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We discuss the footprint of evaporation of primordial black holes (PBHs) on stochastic gravitational
waves (GWs) induced by scalar perturbations. We consider the case where PBHs once dominated the
Universe but eventually evaporated before the big bang nucleosynthesis. The reheating through the PBH
evaporation could end with a sudden change in the equation of state of the Universe compared to the
conventional reheating caused by particle decay. We show that this “sudden reheating” by the PBH
evaporation enhances the induced GWs, whose amount depends on the length of the PBH-dominated era
and the width of the PBH mass function. We explore the possibility to constrain the primordial abundance
of the evaporating PBHs by observing the induced GWs. We find that the abundance parameter
β ≳ 10−5 − 10−8 for Oð103 − 105Þ g PBHs can be constrained by future GW observations if the width
of the mass function is smaller than about a hundredth of the mass.
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I. INTRODUCTION

Primordial black holes (PBHs) [1–3] have been gather-
ing interests for many years despite its lack of observational
evidence. This is particularly because of their rich phe-
nomenology in cosmology for a wide range of their masses.
Depending on their mass range, PBHs that survive until
today (≳1015 g) could explain dark matter [4–6], the
gravitational waves (GWs) from the black hole (BH)
mergers detected by LIGO/Virgo [7–9], the microlensing
events in the OGLE data [10,11] (see also Ref. [12] for a
review), and cosmic structures such as the seeds of super-
massive BHs [13,14]. On the other hand, tiny PBHs that
had evaporated before the big bang nucleosynthesis (BBN)
(≲109 g) could generate the baryon asymmetry [15–25],
produce dark matter particles [24,26,27], and relax the
Hubble tension [28–30].
Following the first detection of GWs from Oð10Þ M⊙

black-hole mergers, observational constraints on PBHs
for a wide range of their masses have been reconsidered.
For PBHs with MPBH > 109 g, there are a number of
constraints on the abundance of PBHs, which are consid-
ered as robust [12,31,32]. Even evaporating PBHs in this
mass range can be constrained by the null detection of
the extragalactic or galactic gamma rays from Hawking
radiation and by their effects on the BBN and the cosmic
microwave background (CMB) [31–34].

However, conservative constraints on the tiny PBHs with
MPBH < 109 g are still lacking.1 The constraints are so
weak that it is even possible that the PBHs dominate the
energy density of the Universe before they evaporate. There
exist few attempts to probe this mass regime in the
literature. One could examine the PBH abundance through
its stable relics [43], while whether or not a PBH leaves the
relic requires dedicated studies of the quantum gravities
and is still in debate [44]. Similarly, one could constrain the
PBH abundance by the overproduction of dark matter
through the PBH evaporation [45–47]. However, it strongly
depends on the nature of dark matter and cannot be applied
directly to, e.g., axion or PBH dark matter. Also, if the PBH
evaporation generates baryon asymmetry of the Universe
[15–24,48,49], or if the baryon asymmetry is generated
after the evaporation of PBHs, the constraint from the
entropy production [49] is not applicable.

1In Refs. [35–39], the possibility of evaporating PBHs as a
catalyst of vacuum decay was pointed out, which could be used to
constrain the PBHs abundance assuming our electroweak vacuum
is metastable [40]. However, this bound depends on the UV
completion or a precise value of the top Yukawa, and moreover,
there are subtleties because the analysis made so far also predicts
the bubble nucleation whose typical size is much larger than the
PBH radius, implying a suppression factor from this effect is
missing [41,42].
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Despite the difficulty of investigating the tiny PBHs, the
production of them is predicted in the context of the hybrid
inflation [50] (see also Refs. [51,52]), the inflation model
with the Chern-Simons coupling between the inflaton and
gauge fields [53,54], and the preheating after inflation
[55,56]. In particular, the hybrid inflation is an attractive
model in view of the seesaw mechanism and leptogenesis
[57,58]. In this sense, the tiny PBHs could give us hints
on not only the early Universe but also particle physics
models.
In this paper, we shed light on the tiny PBHs in terms of

GWs. Once GWs are produced by some mechanism, they
are not erased by the frictions with other matter species
unlike the radiation perturbations, so GWs can be a good
probe of the tiny PBHs. However, GWs emitted through
the Hawking radiation [59–61] and mergers of the tiny
PBHs [62] have very high frequencies. This is because, for
tiny PBHs, the Hawking temperature is high and the typical
length scale of the PBH binary is short. It is unlikely to
detect such high-frequency GWs by the near-future GW
observations (see also Appendix A).
Throughout this paper, we instead focus on the GWs

induced by the scalar (curvature/density) perturbations
which are related to the tiny PBHs and can be detected
by the future observations. The scalar perturbations can be
a source of GWs through their interactions appearing at the
second order in perturbations [63–69]. The induced GWs
have recently attracted a lot of attention [70–100] because
the induced GWs can be used to investigate the small-scale
(k > 1 Mpc−1) perturbations, which are difficult to be
accessed by CMB observations but can produce PBHs.
The induced GWs can be strong in the following two

cases: (1) the primordial scalar perturbation is large, and
(2) the scalar perturbation grows dynamically. In our
scenario, the first case corresponds to the large scalar
perturbation required to have a sizable amount of tiny
PBHs. The induced GWs are generated when the enhanced
scalar perturbation responsible for the PBH formation enters
the horizon. Hence the peak frequency of the induced
GWs has one to one correspondence to the PBH mass.
Because of this fact, the peak frequency for the tiny PBHs
(MPBH < 109 g) is still high (see Appendix A).
The second case involves an early matter-dominated

(eMD) era which precedes the standard radiation-
dominated (RD) era. During the eMD era, density pertur-
bations grow on the subhorizon scales, and the gravitational
potential (hence the source term of the induced GWs) does
not decay on the subhorizon scales [67,101]. After the eMD
era ends, the gravitational potential starts to oscillate due to
the radiation pressure during the RD era. During
the reheating transition from the eMD era to the RD era
(before their oscillation), the gravitational potentials on the
subhorizon scales decay. Hence, the amount of their decay
depends on the time scale of the transition. If the time
scale of the reheating transition is sufficiently short, the

gravitational potential on the subhorizon scales does not
much decay before their fast oscillations since there is no
time for it to decay. In this case, strong GWs are induced
after the sudden reheating transition even if the power
spectrum of the primordial curvature perturbations is
almost scale invariant (i.e., with no ad hoc enhancement
in the initial condition) [87]. Note that the fast oscillations
of the gravitational potential in the RD era are caused by
sound waves in the thermal bath, which is produced after
the sudden disappearance (or “demise”) of the matter field.
For this reason, we call this mechanism the poltergeist
mechanism for GW production.
Indeed, the sudden reheating transition can be realized in

the PBH-dominating scenario. A key property of evapo-
rating PBHs in this context is that the evaporation process
becomes faster and faster once it sets in because of the
negative specific heat of a BH. If the PBHs come to
dominate the Universe by the time when this explosive
event happens, the equation of state for the Universe can
change suddenly at the end of evaporation depending
on how sharp the PBH mass function is. Since the PBH-
dominated era behaves as an eMD era, the evaporation of
the PBHs leads to a sudden transition from the eMD era to
the RD era. For this reason, we expect that tiny PBHs can
trigger the poltergeist mechanism: after the sudden evapo-
ration of PBHs, the “ghost” of PBHs makes merry in the
thermal bath producing strong GWs. In addition, the
induced GWs are enhanced at least for modes that enter
the horizon by the end of the reheating. This is a macro-
scopic wavelength of a fluid composed of many tiny PBHs,
and therefore the induced GWs can have the frequencies
lower than those of the other types of GWs mentioned
above. Thus, they can be detected by near-future GW
observations if the enhancement is sufficiently large. For
this reason, we focus on the GWs induced by the poltergeist
mechanism to investigate the tiny PBHs throughout this
paper.
We study how large the enhancement of the induced

GWs by the poltergeist mechanism can be by taking into
account the finite duration of the evaporation/reheating
process. We also discuss novel observational consequences
of the enhanced production of GWs from PBH evaporation.
Assuming the (almost) scale-invariant power spectrum for
the scalar perturbations Pζ ∼ 10−9 conservatively, we
estimate the spectrum of the enhanced GWs as a function
of the PBH mass, its abundance (formation probability),
and the width of the mass function both numerically
and analytically. Utilizing such relations, we discuss pro-
spective constraints on the primordial abundance of
evaporating PBHs, which are accessible by future GW
observations, such as LISA [102–104], DECIGO [105,106]
and BBO [106,107].
This paper is organized as follows. InSec. II,we review the

PBH-dominated era. In particular, we see why the evapora-
tion of PBHs ends with a sudden transition compared to the
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conventional reheating. In Sec. III, we discuss the evolution
of scalar perturbations, focusing on the evolution of the
gravitational potential, which is the source of the induced
GWs, during the transition from the PBH-dominated era to
the RD era. In Sec. IV, we discuss the GWs induced by
the scalar perturbations that have experienced the PBH-
dominated era on subhorizon scales. Note that, until Sec. IV,
to show the essential points of the poltergeist mechanism,
we assume the monochromatic PBH mass function for
simplicity. Then, we take into account the finite width of
PBH mass function and discuss how it affects the induced
GWs in Sec. V. In Sec. VI, we discuss the prospective
constraints on the PBH abundance from the future GW
observations. Finally, we conclude this paper in Sec. VII.
Throughout this paper, we assume that the evaporation

of PBHs does not leave any relics. As a convention, we use
the reduced Planck mass (MPl ≡ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
) instead of

the gravitational constant. In addition, we use the word
“reheating” to represent the reheating caused by the PBH
evaporation (not the reheating caused by inflaton decay)
unless otherwise noted.

II. PBH-DOMINATED ERA

The cosmological scenario we consider is as follows.
After inflation and (p)reheating of the Universe caused by
inflaton decay/annihilation, the Universe is filled with
radiation. In this early radiation-dominated (eRD) era, a
PBH is supposed to form when a rare and large perturbation
mode enters the Hubble horizon. PBHs behave as non-
relativistic matter, so they would eventually dominate the
energy density of the Universe if they were stable. Since
PBHs are quantum-mechanically unstable due to the
Hawking radiation, it depends on the initial abundance
whether they dominate the Universe or not. We are
interested in the case where PBHs do dominate, and the
condition for the domination is shortly reviewed below.
The PBH-dominated era serves as an eMD era. It ends via
the evaporation of PBHs. Thus, the evaporation of the
PBHs can be regarded as the reheating transition from the
eMD era to the standard RD era. The subsequent evolution
of the Universe is the same as in the standard cosmological
scenario. In this scenario of PBH domination and evapo-
ration, there are various mechanisms to produce GWs,
which are reviewed in Appendix A.
We can easily generalize our discussion, e.g., to the cases

of PBH formation in another matter-dominated (MD) era
(e.g., during inflaton coherent oscillation) or PBH forma-
tion by phase transitions etc., but we do not do so here for
simplicity. In the rest of this section, we summarize various
relations in the PBH-dominated era, which are useful in the
subsequent sections.

A. PBH evaporation

Let us start with the governing equation of the PBH
evaporation. The mass of a PBH obeys [28]

dMPBH

dt
¼ −

A
M2

PBH

¼ −7.6 × 1016 g s−1gH�ðTPBHÞ
�
MPBH

104 g

�
−2
; ð1Þ

where A is given as

A ¼ πGgH�ðTPBHÞM4
Pl

480
: ð2Þ

G ≃ 3.8 is the gray-body factor and TPBH is the Hawking
temperature of the PBH [108]

TPBH ¼ M2
Pl

MPBH
≃ 1.05 × 109 GeV

�
MPBH

104 g

�
−1
: ð3Þ

gH�ðTPBHÞ is the spin-weighted degrees of freedom of the
particles produced from the Hawking radiation with TPBH,
whose concrete value is given as [28]

gH�ðTPBHÞ

≃
�
108 ðTPBH ≫ 100 GeV ↔ MPBH ≪ 1011 gÞ
7 ðTPBH ≪ 1 MeV ↔ MPBH ≫ 1016 gÞ :

ð4Þ

The temperature dependence comes from the fact that the
Hawking radiation cannot efficiently produce the particles
heavier than the Hawking temperature (m≳ TPBH).
Solving Eq. (1), we can derive the time dependence of

the PBH mass as

MPBH ¼ ð3AÞ1=3ðteva − tÞ1=3 for t ≤ teva; ð5Þ

where the subscript “eva” indicates the value when the
PBH completes the evaporation. We will express teva as
temperature in Eq. (7). Since we focus on tiny PBHs with
MPBH < 109 g throughout this paper, we take gH� ¼ 108
and consider A to be time-independent. Assuming the
monochromatic PBH mass function, we can express the
decay rate as

Γ≡ −
1

MPBH

dMPBH

dt
¼ 1

3ðteva − tÞ ; ð6Þ

where this decay rate is defined so that ΓρPBH represents the
energy flow from the PBHs to radiation per unit time and
volume. Note again that we discuss the effects of the finite
width of PBH mass function in Sec. V. Now it is clear that,
in contrast to the perturbative decay of heavy particles, the
decay rate grows toward the completion of the evaporation
t → teva, implying that this process is more sudden than the
conventional reheating.
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By using the relation H ¼ 2=ð3tÞ, one may express the
evaporation time teva as the reheating temperature, which is
given by [28]2,3

TR ≃ 2.8 × 104 GeV

�
MPBH;i

104 g

�
−3=2

×

�
gH�ðTPBHÞ

108

�
1=2

�
g�;eva
106.75

�
−1=4

; ð7Þ

where the subscript “i” represents the initial value (at the
PBH production). g� is the relativistic effective degrees of
freedom, which should not be confused with gH�. The
temperature dependence of g� is given in Refs. [110,111].
For later convenience, we express the inverse horizon scale
at the reheating as a function of reheating temperature [87]:

keva ¼ 4.7 × 1011 Mpc−1
�

g�;eva
106.75

�
1=2

×

�
gs�;eva
106.75

�
−1=3

�
TR

2.8 × 104 GeV

�
; ð8Þ

where gs� is the effective degrees of freedom for an entropy
density. Note that g�;eva and gs�;eva mean the values at
T ¼ TR. We have used the relation k• ¼ a•H• with • ¼ eva,
eq and taken the ratio keva=keq ¼ aevaHeva=ðaeqHeqÞ to
derive this equation. The subscript “eq” means the value at
the late-time matter-radiation equality (zeq ≃ 3400).

