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The scenario of constant-roll inflation in the frame of the Randall-Sundraum II (RS II) brane gravity
model is considered. Based on the scenario, the smallness of the second slow-roll parameter is released and
it is assumed as a constant which could be of the order of unity. Applying the Hamilton-Jacobi formalism,
the constancy of the parameter gives a differential equation for the Hubble parameter which leads to an
exact solution for the model. Reconsidering the perturbation equations, we show there are some modified
terms appearing in the amplitude of the scalar perturbations and in turn in the scalar spectral index and
tensor-to-scalar ratio. Comparing the theoretical results of the model with observational data, the free
parameters of the model are determined. Then, the consistency of the model with the swampland criteria is
investigated for the obtained values of the free parameters. As the final step, the attractor behavior of the
model is considered.
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I. INTRODUCTION

Inflation is an exponential expansion of space in the very
early Universe during an extremely short period of time.
This scenario has received observational support [1–5]
which makes it one of the cornerstones of physical
cosmology, rendering any model for the evolution of the
Universe incomplete without the inflation phase. The first
realistic inflationary scenario was proposed four decades
ago as a solution to two of the shortcomings of the hot big
bang model [6–10], namely, the flatness and the horizon
problems, and since then became the leading paradigm for
the early Universe.
So far, many inflationary models have been introduced

based on the slow-roll assumptions where the inflaton, a
scalar field, slowly rolls down its potential. It is described
by two dimensionless parameters, known as the slow-roll
parameters, which their smallness during inflation guaran-
tees an almost flat potential [11–14]. Example of such
models include noncanonical inflation [15–23], tachyon
inflation [24–27], Dirac-Born-Infeld (DBI) inflation [28–
32], G-inflation [33–36], and warm inflation [37–44].
However, a different inflationary scenario has been pro-
posed very recently which goes beyond the slow-roll
approximation, where the second slow-roll parameter does
not have to be smaller than unity and can be a constant
[45,46]. This constant-roll inflation (CRI) scenario attracted

a lot of interest among cosmologists as an alternativeway for
the inflation phase to take place [47–65].
Inspired by string theory, one can consider our observable

Universe to be a (3þ 1) four-dimensional hypersurface (the
brane) embedded in a higher-dimensional spacetime (the
bulk). We consider a five-dimensional space and assume that
all standard model particles to be confined to the brane, and
only gravity is allowed to propagate in the fifth dimension.
The most popular are the Arkani-Hamed-Dimopoulos-Dvali
(ADD) and the Randall-Sandrum (RS) models [66,67],
which were proposed in an attempt to solve the hierarchy
problem between the Planck scale and the electroweak scale.
Furthermore, in some inflationary models in the context of
the brane-world scenario, the inflaton potential arises nat-
urally from higher-dimensional gravity [68–83] and yields
interesting cosmological implications [84–88].
There has been a growing interest in applying the CRI

scenario to many inflationary models which, depending
on the details of the model, results in some modification of
the Friedmann equation. In the brane-world scenario, the
Friedmann equation will contain both quadratic and linear
terms, which in the high-energy regime (i.e., ρ ≫ λ) the
linear term can be ignored. In this case, unlike the standard
four-dimensional cosmology, the Hubble parameter
behaves as H ∝ ρ rather than H ∝ ffiffiffi

ρ
p

, a novel aspect of
the CRI scenario in this context. It is expected that this
modification affects relevant parameters and observable of
the inflation phase, including the slow-roll parameters, the
shape of the potential, end time of inflation, and the
magnitude of the inflaton. Due to this novel feature of
the Friedmann equation, it is important to consider the CRI
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scenario in the framework of the brane world and study the
new features that may arise in this case.
Another motivation for considering the brane world

comes from the swampland conjectures [89–91], which
can be used as criteria to distinguish effective field theories
(EFTs) that can be UV completed to a quantum theory
of gravity. The first criterion requires the field range
traversed by the fields to be bounded from above by a
value of order 1, whereas the second criterion imposes a
lower bound on the gradient of the potential. The latter
bound is in direct tension with inflation where the first
slow-roll parameter ϵ ¼ M2

pV 02=2V2 must be smaller than
1. Thus, some inflationary models are not compatible with
these criteria and hence cannot be embedded into a
consistent theory of quantum gravity. However, inflationary
models in the brane-world scenario have the potential to
evade the swampland constraints [92–99], and hence it will
be interesting to investigate inflation in this framework and
its implications.
The paper is organized as follows. In Sec. II, the main

evolution equations of the model are given. The scenario of
the constant-roll inflation is discussed in the frame of brane
world in Sec. IV. The exact solutions for the model are
obtained in Sec. III and the main dynamical parameters
are obtained in terms of the scalar field. In Sec. IV, the
cosmological density perturbations are considered, and
the consistency of the model with the observational data
and swampland criteria is investigated in Secs. V and VI,
respectively. As the last step, the attractor behavior of the
solution is studied in Sec. VII. The results are summarized
in Sec. VIII.

