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Big-bang nucleosynthesis (BBN) is valuable as a means to constrain the physics of the early universe
and it is the only probe of the radiation-dominated epoch. A fundamental assumption in BBN is that the
nuclear velocity distributions obey Maxwell-Boltzmann (MB) statistics as they do in stars. Specifically, the
BBN epoch is characterized by a dilute baryon plasma for which the velocity distribution of nuclei is
mainly determined by the dominant Coulomb elastic scattering with mildly relativistic electrons. One must
therefore deduce the momentum distribution for reacting nuclei from the multicomponent relativistic
Boltzmann equation. However, the full multicomponent relativistic Boltzmann equation has only recently
been analyzed and its solution has only been worked out in special cases. Moreover, a variety of schemes
have been proposed that introduce nonthermal components into the BBN environment which can alter the
thermal distribution of reacting nuclei. Here, we construct the relativistic Boltzmann equation in the context
of BBN. We also derive a Langevin model and perform relativistic Monte-Carlo simulations which clarify
the baryon distribution during BBN and can be used to analyze any relaxation from a nonthermal injection.
We show by these analyses that the thermalization process leads to a nuclear distribution function that
remains very close to MB statistics even during the most relativistic environment relevant to BBN. Hence,
the predictions of standard BBN remain unchanged.
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I. INTRODUCTION

Big-bang nucleosynthesis (BBN) remains as a pillar of
modern cosmology [1,2]. It provides an almost parameter
free prediction of the abundances of the light isotopes 2H,
3He, 4He, and 7Li formed during the first few moments of
cosmic expansion. At the onset of BBN (T ∼ 1010 K) the
universe is mainly comprised of electrons, positrons,
photons, neutrinos, and trace amounts of protons and
neutrons. Once the temperature becomes low enough
(T ∼ 109 K) for the formation of deuterium, most neutrons
are quickly absorbed by nuclear reactions to form 4He
nuclei along with trace amounts of 2H, 3H, 3He, 7Li and 7Be.
These trace amounts, however, are sensitive to the detailed
freeze-out of the thermonuclear reaction rates as the
universe cools. In this paper we reexamine the fundamental
assumptions about the BBN epoch. In particular, we
analyze the multicomponent relativistic thermodynamics
of the BBN environment.
Although the thermodynamics of both relativistic and

nonrelativistic single-component gases have been known

for many decades [3], the solution of the relativistic
multicomponent Boltzmann equation has only recently
been attempted [4,5] and transport coefficients have only
been deduced for the case of equal or nearly identical-mass
particles. An exact relativistic simulation has only been
performed in one dimension to obtain the thermal equi-
librium distribution functions of a two-component gas [6].
In three dimensions only a Fokker-Planck approximation
for a Brownian particle in a relativistic bath has been
developed to obtain the equilibrium distributions [7].
Moreover, there has been recent interest in the possibility

of a modification of the baryon distribution function from
Maxwell Boltzmann (MB) statistics, in the form of
Tsallis statistics [8–11], the influence of inhomogeneous
primordial magnetic fields on baryons [12], nonideal
plasma effects at low temperature [13], the injection of
nonthermal particles (e.g. [14–20] and Refs. therein), and
small relativistic corrections to the MB distribution that
arise due to nuclear kinetic drag [21]. In the work of
Ref. [21], for example, the starting point was the Fermi-
Dirac (FD) distribution for baryons from which corrections
were deduced. Thus, it remains worthwhile to understand
the evolution to thermalization of the relativistic multi-
component Boltzmann equation in the BBN environment.
The point of the present work, therefore, is to analyze

the solution to the relativistic Boltzmann equation
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without an a priori assumption of what the baryon
distribution should be. We show that the problem can
be approximated as an ideal two component system of
baryons immersed in a bath of relativistic electrons,
for which the collision term is completely dominated
by elastic scattering from relativistic electrons. We show
that the thermalized baryon distribution is indeed close to
MB statistics independently of the electron distribution
function. This is verified by numerical Monte-Carlo
simulations [22] that can be used to follow the thermal-
ization of the BBN environment. These simulations
highlight the importance of correcting for the instanta-
neous viscosity experienced by recoiling nuclei. We also
show that the assumption of kinetic equipartition (though
relevant in the classical Langevin approximation, e.g.,
[23–25]) is inappropriate for the relativistic primordial
plasma.