B. Condition for PBH domination

The initial PBH mass is related to the temperature of the
Universe at the PBH production as [6]4

MPBH;i ≃ γρ
4π

3
H−3

����
t¼ti

≃ γMeq

ffiffiffi
2

p �
g�;eq
g�;i

�
1=2

�
Teq

Ti

�
2

≃ 104 g

�
γ

0.2

��
g�;i

106.75

�
−1=2

�
Ti

4.3 × 1013 GeV

�
−2
;

ð9Þ

or by its inversion as

Ti≃4.3×1013 GeV

�
γ

0.2

�
1=2

�
g�;i

106.75

�
−1=4

�
MPBH;i

104 g

�
−1=2

;

ð10Þ

where ρ represents the energy density, H is the Hubble
parameter, and Meqð≃5.9 × 1050 gÞ is the horizon mass at
the late-time equality time (z ∼ 3400). Here we do not take
into account the effects of the critical collapse phenomena
on the PBH mass [112–115] for simplicity. (We will briefly
come back to this point in the conclusion section, Sec. VII.)
γ is the fraction of the PBH mass in the horizon mass at
the formation, which is analytically estimated as γ ∼
ð1= ffiffiffi

3
p Þ3 ∼ 0.2 for the PBH production during a RD era

[3]. We take γ ¼ 0.2 as a fiducial value in the following.
Finally, we discuss the initial PBH abundance at the

production required to have the PBH-dominated era and the
relation between the PBH abundance and the length of
the PBH-dominated era. For this purpose, let us start with
the evolution of the energy density of PBHs

ρPBH
ρPBH;i

¼
�
ai
a

�
3

¼ gs�T3

gs�;iT3
i
; ð11Þ

where we have used the entropy conservation law. On the
other hand, the radiation energy density can be written as

ρr
ρr;i

¼ g�T4

g�;iT4
i
: ð12Þ

Using these relations, we can express the initial PBH
fraction as

β≡ ρPBH;i
ρtot;i

≃
ρPBH;i
ρr;i

¼ g�
g�;i

gs�;i
gs�

T
Ti

ρPBH
ρr

; ð13Þ

where ρtot represents the total energy density. In the second
line, we have assumed that the radiation dominates the total
energy density at the PBH production. Note that the initial
PBH fraction β can also be interpreted as the PBH
formation probability in a given Hubble patch. Since we
focus on the early Universe, g� ¼ gs� is satisfied. Now one
can easily see that the PBH-dominated era, ρPBH > ρr, can
be realized when the initial PBH fraction satisfies

β > βmin ≡ TR

Ti
; ð14Þ

where TR=Ti can be evaluated from Eqs. (7) and (10) as

TR

Ti
¼ 6.5 × 10−10

�
Ti

4.3 × 1013 GeV

�
−1
�
MPBH;i

104 g

�
−3=2

×
�
gH�ðTPBHÞ

108

�
1=2

�
g�ðTRÞ
106.75

�
−1=4

¼ 6.5 × 10−10
�
MPBH;i

104 g

�
−1
�
gH�ðTPBHÞ

108

�
1=2

: ð15Þ

2In Ref. [28], the authors take H ≡ da=ðadtÞ ¼ 1=ð2tÞ at the
end of the evaporation. However, we takeH ¼ 2=ð3tÞ at that time
because we assume a PBH-dominated era before the evaporation.
This is why the factor in Eq. (7) is different from that in Ref. [28].

3We assume that the thermalization instantaneously occurs
soon after the PBH evaporation. Since the typical momentum of
the particles produced by the evaporation (∼TPBH) is much larger
than the reheating temperature (TR), the thermalization occurs
dominantly through the scatterings with small angles, which
make the thermalization instantaneous in most cases [109].

4From the constraint on the tensor-to-scalar ratio (r < 0.065
[110]), the upper bound of the temperature after an inflaton decay
is given as TR;inf < 6.7 × 1015ðg�=106.75Þ−1=4 GeV, where the
instantaneous reheating occurring after the inflation era is
assumed. This means Ti < 6.7 × 1015ðg�;i=106.75Þ−1=4 GeV,
implying a lower bound on PBH mass ofMPBH;i > 0.4 g ðγ=0.2Þ.
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Recall that Ti represents the temperature of the Universe at
the PBH production.
The ratio β=βmin is related to the energy density at the

reheating

β

βmin
¼ Teq;1

TR
¼

�
g�;eva
g�;eq;1

�
1=4

�
ρPBH;eq;1
ρtot;eva

�
1=4

; ð16Þ

where the subscript “eq; 1” represents the value when
ρPBH ¼ ρr is satisfied at the beginning of the PBH-
dominated era. This equation implies that the length of
the PBH-dominated era is related to the PBH fraction

β

βmin
≃
�
g�;eva
g�;eq;1

�
1=4

ð
ffiffiffi
2

p
− 1Þ3=2

�
ηeva
ηeq;1

�
3=2

; ð17Þ

where we have used the approximated relation [116]

a
aeq;1

≃ ð
ffiffiffi
2

p
− 1Þ2

�
η

ηeq;1

�
2

for ηeq;1 ≪ η ≤ ηeva: ð18Þ

The conformal time is given by η ¼ R
dt=a. Note that

Eq. (17) is valid for ηeq;1 ≪ ηeva.
Using the abundance β, we can express the wave number

corresponding to the PBH formation scale in terms of the
PBH mass. Taking into account the presence of the PBH-
dominated era (assuming β > βmin), it is given by

ki ¼
�
gs�ðTR−Þgs�ðT0Þ
gs�ðTiÞgs�ðTRÞ

�
1=3

βmin

�
β

βmin

�
−1=3 T0

TR

4πγM2
Pl

MPBH;i

¼ 1.43 × 1020 Mpc−1
�

β

10−7

�
−1=3

�
MPBH;i

104 g

�
−5=6

;

ð19Þ

where TR− (≠ TR) is the temperature just before the
evaporation when we regard the evaporation as a sudden
event. In the second line, we have omitted the g� depend-
ence to have a simple expression (we have assumed
gs;�ðTiÞ ¼ gs;�ðTeq;1Þ ¼ gs;�ðTR−Þ ¼ gs;�ðTRÞ ≃ 106.75).
Note that the PBH evaporation causes the entropy pro-
duction and therefore ki depends on β. Comparing the
scales associated to the PBH formation [Eq. (19)] and to the
PBH evaporation [Eq. (8)], we see that the GWs induced
right after the evaporation have a smaller typical frequency
than those produced by other mechanisms.

III. EVOLUTIONS OF SCALAR PERTURBATIONS

Since the enhancement of GWs strongly depends on
the oscillation amplitude of the scalar perturbations after
the reheating transition (i.e., evaporation), we discuss the
evolutions of the perturbations around the transition here.
The results in this section are used in Sec. IV to calculate
the induced GWs.

A. Formulas and numerical results

In this subsection, we introduce the formulas to calculate
the perturbations and show the numerical results. The
metric perturbations in the conformal Newtonian gauge
can be written as

ds2 ¼ a2
�
−ð1þ 2ΦÞdη2þ

�
ð1 − 2ΨÞδij þ

1

2
hij

�
dxidxj

�
;

ð20Þ

where hij is the tensor perturbation, which satisfies hii ¼ 0
and ∂hij=∂xi ¼ 0. In the synchronous gauge, they can be
written as

ds2 ¼ a2
�
−dη2 þ

�
δij þHij þ

1

2
hij

�
dxidxj

�
; ð21Þ

where, in Fourier space, Hij ¼ k̂ik̂jγ þ ðk̂ik̂j − 1
3
δijÞ6ϵ.5

As we will introduce in Sec. IV, we use the formulas for
the induced GWs which are derived in the conformal
Newtonian gauge. In addition, since we focus on the early
Universe, we can assume that there is no anisotropic stress
and take Ψ ¼ Φ. Therefore, all we need to understand is
the evolution of the gravitational potential Φ around the
transition. In this paper, to make discussion easier, we first
calculate the perturbations in the synchronous gauge, and
then, we transform them to quantities in the Newtonian
gauge. This is because, in the synchronous gauge, the
decay rate (PBH evaporation rate) does not depend on the
spatial coordinates, and therefore the situation is simpler
than that in the Newtonian gauge. The situation of the PBH
evaporation is similar to the decaying dark matter scenario,
and we express the PBH quantities as nonrelativistic matter
quantities, e.g., ρPBH → ρm to match the convention used in
Ref. [118].
First, we discuss background quantities. The Friedmann

equation reads

H ¼ affiffiffi
3

p
MPl

ffiffiffiffiffiffiffi
ρtot

p
; ð22Þ

where the comoving Hubble parameter is defined byH ¼
a0=a with a0 ¼ da=dη. The derivatives of background
quantities are given by [118]

ρ0m ¼ −
�
3H −

d lnMPBH

dη

�
ρm; ð23Þ

ρ0r ¼ −4Hρr −
d lnMPBH

dη
ρm; ð24Þ

where ρm and ρr are the energy densities of the non-
relativistic matter (PBHs) and radiation. Note here that

5γ and ϵ correspond to h and η in Ref. [117], respectively.
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−d lnMPBH=dη is the PBH decay rate per conformal time
aΓ where Γ via evaporation is given in Eq. (6).
Next, we discuss the perturbations in the synchronous

gauge. Here, we introduce the perturbation as δ ¼ δρ=ρ
where δρ is the perturbed energy density. The fluctuation
δρm originates from the fluctuation of the number density
of PBHs. We also introduce the velocity divergence
θ≡ ∂vi=∂xi where vi is the fluid velocity, and take the
coordinates that always satisfy θm ¼ 0 [117]. Then, we
obtain the following equation [118]:

δ0m ¼ −
γ0

2
: ð25Þ

For radiation perturbations, we get

δ0r ¼ −
4

3
ðθr þ γ0=2Þ − d lnMPBH

dη
ρm
ρr

ðδm − δrÞ; ð26Þ

θ0r ¼
k2

4
δr þ

d lnMPBH

dη
ρm
ρr

θr; ð27Þ

where we have neglected the anisotropic stress. The
equations of motion for the metric perturbations are given
by [117]

k2ϵ −
1

2

a0

a
γ0 ¼ −

3

2
H 2

�
ρm
ρtot

δm þ ρr
ρtot

δr

�
; ð28Þ

k2ϵ0 ¼ 2H 2
ρr
ρtot

θr: ð29Þ

Following Ref. [117], we take the initial conditions of the
perturbations as follows:

δr ¼ −
2

3
CðkηÞ2; δm ¼ 3

4
δr; θr ¼ −

1

18
Cðk4η3Þ;

γ ¼ CðkηÞ2; ϵ ¼ 2C −
1

18
CðkηÞ2; ð30Þ

where the coefficient C is related to the curvature pertur-
bations as C ¼ ζ=2 on superhorizon scales. Since the initial
conditions are derived by assuming a RD era in Ref. [117],
we start the numerical calculation much before the
PBH-dominated era starts.
Ψ in the conformal Newtonian gauge is related to ϵ and γ

in the synchronous gauge as

Ψ ¼ ϵ −H α; ð31Þ

with α≡ ð6ϵþ γÞ0=ð2k2Þ. Note again that we can safely
take Ψ ¼ Φ in the regime of our interest. We numerically
calculate the perturbations around the transition which are
governed by Eqs. (23)–(30). Then, by using the trans-
formation in Eq. (31), we acquire the time evolution of the
gravitational potential Φ in the Newtonian gauge.