II. THE MODEL

The action for the brane world is given by

S¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
M3

5

2
RþΛ5

�
þ
Z

d4x
ffiffiffiffiffiffi
−h

p
ðLþλÞ; ð1Þ

where the first integral represents the action of the bulk
and the second one corresponds to the brane, R is the
Ricci scalar related to the five-dimensional metric gAB, g
and h denote the determinants of the metric on the five-
dimensional space and the brane, respectively, Λ5 the five-
dimensional cosmological constant, L the Lagrangian of
the matter fields, and λ the brane tension.
Taking variation of the action with respect to the metric

yields the field equation

Gμν ¼ −Λ4gμν þ
�
8π

M2
4

�
Tμν þ

�
8π

M3
5

�
2

Πμν − Eμν: ð2Þ

Here, Tμν is the energy-momentum tensor of the matter on
the brane, Πμν a tensor that includes the terms quadratic in
Tμν, and Eμν represents the projection of Weyl tensor on the
brane which portrays the effects of the bulk graviton on the

dynamical evolution of the brane. Assuming the geometry
of the Universe to be described by a five-dimensional
Friedmann-Lemaitre-Robertson-Walker metric

ds25 ¼ −dt2 þ a2δijdxidxj þ dy2; ð3Þ
the Friedmann equation reads

H2 ¼ Λ4

3
þ
�

8π

3M2
4

�
ρþ

�
4π

3M3
5

�
2

ρ2 þ C
a4

; ð4Þ

with Λ4 the cosmological constant of the brane, and C=a4

is known as the dark radiation.1 The five- and four-
dimensional Planck masses in the above equation are

related as M4 ¼
ffiffiffiffiffiffi
3
4πλ

q
M3

5.

During inflation, the dark radiation term gets diluted, and
hence can be neglected. Also, here the RS fine-tuning is
used to set the four-dimensional cosmological constant to
zero. Thus, the Friedmann equation gets reduced to

H2 ¼ 8π

3M2
4

ρ

�
1þ ρ

2λ

�
: ð5Þ

Since all the matter fields are confined on the brane, the
conservation of energy in this expanding Universe is the
same as in standard cosmology, i.e.,

_ρþ 3Hðρþ pÞ ¼ 0: ð6Þ
Using the above equation and taking the time derivative
of Eq. (5), we obtain the second Friedmann equation

_H ¼ −4π
M2

4

�
1þ ρ

λ

�
ðρþ pÞ: ð7Þ

Inflation is driven by the inflaton, a scalar field ϕ, that is
confined on the brane, and with energy density and
pressure

ρ ¼
_ϕ2

2
þ VðϕÞ; p ¼

_ϕ2

2
− VðϕÞ ð8Þ

and obeys the equation of motion

ϕ̈þ 3H _ϕþ V 0ðϕÞ ¼ 0: ð9Þ
It is widely common to consider the inflation at the

energy scale where the energy density is larger than the
tension of the brane, i.e., ρ ≫ λ. Therefore, the above
Friedmann equations are reduced to

H2 ¼
�

4π

3M3
5

�
2

ρ2; _H ¼ −3
�

4π

3M3
5

�
H _ϕ2: ð10Þ

1This is because of its dependence on the scale factor is the
same as the energy density of radiation.
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III. CONSTANT-ROLL INFLATION

In slow-roll inflationary models, the inflaton rolls down
its potential very slow which can be described in terms of
dimensionless parameters

ϵ ¼ − _H
H2

and η ¼ −ϕ̈
H _ϕ

ð11Þ

which satisfy the conditions ϵ < 1 and η < 1, known as
slow-roll parameters (SRPs) [13]. Another scenario is the
constant-roll inflation where the second slow-roll param-
eter is assumed to be constant and can be of order of unity,

η ¼ −ϕ̈
H _ϕ

¼ β ¼ constant: ð12Þ

The fact that η is a constant result in a differential equation
for the Hubble parameter that admits an exact solution for
the model. For that, we first obtain the time derivative of the
scalar field from the second Friedmann equation by taking
the Hubble parameter as a function of the scalar field, i.e.,
H ≔ HðϕÞ, and write