II. BIG BANG ENVIRONMENT

A. Nuclear reaction rates

The reaction rate between two species 1 and 2 can be
written as [26,27]

R ¼ n1n2hσðvÞvi ¼ n1n2

Z
vσðvÞfðvÞdv; ð1Þ

where n1 and n2 are the number densities of the two
species, σðvÞ is the reaction cross section, v is the relative
center-of-mass (CM) velocity and fðvÞ is the relative
velocity distribution function. In this paper we analyze
the possible modification of fðvÞ due to the unique
environment encountered during BBN. Indeed, there has
been considerable recent interest in deviations of the
nuclear velocity distribution as a possible solution to the
overproduction of lithium [9–11].

B. Scattering in the background plasma

At the start of BBN baryons are extremely dilute in
number density compared to the background of eþ − e−

pairs and photons. The baryon-to-photon ratio (η) is
∼10−9. Similarly, the ratio of baryons to eþ − e− pairs
is ∼10−9 during much of BBN. Hence, each nucleus
undergoes scattering with a background plasma com-
prised of electrons, positrons and photons much more
often than with other nuclei. This could be important
when considering the relative velocity distribution func-
tions fðvÞ for nuclear reactions. That is, the velocity
distributions of nuclei will result from scattering events
with the mildly relativistic background plasma [6,24]
rather than with each other.
To justify the above statement regarding the relative

scattering rates we first presume the usual thermodynamic
relations for photons, electrons and nuclei during BBN.
(This assumption will be revisited in Secs. III, IV, and the

Appendix.) The number density of background photons is
thus taken to be the usual Planck distribution:

nγ ¼
gγ

2π2ℏ3c3

Z
∞

0

E2

e
E
kT − 1

dE ¼ 2ζð3ÞðkTÞ3
π2ℏ3c3

; ð2Þ

where c is the speed of light, ℏ is the reduced Planck’s
constant, k is the Boltzmann constant, T is the temperature,
gγ ¼ 2 is the number of photon polarization states, E is the
photon energy.
Similarly, the number densities of positrons and elec-

trons are described by a FD distribution,

n� ¼ g�
π2ℏ3c3

Z
∞

0

p2

exp fðE� μÞ=kTg þ 1
dp; ð3Þ

where þð−Þ denotes positrons (electrons), g� ¼ 2 is the
number of spin states, E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

e

p
is the total energy

with me the electron rest mass, p is the three momentum,
and μ is the chemical potential for electrons. During most of
BBN the chemical potential is small [26].
The elastic scattering cross section for photons with

nuclei (Compton scattering using the Klein-Nishina for-
mula) is given by

dσ
d cos θ

¼ πZ4α2

ðmc2Þ2
�
ω0

ω

�
2
�
ω0

ω
þ ω

ω0 − sin2θ

�
; ð4Þ

where, θ is the scattering angle, α is the fine structure
constant, Z is the nuclear charge, m is the nuclear mass, ω
and ω0 are the frequencies of the incoming and outgoing
photons, respectively. From the angular integration of
Eq. (4), the total reaction cross section for a photon
is σ ≤ 66.5 fm2Z4ðme=mÞ2.
The elastic scattering cross section for electrons and

positrons with nuclei is given by the Mott formula

dσ
d cos θ

¼ πZ2α2

2v2p2sin4 θ
2

�
1 −

v2

c2
sin2

θ

2

�
; ð5Þ

where v is the velocity of the e− or eþ particle.
The Coulomb scattering cross sections can be evaluated

using the Mott-formula or Rutherford-formula and is
known to be infinite. However, a reasonable cutoff in
the impact parameter for the incoming plasma particle is
given by the Debye screening length rD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT=4πn0e2