Figure 1 shows the evolutions of the energy densities and
the transfer function of the gravitational potential.6 The
transfer function is defined as the gravitational potential
that is normalized as Φ ¼ 10=9 on the superhorizon scales
during the eRD era that precedes the PBH-dominated era.
This normalization corresponds to that taken in Ref. [87].
Here, we define ηeq;2 as the equality time, satisfying
ρm ¼ ρr, around the reheating (ηeq;1 < ηeq;2). The differ-
ence between ηeq;2 and ηeva is very small in Fig. 1 and
therefore we can use the two conformal times interchange-
ably when we estimate the order of magnitude of the
induced GWs, which is one of the goals of this paper. From
this figure, we can also see that the gravitational potential
slightly decays at the reheating (∼ηeq;2) and starts to
oscillate with the amplitude of Φ ∼Oð0.1Þ after the
reheating. Note that, if the transition is exactly sudden,
the gravitational potential does not decay during the
transition [87]. In this sense, the reheating is not completely
sudden, but more sudden than that in the case with a
constant decay rate, discussed in Ref. [86].
We can also see that the gravitational potential for a small

scale k ¼ 450=ηeq;2 is less than unity even before ηeq;2. This
is because this perturbation reenters the horizon so early
that the Universe has not yet been completely dominated by
PBHs. Therefore, the perturbation decays a little bit until
PBHs dominate the Universe.

B. Wave number dependence of the suppression
of gravitational potential

The enhancement of the induced GWs is caused by the
fast oscillations of Φ after the transition [87]. Since the
power spectrum of the GWs depends on the fourth power of
Φ, it is essential to estimate its oscillation amplitude
precisely. For this purpose, we define the normalization

FIG. 1. Evolutions of the background energy densities and the
transfer function of the gravitational potential, Φ.

6Evolutions of other background quantities, such as the scale
factor and the entropy density, are discussed in Ref. [119].
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factor Sð≤ 1Þ as the amplitude of Φ when it starts to
oscillate around ηeva as in Fig. 1 (see also Fig. 2 below).
Namely, this factor S characterizes how sudden the tran-
sition is. Roughly speaking, S is close to unity when the

perturbation enters the horizon during the completely PBH-
dominated era and the reheating transition is sudden, while
it becomes small when the perturbation enters the horizon
before the PBH-dominated era or when the reheating
transition is gradual. In the first half of this subsection,
we derive an analytic approximation formula for the
normalization factor. In the latter half, it is numerically
computed, and they are compared with each other.
Let us start with a discussion on the wave number

dependence of the normalization factor S. First, we focus
on the suppression occurring soon after the horizon entry. A
corresponding example in Fig. 1 is shown in the cyan dashed
line, i.e., Φ with k ¼ 450=ηeq;2 around η=ηeq;2 ≃ 0.01. This
suppression occurs because of the remaining energy density
of radiation around η ∼ ηeq;1. After the energy density of
PBHs becomes much larger than that of radiation, the
gravitational potential becomes constant (the plateau in
Fig. 1). The evolution of the perturbations during the
transition from the eRD era to the PBH-dominated era is
the same as that during the transition from the late RD era to
the late MD era at z ∼ 3400. The wave number dependence
of the constant value of the gravitational potential during the
PBH-dominated era, whose transfer function is dubbed
Φplateau, can be fitted by the following function [120,121]:

Φplateauðxeq;1Þ≡ΦðxÞjηeq;1≪η≲ηeq;2 ≃
ln½1þ 0.146xeq;1�

ð0.146xeq;1Þ
½1þ 0.242xeq;1 þ ð1.01xeq;1Þ2 þ ð0.341xeq;1Þ3 þ ð0.418xeq;1Þ4�−0.25;

ð32Þ

where xeq;1 ≡ kηeq;1 and Φplateau is normalized as
Φplateauðxeq;1 → 0Þ → 1.
Next, we discuss the decay of the gravitational potential

during the reheating. According to Ref. [86], the decay ofΦ
during the transition can be approximated as

ΦðtÞ
Φplateau

≃ exp

�
−
Z

t

ti

dt̄Γðt̄Þ
�

¼ ð3teva − 3tÞ1=3
ð3teva − 3tiÞ1=3

≃
�
1 −

�
t

teva

��
1=3

; ð33Þ

where tið≪ tevaÞ is the time at the PBH formation, and we
have used Eq. (6). After a while, Φ stops to follow Eq. (33)
as shown in Fig. 1 since Φ decouples from the matter
perturbation. Then, it starts to oscillate with its amplitude
decaying relatively slowly (∼a−2). Since Eq. (33) is derived
with the assumption jΦ̈j ≪ k2=ð3a2ÞjΦj as a necessary
condition, we expect that the decoupling occurs when or
before the inequality becomes invalid. This means

���� Φ̈Φ
����
t¼tdec

≃
2

9ðtdec − tevaÞ2
≲ k2

3a2
; ð34Þ

where the dot represents a derivative with respect to t and
tdec is the decoupling time. Then, we can define the lower
bound of the normalization factor SðkÞ as

SlowðkÞ≡
�
1 −

�
tdec
teva

��
1=3

Φplateauðxeq;1Þ

≃
� ffiffiffi

6
p

kηeva

�1=3

Φplateauðxeq;1Þ; ð35Þ

where we have used the relation ηa ¼ 3t, valid during the
PBH-dominated era.
In the following, we compare the above analytic esti-

mations with numerical calculations. In the RD era after
the reheating due to PBH evaporation, the evolution of
the gravitational potential is given as the solution of the
following equation [116]:

Φ00 þ 4H Φ0 þ k2

3
Φ ¼ 0: ð36Þ

FIG. 2. The evolution of Φ with k ¼ 450=ηeq;2, stretched
around the transition. The numerical result and the fitting formula
for the oscillation, given in Eq. (37), are plotted with a cyan
dashed and a brown dotted line, respectively. S ¼ 0.108 and x0 ¼
236 are taken as the fitted parameters. The normalization factor
Sð¼ 0.108Þ is also plotted with a red solid line.
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To quantify the decay during the transition, we define the
fitting formula for Φ as

Φosc;fitðx; x0Þ ¼ SðAðx0ÞJðx; x0Þ þ Bðx0ÞY ðx; x0ÞÞ; ð37Þ

with x ¼ kη. Here S and x0 are fitting parameters, which
describe the suppression of Φ before its oscillation and the
start time of the oscillation, respectively. JðxÞ and Y ðxÞ
are independent solutions for Eq. (36), which can be written
with the first and second spherical Bessel functions, j1ðxÞ
and y1ðxÞ, as

Jðx; x0Þ ¼
3

ffiffiffi
3

p
j1ðx−x0=2ffiffi3p Þ

x− x0=2
; Y ðx; x0Þ ¼

3
ffiffiffi
3

p
y1ðx−x0=2ffiffi3p Þ

x− x0=2
:

ð38Þ

We determine the coefficients Aðx0Þ and Bðx0Þ so that
Φðx0Þ ¼ S and Φ0ðx0Þ ¼ 0:

Aðx0Þ ¼
1

Jðx0Þ − Y ðx0Þ
Y 0ðx0ÞJ

0ðx0Þ
; ð39Þ

Bðx0Þ ¼ −
J 0ðx0Þ
Y 0ðx0Þ

Aðx0Þ: ð40Þ

Note that, if the transition is exactly sudden as discussed in
Ref. [87], the approximation formula with x0 ¼ xR and S ¼
Φplateau fits the numerical result, where xR ¼ kηR and ηR is
the conformal time at the sudden-limit reheating. From this,
we expect that x0 ≃ kηeva fits the numerical results well in
the situation we consider here. In fact, by numerically
finding the optimal value of x0, we confirm x0 ≃ kηeva.
Figure 2 shows the numerical result and the approximation
formula with the fitted parameters. We can see that the

approximation formula agrees with the oscillation part of
the numerical result.
Figure 3 shows the wave number dependence of the

normalization factor with different lengths of the PBH-
dominated era, characterized by ηeq;2=ηeq;1 ¼ 1000, 225,
and 75. The lower bounds [dashed lines; Eq. (35)] and the
numerical results [solid lines; Eqs. (37)–(40)] are com-
pared. We can see that the normalization factor is close to
its lower bound for k≳ 2=ηeq;1. The difference between the
numerical result and the lower bound is less than 20% at
k ¼ 2=ηeq;1 for 75 < ηeq;2=ηeq;1 < 1000. It becomes smaller
for a larger k.

IV. GRAVITATIONAL WAVES INDUCED BY
SCALAR PERTURBATIONS

In this section, we discuss the GWs induced by the scalar
perturbations that experience the PBH-dominated era. As a
by-product, we develop a method to estimate the induced
GWs in the presence of the sudden reheating from an eMD
era with a finite duration, which is preceded by an eRD era.
Such multiple changes of the equation-of-state for the
Universe is naturally realized in the case of a PBH-
dominated era, but one can consider other cases such as
moduli domination. Some of the techniques and results in
this and the subsequent sections, including the estimate on
how sudden the transition should be for significant
enhancement of GWs, are also applicable to such general
cases.
In the following, we consider the induced GWs in the

conformal Newtonian gauge and assume that the curva-
ture perturbations follow the Gaussian distribution for
simplicity.7

A. Basic formulas

Here, we briefly summarize the formulas for the induced
GWs which are introduced in Ref. [87], though some of
them are modified to fit the situation of the reheating by the
PBH evaporation. For the moment, we regard the PBH-
dominated era suddenly ends at ηevað≃ηeq;2Þ for simplicity
(see Fig. 1). We will explain how to take into account the
fact that it is not completely sudden later [below Eq. (49)].
Since the scale factor and the Hubble parameter are

continuous at ηeva, their time dependences can be expressed
as [116]

aðηÞ
aðηeq;1Þ

¼
8<
:

ð ηη�Þ2 þ 2ð ηη�Þ ðη ≤ ηevaÞ
2ηðηevaþη�Þ−η2eva

η2�
ðη > ηevaÞ

; ð41Þ

FIG. 3. Wave number dependence of the normalization factor
with ηeq;2=ηeq;1 ¼ 1000 (blue, top), 225 (orange, middle), and 75
(green, bottom). Solid lines show the numerical results, and
dotted lines show the lower bounds of the normalization factor
Slow [see Eq. (35)].

7The gauge (in)dependence of the induced GWs is discussed in
Refs. [122–128] and the effects of the non-Gaussianity are
discussed in Refs. [74,77,129,130].
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H ðηÞ ¼
8<
:

2ηþ2η�
η2þ2ηη�

ðη ≤ ηevaÞ
1

η−
η2eva

2ðηevaþη�Þ
ðη > ηevaÞ ; ð42Þ

where η� ¼ ηeq;1=ð
ffiffiffi
2

p
− 1Þ. The energy density parameter

of the induced GWs per logarithmic interval in k is given by

ΩGWðη; kÞ ¼
ρGWðη; kÞ
ρtotðηÞ

¼ 1

24

�
k

aðηÞHðηÞ
�

2

Phðη; kÞ; ð43Þ

where Phðη; kÞ is the time-averaged power spectrum of
GWs, which is related to the power spectrum of the
curvature perturbations as [70,73]

Phðη; kÞ ¼ 4

Z
∞

0

dv
Z

1þv

j1−vj
du

�
4v2 − ð1þ v2 − u2Þ2

4vu

�
2

× I2ðu; v; k; η; ηevaÞPζðukÞPζðvkÞ: ð44Þ

Iðu; v; k; η; ηevaÞ describes the evolution of the scalar
perturbation and can be expressed as

Iðu; v; k; η; ηevaÞ ¼
Z

x

0

dx̄
aðη̄Þ
aðηÞ kGkðη; η̄Þfðu; v; x̄; xevaÞ;

ð45Þ

where xeva ¼ kηeva. Gkðη; η̄Þ is the Green function satisfy-
ing the following equation:

G00
kðη; η̄Þ þ

�
k2 −

a00ðηÞ
aðηÞ

�
Gkðη; η̄Þ ¼ δðη − η̄Þ; ð46Þ

where the prime denotes the derivative with respect to η, not
η̄. The function fðu; v; x̄; xevaÞ in Eq. (45) is expressed with
the transfer functions of the gravitational potential (Φ) as

fðu; v; x̄; xevaÞ ¼
3

25ð1þ wÞ ½2ð5þ 3wÞΦðux̄ÞΦðvx̄Þ

þ 4H −1ðΦ0ðux̄ÞΦðvx̄Þ þΦðux̄ÞΦ0ðvx̄ÞÞ
þ 4H −2Φ0ðux̄ÞΦ0ðvx̄Þ� ð47Þ

where w is the equation-of-state parameter, defined as
w≡ P=ρ with P being the pressure. We take the same
normalization of Φ as in Fig. 1 (Φðx → 0Þ ¼ 10=9). Note
that ΦðxÞ also depends on xeva implicitly, so, e.g., Φðux̄Þ
actually means Φðux̄; uxevaÞ.
The evolution of the transfer function is discussed in