_H ¼ _ϕH0 ⇒ _ϕ ¼ −1
3

�
3M3

5

4π

�
H0

H
: ð13Þ

Then, it follows the following differential equation for the
Hubble parameter:

HH00 −H02 − β̃H3 ¼ 0; β̃ ¼ 4π

3M3
5

β ð14Þ

and has a solution given by

HðϕÞ ¼ −α
2β̃

�
1 − tanh

� ffiffiffi
α

p
2

ðϕþ ϕ0Þ
��

; ð15Þ

where α and ϕ0 are constants of integration. Note that since
the Hubble parameter is positive and the term tanh is
smaller than one, the constant α must be negative.
Now that we have the expression ofHðϕÞ, we can derive

_ϕðϕÞ and VðϕÞ, and we get

_ϕ ¼ M3
5

ffiffiffi
α

p
4π

tanh

� ffiffiffi
α

p
2

ðϕþ ϕ0Þ
�
; ð16Þ

VðϕÞ ¼
�
M3

5

4π

�
2 α

2

�
−3
β

þ
�
3

β
− 1

�
tanh2

� ffiffiffi
α

p
2

ðϕþϕ0Þ
��

:

ð17Þ

By integrating the equation of _ϕ above gives the time
evolution of scalar field as

ϕðtÞ þ ϕ0 ¼
2ffiffiffi
α

p sinh

�
exp

�
M3

5α

8π
ðtþ t0Þ

��
: ð18Þ

A. Scalar field at the horizon crossing time

The inflationary phase will come to an end when the SRP
ϵðϕÞ becomes equal to unity, i.e.,

ϵðϕeÞ ≔ 2β
tanh2

� ffiffi
α

p
2
ðϕe þ ϕ0Þ

�

1 − tanh2
� ffiffi

α
p
2
ðϕe þ ϕ0Þ

� ¼ 1; ð19Þ

where ϕe is the value of the field at the exit of inflation,
which can be determined by solving the above algebraic
equation. With this, we can quantify the amount of inflation
the Universe underwent, corresponding to the number of
e-folds from the beginning of inflation, the instant ti, to the
exit time te, and is given by

N ¼
Z

te

ti

Hdt ¼
Z

ϕðteÞ≡ϕe

ϕðtiÞ≡ϕi

H
_ϕ
dϕ ¼ −

4π

M3
5

Z
ϕe

ϕi

H2

H0 dϕ:

ð20Þ

Substituting the solution we have obtained for the Hubble
parameter, and after some manipulation, we obtain

N ¼ −4π
M3

5β̃
ln

�
tanh

� ffiffiffi
α

p
2

ðϕþ ϕ0Þ
��				

ϕe

ϕi

¼ 2π

M3
5β̃

ln

�
tanh2½

ffiffi
α

p
2
ðϕi þ ϕ0Þ�

tanh2½
ffiffi
α

p
2
ðϕe þ ϕ0Þ�

�
; ð21Þ

or equivalently

tanh2
� ffiffiffi

α
p
2

ðϕi þ ϕ0Þ
�
¼ e2βN

1 − 2β
: ð22Þ

IV. COSMOLOGICAL PERTURBATIONS

In this section, we consider the impact on the quantum
perturbations as one of the most important predictions of
inflation which represents the main test that we have for
verifying any inflationary model. The perturbations are
usually divided into three types: scalar, vector, and tensor.
Vector perturbations are usually ignored as they depend on
the inverse of the scale factor and get diluted rapidly during
inflation. Scalar perturbations are the seed for large scale
structure formation in the Universe. The tensor perturba-
tions describe the primordial gravitational waves which
have not been detected yet and at present we have only an
upper bound on the tensor-to-scalar ratio.
The study of the cosmological perturbation in constant-

roll inflation is a little different than in the slow-roll
scenario. Since the second SRP, η, might be of order unity,
in calculating the scalar and tensor perturbations the terms
η2, ϵη, and ϵη2 cannot be ignored. In this regard, the whole
perturbation equations involving the second SRP should be
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reconsidered. In the following subsections, we are going to
reconsider both scalar and tensor perturbations for any
possible modification.

