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We derive a Hamiltonian formulation of the theory of gauge invariant, linear perturbations in
anisotropic Bianchi I spacetimes, and describe how to quantize this system. The matter content is
assumed to be a minimally coupled scalar field with potential VðϕÞ. We show that a Bianchi I spacetime
generically induces both anisotropies and quantum entanglement on cosmological perturbations, and
provide the tools to compute the details of these features. We then apply this formalism to a scenario in
which the inflationary era is preceded by an anisotropic Bianchi I phase, and discuss the potential
imprints in observable quantities. The formalism developed here paves the road to a simultaneous
canonical quantization of both the homogeneous degrees of freedom and the perturbations, a task that
we develop in a companion paper.

DOI: 10.1103/PhysRevD.101.123531

I. INTRODUCTION

One of the attractive features of the cosmic inflationary
scenario is that it helps to explain why our Universe looks
so simple at large scales. This is the case, in particular, if
one pays attention to anisotropies. According to the
Belinskii-Khalatnikov-Lifshitz conjecture [1], the anisot-
ropies are expected to dominate the expansion close to the
big bang, and could have left some traces in the present
Universe. But in the absence of anisotropic sources, the
contribution of shears to Einstein’s equations fall off
with the expansion significantly faster than the contribu-
tions from radiation, matter, or a cosmological constant.
Consequently, an inflationary phase of exponential expan-
sion is very efficient in washing anisotropies away (see
[2–8] and references therein). This fact simplifies enor-
mously the analysis of the generation of the primordial
perturbations during inflation, since one can safely neglect
anisotropic aspects of the spacetime and work in the much
simpler Friedmann-Lemaître-Robertson-Walker (FLRW)
scenario. However, the analysis of perturbations requires
one to specify the quantum state describing them at the
onset of inflation, and it is common to choose this state to
be isotropic too (e.g. the Bunch-Davies vacuum). This is a
stronger assumption. Contrary to the anisotropies in the
spacetime geometry, anisotropic features in perturbations
do not dilute with the expansion [9]. The best inflation can

do to wash anisotropies in perturbations away is to red-shift
them out of the observable patch of the Universe. But red-
shift is different from dilution; red-shift is inversely propor-
tional to the scale factor, while dilution scales with its
inverse cube. Therefore, red-shift is efficient only if
inflation lasts significantly longer than the minimum
amount required. These arguments, together with the
detection of anomalous anisotropic features in the large-
angle temperature correlation functions in the cosmic
microwave background (CMB) by WMAP [10] and
PLANCK [11], have boosted the motivation to study
primordial anisotropies.
The best studied anisotropic spacetimes are the ones with

Bianchi I-type geometries, the simplest family of space-
times containing anisotropies. They are spatially flat and
reduce to the flat FLRW universe in the shear-free limit.
A special subfamily of Bianchi I spacetimes characterized
by containing an extra spatial rotational symmetry was
analyzed in [12–17], where predictions for the inflationary
power spectrum and non-Gaussianity were made. Another
type of anisotropic models, the so-called shear-free space-
times, have been studied in [18,19]. For the more general
Bianchi I geometries sourced by a scalar field, a complete
and detailed analysis of the classical theory of gauge
invariant perturbation was provided in [20]. The power
spectrum for scalar and tensor perturbations was also
analyzed in [5], although in a less rigorous manner.
These works correctly pointed out that the main observa-
tional features of an anisotropic phase are expected for
large angular scales in the CMB in the form of anisotropic
power spectra and cross-correlations between scalar and
tensor perturbations (see Ref. [6] for a recent summary.)
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The goal of this paper is, on the one hand, to introduce a
Hamiltonian or phase space analysis of classical and
quantum gauge invariant perturbations in a Bianchi I
spacetime (for a Hamiltonian analysis in FLRW, see
e.g. [21–24]). At the classical level, our final result is
equivalent to the outcome of [5,20], and in this respect our
analysis provides a complementary viewpoint from a
purely canonical perspective. More precisely, rather than
starting from Einstein equations, expanding them in per-
turbations, and identifying what combinations of perturba-
tions remain invariant under changes of coordinates that
are linear in the perturbations [5,20], we start from the
linearized phase space of general relativity around Bianchi I
geometries, and use canonical methods to isolate the gauge
invariant degrees of freedom at leading order in perturba-
tions. This procedure elegantly reduces the problem of
finding gauge invariant fields and their equations of motion
to solving a Hamilton-Jacobi equation for the generating
function of a canonical transformation. Our approach
provides a geometric and tractable approach to deal with
the complexities of cosmological perturbations in the
presence of anisotropies and, in particular, makes it
possible to implement the mathematical framework in a
user-friendly computational algorithm written in
Mathematica, that we have made publicly available in [25].
On the other hand, the quantum theory of cosmological

perturbations presented in this paper differs from previous
treatments. The quantization of the gauge invariant pertur-
bations in Bianchi I spacetimes offers extra challenges
compared to the FLRW counterpart, arising from the fact
that scalar and tensor perturbations are coupled in the
presence of anisotropies (see [26,27] for previous analy-
ses). Interacting field theories are known to be significantly
less tractable than free ones, and perturbative techniques
are often required to derive physical predictions. In this
paper, we provide a complete and exact (i.e. nonperturba-
tive in anisotropies) formulation of the quantum field
theory of gauge invariant fields. The key observation is
that, although these fields are coupled, at leading order in
perturbations the theory is still linear. It is therefore
possible to use rigorous quantization techniques for linear
fields in curved spacetimes [28]. We follow a canonical (or
Hamiltonian) viewpoint and quantize the theory starting
from the classical phase space. This strategy has several
advantages, particularly in the formulation of the
Schrödinger picture, which contains important subtleties
in curved spacetimes [29]. This picture is particularly
illuminating to show how anisotropies in the spacetime
geometry induce quantum entanglement between scalar
and tensor perturbations.
Another fact that motivates our analysis is the extension

of the theory presented here to scenarios of quantum
cosmology, where the Bianchi I geometry itself is also
quantized, together with the perturbations. Many of the
approaches to quantum cosmology are formulated in a

Hamiltonian language, and therefore one needs the
canonical description of perturbations introduced in this
paper to simultaneously quantize the Bianchi I back-
ground together with the gauge invariant perturbations.
We illustrate this point in detail in a companion paper
[30], where we study this problem in a scenario where the
big bang singularity is replaced by a cosmic bounce,
which connects two classical branches of the Universe,
one contracting and one expanding. The Universe iso-
tropizes in the past and future, but it is anisotropic around
the time of the bounce. One can then analyze the evolution
of gauge invariant perturbations that start in an adiabatic
vacuum state in the remote past, propagate across the
anisotropic bounce, and continue the evolution until the
inflationary phase of the Universe. This is a neat example
that shows the way cosmic perturbations retain memory of
the anisotropic phase of the Universe and leave an imprint
in the CMB, even though anisotropies in the background
spacetime are relevant only during a short period of time
around the cosmic bounce [30].
This paper is organized as follows. In Sec. II we

formulate the canonical theory of Bianchi I geometries.
Section III describes the classical theory of linear pertur-
bations thereon, and the way to isolate the gauge invariant
degrees of freedom of these perturbations. Section IV is
devoted to the formulation of the quantum kinematics, i.e.
the construction of the Hilbert space and a representation
of field and momentum operators on it. Dynamics on this
Hilbert space is introduced in Sec. V, both in the
Heisenberg and Schrödinger pictures. These two view-
points illuminate complementary aspects of the time
evolution, particularly regarding quantum entanglement
between scalar and tensor perturbations. Section VI illus-
trates our theoretical construction with a concrete example
of a Bianchi I phase of the Universe followed by a period
of inflation. Appendixes A, B, and C, contain some details
and calculations that have been omitted in the main body
of this article.