p
[28]. We adopt this as the maximum impact parameter to
calculate the minimum scattering angle. Using these,
we obtain two realistic approximations to the Coulomb
cross sections: One is simply given by the area of a disk
with radius rD; while the second is based upon the Mott-
formula with the upper limit defined by the minimum
scattering angle.
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Columns in Table I show the temperature dependence,
respectively, for the ratio of number densities of electrons to
photons n�=nγ , the electron-to-photon elastic-scattering
cross section ratio σ�=σγ for protons with cutoff radii at
the Debye radius or the Mott formula minimum scattering
angle, the ratio of nuclear scattering rates for electrons to
photons Γ�=Γγ ≡ n�σ�v�=nγσγc, and the ratio of rates for
proton elastic scattering from electrons to elastic scattering
from other protons, Γ�=Γp ≡ n�σ�v�=npσpvp. It is evi-
dent from these ratios that nuclei scatter with the back-
ground e− − eþ pair plasma significantly more than with
photons or other nuclei during BBN. Hence, nuclei are
overwhelmingly thermalized by elastic scattering with the
background e− − eþ pair plasma, while photons and other
nuclei have a negligible effect on the thermodynamics.
In what follows we model the response of nuclei to the

dominant scattering from relativistic electrons via the
multicomponent relativistic Boltzmann equation. We also
apply a Monte-Carlo simulation based upon the above
scattering rates. In the appendix, we give a similar
Langevin derivation. Indeed, the scattering rates in
Table I suggest that the physical environment for BBN
is similar to that of Brownian motion.

III. RELATIVISTIC BOLTZMANN EQUATION

For our purposes we can ignore the small corrections due
to the cosmic expansion [21], and treat the space as flat.
Following [5] let us begin with a completely general
mixture of r constituents in a locally Minkowski space
with metric tensor ηαβ ¼ diagð−1; 1; 1; 1Þ. The fluid con-
sists of multiple particles of mass ma with a ¼ 1;…:r.
Each particle is characterized by space-time coordinates xα,
α ¼ 0; 1; 2; 3 and momenta pα

a ¼ ðEa; pi
aÞ, so that Ea ¼

γma ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpiÞ2 þm2

a

p
(we adopt natural units with c ¼ 1).

If we restrict our consideration to only elastic collisions,
then the conservation of four momenta can be imposed

pα
a þ pα

b ¼ p0α
a þ p0α

b : ð6Þ

The state of the mixture of r relativistic species can be
characterized by a set of one-particle distribution functions:

fðx;pa;tÞ≡ fa; a ¼ 1; 2;…:r: ð7Þ

The total energy momentum tensor for the mixture is
given by the sum of that due to each species

Tμν ¼
Xr
a¼1

Tμν
a ; ð8Þ

where the contribution from each species is given in terms
of the one particle distribution functions as:

Tμν
a ¼

Z
pμ
apν

afa
p0
a

d3pa: ð9Þ

In the absence of external forces the one-particle dis-
tribution function characterizing collisions of constituent a
with constituents b satisfies a Boltzmann equation,

pα
a∂αfa ¼

Xr

b¼1

Z �
f0af0b

�
1þ ϵ

fah3

gs

��
1þ ϵ

fbh3

gs

�

− fafb

�
1þ ϵ

f0ah3

gs

��
1þ ϵ

f0bh
3

gs

��

× FbaσabdΩ
d3pb

pb0
; ð10Þ

where the right-hand side is the one-particle collision term.
The factors in parentheses account for the particle final
state phase space with ϵ ¼ þ1 for Bose-Einstein statistics
and Pauli-blocking terms for ϵ ¼ −1 in Fermi-Dirac
statistics. The quantity h is the Planck constant. The
quantity gs is the usual spin degeneracy factor appropriate
to each species (not labeled here for simplicity). The
quantity Fba ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpα

apbαÞ2 −mamb

p
is the invariant flux,

while σba is the invariant differential elastic scattering cross
section into an element of solid angle dΩ that characterizes
the collision of constituent a with constituent b.
In a multicomponent plasma, one must also count the

flow of momentum and energy among components in
the fluid. This leads to additional constraint equations of the
moments of the distribution function [5,29]. However, as
shown in Table I the collision term for nuclei is completely
dominated by electron elastic scattering. Hence, one can
reduce the multicomponent relativistic Boltzmann equation
to a two component system describing the scattering of
relativistic electrons from nuclei. The identification of the
thermodynamic variables can then be determined from the
relativistic entropy flow as described below.