Sec. III. If there is a PBH-dominated era in the early
Universe, the dominant contribution comes from the fast
oscillations of Φ at η > ηeva [87]. For the perturbations
entering the horizon much before the reheating where

kηeva ≫ 1, the last term in Eq. (47) dominates because it
behaves as H −2ðΦ0Þ2 ∼ ðkηevaÞ2Φ2 soon after the reheat-
ing. Then, the enhanced source term leads to the ampli-
fication of the induced GWs. This is the poltergeist
mechanism (see also Ref. [87] for a detailed explanation
of the enhancement of the induced GWs).
A more physical explanation of the poltergeist mecha-

nism is given as follows. During the PBH-dominated era,
the density perturbations grow proportionally to the scale
factor, and the scalar source term for each k is kept constant
even for the subhorizon modes. The density perturbations
are nothing but the PBH number-density fluctuations, so
they do not oscillate. After the reheating by the PBH
evaporation, PBHs and their fluctuations are converted to
radiation and its fluctuation. The fluctuation of radiation is
nothing but the sound waves of the thermal bath. These
sound waves oscillate with their enhanced amplitudes
because the density perturbations have grown until the
evaporation and they do not have enough time to decay
because of the sudden transition. When the sources
oscillate, there is generally a possibility of resonance. In
fact, the dominant contribution to the induced GWs on
small scales comes from the resonant production. (The
resonance condition is also explained in Appendix D.) Note
that the resonance can only happen in the RD era simply
because the density perturbations, as well as the gravita-
tional potential, do not oscillate during the eMD era. This
clearly highlights the fact that the GW production by the
poltergeist mechanism occurs after the PBH evaporation in
contrast, e.g., to the GWs emission by Hawking radiation.
There are nonzero contributions from the eMD era
[67,86,101], but they are subdominant in the sudden
transition case [87].
From these observations, we neglect the contribution

during η < ηeva in the following and approximate the
function Iðu; v; k; η; ηevaÞ, defined in Eq. (45), as [87]

Iðu; v; k; η; ηevaÞ ≃
Z

x

xeva

dx̄

�
2ðx̄=xevaÞ − 1

2ðx=xevaÞ − 1

�

×kGRD
k ðη; η̄Þfðu; v; x̄; xevaÞ; ð48Þ

where the Green function during the RD era is given as

kGRD
k ðη; η̄Þ ¼ sinðx − x̄Þ: ð49Þ

The enhancement of the induced GWs for the exactly
sudden reheating is discussed in Ref. [87]. The main
difference between the exactly sudden reheating scenario
and the almost sudden reheating scenario, caused by PBH
evaporation, lies in the normalization factor S. In the case of
the exactly sudden reheating, there is no suppression during
the reheating, and therefore the wave number dependence
of the normalization factor only comes from Φplateau

as S ¼ Φplateau. On the other hand, in the case of the
reheating caused by the PBH evaporation, the wave number
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dependence also comes from the suppression during the
reheating transition, as shown in Sec. III (see Fig. 3). It is
not important whether the wave number dependence of the
gravitational potential originates from the primordial cur-
vature perturbations or from the dynamics related to the
evaporation because the poltergeist mechanism takes place
after the PBH evaporation. Therefore, we can easily take
into account the wave number dependence of S by
modifying the power spectrum in Eq. (44) as PζðkÞ →
S2ðkÞPζðkÞ and the transfer function in Eq. (47) as
Φ → Φnorm, where

Φnormðx; xevaÞ ¼ AðxevaÞJðx; xevaÞ þ BðxevaÞY ðx; xevaÞ:
ð50Þ

Although this expression describes the transfer function
only for η > ηeva, it is sufficient to calculate the main
contribution to the induced GWs, which comes from the
fast oscillations ofΦ after the reheating. Note that when we
perform the numerical calculation, we use SlowðkÞ on the
scale satisfying SlowðkÞ < 1 instead of the exact value of
SðkÞ for simplicity. This is a good approximation because
the main source of the GWenhancement is the scalar modes
with the shortest wavelengths in the problem (kcut ≳ 2=ηeq;1
where the cutoff scale kcut is introduced in Sec. IV B) [87],
and SlowðkÞ for such wavelengths is close to the exact value
as shown in Fig. 3.
The production of the GWs due to the fast oscillations of

Φ becomes inefficient after a while because the oscillation
amplitude decays proportionally to a−2. We define the
conformal time when the induced GWs become constant as
ηc, where ηc is OðηevaÞ, much earlier than the late-time
equality time. Once the induced GWs are produced, their
energy density behaves as the radiation energy density as
ρGW ∝ a−4. Therefore, if we take into account the sup-
pression of the energy density parameter of the induced
GWs due to the late-time evolution (z≲ 3400), the energy
density parameter at the present time is given as [131]

ΩGWðη0; kÞh2 ¼ 0.39

�
g�;c

106.75

�
−1=3

Ωr;0h2ΩGWðηc; kÞ;

ð51Þ
where the subscript “c” means the value at ηc and Ωr;0h2 ≃
4.2 × 10−5 is the current energy density parameter of
radiation.8

B. Amount of the induced GWs

In this subsection, we show how large the enhancement
of the induced GWs is. We assume the following primordial
power spectrum for the curvature perturbations:

PζðkÞ ¼ AsΘðkcut − kÞ
�
k
k�

�
ns−1

; ð52Þ

where As is the normalization, ns is the tilt, k� is the pivot
scale, and kcut is the cutoff scale. To derive a conservative
result, we take the nonlinear scale kNL, on which the matter
perturbations δm becomes unity at the reheating, as kcut.

9

We explain how to derive the nonlinear wave number in
Appendix C. We leave the study about the GWs induced by
the nonlinear perturbations with k > kNL for future
works.10 Since the normalization factor S has the wave
number dependence as ∼k−7=3 for k≳ 2=ηeq;1 up to the
logarithmic factor and the dominant contribution comes
from the small scale 2=ηeq;1 ≲ k≲ kNL, the effective tilt
of the power spectrum S2Pζ can be approximated as
∼kns−1−14=3. Using this value of the effective tilt and the
formulas given in the Appendix of Ref. [87], we can
analytically estimate the value of ΩGW around the reso-
nance peak as

ΩðresÞ
GW ðηc; kÞ

≃ 1.6 × 10−6ðkηevaÞ7A2
s

�
k
k�

�
2ðns−1Þ

S4lowðkÞ

×
s0ðk=kNLÞ

8
½15 − 10s20ðk=kNLÞ þ 3s40ðk=kNLÞ�; ð53Þ

where

s0ðk=kNLÞ ¼

8>>><
>>>:

1 ðk=kNL ≤ 2

1þ ffiffi
3

p Þ
2 kNL

k −
ffiffiffi
3

p ð 2

1þ ffiffi
3

p ≤ k=kNL ≤ 2ffiffi
3

p Þ
0 ð 2ffiffi

3
p ≤ k=kNLÞ

: ð54Þ

See Appendix D for the derivation of Eq. (53). Note that the
second line in Eq. (53) is just a factor that takes into account
the nonlinear cutoff scale, and it reduces to 1 and 0
for k ≤ 2kNL=ð1þ

ffiffiffi
3

p Þ and k ≥ 2kNL=
ffiffiffi
3

p
, respectively,

smoothly interpolated in between.
In Fig. 4, we show the numerical results of the energy

density parameter of the induced GWs normalized by A2
s.

The spectrum has a unique shape. For the case of the blue
(top) line (ηeq;2=ηeq;1 ¼ 1000), the spectral shape is similar
to the sudden transition limit in Ref. [87]. For example, the
spectral index has values 0, 3, 1, and 7, approximately in
kηeq;2 ≲ 0.01, 0.01≲ kηeq;2 ≲ 1, 1≲ kηeq;2 ≲ 100, and

8Throughout this paper, we neglect the masses of neutrinos for
simplicity.

9A more fundamental cutoff scale would be the horizon scale
corresponding to the time slightly after the PBH formation
because one cannot neglect the discreteness of PBHs at that
scale. If the eMD era is too short, δm ¼ 1 is never achieved within
this fundamental cutoff scale.

10There are some works discussing the GWs induced by the
nonlinear scalar perturbations with some uncertainties [132,133].
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100≲ kηeq;2 ≲ 500, respectively (see Fig. 4). The normali-
zation in each range is, however, smaller than the sudden
limit in Ref. [87] since the evaporation takes finite time.
Note that the peak scale is roughly the same as kNL for large
ηeq;2=ηeq;1 (¼1000, 225, and 100 in Fig. 4). On the other
hand, for small ηeq;2=ηeq;1 (¼75 in the figure) in which the
perturbation with kNL enters the horizon well before the
PBH-dominated era, the peak scale is determined by
the balance between the enhancement of the resonance
and the suppression of Φ at the horizon entry during the
eRD era because a smaller scale gravitational potential
oscillates faster after the reheating but gets more suppressed
at the horizon entry.
From Fig. 4, we can also see that the shorter PBH-

dominated era (smaller ηeq;2=ηeq;1) leads to the spectrum
with a lower peak and a smaller-scale cutoff (large kNL).
The peak height is lowered because the shorter PBH-
dominated era makes the given mode entering the horizon
deeper in the eRD era (larger kηeq;1 for given kηeq;2), which
makes the normalization factor smaller (see Figs. 3 and 11).
The kNL becomes larger because the shorter PBH-
dominated era delays the approach of the nonlinearity.
In summary, the deformation of the shape in the large k side
in Fig. 4 for smaller values of ηeq;2=ηeq;1 is due to the fact
that the scalar source modes entered the horizon in the eRD
era. We also plot Eq. (53) with dotted lines in Fig. 4. We can
see that the analytical formula fits the numerical results well
around the peak.

V. EFFECTS OF FINITE-WIDTHMASS FUNCTION

So far, we have studied the GWs induced after the
evaporation of monochromatic PBHs. It is, however,
crucial to consider the effects of finite width of the PBH
mass function since a broad mass spectrum of PBHs will

not lead to a sufficiently sudden transition from the eMD
era to the RD era.11

Let us parametrize the initial mass function as follows:

ρPBH;i ¼
Z

ρPBH;iðMPBH;iÞd lnMPBH;i

≃
Z

ρPBH;iðMPBH;iðηevaÞÞd ln ηeva: ð55Þ

In the last equality, we changed the variable for conven-
ience for numerical calculations by using Eq. (5) and the
relation teva ∝ η3eva valid in a MD era and by neglect-
ing ηið≪ηevaÞ.
The energy density of the PBHs can be calculated by

integrating the corresponding formula in the case of the
monochromatic mass over the initial mass function, i.e.,

ρPBHðηÞ≃
Z

ρPBH;iðMPBH;iðηevaÞÞ
�
1−

�
η

ηeva

�
3
�1

3

�
aðηiÞ
aðηÞ

�
3

×Θðηeva−ηÞdlnηeva: ð56Þ

Here, we used t ∝ η3 and neglected ηi against ηeva, so the
expression is valid after the PBHs dominate the Universe.
It would be time-consuming to calculate this integral at

each time with simultaneously solving the differential
equation to determine aðηÞ. Therefore, we numerically
record and interpolate the comoving PBH energy density
ρPBHðηÞðaðηÞ=aðηiÞÞ3 as a function of conformal time for a
given parameter set. Then, using it, we solve equations of
motion for other quantities such as ρr and perturbations.
Note that the lifetime of a BH is teva ∼M3

PBH;i ∼ η3eva, so
MPBH;i ∝ ηeva. This means, in particular, if we assume the
log-normal distribution for the PBH masses [136], the
distribution of ηeva can also be written as the log-normal
distribution with the same variance,

ρPBH;iðMPBH;iðηevaÞÞ ¼
ρPBH;iffiffiffiffiffiffi
2π

p
σ
exp

�
−
ðlnðηeva=ηeva;0ÞÞ2

2σ2

�
;

ð57Þ

where ηeva;0 is the central value of the evaporation time, and
σ is its standard deviation. Note that the limit of the small
variance (σ → 0) corresponds to the monochromatic PBH
mass function, which is discussed in Sec. IV. Based on this
log-normal distribution, we study the effect of a finite σ
numerically in the following.

FIG. 4. The solid lines show the energy density parameters of
the induced GWs normalized by A2

s. We take ηeq;2=ηeq;1 ¼
1000ðtopÞ; 225; 100, and 75 (bottom) and assume ns ¼ 1 for
all plots. We also plot the approximate expressions for the
resonance peak, given in Eq. (53), with dotted lines.

11Since the life time of a PBH depends on its spin, the
finite width of the spin distribution of PBHs might affect the
suddenness of the reheating, though the spin parameter is about a
few percent for PBHs produced during a RD era [134,135]. We
leave the discussion on the effect of the spin distribution for
future work.