II. HAMILTONIAN FORMULATION
OF BIANCHI I SPACETIMES

We are interested in general relativity minimally
coupled to a scalar fieldΦ that evolves under the influence
of a potential VðΦÞ. We assume the spacetime manifold
to be M ¼ R ×M3, with M3 having the R3 topology.
In the Arnowitt-Deser-Misner (ADM) formulation [31],
the phase space VGR of general relativity is characterized
by two couples of fields defined on M3, ðΦðx⃗Þ; PΦðx⃗Þ;
hijðx⃗Þ; πijðx⃗ÞÞ, where PΦðx⃗Þ is the conjugate momentum
of Φðx⃗Þ, hijðx⃗Þ is a Riemannian metric that describes
the intrinsic spatial geometry of M3, and its conjugate
momentum πijðx⃗Þ describes its extrinsic geometry (Latin
indices i, j run from 1 to 3). Recall that fields in phase
space do not depend on time—time will appear below
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as the parameter along the flow generated by the
Hamiltonian. The nonvanishing Poisson brackets between
these fields are

fΦðx⃗Þ; PΦðx⃗0Þg ¼ δð3Þðx⃗ − x⃗0Þ;
fhijðx⃗Þ; πklðx⃗0Þg ¼ δkðiδ

l
jÞδ

ð3Þðx⃗ − x⃗0Þ; ð2:1Þ

where δkðiδ
l
jÞ ≡ 1

2
ðδki δlj þ δkjδ

l
iÞ. These canonical fields are

subject to the four constraints of general relativity: The
scalar and diffeomorphism (or vector) constraints

Sðx⃗Þ ¼ 2κffiffiffi
h

p
�
πijπij −

1

2
π2
�
−

ffiffiffi
h

p

2κ
ð3ÞRþ 1

2
ffiffiffi
h

p P2
Φ

þ
ffiffiffi
h

p
VðΦÞ þ

ffiffiffi
h

p

2
DiΦDiΦ ≈ 0; ð2:2Þ

V iðx⃗Þ ¼ −2
ffiffiffi
h

p
hijDkðh−1=2πkjÞ þ PΦDiΦ ≈ 0; ð2:3Þ

where κ ¼ 8πG, and h, ð3ÞR, and Di are the determinant,
the Ricci scalar, and the covariant derivative associated
with the metric hij, respectively.
Time evolution in VGR is generated by the Hamiltonian

H, which is a combination of constraints

H ¼
Z

d3x½Nðx⃗ÞSðx⃗Þ þ Niðx⃗ÞV iðx⃗Þ�: ð2:4Þ

Nðx⃗Þ and Niðx⃗Þ are called the lapse and shift functions,
respectively, and they play the role of Lagrange multi-
pliers. See [32] for details of the ADM formulation
omitted here.
We are interested in geometries that are “close” to a

homogeneous, anisotropic Bianchi I spacetime. In the
Hamiltonian language, this means that we will restrict
our attention to a subset of the phase space VGR made of
Bianchi I-type spacetimes VBI ∈ VGR together with purely
inhomogeneous linear perturbations around it. In that
neighborhood, we can write the canonical fields as

Φðx⃗Þ ¼ ϕþ δϕðx⃗Þ;
PΦðx⃗Þ ¼ pϕ þ δpϕðx⃗Þ;
hijðx⃗Þ ¼ h

∘
ij þ δhijðx⃗Þ;

πijðx⃗Þ ¼ π
∘ ij þ δπijðx⃗Þ; ð2:5Þ

where δϕðx⃗Þ, δpϕðx⃗Þ, δhijðx⃗Þ, δπijðx⃗Þ describe small
perturbations around the homogeneous variables ϕ, pϕ,

h
∘
ij, π

∘ ij (From now on, all the indices i; j; k;… will be

raised and lowered with h
∘ ij

and h
∘
ij, respectively).

The background variables are defined as the homo-
geneous part of the canonical fields, in the sense that

ϕ≡ 1=V0

R
M3

d3xΦðx⃗Þ, and similarly for the other varia-
bles.1 In Fourier space, the background variables encode
the k⃗ ¼ 0 mode of the canonical fields. This automatically
implies that perturbations are purely inhomogeneous, in
the sense that

R
M3

d3xδϕðx⃗Þ ¼ 0. Equivalently, they have

Fourier components with k⃗ ≠ 0 only.
We now discuss the dynamics of the background

variables and postpone the study of perturbations for the

next section. The variables ϕ, pϕ, h
∘
ij, π

∘ ij are chosen to
describe a Bianchi I geometry. The nonzero canonical
Poisson brackets are

fϕ; pϕg ¼ 1

V0

; fh
∘
ij; π

∘ klg ¼ 1

V0

δkðiδ
l
jÞ; ð2:6Þ

Next, as it is customary, we restrict ourselves to spatial
coordinates ðx1; x2; x3Þ for which the canonical variables
take a diagonal form (this is always possible for
Bianchi I metrics when the matter content is a perfect
fluid [33])

h
∘
ij ¼ diagða21; a22; a23Þ; π

∘ ij ¼ diag

�
πa1
2a1

;
πa2
2a2

;
πa3
2a3

�
:

ð2:7Þ

With this choice of numerical factors in (2.7), the Poisson
brackets (2.6) translate to fai; πajg ¼ 1

V0
δij. Note that the

subscripts i, j in ai and πaj are just labels, and not tensorial
indices. The scalar constraint, when restricted to VBI, takes
the form

Sð0Þ ¼ 1

2

ffiffiffi
h
∘q �

κ

�
a21π

2
a1

2
þ a22π

2
a2

2
þ a23π

2
a3

2
− a1πa1a2πa2

− a2πa2a3πa3 − a3πa3a1πa1

�
þ p2

ϕ þ 2h
∘
VðϕÞ

�
≈ 0;

ð2:8Þ

where h
∘
¼ ða1a2a3Þ2 ¼ a6 is the determinant of h

∘
ij,

and we have defined the average scale factor as
a≡ ða1a2a3Þ1=3. The vector constraint vanishes identically
due to the homogeneity (and, as it is standard in the

1Because in the canonical treatment of Bianchi I geometries we
have to deal with homogeneous fields, and because M3 is
noncompact, the spatial integrals involved in the definition of
the Hamiltonian and the Poisson brackets diverge. This spurious
infrared divergence can be eliminated by restricting the integrals
to a fiducial coordinate volume V0, arbitrarily large but finite, that
can be understood as an infrared regulator. Physical predictions
will not depend on V0, and we can take V0 → ∞ at the end of the
calculation.
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literature of Bianchi models, we set the shift Ni equal to
zero2). Then, the Hamiltonian (2.4) reduces to

HBI ¼
Z

d3xNSð0Þ: ð2:9Þ

Since Sð0Þ is homogeneous, only homogeneous lapses N
contribute to (2.9)—this is because the integral

R
M3

d3x of
any purely inhomogeneous function vanishes identically—
and then the spatial integral produces simply the total
coordinate volume, HBI ¼ V0NSð0Þ. Choosing N ¼ 1 cor-
responds to using the familiar cosmic time t, and N ¼ a to
conformal time η. The equations of motion are then given
by Hamilton’s equations (we use cosmic time)

_ai ¼ fai; HBIg; _πai ¼ fπai ; HBIg;
_ϕ ¼ fϕ; HBIg ¼ pϕ

a3
; _pϕ ¼ fpϕ; HBIg ¼ −a3

dVðϕÞ
dϕ

:

ð2:10Þ

All aspects about dynamics can be extracted from these
equations. Recall that under a rescaling of the three spatial
coordinates xi → αixi (no sum in repeated indices), the
directional scale factors change as ai → αiai. Therefore,
the scale factors ai are not physical observables—only
ratios aiðtÞ=aiðt0Þ are. Hence, a solution to these equations
is uniquely characterized by specifying the value of πa1ðt0Þ,
πa2ðt0Þ, πa3ðt0Þ, ϕðt0Þ, and pϕðt0Þ at some instant t0 [the
choice of aiðt0Þ does not alter the physical content of the
solution]. But since these degrees of freedom are subject to
the constraint (2.8), a dynamical trajectory can be singled
out, for instance, by specifying the first four and the sign of
pϕðt0Þ [the constraint only determines p2

ϕðt0Þ, and not
its sign].
It is common and convenient to rewrite Eqs. (2.10) in a

different form. Namely, the dynamical degrees of freedom
can be separated into those describing the evolution of a
spatial physical volume element, and those describing
anisotropies. The equations of motion associated with
the former take a form similar to the Friedmann equations
of isotropic cosmology, while the dynamics of the anisot-
ropies is determined by another set of differential equa-
tions. In order to obtain these equations, let us first define
appropriate variables. Consider the timelike vector field
ta ≡ ð∂tÞa (where a; b;… are spacetime tensor indexes).
Let us decompose the tensor ∇atb in its acceleration,
expansion, shear, and twist [34], where ∇a is the covariant
derivative compatible with the spacetime metric gab.

