2 ¼ 0.

1. Radar coordinates

The radar coordinates for the uniformly accelerated
observer going along zμðτÞ can be obtained using the
same operations as those in the inertial cases. Suppose the
observer emitted a radar pulse at τ ¼ τi to an event E
at xμ ¼ xμE ≡ ðt; x; y; zÞ in Minkowski coordinates and
received the echo at τ ¼ τf. Then, the radar time and radar
distance for the event will be η ¼ ðτf þ τiÞ=2 and r ¼
ðτf − τiÞ=2, respectively, and the event E will be some-
where in the η-slice of ðξ sinh aη; x1; x2; ξ cosh aηÞ in terms
of Minkowski coordinates (ξ ∈ R).
To determine ðφ; θÞ at τi and τf, namely, the angles of

departure and arrival of the radar pulse in the observer’s
point of view, one may perform a Lorentz boost in the
x3-direction about the origin to transform the η-slice to the
η0 ¼ 0 (and so t0 ¼ 0) hypersurface in the new coordinates
[Fig. 3 (left)], in terms of which the event E is represented
as x0μ ≡ ðt0; x0; y0; z0Þ ¼ ð0; x; y; ZÞ≡ x0μE and the events of
emitting the radar pulse (τ ¼ η − r or τ0 ¼ −r) and receiv-
ing the echo (τ0 ¼ þr) are represented as z0μð�rÞ ¼
ða−1 sinhð�arÞ; 0; 0; a−1 cosharÞ. Let r0μ ≡ x0μE − z0μð−rÞ
be a 4-vector pointing from the emitting event of the
observer to the event E. Since x0μE is on the future light cone
of z0μð−rÞ, one has r0μr0μ ¼ 0, or

ðZ − a−1 cosh arÞ2 þ ρ2 − ða−1 sinh arÞ2 ¼ 0; ð3Þ

with ρ2 ≡ x2 þ y2. The spatial position r0uμ of the event E
in the local Lorentz frame of the observer at τ0 ¼ −r but

FIG. 3. (Left) Transform to a new coordinates x0μ by a Lorentz boost so that the event E is in the slice of t0 ¼ η0 ¼ 0. (Middle) In the
new coordinates, let r0μ ¼ x0μE − z0μð−rÞ, where x0μE represents the event E and z0μð−rÞ is the event that the observer emits the radar pulse.
Define the spacelike 4-vector uμ by r0μ ≡ r0ðvμ þ uμÞ, where vμ is the 4-velocity of the observer when emitting the pulse. Let nμ be the
spacelike vector points to the direction of acceleration in view of the observer. Then, the observer determines the angle of departure θ of
the radar pulse by uμnμ ¼ cos θ. The same θ will be observed as the angle of arrival of the radar echo at τ ¼ þr. (Right) The black and
gray curves represent the contours of ar and θ, respectively, of radar coordinates (8) on the η0 ¼ 0 slice in our working Minkowski
coordinates x0μ for the uniformly accelerated observer (with φ suppressed). The green lines are the contours of aζ in the Rindler
coordinates (2) for the same observer.
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represented in our working coordinates x0μ is defined by
r0μ ¼ r0ðvμ þ uμÞ, where vμ ¼ ∂τ0z0μðτ0Þjτ0¼−r ¼ ðcosh ar;
0; 0;− sinh arÞ is the 4-velocity or time direction of the
localized observer at τ0 ¼ −r, and one has vμvμ ¼ −1,
uμuμ ¼ þ1, and uμvμ ¼ 0 [see Fig. 3 (middle)].
Immediately, one can see that uμ ¼ ðr0μ=r0Þ − vμ with
r0 ¼ −vμr0μ ¼ Z sinh ar. Suppose the localized observer
chooses the direction of acceleration as the z-axis [where
ðθ;φÞ≡ ð0; 0Þ] in her local frame, and let nμ ¼ aμ=
ajτ0¼−r ¼ ð− sinh ar; 0; 0; cosh arÞ be the spacelike unit
vector in that direction [aμvμ ¼ ∂τ0 ðvμvμÞ=2 ¼ 0 for all τ0].
Then, the azimuthal angle of departure φ of the radar pulse
in the observer’s frame can be determined as usual,

tanφ ¼ y=x; ð4Þ

while the polar angle of departure θ is given by
cos θ ¼ uμnμ ¼ ðZ cosh ar − a−1Þ=ðZ sinh arÞ, which
implies

Z ¼ a−1

coshar − cos θ sinh ar
> 0 ð5Þ

and, together with the null condition (3),

sin θ ¼ ρ

Z sinh ar
: ð6Þ

The angle of arrival of the radar echo perceived by the
observer can be obtained simply by a time-reversal trans-
formation of the above argument [see the gray light cones
in Fig. 3 (middle)]. It is clear that the azimuthal and polar
angles of arrival ðφ; θÞ are exactly the same as the above
angles of departure for the uniformly accelerated observer.
Thus, ðφ; θÞ can be adopted straightforwardly as the
angular part of radar coordinates here. Transforming from
our working coordinates x0μ back to xμ and from (6), one
obtains the relations

t¼ Z sinh aη; z¼ Z cosh aη; ρ¼ Z sinh ar sinθ;

ð7Þ

between Minkowski coordinates ðt; z; ρ;φÞ or ðt; x; y; zÞ
and radar coordinates ðη; r; θ;φÞ of the event E, with φ
in (4) invariant under the transformation. Representing
Zðr; θÞ as (5), the line element ds2 ¼ −dt2 þ dz2 þ dρ2 þ
ρ2dφ2 in Minkowski cylindrical coordinates can then be
transformed to2

ds2 ¼ 1

ðcosh ar − cos θ sinharÞ2

×

�
−dη2 þ dr2 þ

�
sinh ar

a

�
2

ðdθ2 þ sin2θdφ2Þ
�
ð8Þ

with the values of radar coordinates η ∈ ð−∞;∞Þ,
r ∈ ½0;∞Þ, θ ∈ ½0; π�, and φ ∈ ½0; 2π�. In Fig. 3 (right),
we show the contours of constant r [given by coshar ¼
½ðaZÞ2 þ ðaρÞ2 þ 1�=ð2aZÞ from (3)] and constant θ [given
by tanθ ¼ aρ=ðaZ coshar− 1Þ ¼ 2aρ=½ðaZÞ2 þ ðaρÞ2 − 1�
from (6) and (3)] on the η0 ¼ 0 slice in our working
Minkowski coordinates x0μ with φ suppressed. One can see
that the above radar coordinates (8) for the uniformly
accelerated observer coincide Rindler coordinates (2) only
in the plane of θ ¼ 0 and π, i.e., x1 ¼ x2 ¼ ρ ¼ 0.
Both Rindler coordinates (2) and radar coordinates

(8) cover wedge R [Fig. 1 (left)] with U ≡ x0 −
x3ð¼ − a−1eaðζ−ηÞ ¼ −e−aηZÞ < 0 and V ≡ x0 þ
x3ð¼a−1eaðζþηÞ ¼ eaηZÞ > 0 in Minkowski coordinates.
Each spacetime point in wedge R is in principle accessible
by the localized observer using those radar or light pulses,
and so causally connected with the observer both in the past
and future directions. The hypersurface U ¼ 0 is the event
horizon, and V ¼ 0 is the past horizon for the uniformly
accelerated localized observer.3

The events behind the past horizon cannot be reached by
any radar pulse from the uniformly accelerated observer,
and so radar coordinates are not defined around those
events. Nevertheless, the localized observer can passively
receive the signal emitted by an event in wedge P and then
determine the distance, which can be finite, from the
emission event to the observer. Using the receiving time
in the observer’s clock, the distance, and the direction of the
event perceived by the observer, the localized observer
can still coordinatize that event along the observer’s past
light cone.