GRAVITATIONAL WAVE PRODUCTION RIGHT AFTER A … PHYS. REV. D 101, 123533 (2020)

123533-11



Similarly to Sec. III, we can study the normalization
factor S, which is nothing but the value of the transfer
function of the gravitational potential Φ just after the
evaporation. Its dependence on σ is shown as dots in
Fig. 5. These can be well fitted by

Sðk; σÞ ¼ SðkÞ exp ð−ðcσkηeq;2Þ2Þ; ð58Þ

where c2 ≃ 0.18, as shown by the solid lines in Fig. 5. We
have also studied the k dependence of the normalization
factor with a fixed finite σ and find the consistency with
the above equation. (Note that the exponential dependence
on σ may not be surprising since we introduced σ as the
standard deviation of lnMPBH;i rather than that of MPBH;i.)
This suppression in Eq. (58) can be understood as

follows. As discussed in Ref. [86], the GWs decouple
from the source around when the time derivative and the
wave number of the GW mode become comparable. This
further implies that the induced GWs are suppressed if and
only if the reheating transition time scale is longer than the
time scale of the GW mode.12 The former is σηeq;2 [for a
small σð≪1Þ] and the latter is k−1 for the mode with its
wave number k, so the criterion of nonsuppression is
kσηeq;2 ≪ 1. This is nothing but what Eq. (58) tells us.
For a given σ, there should be an effective maximal k that is
not significantly suppressed by the effect of the finite width
σ: kσ ≡ ðcσηeq;2Þ−1. The maximal k that allows enhance-
ment and the linear analysis is kmax ∼min ½kNL; kσ�. Note
that this implies that there will be no enhancement at all if
σ ¼ Oð1Þ as kmax ∼ η−1eq;2.
The solid lines in Fig. 6 show the energy density

parameters of induced GWs with different values of σ,

which are numerically calculated with the approximation
of Sðk; σÞ ≃ SlowðkÞ exp ð−ðcσkηeq;2Þ2Þ. The dotted lines in
Fig. 6 show the analytic approximation formula for the
energy density parameter, which is given as

ΩðresÞ
GW ðηc; k; σÞ ¼ ΩðresÞ

GW ðηc; k; 0ÞGðzÞ; ð59Þ

where ΩðresÞ
GW ðηc; k; 0Þ is given by Eq. (53) and GðzÞ is given

with the parameter z ¼ ðcσkηeq;2Þ2 as

GðzÞ ¼ 15e−4z

64z5=2
ð2 ffiffiffi

z
p ð2z − 3Þ

þ ð4z2 − 4zþ 3Þez ffiffiffi
π

p
Erfð ffiffiffi

z
p ÞÞ; ð60Þ

where Erf denotes the error function. We explain the
derivation of this approximation formula in Appendix D.
From Fig. 6, we can see that the approximation formula
fits the numerical results well. Also, we see how small σ
significantly reduces the strength of the induced GWs.
We do not show the results with σ > 0.01, such as

σ ¼ 0.1, in Fig. 6. For example, in the case of σ ¼ 0.1, we
find that the maximal wave number for the enhancement
(kσ) becomes kσ ∼ 20=ηeq;2. In this case, we cannot neglect
the contribution during η < ηeva in the function I, defined in
Eq. (45), because the kσ is not far from 1=ηeva. Therefore, a
more detailed analysis is needed to obtain the plots for
σ ¼ Oð0.1Þ, which is left for future work. Having said that,
we have numerically confirmed that the energy density
parameter for the induced GWs with σ ¼ 0.1 is enhanced
by one order of magnitude around the peak scale even if we
neglect the contribution during η < ηeva in the function I.

FIG. 5. Dependence of the normalization factor Sðk ¼ 2=ηeq;1Þ
on the width of PBH mass function, which is parametrized by
Eq. (57) with σ. The blue (top), orange (middle), and green
(bottom) dots correspond to the case of ηeq;2=ηeq;1 ¼ 75, 150, and
225, respectively. The lines are obtained by multiplying the
values at σ → 0 with a factor expð−ðcσkηeq;2Þ2Þ.

FIG. 6. Dependence of the induced GWs on the width of PBH
mass function, which is parametrized by Eq. (57) with σ. We take
ηeq;2=ηeq;1 ¼ 225 for all lines and take σ → 0 (top), σ ¼ 0.005
(middle), and 0.01 (bottom). We assume the same power
spectrum of curvature perturbations as in Fig. 4, which is given
by Eq. (52) with ns ¼ 1 (the plot for σ → 0 is the same as the plot
for ηeq;2=ηeq;1 ¼ 225 in Fig. 4). We also show the analytic
approximation formulas for the resonance peak, given in Eq. (59),
with dotted lines.

12TT thanks Misao Sasaki for illuminating discussion on this
point.
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VI. CONSTRAINTS ON PBH ABUNDANCE

In previous sections, we have shown that the enhance-
ment of the induced GWs can be caused by PBH evapo-
ration. Here, we discuss the constraints on the initial PBH
abundance β through measurements of the enhanced
induced GWs.
In Fig. 7, we show the energy density parameters

of the GWs induced by the scalar perturbations with
As ¼ 2.1 × 10−9, k� ¼ 0.05 Mpc−1, and ns ¼ 0.96 [110].
Since the evaporation time ηeva is determined by the initial
mass of PBHs, as in Eqs. (7) and (8), the peak scale of the
induced GWs also depends on the PBH mass. From this
figure, we can see that, even if the power spectrum of the
curvature perturbations is almost scale invariant up to
kNL,

13 the induced GWs could be observed by future
detectors, such as DECIGO, BBO, and LISA, depending
on the mass function of PBHs.
As shown in Figs. 4, 6, and 7, the spectrum ΩGW of the

GWs induced after evaporation has a unique shape. On the
largest scales, the slope is twice as that of the primordial
curvature perturbations, k2ðns−1Þ. This contribution is pro-
duced much after the evaporation. When k becomes large,
ΩGW increases as k3 up to kevað≃keq;2Þ, and then becomes
approximately k1. Note that keva has a simple dependence
on the PBH mass, keva ∝ TR ∝ M−3=2

PBH;i [see Eqs. (7) and
(8)]. The resonance peak starts with the steep slope k7. The
larger k side of the spectrum depends significantly on the
period of the PBH-dominated era, which is controlled by β,
and the width of the mass function. Note, however, that the
spectral shape of the large k side is not robust when we
consider k ≃ kNL. Since kNL is the cutoff to avoid the
nonlinearity of the density perturbations, the value of ΩGW
should be regarded as a lower bound on the strength of the
GWs rather than the precise prediction.
Following the same procedure as in Ref. [79], we

calculate the signal-to-noise ratio for each project and
derive the region of β that can be constrained by the
future GW projects. Here, we assume the power spectrum
of curvature perturbations that is taken in Fig. 7
(As ¼ 2.1 × 10−9, k� ¼ 0.05 Mpc−1, and ns ¼ 0.96). The
signal-to-noise ratio is given by [137]

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Tobs

p �Z
fmax

fmin

df

�
ΩGWðfÞ
ΩGW;effðfÞ

�
2
�
1=2

; ð61Þ

where Tobs is the observation time, and ðfmin; fmaxÞ is the
range of observable frequencies for each project. ΩGW;eff is
the effective sensitivity curve for each project. To show the

potential of each observation, we assume the perfect
subtraction of foreground here (see, e.g., Ref. [138] for
subtraction techniques).14 In Fig. 7, we plot ΩGW;effh2=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tobsf=10

p
as benchmark sensitivities of the future proj-

ects for stochastic GWs, where we take Tobs ¼ 18 years for
EPTA, Tobs ¼ 20 years for SKA, and Tobs ¼ 1 year for
the others as fiducial values (see Ref. [79] for details).15

To save the computational time, we use the analytical
formulas given in Eqs. (53) and (59). Since the peak scale
and height of the GW spectrum are determined by the mass
of PBHs and the length of the PBH-dominated era, which
is parametrized by ηeq;2=ηeq;1, we first obtain the minimum
value of ηeq;2=ηeq;1 which makes the signal-to-noise ratio
unity (SNR ¼ 1) for each PBHmass and each observation.16

After that, using Eq. (17), we derive the curves for the PBH
abundance (β) that can be probed by future observations.

FIG. 7. The black lines show GW spectra with ηeq;2=ηeq;1 ¼
225 and MPBH;i ¼ 108 g (solid), 106 g (dotted), 104 g (dashed),
and 102 g (dot-dashed). The thick black lines show results for the
monochromatic mass function (σ → 0) and the thin black lines
show the results for σ ¼ 0.01. The other lines show the future or
current sensitivity curves (see Refs. [79,87] for details).

13To produce a large enough number of tiny PBHs to realize
the PBH-dominated era, large-amplitude scalar perturbations are
required on the scale much smaller than the peak scale of the
induced GWs. In this sense, our assumption of the almost scale-
invariant spectrum for k ≤ kNL is conservative.

14The extragalactic foreground from binary white dwarfs and
main sequence stars might be difficult to be subtracted [139–
141]. Since the foreground could contaminate the sensitivity
curves in f < Oð0.1Þ Hz, the constraints on the abundance of
PBHs with MPBH;i ≳ 104 g might be affected by the foreground.

15Note that, even if there is no intersection between the GW
spectrum and the sensitivity curves in Fig. 7, the signal-to-noise
ratio could be larger than unity because the ratio is defined as
Eq. (61). This is why we regard the curves as benchmark ones.

16Strictly speaking, the increase of ηeq;2=ηeq;1 does not neces-
sarily mean the increase of SNR at least in our analysis. This is
because the smaller ηeq;2=ηeq;1 leads to the smaller cutoff scales
(see Fig. 4). However, in this paper, we assume for simplicity that
the induced GWs from the nonlinear perturbations (k > kNL)
should be larger than the induced GWs from the linear perturba-
tions in the case of the shorter PBH-dominated era, which leads to
the smaller cutoff scales. This is why we consider the minimum
value of ηeq;2=ηeq;1 to realize SNR ¼ 1.
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Figures 8 and 9 show the results of the signal-to-noise-
ratio analysis for Tobs ¼ 1 year and 10 years, respectively.
From these figures, we can see that if the mass function is
narrow as σ ≲ 0.01, the future observations could constrain
the initial PBH fraction, β, even for the almost scale-
invariant spectrum of curvature perturbations. In the narrow
limit of the mass function (σ → 0), the future projects could
constrain the abundance of the PBHs with β > Oð10−5 −
10−8Þ in 2 × 103 g≲MPBH;i ≲ 4 × 105 g. For example, the
one-year observation of DECIGO can put the upper bound
on β as β ≲ 10−7ðMPBH;i=104 gÞ−1 in 2 × 103 g≲MPBH;i≲

2 × 105 g. The PBH mass dependence of the upper bound
on β can be understood as follows. The amplitude of the
induced GWs is mainly determined by the parameter
ηeq;2=ηeq;1, which is only related to β=βmin [see Eq. (17)]
and the parameter βmin is proportional to M−1

PBH;i [see
Eq. (14)]. Then, the upper bound has the mass dependence
β ∝ M−1

PBH;i.
Note that if we consider the blue-tilted power spectrum

of the curvature perturbations, the future observations could
detect the induced GWs that are related to the PBH
evaporation with a wider mass function. This is because
the enhancement should exist as long as σ < 1 holds and
because the amount of the induced GWs also depends on
the amplitudes of the curvature perturbations on small
scales.

VII. DISCUSSIONS AND CONCLUSIONS

In this paper, we have shown that scalar perturbations
can produce a large amount of GWs soon after the
evaporation of the tiny PBHs (MPBH < 109 g) if the
PBH mass function is sufficiently narrow. The enhance-
ment of the induced GWs occurs if the PBHs come to
dominate the Universe by the time of its evaporation. The
Universe is dominated by PBHs in the early Universe if the
initial fraction of PBHs in the total energy density is large
enough at their production [see Eq. (14)], and the PBH-
dominated era ends with the Hawking evaporation of the
PBHs. We have carefully taken into account the evolution
of the gravitational potential, source of the induced GWs,
during the transition from the PBH-dominated era to the
RD era and calculated the amplitude of the induced GWs.
As a result, we have found that the induced GWs can be
observed by future detectors, such as DECIGO, BBO, and
LISA, depending on the PBH mass function.
A physical picture of this phenomenon, the poltergeist

mechanism, is given as follows. In the PBH-dominated era,
the fluctuation of the number density of PBHs grows since
the pressure in the Universe is negligible. These fluctua-
tions are converted to the sound waves on the thermal bath
by the reheating due to PBH evaporation. Then, the
oscillations of the sound waves and the associated oscil-
lations of the gravitational potential produce the GWs by
the resonance effect as the dominant production channel.
Here, it is crucial to have an unsuppressed amplitude for the
gravitational potential (enhanced amplitudes for the sound
waves) to produce the enhanced GWs, and this is realized
by the sudden reheating transition. The evaporation rate of
the PBH increases as time goes by because the Hawking
temperature of the PBH is proportional to the inverse of its
mass, which leads to a rapid instability and realizes the
sudden reheating transition. The sudden transition prevents
the otherwise large suppression of the gravitational poten-
tial during the transition and leads to the fast oscillations of
the gravitational potential with the amplitude not

FIG. 8. The parameter regions that can be investigated by one-
year observation of DECIGO with different values of the width σ.
In the regions above the lines, the GWs can be measured. We
assume the almost scale-invariant power spectrum of curvature
perturbations (see the text). The outermost line shows the result
for σ → 0 and the difference of σ between two adjacent lines is
0.001. We omit lines for BBO to make this figure simple, but the
results are almost the same. We take the signal-to-noise ratio as
unity for all lines (SNR ¼ 1). Note that LISA cannot investigate
the abundance of the tiny PBHs with its one-year observation in
this setup.