The acceleration ab ≡ ta∇atb is zero, since ta is geodesic.
The twist wab, that is given by the antisymmetric part of
∇atb, also vanishes, since ta is hypersurface orthogonal.
The expansion is defined by the trace of ∇atb, and it is
given by

Θ≡ h
∘ ab∇atb ¼

_a1
a1

þ _a2
a2

þ _a3
a3

; ð2:11Þ

with h
∘
ab ¼ gab þ nanb, and na the unit vector field normal

to M3 (with our choice Ni ¼ 0 for the shift, we have
ta ¼ na). The average Hubble rate H ¼ _a

a is related to the

expansion byH ¼ 1
3
Θ ¼ 1

3
ðH1 þH2 þH3Þ, whereHi ≡ _ai

ai
are the directional Hubble rates. The shear is defined as the
symmetric, trace-free part of ∇atb

σab ¼ ∇ðatbÞ −
1

3
Θh

∘
ab ¼ diagð0; a21σ1; a22σ2; a23σ3Þ;

ð2:12Þ

where σi ¼ ðHi −HÞ, i ¼ 1, 2, 3. The pullback of this
spacetime tensor to the spatial hypersurfaceM3 is therefore

σij ¼ diagða21σ1; a22σ2; a23σ3Þ: ð2:13Þ

Since σij is traceless with respect to h
∘
ij, its components

are not independent, but they are constrained by
σ1 þ σ2 þ σ3 ¼ 0. For later use, it is convenient to define
the shear squared

σ2 ¼ σijσ
ij ¼ σ21 þ σ22 þ σ23

¼ ðH1 −HÞ2 þ ðH2 −HÞ2 þ ðH3 −HÞ2; ð2:14Þ

with σij ¼ h
∘ ik

h
∘ jl
σkl. The relation of the canonical momenta

πai withH and σi can be obtained from the familiar relation
between momenta and velocities, and it reads

πai ¼
1

κ

a3

ai
ðσi − 2HÞ: ð2:15Þ

With these definitions at hand, we can now extract from
(2.10) the equations of motion for the degrees of freedom
that describe the evolution of the spatial volume element.
They take the form

ä
a
¼ −

κ

6
½ρþ 3P� − σ2

3
; ϕ̈þ 3

_a
a
_ϕþ dVðϕÞ

dϕ
¼ 0:

ð2:16Þ

These variables are subject to the scalar constraint (2.8),
which can be written as

2This condition yields a spacetime metric invariant under
parity (spatial inversions). The converse is also true: imposing
invariance under spatial inversion implies Ni ¼ 0. This symmetry
will play an important role in the quantum theory of gauge
invariant perturbations discussed below.
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H2 ¼ κ

3
ρþ σ2

6
; ð2:17Þ

where we have defined the energy and pressure densities
of ϕ, ρ≡ 1

2
_ϕ2 þ VðϕÞ and P≡ 1

2
_ϕ2 − VðϕÞ, respectively.

Note that these expressions contain information about the
anisotropies, via σ2, and therefore the evolution of the mean
scale factor is coupled to the dynamics of anisotropies. But
as we will shortly see, the evolution of σ2 is remarkably
simple, and it is given by σ2 ¼ Σ2

a6, where Σ
2 is a constant.3

Adding this piece of information makes Eqs. (2.16)–(2.17)
a complete system for a and ϕ, which can be solved
independently of other details in the anisotropies.
Equations (2.16) and (2.17), which we have derived from
Hamilton’s equations, are equivalent to the diagonal com-
ponents of Einstein’s equations, and for Σ2 ¼ 0 they reduce
to the familiar FLRW theory.
On the other hand, (2.10) provides the following

equations of motion for the anisotropies:

_σij ¼ −3Hσij: ð2:18Þ

These equations are equivalent to the traceless components
of Einstein’s equations. The solutions to (2.18) are simply
σi ¼ Σi=a3, where Σi are three constants, constrained to
satisfy Σ1 þ Σ2 þ Σ3 ¼ 0; hence, only two of them are
independent. From this solution we immediately see that
σ2 ¼ Σ2

a6
, where Σ2 ¼ Σ2

1 þ Σ2
2 þ Σ2

3.
It is convenient to parametrize the freedom in the Σi’s in

terms of Σ2 and another constant of motion, Ψ, as

σ1 ¼
ffiffiffi
2

3

r
Σ
a3

sinΨ; σ2 ¼
ffiffiffi
2

3

r
Σ
a3

sin

�
Ψþ 2π

3

�
;

σ3 ¼
ffiffiffi
2

3

r
Σ
a3

sin

�
Ψþ 4π

3

�
; ð2:19Þ

where Σ≡ ffiffiffiffiffi
Σ2

p
. The relevant values of Ψ fall in the range

½π=6; π=2�. Values outside this interval only add a physi-
cally irrelevant permutation of the values of the σi’s.
To summarize, by specifying Hðt0Þ, ϕðt0Þ, and the

sign of _ϕðt0Þ at some instant t0, together with Σ2,
Eqs. (2.16)–(2.17) provide a unique solution for aðtÞ

and ϕðtÞ that completely describes the evolution of the
scalar field and the spatial volume element. Furthermore, a
choice of Ψ completely specifies the evolution of aniso-
tropies by means of Eqs. (2.19).

III. PERTURBATIONS

Perturbation fields δϕðx⃗Þ, δpϕðx⃗Þ, δhijðx⃗Þ, δπklðx⃗Þ were
defined in Eqs. (2.5), and their canonical Poisson brackets
can be obtained from (2.1) and (2.6). They are

fδϕðx⃗Þ; δpϕðx⃗0Þg ¼ δð3Þðx⃗ − x⃗0Þ − 1

V0

;

fδhijðx⃗Þ; δπklðx⃗0Þg ¼ δkðiδ
l
jÞ

�
δð3Þðx⃗ − x⃗0Þ − 1

V0

�
: ð3:1Þ

Equations (2.1) and (2.6) also imply that all Poisson
brackets between background variables and perturbations
vanish. The distribution δð3Þðx⃗ − x⃗0Þ − 1

V0
is the Dirac delta

on the space of purely inhomogeneous fields. Perturbations
are subject to the four constraints (2.2) and (2.3). It is
convenient to expand them as

Sðx⃗Þ ¼ Sð0Þ þ Sð1Þðx⃗Þ þ Sð2Þðx⃗Þ þ Sð3Þðx⃗Þ þ � � � ;
V iðx⃗Þ ¼ V ð0Þ

i þ V ð1Þ
i ðx⃗Þ þ V ð2Þ

i ðx⃗Þ þ V ð3Þ
i ðx⃗Þ þ � � � ; ð3:2Þ

where the superscripts in parentheses denote the number
of perturbation fields contained in each term. In this paper
we will work at the lowest order in perturbations, that
corresponds to keeping only linear terms in the equations of
motion. This is equivalent to truncate the constraints at
second order, i.e. to disregard Sð3Þðx⃗Þ, V ð3Þðx⃗Þ and higher
order terms.
Next, we expand the lapse and shift as N þ δNðx⃗Þ and

Ni þ δNiðx⃗Þ, where N and Ni are homogeneous, and for
consistency with the gauge used for the Bianchi I back-
ground metric, we take Ni ¼ 0. On the other hand, the
perturbations δNðx⃗Þ and δNiðx⃗Þ are the inhomogeneous
parts of the lapse and shift, respectively.

Recall that in a Bianchi I spacetime V ð0Þ
i identically

vanishes, and Sð0Þ only constrains background degrees of
freedom. Hence the physics of perturbations needs to be
extracted from the constraints that are linear and quadratic
in the perturbations. It is both natural and convenient to

interpret Sð1Þðx⃗Þ and V ð1Þ
i ðx⃗Þ as constraints on perturba-

tions, and define their Hamiltonian evolution from the
quadratic contributions in the perturbations to the con-
straints. This is what we do in the next two subsections.

A. Gauge invariant perturbations

We have a total of seven degrees of freedom (per point
of space) in configuration variables—six from gravity,
δhijðx⃗Þ, and one from the matter sector δϕðx⃗Þ—and seven

3The factor 1=a6 implies that the contribution of anisotropies
dilutes as stiff matter, faster than cold matter or radiation in an
expanding universe. But note that this evolution for σ2 is true only
in the absence of anisotropic sources in the matter sector, as it is
the case if matter is made of a scalar field. In the more general
case where the matter source is given by a perfect fluid with
stress-energy tensor containing a nonzero anisotropic stress tab,
Tab ¼ ρnanb þ Pðg° ab þ nanbÞ þ tab, Eq. (2.18) describing the
evolution of anisotropies acquire a source term proportional to
tab, _σab ¼ −3Hσab þ κtab, and the evolution of σ2 becomes more
complicated.