2. Observational coordinates

Among the distances determined in different ways, the
advanced distance may be the most convenient one in
Minkowski space for theorists. It can be read off from the
field amplitude of a massless scalar field emitted by a point
source as a standard candle [21–23]. Mathematically, the
advanced distance of an event seen by the localized
observer at some moment can be obtained by extrapolating
the local Lorentz frame around the observer at that moment
all the way to the event. While the advanced distance is not

2Similar radar coordinates have been obtained in Ref. [20] with
a different choice of the polar angle.

3Hereafter, our “past horizon for an observer” refers to the past
horizon of the spacetime region covered by the radar coordinates
for that observer. No null geodesic starting at the observer can go
beyond her past horizon, to which the observer would infer a
divergent radar distance.
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identical to the radar distance for noninertial localized
observers, for a general observer motion in ð3þ 1ÞD
Minkowski space, it does coincide with the binocular
distance, luminosity distance, angular diameter distance,
proper-motion distance, as well as the affine distance of a
null geodesic [16]. Below, we are using the advanced
distance and the observer’s proper time to construct an
observational coordinate system explicitly for our uni-
formly accelerated observer.
Suppose a point source emits a light signal at xμ ¼

xμE ≡ ðt; x; y; zÞ in the region of U < 0 in Minkowski
coordinates (wedges R and P in the maximally extended
Rindler coordinates). The reading τ̃ of the clock of the
uniformly accelerated observer at the moment of receiving
the light signal from the event xμE is determined by the
null condition σðzμðτ̃Þ; xμEÞ ¼ 0, where σðAμ; BμÞ≡ −ðAμ−
BμÞðAμ − BμÞ=2 is the Synge’s world function. This con-
dition gives τ̃ ¼ a−1 ln½aðX −UV þ ρ2 þ a−2Þ=ð2jUjÞ�
with U≡t−z, V≡tþz, ρ2 ≡ x2 þ y2, and X ≡ ½ðt2 − z2 −
ρ2 þ a−2Þ2 þ 4a−2ρ2�1=2 [21–23]. At the moment τ̃, the
4-velocity of the observer is _zμðτ̃Þ ¼ ðcoshaτ̃; 0; 0;
sinh aτ̃Þ ¼ ðγτ̃; 0; 0; γτ̃vτ̃Þ; thus, γτ̃ ¼ coshaτ̃ and vτ̃ ¼
tanhaτ̃. Choosing this spacetime point of the observer
when receiving the signal, zμðτ̃Þ, as the origin, the position
of the emission event E in the local Lorentz frame for the
observer at τ̃ can be obtained by a Poincaré transformation,

x̃0 ¼ γτ̃½t − z0ðτ̃Þ − vτ̃ðz − z3ðτ̃ÞÞ�; ð9Þ

x̃3 ¼ γτ̃½z − z3ðτ̃Þ − vτ̃ðt − z0ðτ̃ÞÞ�; ð10Þ

x̃1 ¼ x1 − z1ðτ̃Þ ¼ x; x̃2 ¼ x2 − z2ðτ̃Þ ¼ y: ð11Þ

Then, one has −x̃0 ¼ r̃≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx̃1Þ2 þ ðx̃2Þ2 þ ðx̃3Þ2

p
¼

aX=2 ¼ j∂τσðzðτÞ; xÞjτ¼τ̃, which is the advanced distance
from the emitting event ðx̃0; x̃1; x̃2; x̃3Þ to the origin of this
new coordinates, that is, the observer at τ̃ [23]. Using the
four parameters ðτ̃; x̃1; x̃2; x̃3Þ as observational coordinates,
the observer can uniquely identify the event at xμE. To find
the metric for these observational coordinates, one can
rearrange the above relations in an inverse Poincaré trans-
formation,

t − z0ðτ̃Þ ¼ γτ̃ðx̃0 þ vτ̃x̃3Þ ¼ γτ̃ð−r̃þ vτ̃x̃3Þ;
z − z3ðτ̃Þ ¼ γτ̃ðx̃3 þ vτ̃x̃0Þ ¼ γτ̃ðx̃3 − vτ̃r̃Þ; ð12Þ

and express dxμ as the linear combinations of dτ̃, dx̃1,
dx̃2, and dx̃3, or more conveniently, with the spatial part
in the spherical coordinates ðx̃1; x̃2; x̃3Þ ¼ ðr̃ sin θ̃ cos φ̃;
r̃ sin θ̃ sin φ̃; r̃ cos θ̃Þ. Then, one obtains the line element

ds2 ¼ −½ð1þ ar̃ cos θ̃Þ2 − ðar̃Þ2�dτ̃2 þ 2ðdr̃
þ ar̃2 sin θ̃dθ̃Þdτ̃ þ r̃2ðdθ̃2 þ sin2 θ̃dφ̃2Þ; ð13Þ

which is almost a special case of those in Refs. [18,24]
except that here gr̃ τ̃ ¼ gτ̃ r̃ ¼ 1 instead of −1 because we
are looking at the past light cones (advanced coordinates)
for the observer instead of the future light cones (retarded
coordinates [19]) considered in Refs. [18,24].4

A coordinate singularity in the observational coordinates
(13) occurs at ð1þ ar̃ cos θ̃Þ2 − ðar̃Þ2 ¼ 0, which implies
ðx0Þ2 − ðx3Þ2 ¼ 0 in Minkowski coordinates from (12). In
particular, the hypersurface V ¼ x0 þ x3 ¼ 0 is the past
horizon of radar coordinates (8) for the uniformly accel-
erated observer, on which

r̃ ¼ a−1

1 − cos θ̃
ð14Þ

is independent of τ̃ and the azimuthal angle φ̃.
Equation (14) indicates that in view of the uniformly
accelerated observer the past horizon is a static paraboloid
of revolution with the focus at r̃ ¼ 0 (where the observer is
located), the semilatus rectum a−1, and the open end in the
direction of acceleration (Fig. 4).
A person standing on the surface of the Earth experi-

ences a roughly uniform gravitational acceleration a ¼ g ¼
9.8 m=s2. If this gravitational acceleration were strictly
uniform in the Universe, that person would see a static
paraboloidal past horizon [Fig. 4 (right)] with the semilatus
rectum c2=a ≈ 1016 m ≈ 1 light year, which is much larger
than the scale of the Earth.
The constant-r̃ hypersurfaces in Minkowski coordinates

are given by

ðx0Þ2 − ðx3Þ2 ¼ ρ2 ∓ 2a−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̃2 − ρ2

q
− a−2 ð15Þ

from (12), where “−” and “þ” correspond to the cases
with θ̃ ∈ ½0; π=2� and ðπ=2; π�, respectively. In Fig. 5, we
show an example of constant-r̃ hypersurfaces. While every
constant-r̃ hypersurface with r̃ < 1=ð2aÞ is timelike [Fig. 5
(left)], the constant-r̃ hypersurfaces with r̃ ≥ 1=ð2aÞ are
not timelike everywhere in Minkowski coordinates (other
plots in Fig. 5). In the plane of the observer’s motion
x1 ¼ x2 ¼ 0, the line element (13) reduces to

ds2 ¼ −ð1� 2ar̃Þdτ̃2 þ 2dr̃dτ̃ ð16Þ

withþ and − for θ̃ ¼ 0 and π, respectively. From (15) with
ρ ¼ 0, the contours of r̃ in (16) are timelike in wedge R
(θ̃ ¼ 0 and r̃ > 0, or θ̃ ¼ π and 2ar̃ < 1) but spacelike in
wedge P (θ̃ ¼ π and 2ar̃ > 1) on the tz-plane in
Minkowski coordinates [Fig. 2 (middle)]. Such a pattern
is similar to those contours of ζ in the maximally extended