A. General distribution function

Denoting electrons e and nuclei n, the relativistic baryon
Boltzmann equation (11) becomes:

TABLE I. Temperature dependence of various ratios relevant to
proton elastic-scattering reaction rates with e− − eþ plasma,
photons and other protons. We use the minimum among the
two cross section ratios (4th or 5th column) to obtain the reaction
rates for e− − eþ plasma.

T σ�=σγ

T9 MeV n�=nγ σ� ¼ πr2D σ� ¼ σMott Γ�=Γγ Γ�=Γp

11.6 1 1.43 5 × 104 105 105 109

1.16 0.1 0.102 107 105 103 1010

0.116 0.01 10−13 2 × 1028 1029 1014 10
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pα
n∂αfn ¼

Z �
f0nf0e

�
1þ ϵ

fnh3

gs

��
1þ ϵ

feh3

gs

�

− fnfe

�
1þ ϵ

f0nh3

gs

��
1þ ϵ

f0eh3

gs

��

× FenσnedΩ
d3pe

pe0
; ð11Þ

Eq. (11) differs from the usual one-particle Boltzmann
equation in that the distribution is fixed by the dominant
collisions with relativistic electrons. Nevertheless, from this
one can immediately deduce the form of the stationary
solution of the Boltzmann equation for the electrons and
baryons.
For the distribution to be stationary one requires that the

term in brackets on the right-hand side (rhs) of Eq. (11)
vanish. Hence,

f0af0b

�
1þ ϵ

fah3

gs

��
1þ ϵ

fbh3

gs

�

¼ fafb

�
1þ ϵ

f0ah3

gs

��
1þ ϵ

f0bh
3

gs

�
: ð12Þ

Then, taking the logarithm of both sides of Eq. (12)
one has for both the electrons and baryons the form
ln ½f=ð1þ εfh3=gsÞ� ¼ A − Bαpα, which is a summational
invariant [5] for which the terms A and Bα are determined
from the stationary values of the particle four-flow and the
energy-momentum tensor. The stationary distribution for
both baryons and electrons is then of the form [5]:

fðpÞ ¼ gs=h3

exp ½−aþ Bαpα� − ϵ
; ð13Þ

where a ¼ Aþ lnðh3=gsÞ.
Next, consider the particle number-density four-current

Jμ ¼ nUμ, with n the local proper rest particle density
and Uμ the particle four velocity, with UμUμ ¼ −1. Since
Jμ is the only relevant four vector, one can identify
Bμ ∝ Jμ ¼ ζUμ. Then the equilibrium distribution takes
the form:

feqðpÞ ¼
gs=h3

exp ½−aþ ζðUαpαÞ� − ϵ
: ð14Þ

B. Entropy flow and the Gibbs equation

For the next step one must identify the relation between
the parameter ζ and the temperature T. To do this one must
define the thermodynamic variables via the Gibbs relation:

dsE ¼ 1

T

�
de −

P
n2

dn

�
; ð15Þ

where sE is the equilibrium entropy per particle. The total
internal energy per particle is e ¼ hEi ¼ hγmi, P is the
pressure, and n is the number density. The total equilibrium
relativistic entropy is deduced from the entropy flow per
particle sE as

SαE ¼ nsEUα: ð16Þ

The total entropy flow, however, must be determined from
the general distribution function [Eq. (14)] f [30].