HAMILTONIAN THEORY OF CLASSICAL AND QUANTUM GAUGE … PHYS. REV. D 101, 123531 (2020)

123531-5



conjugate momenta. But they are subject to four con-

straints, Sð1Þðx⃗Þ ≈ 0, V ð1Þ
i ðx⃗Þ ≈ 0. In Dirac’s terminology,

these are first class constraints, meaning that they are
generators of gauge transformations. This is to say, the flow
they generate in phase-space relates configurations that
must be identified as physically equivalent. Hence, each of
these four constraints reduces the number of physical
degrees of freedom by two, one due to the restriction they
impose to the hypersurface where they vanish, and another
arising from the identification of points along the gauge
orbits they generate. Therefore, we are left with 14 − 8 ¼ 6
physical degrees of freedom (per point of space) in the
phase space of perturbations. The goal of this section is to
isolate these degrees of freedom. Their dynamics will be
studied in the next section.
To isolate the physical degrees of freedomwewill extract

out of the seven canonical pairs of perturbations three pairs
that are gauge invariant, i.e. that remain invariant under the
gauge flows or, equivalently, that Poisson-commute with

the four gauge generators Sð1Þðx⃗Þ and V ð1Þ
i ðx⃗Þ. There exists

an elegant and simple procedure to do this [35], consisting
in finding a new set of canonical variables in which these
four constraints are a subset of the new momenta. This is of
course possible because these constraints are first class,
i.e. they Poisson-commute among themselves.4 For linear
systems such as the one we are considering here, it is
always possible to achieve this globally in the phase space
of perturbations. The canonically conjugate variables of
those four momenta are obviously pure gauge fields. On the
other hand, the canonical Poisson brackets guarantee that
the other three canonical pairs are automatically gauge
invariant. Furthermore, two facts make this strategy useful.
On the one hand, the problem of finding this canonical
transformation reduces to solving a simple Hamilton-
Jacobi equation for a generating function and, on the other
hand, the dynamics of gauge invariant and pure gauge
fields decouple, allowing us to write a theory solely in
terms of gauge invariant (unconstrained) fields. There are
however multiple solutions to this problem (obviously,
since linear combinations of gauge invariant fields are also
gauge invariant). We will choose the gauge invariant fields
that in the isotropic limit reduce to the familiar scalar
comoving curvature perturbations and tensors modes, that
are commonly used in FLRW cosmologies.
In order to meet our goal, we start by applying the

standard scalar-vector-tensor (SVT) decomposition to
the metric perturbations. This decomposition is based on
the property of perturbations under rotations that leave k⃗

invariant, and it is particularly useful in spacetimes that are
symmetric under rotations, such as FLRW geometries,
since it guarantees that SVT modes evolve independently
of each other. Bianchi I metrics do not have any rotational
symmetry, and therefore the SVT decomposition does not
offer any clear advantage compared to other choices—none
of the decompositions available in the literature decouples
the different components in δhijðx⃗Þ [5,19]. But we still find
the SVT decomposition the most useful choice, since in
scenarios of interest for cosmology the spacetime isotrop-
izes at late times. We begin by Fourier-expanding the
metric perturbations5

δhijðx⃗Þ ¼
X
k⃗≠0⃗

δh̃ijðk⃗Þeik⃗·x⃗; δπijðx⃗Þ ¼
X
k⃗≠0⃗

δπ̃ijðk⃗Þeik⃗·x⃗:

ð3:3Þ

Here, k⃗ · x⃗ ¼ kixi, and ki is time independent (the so-called
comoving wave vector). Note also that the “zero-mode”
k⃗ ¼ 0⃗ has been excluded from the sum; this is because
perturbations are purely inhomogeneous fields and do not
have any homogeneous components. Similarly, we Fourier-
expand the perturbations of the scalar field and its con-
jugate momentum

δϕðx⃗Þ ¼
X
k⃗≠0⃗

δϕ̃ðk⃗Þeik⃗·x⃗; δpϕðx⃗Þ ¼
X
k⃗≠0⃗

δp̃ϕðk⃗Þeik⃗·x⃗:

ð3:4Þ

The Poisson brackets (3.1) imply

fδϕ̃ðk⃗Þ; δp̃ϕðk⃗0Þg ¼ V−1
0 δk⃗;−k⃗0 ;

fδh̃ijðk⃗Þ; δπ̃klðk⃗0Þg ¼ V−1
0 δkðiδ

l
jÞδk⃗;−k⃗0 : ð3:5Þ

Note that the conjugate variables of δϕ̃ðk⃗Þ and δh̃ijðk⃗Þ are
δp̃ϕð−k⃗Þ and δπ̃ijð−k⃗Þ, respectively, rather than δp̃ϕðk⃗Þ
and δπ̃ijðk⃗Þ.
The scalar-vector-tensor decomposition is obtained by

writing δh̃ijðk⃗Þ in a convenient basis in the vector space of
3 × 3 symmetric matrices

δh̃ijðk⃗Þ¼
X6
n¼1

γnðk⃗ÞAðnÞ
ij ðk̂Þ; δπ̃ijðk⃗Þ¼

X6
n¼1

πnðk⃗ÞAij
ðnÞðk̂Þ;

ð3:6Þ
4While the Poisson brackets between any of the three vector

constraints V ð1Þ
i ðx⃗Þ vanish, the vector constraints do not Poisson

commute with Sð1Þðx⃗Þ off shell. However, these Poisson brackets
are proportional to the zeroth-order scalar constraint Sð0Þ, that
vanishes on solutions of the background equations of motion
(i.e. on-shell).

5Here we use the Fourier expansion of fields in a box of
fiducial volume V0. But one must keep in mind that we will take
the limit V0 → ∞ at the end of the calculation. Working in a box
only changes the calculations in that the wave numbers k⃗ are

restricted to a discrete lattice ðV
1=3
0

2π k⃗Þ ∈ Z3.
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where

Að1Þ
ij ¼ h

∘
ijffiffiffi
3

p ; Að4Þ
ij ¼ 1ffiffiffi

2
p ðk̂iŷj þ k̂jŷiÞ;

Að2Þ
ij ¼

ffiffiffi
3

2

r �
k̂ik̂j −

h
∘
ij

3

�
; Að5Þ

ij ¼ 1ffiffiffi
2

p ðx̂ix̂j − ŷiŷjÞ;

Að3Þ
ij ¼ 1ffiffiffi

2
p ðk̂ix̂j þ k̂jx̂iÞ; Að6Þ

ij ¼ 1ffiffiffi
2

p ðx̂iŷj þ x̂jŷiÞ;

ð3:7Þ

and Aij
ðnÞðk̂Þ are obtained from AðnÞ

ij by raising the indices

with h
∘
ij. In these expressions k̂ is the unit vector (with

respect to h
∘
ij) in the direction of k⃗. Together with x̂ and ŷ,

they form a time-dependent orthonormal triad with ori-
entation defined by x̂ × ŷ ¼ k̂.6 The dependence on time of
these three vectors originates from the time dependence

of the Bianchi I metric h
∘
ij, and it makes AðnÞ

ij also functions
of time (see Appendix A for further details). The compo-
nents γnðk⃗Þ and πnðk⃗Þ are called scalar modes for n ¼ 1, 2,
vector modes for n ¼ 3, 4, and tensor modes for n ¼ 5, 6.
These names are motivated from the transformation

properties of the matrices AðnÞ
ij under rotations around

the direction k̂. We implement the decomposition (3.6)
as a time-dependent canonical transformation between
ðh̃ijðk⃗Þ; δπ̃ijðk⃗ÞÞ and ðγnðk⃗Þ; πnðk⃗ÞÞ. The details can be
found in Appendix A. The Poisson brackets (3.5) become

fγnðk⃗Þ; πmðk⃗0Þg ¼ V−1
0 δnmδk⃗;−k⃗0 ;

fγnðk⃗Þ; γmðk⃗0Þg ¼ 0;

fπnðk⃗Þ; πmðk⃗0Þg ¼ 0: ð3:8Þ

For later use, we also define σðnÞðk̂Þ≡ σijA
ij
ðnÞðk̂Þ, for

n ¼ 2;…; 6, as the projection of the shear tensor σij on

the basis elements Aij
ðnÞðk̂Þ (there is no σð1Þ, because σij is

traceless). It should be clear from this definition that σðnÞðk̂Þ
are not the Fourier components of the tensor σij—this
should be obvious since σij is position independent, and
therefore its Fourier transform would contain only the
k⃗ ¼ 0⃗ mode. σðnÞðk̂Þ is rather a compact way of writing the

product of σij and the basis tensors Aij
ðnÞðk⃗Þ, a combination

that will repeatedly appear in our expressions below.
Expressions (A13)–(A16) in Appendix A show the form

of the scalar and vector constraints written in terms of γn
and πn. From them, it is straightforward to check that none
of these variables, neither δϕ̃ nor δp̃ϕ, Poisson-commute
with either the scalar Sð1Þ or any of the vector constraints