4The line element (13) is almost identical to Eq. (4) in Ref. [25]
except the sign of gτ̃ r̃ (gur there).
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Rindler radar coordinates in wedges R and P in Fig. 1
(right), though they are not exactly the same.
When a pointlike light source moving along a timelike

worldline in Minkowski coordinates is seen behind the past
horizon (i.e., in wedge P) by the localized observer (e.g.,
segment AB in Fig. 6), the source’s r̃ and θ̃ can never both
be constants of time in the observer’s point of view, a fact
associated with the signature change of gτ̃ τ̃ in (13) [or gt̃ t̃ in
(18)]. Thus, the past horizon is also a static limit surface for
the uniformly accelerated observer. Moreover, the accel-
erated observer will see that all the pointlike sources not
going to future null infinity will eventually approach the
past horizon and then stop there. For example, in Fig. 6,
two pointlike emitters moving along blue timelike world-
lines AB and CDE emit light rays continuously to the

uniformly accelerated observer. The observer would see in
the direction of θ̃ ¼ π that the emitter started with point A
at distance r̃ ≈ 5=ð2aÞ would go toward the observer and
then stop right behind the past horizon (B) at r̃ ¼ 1=ð2aÞ
and never cross it. The other emitter would be seen also in
the direction of θ̃ ¼ π and started at the same distance r̃ ≈
5=ð2aÞ (C) but at some moment τ̃ earlier than the time
when event A is observed. It would go toward the observer
and cross the past horizon (D), reach the minimum distance
r̃ ≈ 0.5=ð2aÞ of this trip, and then drop back and eventually
stop in front of the past horizon without crossing the past
horizon again (E).
If a collection of pointlike sources are not exactly in the

directions θ ¼ 0 or π of the localized observer, as they are
observed to approach the past horizon, they would also be

FIG. 4. (Left) The intersections of past light cones (blue) of the uniformly accelerated observer at different τ̃ (red, a ¼ 1) and her past
horizon t ¼ −z (gray) look like τ̃-varying parabolas (orange) in Minkowski coordinates with the azimuthal angle φ̃ suppressed. (Right)
In fact, the past horizon is a static paraboloid of revolution (14) in the point of view of the uniformly accelerated observer at the origin of
observational coordinates when φ̃ is shown.

FIG. 5. Contour surfaces of constant advanced distance r̃ in view of the uniformly accelerated observer moving along zμðτÞ ¼
ða−1 sinh aτ; 0; 0; a−1 cosh aτÞ with a ¼ 1, represented in Minkowski coordinates with φ suppressed. The blue and orange surfaces
represent the region with 0 ≤ θ̃ ≤ π=2 and π=2 < θ̃ ≤ π in the localized observer’s point of view (θ̃ ¼ 0 and π in the þz- and −z-
directions, respectively). One can see the variation of the borders (θ̃ ¼ π=2) in plots of different r̃ in Minkowski coordinates. The
hypersurfaces t ¼ z and t ¼ −z (gray) are the event and past horizons, respectively, for the uniformly accelerated observer.
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concentrating toward the direction of the observer’s veloc-
ity as special relativity implies [17].
A constant-τ̃ hypersurface in our observational coordi-

nates (13) is the past light cone of zμðτ̃Þ, and so τ̃ is a null
coordinate. One may further define a time coordinate t̃ by
letting

dt̃≡ dτ̃ −
dr̃þ ar̃2 sin θ̃dθ̃

ð1þ ar̃ cos θ̃Þ2 − ðar̃Þ2

¼ dτ̃ þ dðr̃−1 þ a cos θ̃Þ
ðr̃−1 þ a cos θ̃Þ2 − a2

; ð17Þ

and then (13) becomes

ds2 ¼ −½ð1þ ar̃ cos θ̃Þ2 − ðar̃Þ2�dt̃2

þ ðdr̃þ ar̃2 sin θ̃dθ̃Þ2
ð1þ ar̃ cos θ̃Þ2 − ðar̃Þ2 þ r̃2ðdθ̃2 þ sin2 θ̃dφ̃2Þ;

ð18Þ

where the constant-t̃ slices are timelike in wedge R and
spacelike in wedge P, and all of them will intersect at the
origin of Minkowski coordinates as the observer goes to
future infinity, similar to the Rindler-time slices in Fig. 1
(right). From (17), one has

t̃ ¼ τ̃ þ 1

2a
ln

���� 1þ ar̃ cos θ̃ − ar̃

1þ ar̃ cos θ̃ þ ar̃

����; ð19Þ

which goes to −∞ in both wedges R and P as the observed
events goes to the past horizon x0 þ x3 ¼ 0 [cf. Eq. (14)],
and so the past horizon is part of the past infinitywith respect
to t̃ for the observer. In the plane of the observer’s motion,
the line element (18) reduces to ds2 ¼ −ð1� 2ar̃Þdt̃2þ
ð1� 2ar̃Þ−1dr̃2 for θ̃ ¼ 0 and π [cf. Eq. (16)].
Interestingly enough, when we fix θ̃ ¼ π=2, φ̃ ¼

constant, and dθ̃ ¼ dφ̃ ¼ 0, the line element (18) on this
slice looks very much like the static de Sitter coordinates
(31) with the angular dimensions suppressed and a here
being identified as the Hubble constantH there. Indeed, the
static de Sitter coordinates have some properties similar to
(18), as we will discuss in next section.

B. Nonuniform linear acceleration

As the motion of the observer is switched from non-
inertial to inertial, the spacelike part of the constant-r̃
hypersurfaces behind the past horizon for the accelerated
localized observer will evolve to timelike surfaces. These
constant-r̃ hypersurfaces in our observational coordinates
will not be smooth if the observer’s acceleration is suddenly
changed. For example, in Fig. 2 (right), when the accel-
eration suddenly drops to zero, while the tangent vector of
the worldline of the observer evolves continuously, the
constant-r̃ hypersurfaces are not differentiable around the
past light cone of the moment that the observer changes
acceleration. To make it differentiable, the observer’s
acceleration has to be changed smoothly. The radar
coordinates for the same observer behave better: the
hypersurfaces of constant radar distance evolve in the
same way as the observer’s motion; namely, the first
derivatives are continuous [6].

C. Spinning observer without center-of-mass motion

Suppose an observer is situated at the origin and
spinning about the z-axis at a constant angular frequency
ω. Radar coordinates of the event E at ðt; z; ρ;φÞ in
Minkowski cylindrical coordinates can be constructed by
the spinning localized observer in a way similar to those for
a nonspinning rest observer. If a radar signal is emitted by
the observer at τi and the echo from the event is received at
τf in the observer’s clock, then the radar time and radar
distance of the event are again t ¼ ðτf þ τiÞ=2 and r ¼
ðτf − τiÞ=2 for the observer. The polar angle of the event
θ ¼ tan−1ðz=ρÞ is a constant of time for the observer, and so
the radar polar angle is still θ. The only modification is that
the radar azimuthal angle φ0 of the event should be
determined by the average of the azimuthal angles of
arrival and departure of the radar signal in the local frames
of the observer at τf and τi, respectively: φ0 ¼ ðφðτfÞþ
φðτiÞÞ=2 ¼ φ − ωðτf þ τiÞ=2 ¼ φ − ωt. Thus, the line