A. Scalar perturbations

To derive the perturbation parameters, we usually need to
obtain the Mukhanov-Sasaki equation [12–14,100–104].
For this matter, the action is computed up to the second
order of the perturbation parameter. Following [12,105],
the spatially flat gauge is used in which, up to the leading
order of ϵ, the fluctuations in the geometry of the action
could be ignored. Since the scalar field lives on the brane,
we have the same perturbation equation as we have in the
standard four-dimensional cosmology, that is,

v00kðτÞ þ
�
k2 −

z00

z

�
vkðτÞ ¼ 0; ð23Þ

where again z has the same definition as z2 ¼ a2 _ϕ2=H2.
Therefore, after some algebraic manipulations, the term
z00=z in the above equation can be expressed as

z00

z
¼ 1

τ2
ð2þ 6ϵ − 3β − 9ϵβ þ β2 þ 2ϵβ2Þ: ð24Þ

Making the change of variables x ¼ −kτ and fk ¼
vk=

ffiffiffiffiffiffi
−τ

p
, Eq. (23) becomes a Bessel differential equation as

d2fk
dx2

þ 1

x
dfk
dx

þ
�
1 −

ν2

x2

�
fk ¼ 0; ð25Þ

where we have used

z00

z
¼ ν2 − 1

4

τ2
⇒ ν2 ¼ 9

4
þ 6ϵ − 3β − 9ϵβ þ β2 þ 2ϵβ2:

ð26Þ

In general, the solutions to (25) are

fk ¼ c1ðkÞHð1Þ
ν ð−kτÞ þ c2ðkÞHð2Þ

ν ð−kτÞ: ð27Þ

Here Hð1Þ
ν and Hð2Þ

ν are the Hankel’s functions of the first
and second kind, respectively, and c1ðkÞ and c2ðkÞ are
arbitrary constants. Comparing the asymptotic behavior of
the general solution, with the solution of the equation in the
subhorizon limit (kτ ≪ 1), the constants are determined,
and finally one could obtain the amplitude of the scalar
perturbations as

Ps ¼ A2
s

�
k
aH

�
3−2ν

; A2
s ¼

1

25π2

�
2ν−3=2ΓðνÞ
Γð3=2Þ

�
2
�
H2

_ϕ

�
2

;

ð28Þ

from which we deduce the scalar spectral index ns as

ns − 1 ¼ 3 − 2ν: ð29Þ

B. Tensor perturbations

The second SRP plays no role in the tensor perturbation
equations, and hence the evolution equation for the tensor
perturbation will have the same form as the scalar case.
The amplitude of such perturbations has been calculated
in the framework of the brane-world gravity and is given
by [106,107]

A2
T ¼ 16π

25M2
p

�
H
2π

�
2

F2ðxÞ; ð30Þ

where

F2 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

− x2sinh−1
�
1

x

��
−1
; x≡HMp

ffiffiffiffiffiffiffiffi
3

4πλ

r
:

ð31Þ

In high-energy regime, where x ≫ 1, one arrives at FðxÞ ¼
3x=2 [107,108]. The tensor perturbations are measured
indirectly through the parameter r, defined as the ratio of
tensor perturbations to scalar perturbations, which can be
determined using Eqs. (28) and (30) as

r ¼ 3

2

�
Γð3=2Þ

2ν−3=2ΓðνÞ
�

2

ϵ: ð32Þ

Currently, the value of this parameter is not determined by
the data, and only an upper bound r < 0.064 [3–5].

V. OBSERVATIONAL CONSTRAINTS
ON THE MODEL

To determine the free parameters of the model, we
compute the amplitude of the scalar perturbations, scalar
spectral index, and tensor-to-scalar ratio at the time of
horizon crossing and compare with the available observa-
tional data. First, by substituting the expression in Eq. (22)
into Eq. 3, the slow-roll parameter ϵ can be written in terms
of the number of e-folds as

ϵ ¼ −2βe2βN

1 − 2β − e2βN
: ð33Þ

Note that [from Eqs. (26), (29), and (32)] the scalar spectral
index and tensor-to-scalar ratio depend only on β and N at
the time of horizon crossing. Comparing the theoretical
results for ns and rwith allowed values of the spectral index
and tensor-to-scalar ratio given by Planck Collaboration in
the form of r − ns diagram, we extract the values of ðN; βÞ
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that are in agreement with the observational data. Using the
95% and 68% CL allowed regions of the parameters r
and ns from Planck TT, TE, EEþ lowEþ lensingþ
BK14þ BAO data sets [5], we show in Fig. 1 the
corresponding model parameter space.
Using the amplitude of the scalar perturbations, the other