V ð1Þ
i . Therefore, they are not gauge invariant. In order to

find gauge invariant variables, as explained above, we look
for a canonical transformation

γαðk⃗Þ; παðk⃗Þ → Γαðk⃗Þ; Παðk⃗Þ ð3:9Þ

[where we have defined γ0 ≡
ffiffiffiffiffi
4κ

p
δϕ̃ðk⃗Þ and π0 ≡ffiffiffiffiffiffiffiffiffiffi

1=4κ
p

δp̃ϕðk⃗Þ] to new canonical pairs Γαðk⃗Þ and Παðk⃗Þ,
α ¼ 0;…; 6, such that four of the new momenta agree with
the Fourier components of the constraints

Π3ðk⃗Þ¼
1

jk⃗j
S̃ð1Þðk⃗Þ; Π4ðk⃗Þ¼

1

ijk⃗j
k̂jṼ ð1Þ

j ðk⃗Þ;

Π5ðk⃗Þ¼
1

ijk⃗j
x̂jṼ ð1Þ

j ðk⃗Þ; Π6ðk⃗Þ¼
1

ijk⃗j
ŷjṼ ð1Þ

j ðk⃗Þ: ð3:10Þ

Here, jk⃗j≡ ffiffiffiffiffiffiffiffi
kiki

p
is the norm of k⃗. The factor 1

jk⃗j has been

introduced for dimensional reasons (recall that k⃗ ≠ 0⃗), and
the imaginary unit for convenience in the calculation. As
mentioned above, this automatically implies that Γαðk⃗Þ are
gauge invariant for α ¼ 0, 1, 2, and pure gauge for α ¼ 3, 4,
5, 6. This transformation can be obtained by finding a
suitable generating function Gðγα;ΠαÞ, that we choose to
be of type 2—i.e., it depends on old variables γα and new
momenta Πα—and from which the rest of the variables are
given by

παðk⃗Þ ¼
∂Gðγβ;ΠβÞ
∂γαðk⃗Þ

; Γαðk⃗Þ ¼
∂Gðγβ;ΠβÞ
∂Παðk⃗Þ

: ð3:11Þ

The generating function we are looking for is a solution of
the following Hamilton-Jacobi-type equations:

6Under a parity transformation δhijðx⃗Þ → δhijð−x⃗Þ, we have
δh̃ijðk⃗Þ → δh̃ijð−k⃗Þ. Consequently, the matrices AðnÞ

ij ðk̂Þ trans-

form as follows: AðnÞ
ij ðk̂Þ → AðnÞ

ij ð−k̂Þ ¼ AðnÞ
ij ðk̂Þ for n ¼ 1, 2, 4, 5,

and AðnÞ
ij ðk̂Þ → AðnÞ

ij ð−k̂Þ ¼ −AðnÞ
ij ðk̂Þ for n ¼ 3, 6, where we have

used that under k̂ → −k̂, the unit vectors x̂ and ŷ transform to x̂
and −ŷ respectively (since the three unit vectors must maintain
their relative orientation). This implies that under parity,
γnðk⃗Þ transforms as γnðk⃗Þ → γnð−k⃗Þ for n ¼ 1, 2, 4, 5, and
γnðk⃗Þ → −γnð−k⃗Þ for n ¼ 3, 6. On the other hand, the reality of
δhijðx⃗Þ implies that, under complex conjugation, γ̄nðk⃗Þ ¼ γnð−k⃗Þ
for n ¼ 1, 2, 4, 5, and γ̄nðk⃗Þ ¼ −γnð−k⃗Þ for n ¼ 3, 6. Therefore,
a parity transformation can be implemented by changing
γnðk⃗Þ → γ̄nðk⃗Þ for all n.
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Π3ðk⃗Þ ¼
1

jk⃗j
S̃ð1Þ

�
γα; πα ¼

∂Gðγβ;ΠβÞ
∂γα

�
;

Π4ðk⃗Þ ¼
1

ijk⃗j
k̂jṼ ð1Þ

j

�
γα; πα ¼

∂Gðγβ;ΠβÞ
∂γα

�
;

Π5ðk⃗Þ ¼
1

ijk⃗j
x̂jṼ ð1Þ

j

�
γα; πα ¼

∂Gðγβ;ΠβÞ
∂γα

�
;

Π6ðk⃗Þ ¼
1

ijk⃗j
ŷjṼ ð1Þ

j

�
γα; πα ¼

∂Gðγβ;ΠβÞ
∂γα

�
: ð3:12Þ

These differential equations forGðγα;ΠαÞ can be converted
into algebraic equations by noticing that, because we are
working at linear order in perturbations, the generating
function Gðγα;ΠαÞ can only depend on γα and Πα quad-
ratically, and hence it must be of the form

G ¼
X
k⃗

ðBαβΠαγβ þ CαβγαγβÞ; ð3:13Þ

where Bαβ and Cαβ are matrices whose unknown compo-
nents do not depend on perturbations, although they can
depend on background variables, and Cαβ is symmetric.
The generating function contains therefore 77 unknown
coefficients.7 Equations (3.12) provide then a set of
algebraic relations for the components of Bαβ and Cαβ.
More precisely, (3.12) contain 44 equations, out of which
only 38 are independent. Hence, these equations have
multiple solutions, and any of them will provide us with
three independent pairs of gauge invariant variables that are
equally legitimate; physical predictions are of course
independent of the variables we use in our calculations.
As mentioned before, we choose the solution for which the
gauge invariant variables agree with the familiar scalar
perturbations and the two tensor modes in the isotropic
limit. They are

Γ0ðk⃗Þ ¼ γ0 þ
ffiffiffi
κ

p
pϕffiffiffiffiffiffiffiffi

1=6
p

κapa þ a3σð2Þ
ð

ffiffiffi
2

p
γ1 − γ2Þ; ð3:14Þ

Γ1ðk⃗Þ ¼ γ5 þ
a2σð5Þffiffiffiffiffiffiffiffi

1=6
p

κpa þ a2σð2Þ
ð

ffiffiffi
2

p
γ1 − γ2Þ; ð3:15Þ

Γ2ðk⃗Þ ¼ γ6 þ
a2σð6Þffiffiffiffiffiffiffiffi

1=6
p

κpa þ a2σð2Þ
ð

ffiffiffi
2

p
γ1 − γ2Þ; ð3:16Þ

where pa is the canonically conjugate variable of the
average scale factor a, and it is related to the expansion
by pa ¼ −2a2Θ=κ. Note that, choosing three gauge invari-
ant variables fixes 21 coefficients, leaving 18 of them free,
which can be fixed by demanding their Hamiltonian to have
a simple form. Further details about this canonical trans-
formation, such as the form of the conjugate momenta Π0,
Π1, and Π2, and of the pure gauge fields, can be found in
Appendix A. One can see there that Π0, Π1, and Π2 also
involve vector modes γ3 and γ4, and the components σð3Þ
and σð4Þ of the shear (recall that σð1Þ ¼ 0, because the shear
tensor is traceless). It is straightforward to check that Γ0,
Γ1, and Γ2 and their conjugate momenta Poisson-commute
with the linear constraints. Hence, they span the phase
space of gauge invariant fields.
In the isotropic limit σðnÞ → 0, Γ1 and Γ2 reduce to the

familiar two polarizations of transverse and traceless
tensor modes, and Γ0 becomes proportional to the comov-
ing curvature perturbation R, i.e. Γ0 ¼

ffiffiffiffiffi
4κ

p
z
aR, where

z ¼ − 6
κ
pϕ

pa
¼ _ϕ

H a. But in presence of anisotropies, there are
no gauge invariant fields that are combinations of tensor
modes of the metric only; mixture with scalar modes is
needed to achieve gauge invariance.