FIG. 6. Two emitters which are pointlike test particles going
along the timelike worldlines AB and CDE (blue) emit light rays
continuously to the uniformly accelerated observer at proper
acceleration a (red worldline). The observer would see in the
direction of θ̃ ¼ π that one emitter started with A, went toward
the observer, and stopped right behind the past horizon (B). The
other emitter would be seen as started with point C, went toward
the observer and crossed the past horizon (D), reached the
minimum distance r̃ ≈ 0.5=ð2aÞ of this trip, and then dropped
back and eventually stopped around the past horizon and never
crossed it again (E).
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element in radar coordinates can be obtained from
Minkowski cylindrical coordinates by the transformation
ðt0; z0; ρ0;φ0Þ ¼ ðt; z; ρ;φ − ωtÞ,

ds2 ¼ −ð1 − ω2ρ02Þdt02 þ 2ωρ02dt0dφ0 þ dz02

þ dρ02 þ ρ02dφ02; ð20Þ

which is the rotating cylindrical coordinates [8,26,27]. It is
well known that clocks along a closed curve in this
coordinate system cannot be synchronized uniquely since
gt0φ0 ≠ 0 [27]. One may define a new time coordinate as

dT 0 ¼ dt0 −
ωρ02dφ
1 − ω2ρ02

ð21Þ

to diagonalize (20) into

ds2 ¼ −ð1 − ω2ρ02ÞdT 02 þ ρ02dφ02

1 − ω2ρ02
þ dz02 þ dρ02; ð22Þ

where the timelike and spacelike properties of T 0 and φ0
coordinates will be switched when the observed events are
crossing the cylinder ρ0 ¼ 1=ω.
The same event E, now represented as ðt; r; θ;φÞ in

Minkowski spherical coordinates, will be observed by the
spinning observer at her proper time τ̃ ¼ tþ r. At that
moment, the observer will see the event in the direction
ðθ̃; φ̃Þ ¼ ðθ;φ − ωτ̃Þ ¼ ðθ;φ − ωðtþ rÞÞ at the distance
r̃ ¼ r away from the observer. Thus, the observational
coordinates for the spinning observer read

ds2 ¼ −dτ̃2 þ 2dτ̃dr̃þ r̃2ðdθ̃2 þ sin2 θ̃ðdφ̃þ ωdτ̃Þ2Þ
¼ −ð1 − ω2r̃2 sin2 θ̃Þdτ̃2
þ 2dτ̃ðdr̃þ ωr̃2 sin2 θ̃dφ̃Þ
þ r̃2ðdθ̃2 þ sin2 θ̃dφ̃2Þ: ð23Þ

Define a new time coordinate t̃ as

dt̃ ¼ dτ̃ −
dr̃þ ωr̃2 sin2 θ̃dφ̃

1 − ω2r̃2 sin2 θ̃
; ð24Þ

one can rewrite (23) as

ds2 ¼ −ð1 − ω2r̃2 sin2 θ̃Þdt̃2 þ ðdr̃þ ωr̃2 sin2 θ̃dφ̃Þ2
1 − ω2r̃2 sin2 θ̃

þ r̃2ðdθ̃2 þ sin2 θ̃dφ̃2Þ: ð25Þ

Transformed to the cylindrical coordinates, ρ̃ ¼ r̃ sin θ̃ and
z̃ ¼ r̃ cos θ̃, the above line element becomes

ds2 ¼ −ð1 − ω2ρ̃2Þdt̃2 þ ρ̃2

1 − ω2ρ̃2

�
dφ̃þ ωðρ̃dρ̃þ z̃dz̃Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ̃2 þ z̃2
p �

2

þ dz̃2 þ dρ̃2; ð26Þ

which is not the same as (22) because here φ̃¼φ−ωðtþrÞ
in observational coordinates but there φ0 ¼ φ − ωt in radar
coordinates.
The coordinate-singularity cylinder of perceived radius

ρ̃ ¼ 1=ω is a static limit surface, beyond which nothing
along a timelike worldline in Minkowski coordinates can
be at rest in view of the spinning observer. Indeed, for
ρ̃ > 1=ω, dt̃ becomes spacelike, and dr̃þ ωr̃2 sin2 θ̃dφ̃
becomes timelike. For our Earth, ω ≈ 2π=ð86164 sÞ ¼
7.29 × 10−5 s−1, so the static limit surface would be posi-
tioned at ρ̃ ≈ 4.11 × 1012m (≈1.37 × 104 light seconds)
away from the Earth.
Two features of the observational and radar coordinates

here are different from those for a nonspinning, uniformly
accelerated observer. First, radar coordinates (22) have a
nontrivial coordinate singularity at ρ0 ¼ 1=ω, which is the
same static limit surface in the observational coordinates
(26) for the same observer, while the radar coordinates for a
uniformly accelerated observer (8) are regular for all finite
values of the coordinates. Second, assuming the emitting
and receiving operations of the localized observer have
been started early around past timelike infinity, then radar
coordinates (20) and observational coordinates (25) will
cover almost the same region in the Penrose diagram of
Minkowski space except the neighborhood of past null
infinity. In contrast, for a nonspinning uniformly accel-
erated observer that started the operations around past null
infinity, the spacetime region covered by her observational
coordinates are clearly larger than the region covered by her
radar coordinates.

III. COMOVINGOBSERVER IN DE SITTER SPACE

Similar to Rindler coordinates in Minkowski space, the
static and flat de Sitter coordinates do not cover thewhole de
Sitter space. Below, we are constructing the observational
and radar coordinates for a comoving observer localized in
deSitter space to see if they can be related to the static, flat, or
other conventional de Sitter coordinates.

A. Observer localized at the origin

Consider the global coordinates in de Sitter space
[28,29],

ds2 ¼ −dt2 þH−2 cosh2Ht½dχ2 þ sin2 χdΩII�; ð27Þ

¼ ðH sinTÞ−2½−dT2 þ dχ2 þ sin2 χdΩII�; ð28Þ

where dΩII ¼ dθ2 þ sin2 θdφ2, H is the Hubble constant,
and T ¼ 2 tan−1½tanhðHt=2Þ� so that T ¼ 0 when t ¼ 0.
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The Penrose diagram of the de Sitter space with θ and φ
suppressed can thus be represented as a square with T ∈
ð−π=2; π=2Þ and χ ∈ ð0; πÞ in the Tχ-plane, as shown in
Fig. 7 (left). Let

Hr̃ ¼ coshHt sin χ ¼ sin χ
sinT

; ð29Þ

Ht̃ ¼ tanh−1 ðtanhHt sec χÞ: ð30Þ

Then, we get the static de Sitter coordinates

ds2 ¼ −ð1 −H2r̃2Þdt̃2 þ dr̃2

1 −H2r̃2
þ r̃2dΩII; ð31Þ

where a coordinate singularity occurs at r̃ ¼ 1=H. For an
observer situated at r̃ ¼ χ ¼ 0, the coordinate time t̃ in (31)
is identical in value to the coordinate time t in (27) as well
as the localized observer’s proper time. Interestingly
enough, r̃ here is actually the angular diameter distance
and the affine distance of the null geodesic from an event
ðt̃; r̃; θ;φÞ to the observer at the spatial origin χ ¼ r̃ ¼ 0, as
will be shown in Sec. III B. For r̃ < 1=H, the static
coordinates (31) have the metric component gt̃ t̃ > 0 and
cover the region R in Fig. 7 (left), which is the counterpart
of wedge R in Minkowski space. Outside region R, one can
keep using r̃ in (29), which is well defined and ranges from
1=H (the past horizon T ¼ χ) to ∞ (past null infinity
T ¼ 0) in region P. Note that from (29) one has the contours
of r̃ in the Tχ-plane as χ ¼ sin−1½Hr̃ sinT� for Hr̃ < 1,
which are timelike in region R, and T ¼ sin−1½ðHr̃Þ−1 sin χ�
for Hr̃>1, which are spacelike in region P. The boundaries