SαE ¼ −k
Z

pαf

�
ln

�
fh3

gs

�

−
�
1þ gs

ϵfah3

�
ln

�
1þ ϵ

fah3

gs

��
d3p
p0

: ð17Þ

Insertion of the distribution function Eq. (14) into
Eqs. (16) and (17) leads to the following expression for
the entropy per particle [30].

sE ¼ k

�
ζ

m
e − aþ 4

3
π
m4

nT
gs
h3

J40

�
; ð18Þ

where, a ¼ μE=kT is a constant of integration related to the
chemical potential at equilibrium, and

Jmnðζ; μe=kTÞ ¼
Z

∞

0

sinhnθcoshmθ
exp ð−μe=kT þ ζ cosh θÞ − ϵ

dθ:

ð19Þ

Following Ref. [30], we show below that Eq. (18) can be
reduced to the classical Sackur-Tetrode equation in the
nondegenerate nonrelativistic limit. However, to solve for ζ
we only need the differential form to compare with the
Gibbs relation, Eq. (15):

dsE ¼ kζ
m

�
de −

P
n2

dn

�
: ð20Þ

We proceed to show below via analytic and numerical
simulations that for any two-component system in temper-
ature equilibrium, one can identify Eqs. (15) and (20) so
that ζ ¼ m=T even if one component is relativistic and one
component is nonrelativistic. However, one can imagine
stationary situations in which the identification ζ ¼ m=T is
not possible. This could happen, for example, via the
continual injection of a nonthermal spectrum of particles
that keeps one component of the system out of temperature
equilibrium with the background thermal plasma [14–20].
Now, from the energy-momentum tensor relations

ne ¼ TμνUμUν; ð21Þ

and
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−neþ 3p ¼ Tμνηαβ; ð22Þ

the relevant state variables are then:

n ¼ 4πm3
gs
h3

J21ðζÞ; ð23Þ

e ¼ m

�
J22ðζÞ
J21ðζÞ

�
; ð24Þ

P ¼ 4

3
πm4

gs
h3

J40ðζÞ: ð25Þ

Note, that it is not possible to obtain an explicit
expression for the relation between ζ and temperature
directly from the distribution function [30]. To obtain ζ
one must consider the physics of the environment for each
species of the multicomponent system.

1. Relativistic nondegenerate electrons

First we consider the electrons. Early during BBN the
electrons interact much more frequently with each other
than with nuclei. Thus, they can essentially be treated as a
single component relativistic gas. In this limit one can
simply equate Eqs. (15) and (20) so that ζe ¼ me=kT. In the
cosmological rest frame Uαpα ¼ Ee=me is the total rela-
tivistic electron energy. Hence, the Fermi-Dirac distribution
for the electrons is obtained.

feðEÞ ¼
gs=h3

expðð−μe þ EeÞ=kTÞ þ 1
: ð26Þ

However, the FD distribution is notoriously difficult to inte-
grate to obtain the thermodynamic variables. Nevertheless,
the nondegenerate limit, ðEe − μeÞ=kT ≫ 1, is appropriate
for the reaction rates of big bang nucleosynthesis. For a
nondegenerate gas, the Jmn can be related [30] to modified
Bessel functions of the second kind Kn. In this case the
electrons can be represented by a Maxwell-Jüttner distri-
bution [3] and the thermodynamic variables can be reduced
to [30]:

ne ¼ 4πm2
ekT

gs
h3

K2ðme=kTÞeμe=kT; ð27Þ

ee ¼ me

�
K3ðme=kTÞ
K2ðme=kTÞ

−
kT
me

�
; ð28Þ

Pe ¼ 4πm2
eðkTÞ2

gs
h3

K2ðme=kTÞeμe=kT ¼ nekT: ð29Þ

We note that Eq. (29) is not true for a relativistic FD gas, but
only holds in the nondegenerate limit appropriate here.

2. Nuclei experiencing elastic collisions with electrons

The physics of the nuclei, however, is different in this
scenario. The isotropic velocities of the nuclear component
of the cosmic fluid during BBN are dominated (at least
initially) by collisions with relativistic electrons rather than
other baryons. To deduce the baryonic pressure one must
consider that elastic scattering with electrons conserves
momentum and energy.
The derivation of the pressure for the nuclei is straight-

forward. For a system of discrete point particles, the
energy-momentum tensor takes the form

Tμν ¼
X
a

pμðaÞpνðaÞ
p0ðaÞ δð3Þðx⃗ − x⃗ðaÞÞ; ð30Þ

where now a labels each particle and pμðaÞ ¼
maUμðaÞ is the four momentum, and in flat space
Uμ ¼ ðγ; γv1; γv2; γv3Þ.
One is only interested in the spatial components Tij for

the derivation of pressure in the cosmological rest frame.
Moreover, since the spatial components of momentum
are isotropic, only diagonal components are relevant.
Hence we can write