B. Dynamics: Physical Hamiltonian

The strategy followed in the previous subsection guar-
antees that the dynamics of gauge invariant fields decouples
from pure gauge ones [35]. The dynamics of the former is
generated by the Hamiltonian (see Appendix B for further
details)

Hpert ¼
NðtÞV0

2aðtÞ
X
k⃗

X2
μ;μ0¼0

�
4κ

a2ðtÞ δμ;μ0 jΠμðk⃗Þj2

þ a2ðtÞ
4κ

ðδμ;μ0k2 þ Uμμ0 ðt; k⃗ÞÞΓμðk⃗ÞΓ̄μ0 ðk⃗Þ
�
;

ð3:17Þ

where k2ðtÞ≡ a2ðtÞkikj ¼ a2ðtÞð k2
1

a2
1
ðtÞ þ

k2
2

a2
2
ðtÞ þ

k2
3

a2
3
ðtÞÞ, δμ;μ0 is

the Kronecker delta, and N is the same lapse function
adopted to evolve the background geometry in the previous
section. If we choose N ¼ 1, this Hamiltonian generates
evolution in cosmic time t, and in conformal time if N ¼ a.
The (time-dependent) effective potentials Uμμ0 are sym-
metric in μ and μ0, and the off-diagonal terms vanish in the
isotropic limit. In the presence of anisotropies, these off-
diagonal components describe the couplings between the
different types of gauge invariant perturbations. They are
given by

7We could have also included in G a term of the formP
k⃗≠0⃗ D

αβΠαΠβ. We have not done so simply because (3.13)
is already general enough to meet our goals.
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U00 ¼ a2Vϕϕ −
2κp2

ϕF 2

a3
þ 2κF 1

�
−
κp2

ϕpa

3a5
þ 2Vϕpϕ

�
;

U01 ¼ U10 ¼
2

ffiffiffi
κ

p
a2

�
−a2pϕσð5ÞF 2 þ a5Vϕσð5ÞF 1 − a2pϕG5F 1 þ

κ

6
pϕpaσð5ÞF 1

�
;

U02 ¼ U20 ¼
2

ffiffiffi
κ

p
a2

�
−a2pϕσð6ÞF 2 þ a5Vϕσð6ÞF 1 − a2pϕG6F 1 þ

κ

6
pϕpaσð6ÞF 1

�
;

U12 ¼ U21 ¼ 2σð5Þσð6Þ

�
a2 − a3F 2 þ

2

3
κapaF 1

�
− ð2a3σð6ÞG5 þ 2a3σð5ÞG6ÞF 1

U11 ¼ −2a2σ2ð6Þ þ
κpaσð2Þffiffiffi

6
p − a2

ffiffiffi
2

3

r
G2 þ

4

3
κapaσ

2
ð5ÞF 1 − 4a3σð5ÞF 1G5 − 2a3σ2ð5ÞF 2;

U22 ¼ −2a2σ2ð5Þ þ
κpaσð2Þffiffiffi

6
p − a2

ffiffiffi
2

3

r
G2 þ

4

3
κapaσ

2
ð6ÞF 1 − 4a3σð6ÞF 1G6 − 2a3σ2ð6ÞF 2; ð3:18Þ

where Vϕ ≡ dV=dϕ, Vϕϕ ≡ d2V=dϕ2, and

F 1 ¼
− κpa

2a3 þ
ffiffi
3
2

q
σð2Þ
a

2κρþ σ2ð3Þ þ σ2ð4Þ þ σ2ð5Þ þ σ2ð6Þ
;

F 2 ¼
3κV
a − κ2p2

a

3a5
þ κpaσð2Þ

2
ffiffi
6

p
a3
þ

ffiffi
3
2

q
G2

a − F 1

h
κ2p2

ϕpa

a8 þ 2σð3ÞG3 þ 2σð4ÞG4 þ 2σð5ÞG5 þ 2σð6ÞG6

i
2κρþ σ2ð3Þ þ σ2ð4Þ þ σ2ð5Þ þ σ2ð6Þ

;

G2 ¼
κpaσð2Þ
2a2

−
ffiffiffi
3

2

r �
σ2ð3Þ þ σ2ð4Þ

�
;

G3 ¼
κpaσð3Þ
2a2

þ 1ffiffiffi
2

p
� ffiffiffi

3
p

σð2Þσð3Þ − σð3Þσð5Þ − σð4Þσð6Þ
�
;

G4 ¼
κpaσð4Þ
2a2

þ 1ffiffiffi
2

p
� ffiffiffi

3
p

σð2Þσð4Þ þ σð4Þσð5Þ − σð3Þσð6Þ
�
;

G5 ¼
κpaσð5Þ
2a2

þ 1ffiffiffi
2

p
�
σ2ð3Þ − σ2ð4Þ

�
;

G6 ¼
κpaσð6Þ
2a2

þ
ffiffiffi
2

p
σð3Þσð4Þ: ð3:19Þ

The dependence in k⃗ in the right-hand side of these
expressions comes from σðnÞðk⃗Þ [defined below Eq. (3.8) in
Sec. III A]. Time evolution is now given by Hamilton’s
equations, that are derived by using the Poisson brackets
given in Eq. (B8). In cosmic time, they read

_Γμðk⃗Þ ¼ fΓμðk⃗Þ;Hpertg ¼ 4κ

a3
Πμðk⃗Þ;

_Πμðk⃗Þ ¼ fΠμðk⃗Þ;Hpertg ¼ −
a
4κ

X2
μ0¼0

ðδμμ0k2 þ Uμμ0 ÞΓμ0 ðk⃗Þ:

ð3:20Þ
As usual, we obtain second-order differential equations for
Γμðt; k⃗Þ by eliminating Πμ

Γ̈μ þ 3H _Γμ þ
k2

a2
Γμ þ

1

a2
X2
μ0¼0

Uμμ0Γμ0 ¼ 0; μ ¼ 0; 1; 2:

ð3:21Þ

This is a set of three coupled, second-order, ordinary
differential equations for each wave vector k⃗. Because
the potentials Uμμ0 ðt; k⃗Þ are time dependent, it is not
possible to absorb these couplings by means of a local
time-dependent redefinition of fields and time. In other
words, it is not possible to simultaneously diagonalize the
matrix Uμμ0 ðt; k⃗Þ with a local time-dependent transforma-
tion while keeping the other terms in these equations
(including those containing time derivatives) diagonal.
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As mentioned above, in the isotropic limit, the potential
Uμμ0 ðt; k⃗Þ becomes diagonal and the equations for Γ0, Γ1,
and Γ2 decouple and reduce to the familiar equations
describing scalar and tensor gauge invariant perturbations
in FLRW spacetimes. We have checked that Eqs. (3.21) are
equivalent to the equations obtained from a Lagrangian
approach, derived in [5,20].
On the other hand, we have implemented the main steps

of this analysis in a computer code written in the symbolic
language of Mathematica, and made publicly available in
[25]. We have also complemented this notebook with a
computer code, based on the C programming language, and
available in [36], to solve Eqs. (3.21) and to compute
observables in the CMB.
From a physical viewpoint, it is convenient to replace Γ1

and Γ2 by the combinations

Γ�2ðk⃗Þ≡ 1ffiffiffi
2

p ðΓ1ðk⃗Þ ∓ iΓ2ðk⃗ÞÞ: ð3:22Þ

Under a rotation of angle θ around the direction k̂, Γ�2ðk⃗Þ
acquire a phase e�i2θ; i.e. they transform as fields with
spin weight �2. In the isotropic limit, these fields
describe tensor modes with helicity �2 (i.e. circularly
polarized radiation). Also, it is straightforward to check that
Γ̄�2ðk⃗Þ ¼ Γ�2ð−k⃗Þ, and under parity Γ�2ðk⃗Þ → Γ∓2ð−k⃗Þ.8
These properties will be useful in the next section. From
now on, we will use these variables.