of the regions, T ¼ χ and T ¼ π − χ for Hr̃ ¼ 1, are
lightlike.
One may define the null coordinate

dτ̃ ¼ dt̃þ dr̃
1 −H2r̃2

; ð32Þ

then, Eq. (31) becomes

ds2 ¼ −ð1 −H2r̃2Þdτ̃2 þ 2dr̃dτ̃ þ r̃2dΩII; ð33Þ

which would be a good observational coordinate system to
specify the observed events in regions P and R for the
observer localized at the origin. Here, τ̃ is the clock reading
of the observer localized at r̃ ¼ 0 (where τ̃ ¼ t̃).
A radar coordinate system for the same localized

observer can be obtained from (31) after identifying radar
distance

r≡H−1 tanh−1Hr̃; ð34Þ

such that r → ∞ as r̃ → 1=H, and

ds2 ¼ 1

cosh2Hr

�
−dt̃2 þ dr2 þ

�
sinhHr

H

�
2

dΩII

�
; ð35Þ

which turns out to be conformally equivalent to (8) for a
uniformly accelerated observer at proper acceleration a ¼
H in Minkowski space. Similar to the Rindler coordinates
in Minkowski space, the above radar coordinate system has
no nontrivial coordinate singularity for all finite values of
the coordinates, and it only covers region R of the de Sitter

FIG. 7. (Left) The Penrose diagram for de Sitter space, with observational coordinates for an observer at r̃ ¼ χ ¼ 0 (red). The solid
curves represent the constant r̃ (affine distance from the localized observer) hypersurfaces, and the dotted lines represent the constant τ̃
(proper time of the localized observer) hypersurfaces. The hypersurfaces T ¼ χ and T ¼ π − χ are the past horizon and the event horizon
for the localized observer, respectively. Hr̃ ¼ 1 on both horizons. (Right) The noneternal inflationary universe considered in Sec. III C.
Above and below, the hypersurface t̂ ¼ t̂s are pieces of de Sitter and Minkowski spaces, respectively. There is no need of region L or P
here since the region F ∪ R is geodesically complete. Both the observational and radar coordinates for the observer localized at
ρ ¼ χ ¼ 0 cover region R only.
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space (27) in the Penrose diagram. Again, the visible
universe for the localized observer situated at r̃ ¼ r ¼ 0
is not restricted in region R where radar coordinates can be
defined. The observer can see the events in region P behind
the past horizon of radar coordinates (35) (r → ∞, or
r̃ ¼ 1=H) and coordinatize those events in observational
coordinates (33). Moreover, the observer will feel that all
the timelike worldlines not going to future infinity of χ ¼ 0
will be going toward and eventually stop around the past
horizon, which is a sphere of radius 1=H centered at the
observer.

B. Flat coordinates

Suppose the same comoving observer happens to use the
flat de Sitter coordinates,

ds2 ¼ −dt̂2 þ a2ðt̂Þ½dρ2 þ ρ2dΩII�; ð36Þ

where aðt̂Þ ¼ eHt̂=H, and the observer is localized at
ρ ¼ 0. Here, t̂ and ρ are transformed from the global
coordinates (27) by [29]

eHt̂ ¼ sinhHtþ coshHt cos χ; ð37Þ

ρ ¼ sin χ
tanhHtþ cos χ

; ð38Þ

and the flat de Sitter coordinates (36) cover the region
F ∪ R bounded by χ ¼ 0, T ¼ π=2, and χ ¼ T in the
Penrose diagram (Fig. 7). For every null geodesic from past
infinity to the observer at t̂ ¼ t̂o, Eq. (36) implies

dt̂
dρ

¼ −aðt̂ðρÞÞ; ð39Þ

where the minus sign corresponds to the past light cone.
Requiring ρ ¼ 0 at t ¼ to, the solution for (39) is

ρ ¼ e−Ht̂ − e−Ht̂o ð40Þ
along the null geodesic. Suppose the observer uses λ≡
aðt̂oÞρ to parametrize the null geodesic so that the value of λ
matches radar distance in the neighborhood of the localized
observer. By virtue of the spherical symmetry, the null
geodesic can be described by the equation

d2zμ

dλ2
þ Γμ

αβ

dzα

dλ
dzβ

dλ
¼ κðλÞ dz

μ

dλ
; ð41Þ

where we find κðλÞ ¼ −2HeHðt̂ðλÞ−t̂oÞ ¼ −2H=ðHλþ 1Þ
after taking zμ ¼ ðt̂ðλÞ; ρðλÞ; θ;φÞ and introducing (39)
and (40). While κ is not zero and so λ is not an affine
parameter, one can generate an affine parameter λ� from λ
by solving [30]

dλ�

dλ
¼ exp

Z
λ
κðλ0Þdλ0 ¼ 1

ðHλþ 1Þ2 ; ð42Þ

which gives

λ� ¼ 1

H

�
1 −

1

Hλþ 1

�
¼ 1

H
ð1 − eHðt̂−t̂oÞÞ; ð43Þ

with the condition λ� ¼ 0 at λ ¼ 0. It turns out that λ� ¼
aðt̂Þρ ¼ H−1 coshHt sin χ ¼ r̃ from (43), (40), (37), (38),
and (29); namely, λ� coincides with the radial coordinate r̃,
which is nothing but the angular diameter distance aðt̂Þρ, in
the static coordinates (31) or (33) along the null geodesics
on the past light cones of the localized observer. Thus, the
coordinates in (33) would be natural observational coor-
dinates after identifying τ̃ ¼ t̂o and λ� ¼ r̃. The observer
can see through the past horizon t̂ → −∞ of the flat
coordinates into region P of de Sitter space, though the
flat coordinates do not cover that region.

C. Noneternal inflation

The above result is valid in de Sitter space, correspond-
ing to an eternally inflationary universe. In the usual
noneternal inflation model, a comoving localized observer
could not see beyond the null surface T ¼ χ, and the
observational coordinates for that observer would cover
only wedge R in the Tχ-plane, as shown in Fig. 7 (right).
For example, suppose an inflation era of a flat spacetime

is started with a Minkowski space at t̂ ¼ t̂s, and the metric
of the spacetime is given by

ds2 ¼ −dt̂2 þ a2ðt̂Þðdρ2 þ ρ2dΩIIÞ; ð44Þ

where aðt̂Þ ¼ eHt̂=H is exponentially growing in time for
t̂ ≥ t̂s and aðt̂Þ ¼ eHt̂s=H is a constant for t̂ < t̂s. Using the
inverse transformations of (37) and (38) from ðt̂; ρÞ to ðt; χÞ,
one can see that the flat coordinates in (44) still cover
region F ∪ R in the Penrose diagram for de Sitter space in
the Tχ-plane.
For a localized observer at the spatial origin (ρ ¼ χ ¼ 0)

with the metric in (44), the light pulse from the event at
ðt̂; ρ; θ;φÞ is received by the observer at her proper time t̂o
determined by (40) for t̂ ≥ t̂s and by ρ ¼ e−Ht̂s − e−Ht̂o þ
e−Ht̂sðt̂s − t̂Þ for t̂ < t̂s. Thus, the angular diameter distance
of the event for the localized observer is

aðt̂Þρ¼
�
H−1ð1− eHðt̂−t̂oÞÞ for t̂ ≥ t̂s;

H−1ð1− eHðt̂s−t̂oÞ þ t̂s − t̂Þ for t̂ < t̂s;
ð45Þ

which diverges as t̂ → −∞. In other words, the distance
from the hypersurface t̂ → −∞ is infinity for the observer
at the origin, and the region F ∪ R is geodesically complete.
In Fig. 7 (right), there would be nothing behind past infinity
at T ¼ χ to be visible for the observer.
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In Fig. 7 (right), one can also see that the physical objects
with timelike worldlines passing through the event horizon
(the null surface labeled τ̃ → ∞) after the onset of inflation
(t̂ > t̂s) would appear to go away from the observer and
approach the illusory horizon at r̃ ¼ 1=H at late times for
the observer. The other physical objects, which pass
through the event horizon before t̂s, would be observed
at late times as frozen at some distances greater than 1=H,
and their clock readings would never reach t̂s, if all the
clocks have been synchronized initially at t̂ → −∞.