Pn ¼ Tii
n ¼

X
a

piðaÞpiðaÞ
p0ðaÞ δð3Þðx⃗ − x⃗ðaÞÞ

¼
X
a

γamnðviaÞ2δð3Þðx⃗ − x⃗ðaÞÞ

¼ 1

3
nnmnhγv2i; ð31Þ

where the factor of 1=3 follows from the isotropy of the
frame at rest with respect to the cosmic fluid,

hγv2xi ¼ hγv2yi ¼ hγv2zi ¼
1

3
hγv2i: ð32Þ

A similar derivation applies to electrons, i.e.

Pe ¼ Tii
e ¼ 1

3
nemehγv2i: ð33Þ

However, in thermal equilibrium baryons and electrons,
are at the same temperature. Moreover, the average hγv2i
for each species must be the same. So from Eq. (29), the
pressure per baryon is

Pn

nn
¼ Pe

ne
¼ kT: ð34Þ

Indeed, using the nondegenerate distribution to evaluate
the average in Eq. (31) identically gives

Pn ¼ nnkT: ð35Þ
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3. Internal energy of the nuclear fluid

Having derived the pressure, the average energy per
nucleus is almost trivial.

en ¼ γmn ¼ mn þ ðγ − 1Þmn ≈mn þ ð1=2Þmnhv2ni; ð36Þ

where the latter approximation follows from the fact that in
the BBN epoch, vn ≪ 1.
From Eqs. (31), (34), and (36) it follows that

en ¼ mn þ
3

2
kT: ð37Þ

Hence, even in this idealized case of nuclei only experi-
encing elastic scattering from a distribution of relativistic
electrons, the baryons have the same average kinetic energy
as that of a classical Maxwell-Boltzmann gas for which
hmnv2n=2i ¼ ð3=2ÞkT. Indeed, this result is independent of
the electron distribution function as long as the baryons are
in temperature equilibrium with electrons.
The Gibbs relation for nuclei in the relativistic electron

bath is then satisfied with ζn ¼ mn=kT. Then in the
nondegenerate limit, the equilibrium chemical potential
becomes

μE ¼ kT ln

�
nh3

4πgsm2
nkTK2ðζÞ

�
; ð38Þ

so that in the nonrelativistic limit (ζ ≫ 1) the entropy per
particle reduces to the classical Sackur-Tetrode equation,

sE
k
¼

�
ln
T3=2

n
− ln

�
h3

gsð2πmkÞ3=2
�
þ 5

2

�
: ð39Þ

Finally, for v ≪ 1, Uα ≈ ð1; 0; 0; 0Þ, the nondegenerate
distribution for nuclei reduces to the usual MB kinetic
energy distribution,

fnðEÞ ¼
n

ð2πkTÞ3=2 exp
�
−
mnv2

2kT

�
: ð40Þ

Hence, in the limit of nuclei dominated by relativistic
electron elastic scattering we have shown analytically that
the standard MB statistics emerges. Note that this result is
independent of the electron distribution function. The only
requirement is thermal equilibrium with the electron gas.
We note here, that a Langevin derivation assuming kinetic
energy equipartition as is often done in classical analyses
[24] cannot be applied for a background of relativistic
particles. However, thermal equilibrium as employed here
is more relevant for a relativistic plasma. On the other hand,
this analytic derivation is in the nondegenerate limit so that
use could be made of the analytic properties of the
Maxwell-Jüttner distribution. We have ignored the effect
of quantum statistics. Therefore, we check this result with

Monte-Carlo simulations utilizing both a FD and MJ
distributions as described below in Sec. IVand in Ref. [22].