constant of the model, i.e., α, is determined as

α3 ¼
�

Γð3=2Þ
2ν−3=2ΓðνÞ

�
2
�
4π

M3
5

�
2

ð4πð2βÞ3AsϵÞ: ð34Þ

To have numerical insight about the result of the model,
Table I represents the values of α, scalar spectral index,
tensor-to-scalar ratio, and the energy scale of inflation for
different values of β and the number of e-folds, taken
from Fig. 1.
Figure 2 portrays the behavior of the obtained potential

versus the scalar field for different values of β and α. As it is
illustrated, the potential rolls down from the top of the
potential.
The crucial point for any inflationary model is to have a

graceful exit from the inflation stage. Considering the
behavior of the first SRP presents the required information
about the inflationary times and its end. The evolution of ϵ
versus the number of e-folds is depicted in Fig. 3, where it
is realized that by approaching the end of inflation the
parameter ϵ grows up and reaches 1.

VI. CONSISTENCY WITH THE
SWAMPLAND CRITERIA

The recently proposed swampland criteria are a measure
for separating the consistent EFT from the inconsistent
EFT. The consistent EFTs can successfully be formulated
in string theory, the best candidates of the quantum gravity.
It is believed inflation occurred at the energy scale below
the Planck energy and hence could be described by a low-
energy effective field theory of string theory. Therefore, it is
a natural desire to construct an inflationary model based
on a consistent EFT, and for that we apply the swampland
conjectures.
The first criterion concerns the distance conjecture which

constraints on the range traversed by the scalar field as
Δϕ=Mp < c where c is of the order of unity. The evolution
of the term Δϕ=Mp for the model is presented in Fig. 4,
where it is shown that Δϕ=Mp is smaller than unity for
the whole time of the inflation
The second criterion is a de Sitter conjecture which

imposes a lower bound on the gradient of the potential. It
states that MpjV 0=Vj > c0 where c0 is of the order of unity
(further investigation determines that the constant could be

FIG. 1. The 68% (light blue) and 95% CL (dark blue) allowed
region of the parameters β and N.

TABLE I. Numerical results of the model.

β N α ns r V⋆

−0.011 76 4.92 × 10−33 0.9580 0.0072 2.22 × 1053

−0.014 80 4.95 × 10−33 0.9589 0.0047 1.92 × 1053

−0.007 80 4.16 × 10−33 0.9594 0.0096 2; 45 × 1053

−0.014 84 4.64 × 10−33 0.9604 0.0041 1.85 × 1053

−0.010 84 4.32 × 10−33 0.9620 0.0065 2.15 × 1053

−0.004 84 3.51 × 10−33 0.9592 0.0119 2.62 × 1053

−0.009 88 4.01 × 10−33 0.9637 0.0066 2.16 × 1053

FIG. 2. Behavior of the potential of the scalar field.

FIG. 3. Behavior of the first slow-roll parameter ϵ versus the
number of e-folds.
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of the order of 0.1 [92]). In Fig. 5, we present the evolution
of MpjV 0=Vj, which shows that the magnitude of the
gradient of the potential is bigger than one during the
inflationary phase.

VII. ATTRACTOR BEHAVIOR

The last feature we are going to consider is the attractor
behavior of the model. The solution of the model has been
obtained in Sec. III, where we have used the Hamilton-
Jacobi formalism [14,109–117]. This approach was first
studied in [118], where the authors found exact solution for
the large value of the parameter η. Considering the attractor
behavior of the solution, it was claimed that constant-roll
inflation presents a new class of attractor solution. This
result has been reinvestigated in detail in [119,120] where it
was shown that the solution and the perturbation equations
are invariant under the transformation η → η̄ ¼ 3 − η, with
two branches of solution that are symmetric under this
transformation. The main result of [119] based on this
duality transformation led the authors to the conclusion that
the attractor behavior of the constant-roll inflation with
large η is not a new class of attractor behavior which also
has been claimed in [119]. It does not mean that the
constant-roll has no attractor solution, but they are not a
new class of attractor solution.

In our model, we found that the observational constraints
on ðr; nsÞ require the parameter ηð¼ βÞ to be small.
Consequently, the model certainly does not present a
new class of the attractor solution and could be part of
the slow-roll attractor. Therefore, the attractor behavior in
our model could be investigated utilizing the same method
as in the slow-roll scenario. In this regard, we follow a
similar procedure as in [14,110] which is a common
method for considering the attractor behavior of the infla-
tionary models.
Assuming homogenous perturbation in the Hubble

parameter, i.e., HðϕÞ ¼ H0 þ δHðϕÞ, and substituting it
into the Hamilton-Jacobi equation,

VðϕÞ ¼
�
3M3

5

4π

�
HðϕÞ − 1

9

�
3M3

5

4π

�
2H02ðϕÞ
H2ðϕÞ ; ð35Þ

leads to the following differential equation:

δH0ðϕÞ
δHðϕÞ ¼

�
1þ 9

2

�
4π

3M3
5

�
H2

0

H02
0

�
H0

0

H0

; ð36Þ

where the equation has been obtained up to the first order of
the perturbation term. Integration leads to

(a) (b)

FIG. 4. Evolution of Δϕ=Mp versus the number of e-folds for different values of β.