IV. OBSERVER OUTSIDE A SPHERICAL
SHELL IN ð1 + 1ÞD

The null geodesics around a black hole in ð3þ 1ÞD can
be complicated even in the simplest case of Schwarzschild
spacetime [17,31,32], and so observational and radar
coordinates in terms of perceived and radar distances for
a localized observer may not be convenient for analysis.
Nevertheless, the observational and radar coordinates for a
localized observer in ð1þ 1ÞD Schwarzschild geometry
can be simple enough for us to gain insights.
Kruskal coordinates for a ð1þ 1ÞD Schwarzschild black

hole look very similar to Rindler coordinates in ð1þ 1ÞD
Minkowski space. One may be tempted to think that an
observer localized outside an eternal black hole or a
collapsing star would be able to coordinatize the events
behind the past horizon at the Schwarzschild radius in
Kruskal coordinates, and would observe that most of the
timelike worldlines would eventually approach the past

horizon with increasing redshift. Similar to the cases in de
Sitter space, such a speculation would be true only in the
maximally extended Schwarzschild coordinates for an
eternal black hole (with the white hole singularity visible
by a localized observer outside), but not in the case of a
spherical collapsing star, which forms a black hole at late
times as in the example below.
Consider a ð1þ 1ÞD spacetime in the presence of a

spherical thin shell of mass M and radius r ¼ rs > 2M
[30,33],

ds2 ¼ −AðrÞdt2 þ BðrÞdr2; ð46Þ

where

AðrÞ ¼ 1=BðrÞ ¼ 1 −
2M
r

for r > rs; ð47Þ

AðrÞ ¼ As ≡ 1 −
2M
rs

; BðrÞ ¼ 1 for r ≤ rs; ð48Þ

and a localized observer outside of the shell is fixed at a
constant radial distance r ¼ ro > rs from the center of the
spherical shell in the above bookkeeper coordinates [34].
The event at ðt; rÞ can be specified by radar time t0 ¼
ðτf þ τiÞ=2 ¼ ffiffiffiffiffiffi

Ao
p

t with Ao ≡ AðroÞ ¼ 1 − ð2M=roÞ, and
radar distance

r0 ¼
ffiffiffiffiffiffi
Ao

p Δt
2

¼
ffiffiffiffiffiffi
Ao

p �����
Z

r

ro

ffiffiffiffiffiffiffiffiffi
Bðr̄Þ
Aðr̄Þ

s
dr̄

�����
¼

8>><
>>:

ffiffiffiffiffiffi
Ao

p ���r − ro þ 2M ln r−2M
ro−2M

��� for r > rs;

ffiffiffiffiffiffi
Ao

p �
1ffiffiffiffi
As

p ðrs − rÞ − rs þ ro − 2M ln rs−2M
ro−2M

�
for r ≤ rs:

ð49Þ

Then, Eq. (46) can be transformed to radar coordinates

ds2 ¼ AðrÞ
Ao

ð−dt02 þ dr02Þ ð50Þ

for the localized observer. For r ≤ rs, gr0r0 ð¼ −gt0t0 Þ goes to zero, and radar distance r0ðrÞ diverges to infinity as rs → 2M.
Following the same transformations from Schwarzschild coordinates to Kruskal coordinates, Eq. (46) in the presence of

the spherical shell can be transformed into the Kruskal-like coordinates

ds2 ¼
8<
:

16M2

r exp f− r
2Mgð−dη2 þ dρ2Þ for r > rs;

16M2

rs
exp

n
− 1

2M

h
1ffiffiffiffi
As

p ðr − rsÞ þ rs
io

ð−dη2 þ dρ2Þ for r ≤ rs;
ð51Þ

NOTES ON OBSERVATIONAL AND RADAR … PHYS. REV. D 101, 124001 (2020)

124001-11



where η ¼ ðvþ uÞ=2 and ρ ¼ ðv − uÞ=2, with v ¼ eV=ð2MÞ > 0, u ¼ −e−U=ð2MÞ < 0, V ¼ tþ r�, U ¼ t − r�, and
dr� ¼ dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞ=AðrÞp

. The Kruskal-like coordinates (51) are equivalent to radar coordinates (50) up to a conformal
transformation [note that V ¼ ðt0 þ r0Þ= ffiffiffiffiffiffi

Ao
p

andU ¼ ðt0 − r0Þ= ffiffiffiffiffiffi
Ao

p
]. On the ηρ-plane, the constant-t hypersurfaces in (46)

are straight lines

η ¼ 1 − et=ð2MÞ

1þ et=ð2MÞ ρ; ð52Þ

and the constant-r hypersurfaces are hyperbolae

η2 − ρ2 ¼
(−ðr − 2MÞ expf r

2Mg for r > rs;

−ðrs − 2MÞ exp
n

1
2M

h
1ffiffiffiffi
As

p ðr − rsÞ þ rs
io

for r ≤ rs:
ð53Þ

One can see that the region covered by radar coordinates
(51) is contained in wedge R in the diagram of the maximal
analytic extension of Kruskal coordinates for a Schwarzs-
child solution of mass M [Fig. 8 (left)] and is geodesically
complete. Each event in the covered region has a two-way
causal connection with the localized observer. In the case of
the spherical shell here, there is no room for any counterpart
of wedge P in the maximal analytic extension of Rindler
coordinates, not to mention any past horizon for the
localized observer at r ¼ ro.
In a static spacetime (46), while in ð1þ 1ÞD, the

astronomical distances for a localized observer cannot be
determined, one can still formally define the affine distance
of an event as the difference of the normalized affine
parameter along a null geodesic connecting the event at
r ¼ re and some point of the worldline of the localized
observer at ro in the future of the event. From the geodesic

equations, the affine distance reads r̃ ¼ αj R re
ro

ffiffiffiffiffiffiffi
AB

p
drj up

to a constant factor α [17,32]. We choose α ¼ 1=
ffiffiffiffiffiffi
Ao

p
to

match the radar distance in the neighborhood of the
localized observer. Rewriting re as r, we find the affine
distance

r̃ ¼ jr − rojffiffiffiffiffiffi
Ao

p ð54Þ

for the events outside the spherical shell (r > rs), and

r̃ ¼ 1ffiffiffiffiffiffi
Ao

p ½ro − rs þ
ffiffiffiffiffi
As

p
ðrs − rÞ� ð55Þ

for the events inside (r < rsÞ. One can see that r̃ is finite for
r ¼ 0 and r ¼ 2M. The observational coordinates for the
observer localized at r ¼ ro then read

FIG. 8. (Left) Bookkeeper coordinates (46) for a spherical massive shell are represented on the ηρ-plane of the Kruskal-like
coordinates (51). The hypersurfaces r ¼ 2M (dashed) and r ¼ 0 (dotted) behind the spherical shell r ¼ rs (thick black) are all in the
same “wedge R.” (Right) A speculative scenario of a collapsing shell forming a black hole (we assume the collapse is adiabatic and
dynamics of the metric is ignored). The spacelike zigzag curve represents the singularity at r ¼ 0 that the shell collapsed into. The dot-
dashed lines represent the future light cone emitted from the event P that the shell started to collapse from a constant radius r ¼ rs.
Outside the future light cone, the metric is identical to the one in the left plot.
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ds2¼
8<
:

1
Ao

h
−
	
1− 2M

ro�r̃
ffiffiffiffi
Ao

p


dτ̃2þ2dτ̃dr̃

i
for r>rs;

−As
Ao
dτ̃2þ2dτ̃dr̃ for r≤ rs;

ð56Þ

where dτ̃ ¼ dt0 þ ðdr̃=AðrÞÞ for r > rs, dτ̃ ¼ dt0 þ
ðAo=AsÞdr̃ for r ≤ rs, and þ and − correspond to the
cases of r > ro and rs < r < ro, respectively. Obser-
vational coordinates (56) cover almost the same region
that radar coordinates (50) do at late times in the Penrose
diagram except the neighborhood of past null infinity.
Since the affine distance r̃ in (54) and (55) is proportional to
r, the contours of r̃ in the ηρ-plane and the Penrose diagram
for (56) have the same pattern as those of r for (46).
If the worldline of the observer is started at some point in

past null infinity rather than past timelike infinity, then the
situation will be similar to the one with the uniformly
accelerated observer in Minkowski space: the spacetime
region Ro covered by observational coordinates will be
significantly larger than the region Rr covered by radar
coordinates in the Penrose diagram. The border of Rr and
Ro − Rr is the past horizon where the radar distance is
infinity but the affine distance is finite for the localized
observer.
In Fig. 8 (right), we sketch a scenario of a collapsing thin

shell similar to the collapsing star in Ref. [35] (calculations
can be found in the literature, e.g., Ref. [30]). The union
of wedges R and F is maximal, and there is no need of
attaching wedges L and P or a white hole. As the shell
radius is approaching the Schwarzschild radius (rs → 2M),
an observer localized at ro outside the shell would perceive
that the thickness of the star in terms of the affine distance is
decreasing, since the depth information of different interior
points of the star would be suppressed as

ffiffiffiffiffi
As

p
→ 0 in this

limit [note that the ðrs − rÞ term in (55) is proportional toffiffiffiffiffi
As

p
]. Although that depth information could be resolved in

terms of the radar distance whenever rs ≠ 2M [the ðrs − rÞ
term in (49) is proportional to 1=

ffiffiffiffiffi
As

p
], measuring the radar

distances of the shell interior could be much harder than
measuring the affine distances in the limit rs → 2M
because the former needs more historical knowledge about
the received signals (echoes) for the observer, e.g., the
departure time τi of a radar signal from the observer to the
star, which may be lost as τf − τi becomes extremely large
in the limit rs → 2M. Also, the ingoing radar signal may
add energy to a nearly black star, then turn the star to a
black hole. In this case, the radar echo will never come back
to the outside world.5 Finally, at late times of gravitational
collapse, the outside observer will never see the event
horizon or the past horizon in the observer’s radar

coordinates, since no past light cone from the observer
will intersect them. The observed horizon at the affine
distance r̃jrs→2M ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

roðro − 2MÞp
from the observer is the

illusory horizon [17].

V. SUMMARY AND DISCUSSION

We have considered the observational coordinates and
radar coordinates for the localized observers in ð3þ 1ÞD
Minkowski space in inertial motion (Mi, Sec. II), in
uniform acceleration (Ma, Sec. II A), and spinning without
center-of-mass motion (Ms, Sec. II C), and for those
observers comoving in de Sitter space (dS, Sec. III A),
fixed at constant radius in ð1þ 1ÞD Schwarzschild geom-
etry outside of static (Ss) and collapsing (Sc, Sec. IV)
spherical shells, as well as the cases of nonuniform
acceleration in Minkowski space (Mnu, Sec. II B) and
noneternal inflation (Nei, Sec. III C) where the universe
was similar to Minkowski space before the onset of
inflation.

A. Regions covered by radar
and observational coordinates

Observational coordinates are determined by a localized
observer according to the light or radar signals received.
Radar coordinates are determined with a stronger condition
that those received signals are echoes of the radar signals
emitted earlier by the same observer. Thus, the spacetime
region Rr covered by radar coordinates must be contained
by the region Ro covered by the observational coordinates
for the same observer. For an observer localized at the
origin in Minkowski space, either nonspinning (in Mi)
or spinning (in Ms), and for a localized observer fixed in
ð1þ 1ÞD Schwarzschild geometry at a constant radius
from the center of a spherical shell (in Ss), radar coor-
dinates and observational coordinates for the localized
observers at late times appear to cover the same spacetime
regions in the Penrose diagrams, where Ro is the closure of
Rr. The situations are similar in the cases Nei and Sc, where
neither observational nor radar coordinates can cover the
whole universe due to the presence of the event horizon.
The region Ro − Rr becomes significant in the Penrose
diagrams in Ma and dS. In these cases, the observers can
see through the past horizons of radar coordinates and
coordinatize the events beyond the reach of radar coor-
dinates with some physical assumptions.

B. Static limit surface and past horizon

Coordinate singularities at finite perceived distances in
observational coordinates arise in the cases Ma and Ms for
noninertial observers in Minkowski space and dS for a
comoving observer in de Sitter space. These coordinate
singularities are associated with signature change of the
metric component gτ̃ τ̃ or gt̃ t̃ in each case and correspond
to the static limit surfaces, beyond which no pointlike

5Similar observation in ð3þ 1ÞD in terms of more measures of
distance may be relevant to the area law of black hole entropy
[32].
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physical object is possible to be seen at rest in the viewpoint
of the localized observer. In Ma and dS, the static limit
surfaces of observational coordinates coincide with the past
horizons of radar coordinates for the same observers.
However, in Ms, observational and radar coordinates for
the spinning observer share the same static limit surface
which is not the past horizon for the observer.

C. Coordinate singularity and acceleration

While the observers in the cases Ma and Ms are
accelerated, and the comoving objects in the case dS look
accelerated in the viewpoint of the observer, the acceler-
ations of the observer and/or the comoving objects are not
always associated with the coordinate singularities at finite
perceived distance in observational coordinates. Indeed,
there is no static limit surface at finite perceived distance in
the cases Ss and Nei, although in Ss, the localized observer
fixed at a constant radius from the center of a static massive
spherical shell is at a constant acceleration, and in Nei, the
accelerations of the comoving objects become nonzero and
never vanish after the onset of inflation.

D. Event horizon and illusory horizon

There exist event horizons in the cases Ma, dS, Sc, and
Nei. The localized observer at late times in Ma, dS, or Sc
would see an illusory horizon [17] at some finite distance in
her observational coordinates. All the visible physical
objects with timelike worldlines passing through the event

horizon would appear to approach the illusory horizon and
eventually freeze there. In the Penrose diagrams of these
cases, an illusory horizon does not have to coincide with the
past horizon (in Sc there is even no past horizon). In Nei,
only the timelike worldlines passing through the event
horizon after the onset of inflation would be observed like
that: they would appear to go away from the observer and
approach the illusory horizon at late times. Other physical
objects would be seen at late times as frozen behind the
illusory horizon.
The nonuniformly accelerated observer in the case Mnu

with no event horizon could still see a surface similar to the
illusory horizon. During the period of constant accelera-
tion, the visible physical objects also tend to approach that
surface and freeze there. However, the spinning observer in
Ms with no event horizon could not see any illusory
horizon, even if a coordinate singularity occurs at finite
distance in this case.

ACKNOWLEDGMENTS

I would like to thank Bei-Lok Hu, Kin-Wang Ng, Ue-Li
Pen, and Bill Unruh for illuminating discussions. I also
thank Ya-Zi Wang and Chen-Hau Lee for bringing
Refs. [24,26] to my attention. This work is supported by
the Ministry of Science and Technology of Taiwan under
Grant No. MOST 106-2112-M-018-002-MY3 and in part
by the National Center for Theoretical Sciences, Taiwan.