IV. MONTE-CARLO SCATTERING SIMULATION

As a test of our statistical analysis we created a Monte-
Carlo simulation of the Brownian motion of a proton during
BBN [22]. That is, we simulated nuclear thermalization in a
bath with temperatures and an environment relevant to
BBN. This was done to numerically obtain the true
multicomponent velocity distributions for nuclei. Table I
showed that photons play a negligible role in this process.
Hence, we only needed to simulate scattering of a relativ-
istic FD distribution of e− − eþ pairs with nuclei. During
this scattering process energy is transferred to or from
nuclei. The direction of transfer of momentum is governed
by the angle of incoming particles, the velocity of incoming
particles and the scattering angle of the outgoing electron or
positron. For our simulation the angle of the incoming
particles was chosen isotropically in the cosmic frame.
However, this would not in general be isotropic in the
nuclear rest frame due to the accumulated nuclear recoil
velocity.
We randomly selected the incoming electron momentum

from the FD distribution. The angle of scattering for
electrons was weighted by the differential cross section
in Eq. (5). The reactions were simulated in three dimen-
sions. The incoming momentum of nuclei before each
scattering event was given by its momentum after the
previous scattering event. The scattering process was then
repeated for a sufficiently large number of times (∼107).
Note that according to Table I that even in the worst case
at kT ¼ 0.1 MeV there would only be <10−3 photon
scatterings for each electron scattering. Moreover, for a
baryon-to-photon ratio of η ∼ 10−9, there would be no
nucleus-nucleus scatterings during 107 electron collisions.
Hence, the influence of nuclear and photon scattering is
negligible. This, however, is not the case in stars where the
baryon density is much higher.
We note, as demonstrated in [22], that it is important to

account for the effect of the instantaneous viscosity (i.e.,
electrons moving opposite to the nuclear direction of
motion collide more frequently with the nucleus). This
was corrected by sampling the electrons from the electron
flux at a rate proportional to vfðvÞ, where v is the relative
velocity in the frame of the nucleus [cf. Eq. (1)]. With this
correction the nuclear distribution function is skewed to
lower energies due to the increase in the collision rate
along the direction of motion. This reduces the high-energy
tail of the distribution such that the resultant distribution
overlaps well with MB statistics rather than the electron
FD distribution.
The upper panel in Fig. 1 shows a Monte-Carlo simu-

lation [22] of the kinetic energy distribution of protons
in a bath of 0.1 MeV FD relativistic electrons after a
large number of simulated elastic scattering events.
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This temperature roughly corresponds to the start of the
BBN nuclear reaction epoch. The lower panel shows a
similar result for kT ¼ 0.01 MeV roughly corresponding
to the end of the BBN epoch. Also shown for illustration is
the distribution of a classical MB gas and the FD distri-
bution of electrons. From this it is clear that even at the
highest temperatures of the BBN epoch, in the idealized
case of dilute charged baryons elastically scattering from
relativistic electrons, the baryon distribution functions are
very close to that of a classical Maxwell Boltzmann gas.
Indeed, an analysis of the standard deviations of the proton
distribution from a pure MB distribution is about one
percent over the interval from 0.25kT to 3kT in energy.
This is consistent with numerical and statistical fluctuations
in the simulation.
Using the same simulation technique we have checked

[22] that the thermalized nuclear distribution function is
that of MB statistics independently of the electron distri-
bution function. Even a delta-function electron distribution

function will lead to an MB distribution for nuclei,
consistent with our analysis of the relativistic Boltzmann
equation.

V. DISCUSSION AND CONCLUSIONS

In summary, we have shown that the thermalization
of nuclei during BBN is dominated by Coulomb elastic
scattering with the background mildly relativistic eþ − e−

pair plasma. Hence, even though there are photons and
other nuclei present during the era, these don’t contribute
significantly toward the thermalization of the nuclear
distribution functions. Moreover, we have shown from a
solution to the relativistic multicomponent Boltzmann
equation that the equilibrium distribution of nuclei in the
eþ − e− pair plasma remains very close to MB statistics.
The solution to the Boltzmann equation is confirmed via a
Monte-Carlo thermalization simulation that also recovers a
nuclear MB distribution function independently of the
electron distribution function. An important reason for this
result is the effect of the instantaneous viscosity due to the
motion of the baryons with respect to the background
plasma as shown in [22].
For completeness, in the appendix we also discuss a