(a) (b)

FIG. 5. Evolution of the gradient of the potential versus the number of e-folds for different values of β.
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δHðϕÞ¼ δHiexp

�Z
ϕ

ϕi

�
1þ9

2

�
4π

3M3
5

�
H3

0ðϕÞ
H02

0ðϕÞ
�
H0

0ðϕÞ
H0ðϕÞ

dϕ

�
:

ð37Þ

The integrand is illustrated in Fig. 6 versus the scalar field.
The curves portray the behavior of the integrand versus the
scalar field during the inflationary times. The area between
the curve and the x-axis displays the actual value of the
integral in the power of the exponential term in Eq. (37).
Inflation begins for smaller field and it ends at bigger fields.
Therefore, as the time passes and approaches the end of
inflation, the area under the curve gets larger and larger and
the integral becomes more and more negative. Then, the
exponential term approaches to zero implying that the
homogeneous perturbation δHðϕÞ dies away with time, and
the model possesses attractor behavior.

VIII. CONCLUSION

The constant-roll inflation was investigated in the frame
of the RSII brane gravity model. Based on this scenario, the
Universe and all the matter fields, including the inflaton,
are confined to a brane with positive tension, where the
brane is embedded in five-dimensional space-time. The
modified gravity model results in a modified Friedmann
equation which contains both linear and quadratic terms of
the energy density. In the high-energy limit, the quadratic
term dominates, and consequently, the Hubble parameter
becomes proportional to the energy density ρ, instead
of

ffiffiffi
ρ

p
. In this scenario, the inflaton rolls down its potential

at a constant rate where the second slow-roll inflation
parameter is taken to be constant which, in general, can be
of order unity. Using the Hamilton-Jacobi approach, we
derive a differential equation for the Hubble parameter. For
our model, there is a nonlinear second-order differential
equation that gives an exact solution for the model. Finding

the Hubble parameter in terms of the scalar field, the other
background parameters, such as the time derivative of the
scalar field and the potential, were derived in terms of the
scalar field. The slow-roll parameter ϵ was also obtained in
terms of the scalar field, which is used to infer the scalar
field at the end of inflation through the relation ϵðϕeÞ ¼ 1.
The scalar field at the beginning of inflation was acquired
from the expression of the number of e-folds.
Another consequence of this scenario appears in the

perturbation parameters where one could find the modified
terms mainly in the amplitude of the scalar perturbations,
scalar spectral index, and tensor-to-scalar ratio. Since the
second slow-roll parameter might not be small, the scalar
perturbation equations were reconsidered, and the modified
scalar power spectrum was derived. The tensor power
spectrum is the same as the slow roll in brane inflation
because the second slow-roll inflation parameters play no
role in tensor perturbation equations.
Computing the perturbation parameters at the time of

horizon crossing, the scalar spectral index and tensor-to-
scalar ratio are obtained only in terms of the constant β (i.e.,
the second slow-roll parameter) and the number of e-folds.
Comparing the theoretical results of the model with the
Planck data, a set of the ðβ; NÞ is found that for any point in
this set, the model perfectly agrees with observational data.
The other constant of the model, i.e., α, is determined from
the amplitude of the scalar perturbation where there is an
exact value for the parameter based on data. Using this
result, a numerical result of the model about the main
parameters including the energy scale of inflation is
presented. In the next step, the consistency of the model
with the recently proposed swampland criteria is consid-
ered. We tried to find whether the model with the obtained
free parameter could satisfy the conjectures. Furthermore,
the range of the scalar field values and the gradient of its
potential appropriately satisfy both swampland criteria.
Finally, in the Hamilton-Jacobi formalism, we derived

the differential equation (up to the first order) describing the
behavior of a homogeneous perturbation for the Hubble
parameter as a function of the inflaton field. We showed
that the perturbation parameter reduces as the time
approaches the end of inflation, which indicates that the
solution of the model has the attractor behavior.
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