[1] A. Einstein, Zur Elektrodynamik bewegter Körper, Ann.
Phys. (Berlin) 17, 891 (1905).

[2] R. d‘Inverno, Introducing Einstein’s Relativity (Oxford
University, Oxford, 1992).

[3] B. Mashhoon, The hypothesis of locality in relativis-
tic physics, Phys. Lett. A 145, 147 (1990); The hypo-
thesis of locality and its limitations, in Relativity
in Rotating Frames, edited by G. Rizzi and M. L.
Ruggiero (Kluwer Academic, Dordrecht, 2004),
pp. 43–55.

[4] H. Bondi, Relativity and Common Sense (Heinemann,
London, 1965).

[5] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(Freeman, San Francisco, 1973).

[6] C. E. Dolby and S. F. Gull, On radar time and the twin
“paradox”, Am. J. Phys. 69, 1257 (2001).

[7] E. A. Desloge and R. J. Philpott, Uniformaly accelerated
reference frames in special relativity, Am. J. Phys. 55, 252
(1987).

[8] M. Pauri and M. Vallisneri, Märzke-Wheeler coordinates for
acclerated observers in special relativity, Found. Phys. Lett.
13, 401 (2000).

[9] W. Pauli, Die Relativitätstheorie, Encyclopädie der Math-
ematischen Wissenschaften Vol. 5 (B. G. Teubner, Leipzig,
1921), p. 539; Theory of Relativity (Dover, New York, 1981)
(English translation).

[10] W.Rindler, Kruskal space and the uniformly accelerated
frame, Am. J. Phys. 34, 1174 (1966).

[11] H. Lass, Accelerating frames of reference and the clock
paradox, Am. J. Phys. 31, 274 (1963).

[12] G. Temple, New system of normal coordinates for relativ-
istic optics, Proc. R. Soc. A 168, 122 (1938).

[13] G. F. R. Ellis, S. D. Nel, R. Maartens, W. R. Stoeger, and
A. P. Whitman, Ideal observational cosmology, Phys. Rep.
124, 315 (1985).

[14] M. Gasperini, G. Marozzi, F. Nugier, and G. Veneziano,
Light-cone averaging in cosmology: formalism and appli-
cations, J. Cosmol. Astropart. Phys. 07 (2011) 008.

[15] F. Nugier, From GLC to double-null coordinates and
illustration with static black holes, J. Cosmol. Astropart.
Phys. 09 (2016) 019.

[16] S. Weinberg, Gravitation and Cosmology: Principles and
Applications of the General Theory of Relativity (Wiley,
New York, 1972).

SHIH-YUIN LIN PHYS. REV. D 101, 124001 (2020)

124001-14

https://doi.org/10.1002/andp.19053221004
https://doi.org/10.1002/andp.19053221004
https://doi.org/10.1016/0375-9601(90)90670-J
https://doi.org/10.1119/1.1407254
https://doi.org/10.1119/1.15197
https://doi.org/10.1119/1.15197
https://doi.org/10.1023/A:1007861914639
https://doi.org/10.1023/A:1007861914639
https://doi.org/10.1119/1.1972547
https://doi.org/10.1119/1.1969430
https://doi.org/10.1098/rspa.1938.0164
https://doi.org/10.1016/0370-1573(85)90030-4
https://doi.org/10.1016/0370-1573(85)90030-4
https://doi.org/10.1088/1475-7516/2011/07/008
https://doi.org/10.1088/1475-7516/2016/09/019
https://doi.org/10.1088/1475-7516/2016/09/019


[17] A. J. S. Hamilton and G. Polhemus, Stereoscopic visuali-
zation in curved spacetime: seeing deep inside a black hole,
New J. Phys. 12, 123027 (2010).

[18] E. T. Newman and T.W. J. Unti, A class of null flat-space
coordinate systems, J. Math. Phys. (N.Y.) 4, 1467 (1963).

[19] E. Poisson, The motion of point particles in curved
spacetime, Living Rev. Relativity 7, 6 (2004).

[20] D. Bini, L. Lusanna, and B. Mashhoon, Limitations of radar
coordinates, Int. J. Mod. Phys. D 14, 1413 (2005).

[21] F. Rohrlich, Classical Charged Particles (Addison-Wesley,
Redwood City, CA, 1965).

[22] S.-Y. Lin and B. L. Hu, Accelerated detector—quantum
field correlations: From vacuum fluctuations to radiation
flux, Phys. Rev. D 73, 124018 (2006).

[23] D. C. M. Ostapchuk, S.-Y. Lin, R. B. Mann, and B. L. Hu,
Entanglement dynamics between inertial and non-uniformly
accelerated detectors, J. High Energy Phys. 07 (2012) 072.

[24] W. Kinnersley, Field of an arbitrarily accelerating point
mass, Phys. Rev. 186, 1335 (1969).

[25] W. B. Bonner, The photon rocket, Classical Quantum
Gravity 11, 2007 (1994).

[26] M. Born, Die Theorie des starren Elektrons in der Kinematik
des Relativitätsprinzips, Ann. Phys. (Berlin) 30, 1 (1909).

[27] L. D. Landau and L. M. Lifshitz, The Classical Theory of
Fieids, 3rd ed. (Pergamon, New York, 1971).

[28] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure
of Spacetime, (Cambridge University Press, Cambridge,
England, 1973).

[29] E. Mottola, Particle creation in de Sitter space, Phys. Rev. D
31, 754 (1985).

[30] E. Poisson, A Relativistist’s Toolkit: The Mathematics
of Black Hole Mechanics (Cambridge University Press,
Cambridge, England, 2004).

[31] V. Perlick, Gravitational lensing from a spacetime perspec-
tive, Living Rev. Relativity 7, 9 (2004).

[32] S.-Y. Lin, Seeing through a nearly black star, arXiv:
1910.13198.

[33] W. Israel, Singular hypersurfaces and thin shells in general
relativity, Nuovo Cimento B 44, 1 (1966); 48, 463(E)
(1967).

[34] E. F. Taylor and J. A. Wheeler, Exploring Black Holes—
Introduction to General Relativity (Addison Wesley Long-
man, New York, 2000).

[35] P. C. W. Davies and S. A. Fulling, Radiation from moving
mirrors and from black holes, Proc. R. Soc. A 356, 237
(1977).

NOTES ON OBSERVATIONAL AND RADAR … PHYS. REV. D 101, 124001 (2020)

124001-15

https://doi.org/10.1088/1367-2630/12/12/123027
https://doi.org/10.1063/1.1703927
https://doi.org/10.12942/lrr-2004-6
https://doi.org/10.1142/S0218271805006961
https://doi.org/10.1103/PhysRevD.73.124018
https://doi.org/10.1007/JHEP07(2012)072
https://doi.org/10.1103/PhysRev.186.1335
https://doi.org/10.1088/0264-9381/11/8/008
https://doi.org/10.1088/0264-9381/11/8/008
https://doi.org/10.1002/andp.19093351102
https://doi.org/10.1103/PhysRevD.31.754
https://doi.org/10.1103/PhysRevD.31.754
https://doi.org/10.12942/lrr-2004-9
https://arXiv.org/abs/1910.13198
https://arXiv.org/abs/1910.13198
https://doi.org/10.1007/BF02710419
https://doi.org/10.1007/BF02712210
https://doi.org/10.1007/BF02712210
https://doi.org/10.1098/rspa.1977.0130
https://doi.org/10.1098/rspa.1977.0130