Langevin Brownian-motion derivation with the imposition
of thermal equilibrium rather than kinetic-energy equipar-
tition. We show that this also leads to a MB distribution for
nuclei in the eþ − e− pair plasma.
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APPENDIX: LANGEVIN MODEL SOLUTION
FOR BROWNIAN MOTION

For completeness of the theory of the thermalization of a
multicomponent relativistic gas we here derive a Langevin
model for the distribution function for heavy nuclei in a
bath of light relativistic electrons.
In one dimension the Langevin model for Brownian

motion obeys the equation of motion

m _v ¼ −λvþ RðtÞ: ðA1Þ

Here, m is the mass of the particle, v is the velocity, λ is a
drag coefficient, and RðtÞ is a noise term representing
the effect of collisions with the background fluid at time t.

FIG. 1. Monte-Carlo histograms (blue bars) of the kinetic
energy distribution of baryons scattering in a bath of mildly
relativistic FD eþ − e− plasma (black line) at kT ¼ 0.1 MeV
(upper panel) and kT ¼ 0.01 MeV (lower panel) compared to the
kinetic energy distribution of a classical Maxwell-Boltzmann
distribution (red line).
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The force RðtÞ has a Gaussian probability distribution
centered around R ¼ 0 and the value at time tþ τ does not
depend on the value at time t, i.e.,

PðRÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πhRðtÞ2i

p exp

�
−R2

2hRðtÞ2i
�
; ðA2Þ

hRðtÞi ¼ 0; ðA3Þ

and

hRðtÞRðtþ τÞi ¼ hRðtÞ2iδðτÞ: ðA4Þ

These conditions are easily satisfied in the BBN scattering
environment. Note also, that it does not matter whether RðtÞ
is due to scattering from relativistic or nonrelativistic
particles as long as the force has a Gaussian probability
distribution, the Langevin formalism can be applied to
derive the distribution function of the massive particle.
Indeed, massive particles in a relativistic fluid do experi-
ence a random Gaussian force as has been shown
in Ref. [31].
The general solution to Eq. (A1) is given by

vðtÞ ¼ v0e
ð−λtm Þ þ 1

m

Z
t

0

Rðt0Þe
�
−λðt−t0Þ

m

�
dt0: ðA5Þ

Even without specifying the explicit form of RðtÞ,
one can deduce average properties of vðtÞ. In particular,
from Eq. (A5) one can take the limit as t → ∞, to
obtain:

hv2ðtÞi ¼ q
2λm

; ðA6Þ

where q ¼ hRðtÞ2iδðτÞ and hRðtÞ2i is the variance of RðtÞ.
Now, as shown in Eqs. (34)–(37) the temperature

equilibrium between the nonrelativistic baryons and rela-
tivistic background requires:

1

2
mnhv2i ¼

3

2
kT: ðA7Þ

Then using Eq. (A6) one has,

1

2
mnhv2i ¼

q
4λ

¼ 3

2
kT; ðA8Þ

so that

q ¼ 6λkT: ðA9Þ
The Langevin evolution of the velocity distribution

function fðvÞ reduces to a Fokker-Planck equation of
the form

∂fðv; tÞ
∂t ¼ λ

∂ðvfðv; tÞÞ
∂v þ λ

kT
m

∂2fðv; tÞ
∂v2 : ðA10Þ

At equilibrium ∂fðv;tÞ
∂t ¼ 0, so that

∂ðvfðv; tÞÞ
∂v þ kT

m
∂2fðv; tÞ

∂v2 ¼ 0: ðA11Þ

Notice that this is independent of the drag term λ. The
solution for fðvÞ then takes the form

fðvÞ ∝ exp

�
−
mv2

2kT

�
: ðA12Þ

On normalizing one obtains the usual MB distribution

fðvÞ ¼
�

m
2πkT

�3
2

4πv2 exp
�
−
mv2

2kT

�
; ðA13Þ

fðEÞ ¼ 2

�
1

kT

�3
2

ffiffiffiffi
E
π

r
exp

�
−

E
kT

�
: ðA14Þ

Hence, for a nucleus in equilibrium with a relativistic
background eþ − e− plasma, the distribution function can
be described as the usual Maxwell-Boltzmann distribution.
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