FIG. 9. The parameter regions that can be investigated by
10-year observation of DECIGO and LISA. The solid lines show
the regions for DECIGO and the dashed lines show the regions
for LISA. Note that the same color indicates the same value of σ
regardless of the types of the lines. Except for the observation
time, we take the same parameters as in Fig. 8.
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suppressed much. The fast oscillations of the gravitational
potential enhance the induced GWs. Note that the degree of
suddenness strongly depends on the width of PBH mass
function, and the narrow mass function is required for the
induced GWs to be detectable by the future observations.
Another interesting point of the GWs produced by the

poltergeist mechanism is that the typical frequency is not
directly determined by the size of a single PBH, but it is
determined by the typical wavelength of the fluctuations
which enters the horizon by the end of the reheating
implying a macroscopic scale of a fluid composed of many
PBHs. This scale is in turn controlled by the reheating
temperature (TR ∝ M−3=2

PBH;i) and the initial abundance of
PBHs (β). Thus, the frequency is small enough to be probed
by the future GW observations for the appropriate range of
the PBH mass, Oð103 − 105Þ g.
We have also discussed the possibility that the future

GW observations can probe the abundance of the tiny
PBHs. As a concrete example, we have discussed the case
where the power spectrum of the curvature perturbations is
almost scale invariant even at small scales. Then, we have
found that the initial PBH fraction can be measured or
constrained if the PBH mass function is narrow (σ ≲ 0.01).
We have also found that, in the narrow limit (σ → 0), the
initial fraction with β > Oð10−5 − 10−8Þ in 2 × 103 g≲
MPBH;i ≲ 4 × 105 g can be probed by the future observa-
tions. In particular, the one-year observation of
DECIGO can constrain β as β ≲ 10−7ðMPBH;i=104 gÞ−1
in 2 × 103 g≲MPBH;i ≲ 2 × 105 g. See Figs. 8 and 9 for
the cases with the finite width of the mass function. Note
again that the detectability also depends on the power
spectrum of the curvature perturbations on small scales. For
example, we can probe the evaporating PBHs with wider
mass functions (within the range σ ≲ 1) if the power
spectrum of the curvature perturbations is blue-tilted.
Here, let us discuss possibilities to realize a narrow width

of the mass function. A refined criterion for the PBH
formation has recently been proposed in Refs. [142,143].
It predicts a narrow mass function fðMÞ even if we take
into account the coarse graining by a window function
and the effects of critical collapse [143] provided that
the power spectrum PζðkÞ of curvature perturbations is
narrow. A possibility to produce a narrow PζðkÞ for
MPBH;i ∼ 104 g is to utilize a parametric resonance. See,
e.g., Refs. [55,144–148] toward such a direction.
We point out that there is a limitation on the narrowness

of the width of PζðkÞ. To be concrete, we parametrize
Pζ around the peak scale related to PBH production as
Pζ ¼ Aζ=ð

ffiffiffiffiffiffi
2π

p
σζÞ expð−ðlnðk=kpeakÞÞ2=ð2σ2ζÞÞ. In a RD

era, Aζ ∼ Oð10−2Þ is needed for the production of a sizable
amount of PBHs when σζ is Oð1Þ. More precisely, the
amount of PBHs depends on an integral ofPζðkÞ over ln k
with some window function (see, e.g., Ref. [131]). To make
the width narrower while keeping the fixed abundance of

PBHs, the height of the peak of Pζ (Aζ) must become
larger. This implies that its value exceeds unity if we
consider σζ ≲ 10−2, which leads to a nonperturbative and
highly quantum regime of inflaton/curvature perturbations.
In this sense, there is a lower bound on σζ for the standard
analysis to be valid.17 It is desirable to find a relation
between such a restriction on σζ and that on σ, which is the
width of the PBH mass function, using the refined PBH
formation criterion.
In addition to the initial mass function, we have to

consider its potential time evolution via mergers of PBHs.
We have studied these effects in Appendix B considering
the mergers of binary PBHs formed in the eRD era. With the
approximation of constant PBH mass during the merger
process and with the assumption that the merger rate
formula in Refs. [9,12] is valid for the PBH-dominating
(fPBH ¼ 1) case, which is questioned in Ref. [149], we have
found that the effects of mergers may not be negligible if
β ≳ 10−5 for the PBH masses of our interests. We have not
included such effects in Figs. 8 and 9 since our analyses on
the merger processes are incomplete. That is, the constant-
mass approximation may not be justified in the PBH-
dominating scenario, and the merger rate formula may
not be valid due to disruption of the binary by surrounding
PBHs. Nevertheless, the analyses imply that the constraints
on the parameter space with large β may not be valid. The
extension to the time-dependent mass case and the N-body
simulation of the tiny PBHs should be done elsewhere.
Even if we take into account all these caveats on the

width of the PBH mass function and the (potential) effects
of mergers of PBHs, the amount of GWs we have discussed
in this paper can still be larger in the observationally
relevant frequency range than those from known GW
production mechanisms in the PBH-dominating scenario
(cf. Fig. 10 in Appendix A). The future GW observations
can constrain a part of the parameter space of tiny PBHs
that evaporated in the early Universe [2 × 103 g ≲
MPBH;i ≲ 4 × 105 g, β>Oð10−5−10−8Þ], which has never
been probed by any other robust means.
Finally, let us discuss several implications of this scenario

for cosmology and particle physics. Possibilities for dark
matter are restricted.At the final stage of the evaporation, any
particle species in the theory are produced. For PBH masses
of Oð103 − 105Þ g, which can be probed by future obser-
vations, the abundance of any massive stable particles below
the Planck scale exceeds the dark matter abundance [28].
Without an additional dilution factor, massive dark matter
candidates are excluded. In this context, an axion(like
particle) is a good candidate for dark matter. They are

17This discussion does not directly apply to the case of PBH
formation in an eMD era or the era with a soft equation of state. In
the absence of the radiation pressure, the PBH formation thresh-
old is lowered, so the above fundamental limit on the width
becomes weaker than in the case of PBH formation in a RD era.
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produced as relativistic particles by the Hawking radiation,
which can be consistent with the effective neutrino species
bound [28], while the dark matter abundance can be
explained by the misalignment mechanism. Note also that
the entropy production due to the evaporation can dilute
unwanted extended objects such as magnetic monopoles
predicted in the grand unified theories, which are expected
not to be produced substantially via the evaporation (see a
related comment in footnote 1 and Ref. [24]).
Interestingly, the tiny PBHs around the above parameter

space,MPBH;i ∼Oð103 − 105Þ g and β > Oð10−5 − 10−8Þ,
allow the generation of baryon asymmetry via leptogenesis
in several ways: (i) thermal leptogenesis [150] with
right-handed Majorana neutrino somewhat heavier than
the standard, MR ∼ Tið∼Oð1013 − 1014Þ GeVÞ [see, e.g.,
Eq. (9)], supplemented by the dilution of the baryon
asymmetry due to the entropy production through the
PBH evaporation, where the dilution factor is less than
Oð10−2Þ [see Eq. (A1)], (ii) TeV-scale thermal resonant
leptogenesis after the evaporation with TR ∼Oð103 −
106Þ GeV [see Eq. (7)] [151,152], and (iii) nonthermal
(resonant) leptogenesis via the PBH evaporation with
TPBH ∼Oð108 − 1010Þ GeV [see Eq. (3)] [23,24]. In addi-
tion, the evaporating PBHs could relax the Hubble tension
[28–30] and also they are predicted in some inflationary and
particle physics models [50–56]. From this perspective,
our result could be a key to elucidate the mysteries of
modern cosmology in the near future.
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APPENDIX A: VARIOUS GW SOURCES IN THE
PBH-DOMINATING SCENARIO

The main topic of this paper is the second-order (scalar-
induced) GWs produced just after the PBH evaporation. In

the present scenario, where PBHs dominate the Universe
and evaporate, there are other sources of GWs. In this
appendix, we introduce three types of GWs other than the
GWs induced right after the PBH evaporation. The first one
is the second-order (scalar-induced) GWs associated to the
PBH formation scale, rather than the evaporation scale.
The second one is the gravitons emitted by the Hawking
radiation process. The third one is the GWs from many
binary PBH merger events, which is separately discussed
in Appendix B in detail. We summarize the spectrum of
the three types of GWs in Fig. 10. Other various sources
of GWs are comprehensively discussed in Ref. [60]. Note
that these various GW components have different energy
spectra, so the scenario is in principle highly predictive
although it will be hopeless to observe these high-
frequency GWs with technologies available in the near
future.

1. GWs associated to PBH formation

Let us discuss the induced GWs associated to the PBH
formation scale [68,69] first. To produce a substantial
amount of PBHs, the curvature perturbations are assumed
to be enhanced on the corresponding scale. On this scale,
the GWs are induced by the enhanced scalar perturba-
tions. Taking into account the presence of the PBH-
dominated era, the corresponding wave number is given
by Eq. (19).
The energy density parameter of the induced GWs

associated with the PBH formation events decreases during

FIG. 10. Summary of theGWs produced in the PBH-dominating
scenario.MPBH;i ¼ 104 g and β ¼ 10−7 are taken for all plots. The
thick black line shows the spectrum of the GWs induced just after
the evaporation with σ → 0, which we have focused on throughout
this paper. The thin black lines show the GWs from the other
sources, introduced in Appendix A. Note that we assume Pζ ¼
Aζ=ð

ffiffiffiffiffi
2π

p
σζÞ expð−ðlnðk=kiÞÞ2=ð2σ2ζÞÞ with Aζ ¼ 0.01 and σζ ¼

0.01 for the spectrum of the GWs associated to PBH formation
(black dotted).
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the PBH-dominated era, so the current magnitude of the
GWs is given by Eq. (51) times the following dilution
factor:

D≡ 1

aeva=aeq;1 þ 1
≃
�

gs�ðTRÞ
gs�ðTeq;1Þ

�1
3

�
β

βmin

�
−4
3

; ðA1Þ

where we have assumed aeq;1 ≪ aeva in the second (almost)
equality. Except for this dilution factor, the formalism of
the calculation is essentially the same as that used in
Sec. IV. The resultant GW spectrum is shown as the black
dotted line in Fig. 10 assuming the primordial curvature
perturbations Pζ¼Aζ=ð

ffiffiffiffiffiffi
2π

p
σζÞexpð−ðlnðk=kiÞÞ2=ð2σ2ζÞÞ

with Aζ ¼ 0.01 and σζ ¼ 0.01.
Let us discuss the spectral features of the GWs asso-

ciated to PBH formation. Since we assume the widths of the
mass function and the curvature perturbations are small, the
spectral shape is similar to the case of the delta function
source PζðkÞ ∼ δðlnðk=kiÞÞ [66]. However, the infrared
scaling ΩGW ∝ k3 is qualitatively different from that in the
delta function case ∝ k2 because of the small but finite
width [72,153].
The dependence of the peak position and height of the

spectrum on the massMPBH;i and the abundance β of PBHs
is as follows. The characteristic scale ki is proportional to
M−5=6

PBH;iβ
−1=3 as shown in Eq. (19). This is different from the

standard relation ki ∝ M−1=2
PBH;i in the absence of the PBH-

dominated era. If we fix Aζ, the height of the induced GWs
is insensitive to the mass and the abundance of PBHs
except for the dilution factor in Eq. (A1). Because of the
dilution, the height of the peak scales as M−4=3

PBH;iβ
−4=3. Note

that, strictly speaking, Aζ slightly depends on β, which
leads to a small modification of the β dependence of the
peak height.

2. GWs from Hawking radiation

Gravitons emitted by Hawking radiation constitute
stochastic GW background. This contribution has been

studied in the literature [59–61]. The GW spectrum is
obtained by integrating the emitted graviton energy spec-
trum [59], which is the Planck distribution up to a gray-
body factor:

d2E
dtdk

¼ GgH�;gM2
PBH

32π3M4
Pl

k3

ek=TPBH − 1
; ðA2Þ

where gH�;g ≃ 0.1 [28] is the effective number of degrees of
freedom for gravitons.
In this subsection, we assume a monochromatic mass for

PBHs since a small width such as σ ¼ 0.01 would not lead
to a qualitatively different result for GWs from Hawking
radiation in contrast to the cases of the GWs associated to
the PBH formation and the GWs produced right after the
PBH evaporation.
Just after the evaporation, ΩGWðt; kÞ is calculated as

ΩGWðteva; kÞ

¼ knPBHðtiÞ
aðtevaÞρtotðtevaÞ

�
aðtiÞ
aðtevaÞ

�
3
Z

teva

ti

d2Ee

dtedke
ðte; keÞdte;

ðA3Þ
where the subscript e denotes the emission time of the
gravitons, and ke ¼ k=aðteÞ is the physical momentum at
emission. The strength of the current GWs is obtained by
using Eq. (51) with identifying ΩGWðtevaÞ with ΩGWðtcÞ.
The above integral is approximately performed as

follows. It is convenient to define a dimensionless inte-
gration variable κ ¼ k=ðaðtÞTPBHðtÞÞ. This behaves as
κ ∼ t−1=2, t−2=3, and ð1 − ðt=tevaÞÞ1=3 for t ≪ teq;1 (during
the eRD era), teq;1 ≪ t ≪ teva (during the eMD era), and
t≲ teva (close to the reheating), respectively. Noticing that
the integrand is dominated around κ ≃ 1, we may approxi-
mate it using the above approximation for k=aeq;1 ≪
TPBH;i, k=aeva ≪ TPBH;i ≪ k=aeq;1, and TPBH;i ≪ k=aeva,
respectively. Up to the overall factor, GgH�;gðTPBHÞ
TPBH;inPBHðtevaÞ=ð32π3ρtotðtevaÞÞ, which is independent
of k, the relevant integral is

Z
κi

κeva

dκ
TPBH

j_κj
κevaκ

3

eκ − 1
≃
TPBH;i

Heva
×

8>>><
>>>:

ð tevateq;1
Þ1=3κ3evaj ln κeq;1j ∝ k3 for k=aeq;1 ≪ TPBH;i

1
2

ffiffiffi
π

p
ζð3=2Þκ5=2eva ∝ k5=2 for k=aeva ≪ TPBH;i ≪ k=aeq;1

48ζð5Þx−1eva ∝ k−1 for TPBH;i ≪ k=aeva

; ðA4Þ

where κeva ≡ k=ðaevaTPBH;iÞ and κeq;1 ≡ k=ðaeq;1TPBH;iÞ,
and ζð·Þ is the Riemann zeta function.
These scaling properties have been confirmed by

numerical integration (see the black dot-dashed line in
Fig. 10). Note that some parts of the scaling in the previous
works are different from the above results, and we believe

they are incorrect. Note also that, in Fig. 10, we take the
high-frequency cutoff as the Planck scale at the evaporation
time (teva) because there is no consensus on the Hawking
radiation spectrum at the scales higher than the Planck one.
The characteristic frequency is proportional to TBH ∝

M−1
PBH;i, but the redshift factor depends on the reheating
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temperature, aðTRÞ ∝ 1=TR ∝ M3=2
PBH;i. Combining them,

the scaling of the characteristic frequency is proportional

to M1=2
PBH;i. As long as the PBHs dominate the Universe, the

height and the horizontal position of the ΩGW curve hardly
depend on β.