IV. QUANTUM THEORY: KINEMATICS

In this section we discuss the quantum theory of the
gauge invariant fields Γ0, Γ�2, again working in the
canonical formalism. We focus here on the quantum
kinematics, and leave the discussion of dynamics for the
next section. The phase space Vðk⃗Þ for a Fourier mode k⃗ of
our system is made of three canonically conjugate pairs,
that we will encode in a single element vðk⃗Þ ¼ ðΓ0ðk⃗ÞÞ,
Γþ2ðk⃗Þ, Γ−2ðk⃗Þ, Π0ðk⃗Þ, Πþ2ðk⃗Þ, ðΠ−2ðk⃗ÞÞ ∈ Vðk⃗Þ. The
components of vðk⃗Þ will be denoted with the index S,
with S running from 0 to 5. We will reserve lower case
indices s ¼ 0;þ2;−2, to denote the three fields Γsðk⃗Þ and
momenta Πsðk⃗Þ individually. As we just discussed at the
end of the previous section, if the spacetime were isotropic,
the three fields Γs would evolve independently, and the
space of solutions to the equation of motion would acquire
a product structure S ¼ S0 × Sþ2 × S−2. But in Bianchi I

geometries, gauge invariant perturbations are coupled and
we lose this product structure. However, the equations of
motion are still linear in the fields, and consequently the
space of solutions is a vector space (i.e. any linear
combination of solutions is also a solution). It is precisely
this vector space structure that allows us to formulate the
quantum theory in an exact way, without the need of any
perturbative treatment of the anisotropies.
The construction of the quantum theory for gauge

invariant perturbations in Bianchi I spacetimes follows
the same steps as the quantization of two harmonic
oscillators with a linear, time-dependent coupling between
them. Appendix C describes that theory in some detail, and
provides a pedagogical introduction to the Fock quantiza-
tion of linear coupled systems. The analysis presented in
this section differs from Appendix C only in the fact that we
are dealing here with fields, and hence with infinitely many
degrees of freedom.
The quantum theory is constructed as follows:
(1) The first step is to “complexify” Vðk⃗Þ, in the sense

that we must extend the classical phase space to
include arbitrary complex elements vðk⃗Þ, and not
only those satisfying the “reality condition” v̄ðk⃗Þ ¼
vð−k⃗Þ. We call this larger phase space VCðk⃗Þ.

(2) The symplectic structure of the classical theory can
be used to define a natural Hermitian “product" in
VCðk⃗Þ. Given any two elements vð1Þðk⃗Þ and vð2Þðk⃗Þ
in VCðk⃗Þ, this product is

hvð1Þðk⃗Þ; vð2Þðk⃗Þi
¼ iV0

X
s¼0;�2

ðΓ̄ð1Þ
s ðk⃗ÞΠð2Þ

s ðk⃗Þ − Π̄ð1Þ
s ðk⃗ÞΓð2Þ

s ðk⃗ÞÞ:

ð4:1Þ

It satisfies all properties of a Hermitian inner
product, except that it is not positive definite.

(3) The next step is to choose a three-dimensional
subspace of VCðk⃗Þ on which the product h·; ·i is
positive definite. We will denote it by Vþ

Cðk⃗Þ. The
properties of h·; ·i guarantee then that it is negative
definite on the complex conjugated subspace V̄þ

Cðk⃗Þ,
and furthermore, both subspaces are orthogonal
to each other, and their sum equals VCðk⃗Þ. This
means that

VCðk⃗Þ ¼ Vþ
Cðk⃗Þ ⊕ V̄þ

Cðk⃗Þ:

A choice of Vþ
Cðk⃗Þ provides therefore a decompo-

sition of VCðk⃗Þ in subspaces of positive and negative
norm, with respect to (4.1). This decomposition is
precisely the extra ingredient that one needs in order
to quantize the classical theory. But note also that

8This is to be contrasted with Γ̄0ðk⃗Þ ¼ Γ0ð−k⃗Þ, Γ̄1ðk⃗Þ ¼
Γ1ð−k⃗Þ, and Γ̄2ðk⃗Þ ¼ −Γ2ð−k⃗Þ. Note that Γ2 is an “anti-
Hermitian" field; it is for this reason that in the quantum theory
it is more convenient to work with the circularly polarized fields
Γ�2. On the other hand, under a parity transformation,
Γ0ðk⃗Þ → Γ0ð−k⃗Þ, Γ1ðk⃗Þ → Γ1ð−k⃗Þ, and Γ2ðk⃗Þ → −Γ2ð−k⃗Þ.
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such decomposition is highly nonunique. There are
infinitely many different choices of Vþ

Cðk⃗Þ (see
footnote 13). If the spacetime geometry has a time-
like Killing vector field, like in flat spacetimes, a
preferred choice of Vþ

Cðk⃗Þ is available, which cor-
responds to the familiar positive-frequency sub-
space. Such preferred structure is however absent
in the Bianchi I geometries under consideration (as it
is also absent in FLRW), and one needs to make a
choice. The construction below—in particular the
quantum state that we will call the Fock vacuum—

depends on this choice. Now, the space Vþ
Cðk⃗Þ

equipped with the product h·; ·i forms a three-
dimensional Hilbert space hðk⃗Þ. The (Cauchy com-
pletion of the) sum for all k⃗, h≡ ⊕k⃗ hðk⃗Þ, is
known as the one-particle Hilbert space of the field
theory. The Fock space is constructed by summing
symmetric products of h in the standard way (see
e.g. Appendix A of [28] for a summary of this
construction).

(4) Next, we need a choice of three basis vectors in
Vþ
Cðk⃗Þ, that we will denote by bold letters, vðλÞðk⃗Þ,

where the index λ ¼ 1, 2, 3 labels each basis
element. Together with their conjugates v̄ðλÞðk⃗Þ, they
form a complete basis in VCðk⃗Þ. One can intuitively
think of vðλÞðk⃗Þ as a generalization of the “normal
modes" of the system. It is convenient for the
calculations below to choose these vectors to be
orthonormal. The orthonormality relations are

hvðλÞðk⃗Þ; vðλ0Þðk⃗Þi ¼ δλλ
0
;

hvðλÞðk⃗Þ; v̄ðλ0Þðk⃗Þi ¼ 0: ð4:2Þ

Furthermore, one needs to impose these additional
conditions on the basis vectors

V0

X3
λ¼1

�
vðλÞS ðk⃗Þv̄ðλÞS0 ðk⃗Þ − v̄ðλÞS ð−k⃗ÞvðλÞS0 ð−k⃗Þ

�
¼ iΩSS0 ;

ð4:3Þ

where

ΩSS0 ¼
�

0 I3×3
−I3×3 0

�
; ð4:4Þ

to ensure that the canonical commutation relations of
fields and momenta can be derived from the algebra
of creation and annihilation operators. Or in other
words, to ensure that Eq. (4.10) provides an admis-
sible representation of the field and momentum
operators in the Fock space.

(5) We define now creation and annihilation operators.
First, we will use the symbol V̂ðk⃗Þ to encode all field
and momentum operators in Fourier space. More
explicitly, V̂ðk⃗Þ ¼ ðΓ̂0ðk⃗Þ; Γ̂þ2ðk⃗Þ; Γ̂−2ðk⃗Þ; Π̂0ðk⃗Þ;
Π̂þ2ðk⃗Þ; Π̂−2ðk⃗ÞÞ. Each component of V̂ðk⃗Þ will be
denoted by V̂Sðk⃗Þ, with S running from 0 to 5. Now,
given a choice of positive-norm subspace Vþ

C and a

set vðλÞðk⃗Þ of three basis vectors on it, the annihi-
lation operators are defined as the “projection" of the
field operator on these basis elements

âλðk⃗Þ≡ hvðλÞðk⃗Þ; V̂ðk⃗Þi: ð4:5Þ

The creation operators are obtained by Hermitian
conjugation. The canonical commutation relations

½V̂Sðk⃗Þ; V̂S0 ðk⃗0Þ� ¼ iV−1
0 δk⃗;−k⃗0ΩSS0 ; ð4:6Þ

then imply

½âλðk⃗Þ; âλ0 ðk⃗0Þ� ¼ 0; ½âλðk⃗Þ; â†λ0 ðk⃗0Þ� ¼ δλλ0δk⃗;k⃗0 ;

ð4:7Þ

and vice versa.
(6) The Fock vacuum is now defined as the (normalized)

state j0i that is annihilated by âλðk⃗Þ for all values of
λ and k⃗. It is obvious that, since the definition of
âλðk⃗Þ rests on a choice of positive-norm subspace
Vþ
C , the notion of Fock vacuum depends also on that

choice.
It is straightforward to check that this construction

guarantees that the vacuum state is invariant under
translations. The other isometry of the Bianchi I
metric is parity, and it is natural to demand the
vacuum to be parity invariant too. This will be the
case if the one-particle Hilbert space h remains
invariant under parity. This can be translated to a
condition on the basis vectors, as follows. Under
parity, the basis vectors transform as

vðλÞðk⃗Þ ¼

0BBBBBBBBBBBB@

vðλÞ0 ðk⃗Þ
vðλÞ1 ðk⃗Þ
vðλÞ2 ðk⃗Þ
vðλÞ3 ðk⃗Þ
vðλÞ4 ðk⃗Þ
vðλÞ5 ðk⃗Þ

1CCCCCCCCCCCCA
→ P½vðλÞðk⃗Þ� ¼

0BBBBBBBBBBBB@

vðλÞ0 ð−k⃗Þ
vðλÞ2 ð−k⃗Þ
vðλÞ1 ð−k⃗Þ
vðλÞ3 ð−k⃗Þ
vðλÞ5 ð−k⃗Þ
vðλÞ4 ð−k⃗Þ

1CCCCCCCCCCCCA
;