3. GWs from mergers of binary PBHs

This is separately studied in detail in Appendix B, but
here we just summarize the spectral shape and the depend-
ence of the peak wave number and peak height of ΩGW on
MPBH;i and β for comparison. Similarly to the other GWs
contributions, the spectral index approaches 3 on the largest
scales. The spectrum bends to the k2=3 scaling [154,155].
At which scale this happens is discussed in Appendix B.
The small-scale cutoff is given by the frequency of the GWs
emitted just before the evaporation.
The dependence of the characteristic scale is similar to

the Hawking radiation case. It is proportional to M−1
PBH;i at

the source frame, but the redshift factor depends on
T−1
R ∝ M3=2

PBH;i. Thus, the peak k position scales as M1=2
PBH;i.

The peak height of ΩGW is proportional to M6=37
PBH;iβ

16=37.
This is valid only when the energy-density fraction of
the nonrelativistic matter in PBHs, fPBH, is close to unity,
which is always satisfied in the PBH-dominating scenario.

APPENDIX B: EFFECTS OF MERGERS OF PBHs

In this appendix, we discuss the effects of formation of
binary PBHs and their mergers. If the merger event rate is
substantial, it affects the mass distribution function of
PBHs and may affect the dynamics of the reheating. We
will see that the energy density of the merged components
can be (marginally) subdominant depending on the initial
PBH abundance, so it may or may not affect our estimation
of ΩGW induced just after the PBH evaporation.
We also study the stochastic GW background from

superposition of many PBH merger events. The spectrum
is known to have a slope ΩGWðkÞ ∝ k2=3 [154,155]. Even
though the typical frequency of GWs associated to the
merger events is much higher than the typical frequency of
the GWs induced by scalar modes just after the evapora-
tion, the gentle slope of the spectrum, k2=3, implies it might
be observationally relevant. In this context, we also have to
take into account the validity of the extrapolation of this
scaling. We revisit the infrared (IR) part of the spectrum,
which should reproduce the universal (white-noise) k3

scaling [153]. It turns out that such an IR modification
is indeed relevant when we consider the GWs originating
from mergers, and the GWs tend to be a subdominant
component compared to the GWs induced just after
evaporation. On the other hand, the merger-related GWs
have a relatively large magnitude on smaller scales. They
are one of the dominating GWs on these scales as shown by
the black dashed line in Fig. 10.

Effects of mergers of PBHs in the early Universe were
discussed in Appendix A of Ref. [28], based on the binary
formation mechanism of Ref. [7], and the authors con-
cluded that they are ineffective unless the cosmic temper-
ature is very high: T ≳ 1011 GeV × ð104 g=MPBHÞ3=4.
More recently, the authors of Ref. [62] discussed PBH
mergers in the PBH-dominating scenario based on another
binary formation mechanism [156], which is more efficient
than that of Ref. [7]. Here, we calculate the GW spectrum
from superposition of GWs emitted by many merger events
in the very early Universe before the PBH evaporation,
improving the treatment on the GW energy spectrum from
each merger event in Ref. [62]. Instead, we neglect the time
dependence of the PBH mass and in particular the effects of
accretion of the surrounding radiation into PBHs.18 Our
analyses are complementary to those in Ref. [62].
In Refs. [9,12], the authors investigated the PBH binary

formation in the RD era. The binary forms when the binary
system is decoupled from the Hubble flow. The head-on
collision is avoided because of the torque from the PBH
closest to the binary. In the present context, the binaries are
supposed to form during the eRD era, not the standard RD
era (in which PBHs have already evaporated). Also, the
merger events can occur only before the evaporation time.
These changes can be readily implemented by replacing
their matter-radiation equality time teq and the current
cosmic time t0 with teq;1 and teva respectively. We should
also replace the PBH fraction of dark matter with unity,
fPBH ¼ 1. Following Refs. [83,157] in the context of
LIGO/Virgo events, the ΩGW just after the evaporation is

ΩGWðteva; fÞ ¼
f

aðtevaÞ
nPBHðtevaÞ
ρtotðtevaÞ

Z
teva

ti

dt
dP
dt

dEs

dfs
ðfsÞ;

ðB1Þ

where nPBHðtÞ is a physical PBH number density at t and
dP stands for a probability for a given PBH to merge from t
to tþ dt [see Eq. (B3)], and dEs=dfsðfsÞ is the energy
spectrum emitted by a single merger event as a function of
the frequency at the source frame fs ¼ f=aðtÞ, and the
subscript s means the source frame.

1. Merger rate and merged fraction

Let us estimate the energy density fraction of PBHs
already merged at the evaporation time. If it is subdomi-
nant, the effect on the sudden evaporation dynamics is
negligible. Hence we treat MPBH as a constant for sim-
plicity. The generalization to the time-dependent mass
case is desirable, but it is beyond the scope of the paper.

18Effects of accretion change the PBH mass at most only by
14% [62]. It is also discussed in Appendix B of Ref. [28], and
they concluded that they are negligible unless the cosmic
temperature is very high: T ≳ 1014 GeV × ð104 g=MPBHÞ1=2.
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Also, we assume that the binary is not disrupted by
encountering other PBHs once the binary is formed.
Under these assumptions, the energy density fraction
of merged PBHs at the evaporation time can be obtained
from

Ωmerged PBHsðtevaÞ ¼
2MPBHnPBHðtevaÞ

ρtotðtevaÞ
Z

teva

ti

dt
dP
dt

: ðB2Þ

This probability dP=dt is computed in Refs. [9,12]. After
appropriately replacing their matter-radiation equality time
teq and the current cosmic time t0 with teq;1 and teva
respectively, we find

dP
dt

¼ 3

58t

�
t
T

�
3=8

�
1

ð1 −min ½eNN; efinal�2Þ29=16
− 1

�
; ðB3Þ

where

T ≡ 3ð8πM2
PlÞ3

170M3
PBH

�
4πfPBH

3

�
−4
�
4πnPBHðteq;1Þ

3

�−4=3
; ðB4Þ

is the time by which all the binaries merge. fPBH is the
energy density fraction of the nonrelativistic matter in
PBHs, which is equal to unity in the PBH-dominating
scenario but retained for generality. The maximum eccen-
tricities eNN and efinal are given by

1 − e2NN ¼
�
t
T

�
6=37

; ðB5Þ

1 − e2final ¼
�
4πfPBH

3

�
−32=21

�
t
T

�
2=7

: ðB6Þ

These values eNN and efinal are determined by the cutoff
distance from the binary to the nearest neighbor PBH and
by the largest possible distance between the PBHs in the
binary, which is realized for the final binaries formed at the
equality time, respectively. When fPBH ¼ 1, the latter one
is irrelevant since efinal > eNN.
Note, however, that the applicability of the analytic

formula of the merger probability to the fPBH ≈ 1 case is
questioned in Ref. [149] where discrepancies between the
analytic estimate and N-body numerical simulations were
found. The simulations tell us that the binaries tend to be
disrupted by an N-body cluster of surrounding PBHs
(formed by Poisson fluctuations) and lose eccentricity.
This implies that the binary lifetime becomes longer and
that the merger rate is suppressed. It is not clear to us
whether this also applies to the tiny PBH cases since

the investigated mass ranges are different in 30 orders of
magnitude.
By substituting Eq. (B3) into Eq. (B2), we get the

merged fraction just before evaporation [62]

Fmerged ≡ Ωmerged PBHs

Ωtotal PBHs

≃
�

1
29
ð37ðtevaT Þ

3
37 − 8ðtevaT Þ

3
8Þ ðteva < TÞ

1 ðteva ≥ TÞ
: ðB7Þ

The ratio teva=T is evaluated as

teva
T

¼ 1 × 10−17
�
fPBH
1

�
4
�
MPBH;i

104 g

�
2
�

β

10−7

�
16=3

: ðB8Þ

For the fiducial values fPBH ¼ 1 and MPBH;i ¼ 104 g,
Fmerged ¼ 5%; 14%, and 39% if we take β ¼ 10−7; 10−6,
and 10−5, respectively.
The mass of once merged PBHs is approximately

2MPBH;i. The lifetime of these PBHs is 23 ¼ 8 times
longer than the original PBHs. By the time of their
evaporation, the scale factor increases by a factor offfiffiffi
8

p
. If the merged fraction is less than 1=

ffiffiffi
8

p
≈ 35%,

the merged PBHs evaporate before they dominate the
energy density and therefore they are harmless. In this
sense, β ∼ 10−5 is roughly the critical abundance for
which the effect of the merger is significant. We stress
again that this estimation is based on the assumption
that the binary is never disrupted after their formation
until their merger, which is questioned in Ref. [149] for
fPBH ¼ 1 and for MPBH;i ¼ Oð10Þ M⊙.

2. Revisiting GWs from merger events
with “IR cutoff”

As mentioned at the beginning of this appendix and in
Ref. [153], we have to modify the spectrum of the merger-
related GWs at the IR side. The energy spectrum from the
inspiral-merger-ringdown process in the case of nonspin-
ning BHs is obtained in Refs. [154,155], and we augment it
with an IR cutoff fIR as follows:

dEs

dfs
ðfsÞ ¼

M5=3
c

12M4=3
Pl

×

8>>>>>>>><
>>>>>>>>:

w0f2s ðfs < fIRÞ
f−1=3s ðfIR ≤ fs < f1Þ
w1f

2=3
s ðf1 ≤ fs ≤ f2Þ

w2
f2s

ð1þ4ðfs−f2Þ2
σ2

Þ2
ðf2 ≤ fs < f3Þ

0 ðf3 ≤ fsÞ

;

ðB9Þ

where w0, w1, and w2 are coefficients that make the
spectrum continuous at fs ¼ fIR, f1, and f2, respectively,
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and M5=3
c ≡m1m2ðm1 þm2Þ−1=3 is the chirp mass where

we take m1 ¼ m2 ¼ MPBH. Explicitly, w0 ¼ f−7=3IR , w1 ¼
f−11 , and w2 ¼ f−11 f−4=32 . These frequencies are given as
MPBHf1=ð4M2

PlÞ ¼ 0.1125, MPBHf2=ð4M2
PlÞ ¼ 0.2565,

MPBHf3=ð4M2
PlÞ¼0.3503, and MPBHσ=ð4M2

PlÞ¼0.05952.
See Ref. [155] for more general expressions in the case of
nonequal masses and/or nonzero spins.
The IR cutoff of the frequency (in the source frame)

should correspond to the largest possible orbit of the
binary [153],

fIR ¼ 1

2π
× 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MPBH

8πM2
Plr

3

s
; ðB10Þ

where r is the radius of the orbit of the binary, which
corresponds to H−1 evaluated at the binary formation
time. More precisely, this radius should be the length
associated to the GW emission, and it should be shorter
than H−1 when the eccentricity e is nonzero. We take it as
the distance between a periastron and the closest focus
(the center of gravity), H−1ð1 − eÞ, which is (a half of) the
shortest distance between the two PBHs in the binary
trajectory.
Note that our estimation on the IR cutoff is conservative

for the estimation on the magnitude of the GWs, which
means that our fIR is probably larger than the true cutoff.
This is different from the estimation of the IR cutoff in
Ref. [153], where the authors presented a conservative
estimate on the applicability of the universal IR cutoff
scale, which means that their fIR is probably smaller than
the true cutoff.
The binary formation time (decoupling time) is estimated

as adec=aeq;1 ¼ ðx=xmeanÞ3 where x is the comoving dis-

tance between the PBHs (we have used xmax ¼ f1=3PBHxmeanÞ
[9,12]. (Note the clash of notation: x here should not be
confused with x≡ kη in the main text.) The cutoff can be
rewritten as

fIR ¼ f0

�
ℓ

ℓmax

�
−9=4

ð1 − eÞ−3=2; ðB11Þ

f0 ≡ 1

ð2πÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H3

eq;1MPBH

M2
Pl

s
; ðB12Þ

where ℓ ¼ adecx ¼ aeq;1xðx=xmaxÞ3 with xmax ¼ ðfPBH=
nPBHðtÞa3ðtÞÞ1=3 is the semimajor axis of the ellipse of
the binary trajectory [9,12] and ℓmax ¼ aeq;1xmax.
The cutoff fIR as well as the energy spectrum depends on

the parameters ℓ ¼ ℓðt; eÞ and e of the ellipse of the binary.
However, the probability in Eq. (B3) has been obtained by

integrating the differential merger rate over e. Therefore,
we cannot use the equation directly, and we have to go back
one step. The differential probability for a given PBH
binary to merge in the intervals of (t, tþ dt) and (e, eþ de)
is given by [9,12]

d2P
dedt

¼ π2ef3=2PBHn
1=2
PBHðteq;1Þℓ3=2

3ð1 − e2Þ3=2t ; ðB13Þ

where ℓ in terms of t and e is given by ℓ ¼ ðt=QÞ1=4=ð1 −
e2Þ7=8 with Q ¼ ð3=170ÞðMPBH=8πM2

PlÞ−3. This relation
ℓ ¼ ℓðt; eÞ is obtained by inverting the relation between
the lifetime of the binary t in terms of the initial ℓ and e
[9,12]. Using Eq. (B13), we can numerically compute the
following integral to obtain the GW spectrum originating
from the merger events:

ΩGWðteva; fÞ ¼
f

aðtevaÞ
nPBHðtevaÞ
ρtotðtevaÞ

Z
teva

ti

dt
Z

emax

0

de
d2P
dtde

×
dEs

dfs
ðfsÞ; ðB14Þ

where emax ≡min ½eNN; efinal� (¼ eNN in the PBH-domi-
nating scenario). The result is shown as the black dashed
line in Fig. 10. Note that the same method for taking into
account the IR cutoff is applicable to the case of the binary
nonevaporating PBH mergers in the present Universe by
the replacement such as teva → t0 and teq;1 → teq.
The dependence of the peak height on MPBH;i and β

comes from
R
dtðdP=dtÞ, which is approximated as

Z
teva

ti

dt
t

�
t
T

�
3=37

∼
�
teva
T

�
3=37

∼M6=37
PBH;iβ

16=37f12=37PBH :

ðB15Þ

Note that the IR cutoff does not affect the peak scale, so
the integral over e has been performed first. There is no β
dependence from other parts in Eq. (B14), and theMPBH;i

dependence from other parts cancels among them.
Note that the above expression is valid for the PBH-
dominating scenario (fPBH ¼ 1), but when fPBH ≪ 1,
efinal becomes relevant and the above expression is
modified accordingly.

APPENDIX C: NONLINEAR SCALE

In this appendix, we explain how to derive the nonlinear
scale of the matter perturbations. Since the analyses in
this paper are based on the linear theory except for the
interactions between the scalar and tensor perturbations, it
is necessary to discuss the smallest scale that the analyses
can be applied to.
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During the PBH-dominated era, the gravitational poten-
tial is related to the matter perturbation on subhorizon
scales as [116]

9

10
k2Φplateauðxeq;1Þϕk ≃

3

2
H2δm; ðC1Þ

where ϕk is the initial amplitude of the gravitational
potential on superhorizon scales during the eRD era.19

Using this equation, we estimate the nonlinear scale kNL,
on which the perturbation becomes nonlinear (δm ¼ 1) at
the reheating. Then, we can approximately derive the
expression for kNL as

3ffiffiffiffiffi
10

p kNLΦ
1=2
plateauðkNLηeq;1Þϕ1=2

kNL
≃

ffiffiffi
3

2

r
2

ηeq;2
: ðC2Þ

ϕk is related to the curvature perturbation as jϕkj≃
2
3
jζj ∼ 2

3
P1=2

ζ . Then, we can rewrite Eq. (C2) as

kNLΦ
1=2
plateauðkNLηeq;1ÞP1=4

ζ ðkNLÞ ≃
ffiffiffi
5

2

r
2

ηeq;2
: ðC3Þ

When we derive the cutoff scale kNL, we substitute
2.1 × 10−9 into PζðkÞ [110] throughout this paper for
simplicity, which is a conservative assumption.20 Figure 11
shows the relation between kNLηeq;2 and ηeq;2=ηeq;1.
Since the growth of matter perturbation during the eRD
era is slower than that during the PBH-dominated era,

the short duration of the PBH-dominated era leads to the
large kNL.

21

APPENDIX D: APPROXIMATION FORMULA
FOR THE INDUCED GW’s

In this appendix, we explain the derivation of Eqs. (53)
and (59). In particular, we focus on the contribution from
the resonance effect associated with the oscillations of the
gravitational potential, which is present only in the case of
GW production in the RD era [66,87]. This contribution
gives rise to a peak of the induced GW spectrum, which is
relevant for constraints on the PBH abundance, and
Eq. (53) represents such a contribution. We emphasize
again that our GW production mechanism occurs not
during Hawking evaporation but just after the PBH
evaporation so that the energy density of the Universe is
dominated by radiation.

1. Case of monochromatic mass function

First, we explain the derivation of Eq. (53), which is the
approximation formula in the case of the monochromatic
mass function. The resonance condition means the energy
conservation (jk⃗1j=

ffiffiffi
3

p þ jk⃗2j=
ffiffiffi
3

p ¼ jk⃗j) under the condi-
tion of the momentum conservation (k⃗1 þ k⃗2 ¼ k⃗) where
k⃗1, k⃗2, and k⃗ are the momenta of the two scalar source
modes and the GW mode, respectively. The factor 1=

ffiffiffi
3

p
represents the sound speed in the thermal bath, while the
speed of GW is 1. This is satisfied in a part of the
integration region in Eq. (44) where uþ v ¼ ffiffiffi

3
p

. For this
resonant contribution, the oscillation average of the square
of the function I in Eq. (44) in the case of a sudden
reheating transition is given by Eq. (B6) of Ref. [87]
multiplied with ðx − xeva=2Þ−2. As a counterpart of
Eq. (B7) in Ref. [87], we obtain

ΩðresÞ
GW ðηc; kÞ ≃

Z
s0ðk=kNLÞ

−s0ðk=kNLÞ
ds

3
ffiffiffi
3

p
Cð1 − s2Þ2

40960000
x7eva

×P
ðeffÞ
ζ

�ð ffiffiffi
3

p þ sÞk
2

�
P

ðeffÞ
ζ

�ð ffiffiffi
3

p
− sÞk
2

�
;

ðD1Þ

where C≡ 2
R
1
0 dyCiðyÞ2 ≈ 2.3 is a numerical constant,

CiðyÞ≡ −
R
∞
y dy cosðyÞ=y is the cosine integral function,

and P
ðeffÞ
ζ ðkÞ≡ S2ðkÞPζðkÞ is the effective power spec-

trum taking into account the suppression of the gravita-
tional potential [see the discussion above Eq. (50)]. For a
generic wave number k, the integration boundary

FIG. 11. The relation between the wave number for the non-
linear scale, defined in Eq. (C3), and the length of the PBH-
dominated era, characterized by ηeq;2=ηeq;1.

19Since the Φplateau is normalized as Φplateauðx → 0Þ → 1, the
factor 9=10 is multiplied in the left-hand side in Eq. (C1).
Note that Φ on superhorizon scales gets suppressed by the
factor 9=10 during the transition from the eRD era to the
PBH-dominated era.

20Strictly speaking, if we take into account the tilt of the power
spectrum, such as ns ¼ 0.96, the kNL could become a little larger,
which leads to the larger induced GWs.

21In the limit of the large ηeq;2=ηeq;1, kNLηeq;2 asymptotes
to a value about 470 (see Fig. 11). In this case, the relation
between kNL and MPBH;i is given as kNL ≃ 1.1 × 1014 Mpc−1

ðMPBH;i=104 gÞ−3=2, where we have used Eqs. (7) and (8).
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s0ðk=kNLÞ is 1, but when it approaches the cutoff kNL, it
changes as Eq. (54). We take into account this effect later,
and tentatively set s0 ¼ 1.
Now, we introduce an approximation to Eq. (D1).

The integration with respect to s from −1 to 1 corresponds
to only an Oð1Þ change of the argument of the power

spectrum P
ðeffÞ
ζ . This implies that for any given value of k

and for a sufficiently smooth P
ðeffÞ
ζ ðkÞ, one can approxi-

mate the latter as a single power law spectrum with an
effective tilt ns;effðkÞ. The k-dependence of Eqs. (32) and
(35) tells us that ns;eff ≃ ns, ns − 2=3, and ns − 14=3 up to a
logarithmic correction, for k≪keq;2, keq;2 ≪ k ≪ keq;1, and
k ≫ keq;1, respectively. Since the spectral shape of the
resonance contribution extends to a large k region, we take
ns;eff ¼ ns − 14=3 irrespective of the value of k, which is
supported by the numerical calculations (see Fig. 4). This
allows the analytic integration with respect to s,22

ΩðresÞ
GW ðηc; kÞ ≃ 2.9 × 10−7Fðns;effÞEðk=kNLÞ

× ðkηevaÞ7P2
ζðkÞS4ðkÞ; ðD2Þ

where Fðns;effÞ is defined with the hypergeometric function

2F1 as

Fðns;effÞ≡
Z

1

−1
dsð1 − s2Þ2

�
3 − s2

4

�
ns;eff−1

¼ 3ns;eff−142−ns;eff

ns;effð3þ 2ns;effÞ
��

2

3

�
ns;eff ðns;eff − 3Þ

þðn2s;eff − ns;eff þ 3Þ2F1

�
1

2
;−ns;eff ;

3

2
;
1

3

��
;

ðD3Þ

and Eðk=kNLÞ (satisfying E ¼ 1 for k ≪ kNL) is a function
introduced to take into account the reduced integral region
s0 ≠ 1 around k ≃ kNL, on which we discuss in the

following. Since we already made approximations to obtain
the above result, we do not aim to obtain the exact formula.
(It is anyway not meaningful to discuss the precise shape of
the spectrum when k becomes close to the nonlinear scale.)
In the case of the sudden reheating transition with a power-
law spectrum, the s0-dependence has been calculated in
Eq. (B13) of Ref. [87]. Taking the ratio between the
equation and Eq. (D2), we can extract the falling-off
behavior, which is nothing but Eðk=kNLÞ. The expression
becomes significantly simpler when we set ns ¼ 1 for this
ratio [this does not mean we set ns;eff ¼ 1 or ns ¼ 1 in
Eq. (D2)],

Eðk=kNLÞ ¼
s0ðk=kNLÞ

8
ð15 − 10s20ðk=kNLÞ þ 3s40ðk=kNLÞÞ:

ðD4Þ

Since s0 is defined as Eq. (54), it satisfies Eðk=kNLÞ ¼ 1 for
k=kNL ≤ 2

1þ ffiffi
3

p and Eðk=kNLÞ ¼ 0 for 2ffiffi
3

p ≤ k=kNL, and it is

smoothly interpolated between the two regimes.
Substituting the numerical value of Fð0.96 − 14=3Þ ≃

5.5 and the expression of Eðk=kNLÞ given in Eq. (D4) into
Eq. (D2), we obtain Eq. (53).

2. Effects of finite width

Here, we generalize the approximation formula to the
case of the mass function with finite width and derive
Eq. (59). In the presence of finite width, the normalization
factor, Eq. (58), has an exponential dependence on k. This
does not satisfy the smoothness assumption that led to
Fðns;effÞ in Eq. (D3). It should be modified as follows:

Fðns;eff ; σÞ≡
Z

1

−1
dsð1 − s2Þ2

�
3 − s2

4

�
ns;eff−1

× exp ð−zð3þ s2ÞÞ; ðD5Þ

where z≡ ðcσkηeq;2Þ2 with c introduced below Eq. (58).
The exact analytic integration is not easy, so let us take the
factorized form, Fðns;eff ; σÞ ≈ Fðns;effÞGðzÞ, as an approxi-
mate ansatz. When ns;eff ¼ 1, the integral can be analyti-
cally done

GðzÞ ¼ 15e−4z

64z5=2
ð2 ffiffiffi

z
p ð2z − 3Þ

þ ð4z2 − 4zþ 3Þez ffiffiffi
π

p
Erfð ffiffiffi

z
p ÞÞ: ðD6Þ

Then, we obtain Eq. (59). The error of the approximation is
within a factor of 2 in the parameter region which we are
interested in (see Fig. 6). Note that there is an additional ez

factor in GðzÞ compared to the naive expectation
GðzÞ ∼ Sðk; σÞ4 ∼ e−4z.

22The naive interpretation of the k7 dependence up to
PðkÞ2SðkÞ4 in Eq. (D2) is as follows. The factor k2 arises in
f given in Eq. (47) because the dominant term is proportional to
Φ0Φ0, which gives the factor k4 to Phð∝ f2Þ. Another factor
arises from the integrals appearing in the expression of Ph.
Eq. (44) includes the integrals over v and u and, before changing
the variables, they are originally over the wave numbers of two
scalar modes, jk⃗1j and jk⃗2j. Since the resonance condition is given
as jk⃗1j=

ffiffiffi
3

p þ jk⃗2j=
ffiffiffi
3

p ¼ jk⃗j, the two integrals gives only a single
power of k. From these observation, we can see that the power
spectrum of the tensor perturbations arePh ∝ k5. In addition, the
factor k2 comes from the fact that the energy density parameter of
the tensor perturbations is proportional to the square of the time
derivative of the tensor perturbations as ρGW ∝< h0h0 >∝ k2Ph

(see Eq. (43). Therefore, the energy density parameter has the k7

dependence around the peak.
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