λ ¼ 1; 2; 3: ð4:8Þ
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Note that the components 1 and 2, as well as 4 and 5,
have been interchanged in the right-hand side—
this is because parity interchanges Γþ2 and Γ−2.
The vacuum state will be invariant under parity if
P½vðλÞðk⃗Þ� remains within Vþ

Cðk⃗Þ, i.e. if P½vðλÞðk⃗Þ�
has no component on the negative-norm subspace
V̄þ
Cðk⃗Þ. Or more explicitly, if P½vðλÞðk⃗Þ� can be

written as9

P½vðλÞðk⃗Þ� ¼
X
λ0
αλλ

0
vðλ0Þðk⃗Þ; ð4:9Þ

for some complex numbers αλλ
0
, satisfyingP

λ00 α
λλ00 ᾱλ

0λ00 ¼ δλλ
0
(so the norm of P½vðλÞðk⃗Þ� re-

mains the same). Condition (4.9) suffices to make all
the two-point correlation functions defined below
invariant under parity.

(7) The field and momentum operators in Fourier space
are represented in the Fock space as

V̂Sðk⃗Þ ¼
X
λ

h
vðλÞS ðk⃗Þâλðk⃗Þ þ v̄ðλÞS ð−k⃗Þâ†λð−k⃗Þ

i
:

ð4:10Þ

Note that these operators trivially satisfy the “reality
condition” V̂†

Sðk⃗Þ ¼ V̂Sð−k⃗Þ. From these expres-
sions, we can easily compute the two-point corre-
lation functions, and the result is

h0jfV̂Sðk⃗Þ; V̂S0 ðk⃗0Þgj0i ¼ V−1
0

2π2

k3
2PSS0 ðk⃗Þδk⃗;−k⃗0 ;

ð4:11Þ

where PSS0 ðk⃗Þ are known as the power spectra, and
in terms of the basis vectors they read

PSS0 ðk⃗Þ

¼ V0

k3

2π2
X
λ

1

2

h
vðλÞS ðk⃗Þv̄ðλÞS0 ðk⃗Þ þ v̄ðλÞS ð−k⃗ÞvðλÞS0 ð−k⃗Þ

i
:

ð4:12Þ

The brackets in (4.11) indicate anticommutator
fV̂Sð⃗kÞ; V̂S0 ð⃗k0Þg ≡ V̂Sð⃗kÞV̂S0 ð⃗k0Þ þ V̂S0 ð⃗k0ÞV̂Sð⃗kÞ,
and we have focused only on the symmetric part of
h0jV̂Sðk⃗ÞV̂S0 ðk⃗0Þj0i because the antisymmetric part
(the expectation value of the commutator) is state
independent and completely determined by the
canonical commutation relations. Note also that

for all S and S0, we have PSS0 ðk⃗Þ ¼ PS0Sð−k⃗Þ.
Equation (4.11) defines the power spectra for all
couples of field and/or momentum operators. In
cosmology, we are interested in the spectra involving
field operators alone, Pss0 ðk⃗Þ with s; s0 ¼ 0;�2,
since this is what we can extract from observations
of the CMB. So from now on we will focus on them.
We now describe the most relevant properties of
these spectra:
(i) For fields alone (and also for momenta alone)

the two terms inside the square brackets in
(4.12) are equal to each other. This can be seen
directly from (4.3), and it is a consequence of
the fact that field operators commute among
themselves. Then, the expression for Pss0 ðk⃗Þ
reduces to

Pss0 ðk⃗Þ ¼ V0

k3

2π2
X
λ

½vðλÞs ðk⃗Þv̄ðλÞs0 ðk⃗Þ�: ð4:13Þ

(ii) Pss0 ðk⃗Þ is real and positive for s ¼ s0, but it can
be complex for s ≠ s0, as it can be seen directly
from (4.13).

(iii) Pss0 ðk⃗Þ ¼ Ps0sð−k⃗Þ, for all s and s0, as a
consequence of the commutation relations of
field operators.

(iv) P̄ss0 ðk⃗Þ ¼ Pss0 ð−k⃗Þ, for all s and s0. This is a
consequence of the reality condition satisfied
by the fields, Γ̂†

sðk⃗Þ ¼ Γ̂sð−k⃗Þ. This implies that
the real part of Pss0 ðk⃗Þ remains invariant under
inversion k⃗ → −k⃗ (do not confuse this opera-
tion with a parity transformation that also
changes s → −s; see below), while the imagi-
nary part changes sign.

(v) Parity: because the fields Γ̂sðk⃗Þ transform into
Γ̂−sð−k⃗Þ under parity, we find that a parity
transformation sends Pss0 ðk⃗Þ to P−s−s0 ð−k⃗Þ.
It is direct to check that condition (4.9) on
the basis vectors guarantees that Pss0 ðk⃗Þ ¼
P−s−s0 ð−k⃗Þ for all s and s0, i.e. all spectra
Pss0 ðk⃗Þ are parity invariant.10 Further-
more, together with the property (iii) this
implies Pss0 ðk⃗Þ ¼ P−s0−sðk⃗Þ, and in particular
Pþ2þ2ðk⃗Þ ¼ P−2−2ðk⃗Þ.

9This expression can also be derived by studying the effect
of a parity transformation on the metric perturbations δhijðx⃗Þ in
position space.

10In fact, it is straightforward to check that condition (4.9)
makes all power spectra PSS0 ðk⃗Þ parity invariant, and not only
those involving field operators but no momenta. Since in a free
theory the vacuum is completely characterized by the two-point
functions h0jfV̂Sðk⃗ÞV̂S0 ðk⃗0Þgj0i, this proves that the vacuum state
is invariant under parity.
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(vi) Rotations: because Γsðk⃗Þ transform as fields of
spin weight s ¼ 0;�2 under rotations around k⃗,
the power spectra Pss0 ðk⃗Þ have spin weight
s − s0. It is important to keep this in mind when
expanding Pss0 ðk⃗Þ in angular multipoles, be-
cause such expansion must be done using spin-
weighted spherical harmonics:

Pss0 ðk⃗Þ ¼
X∞

L¼js−s0j

XL
M¼−L

PLM
ss0 ðkÞs−s0YLMðk̂Þ;

ð4:14Þ

where s−s0YLMðk̂Þ are spherical harmonics with
spin weight s − s0, normalized such thatR
dΩk̂sȲLMðk̂ÞsYL0M0 ðk̂Þ ¼ δLL0δMM0 . Recall

that s−s0YLMðk̂Þ are zero for L < js − s0j. This
in turn implies that the isotropic (i.e. L ¼ 0)
part of Pss0 ðk⃗Þ vanishes unless s − s0 ¼ 0, and
hence only P00, and Pþ2þ2 ¼ P−2−2 can be
different from zero in the limit in which both the
spacetime and the quantum state of perturba-
tions are isotropic.

In early-universe cosmology we are inter-
ested in the primordial power spectra evaluated
at the end of inflation. Hence, we are ultimately
interested in computing the time evolution of
Pss0 ðk⃗Þ, starting from some initial time and
ending at the end of inflation.11 This will be the
goal of the next section.

We close this section by illustrating the construction
explained above with a simple example. For the subspace
of positive norm Vþ

Cðk⃗Þ, we choose the space spanned by
the three vectors

vð1Þðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffi
4κ

a2V0

s �
1ffiffiffiffiffi
2k

p ; 0; 0;
a2

4κ

−ikffiffiffiffiffi
2k

p ; 0; 0

�
;

vð2Þðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffi
4κ

a2V0

s �
0;

1ffiffiffiffiffi
2k

p ; 0; 0;
a2

4κ

−ikffiffiffiffiffi
2k

p ; 0

�
;

vð3Þðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffi
4κ

a2V0

s �
0; 0;

1ffiffiffiffiffi
2k

p ; 0; 0;
a2

4κ

−ikffiffiffiffiffi
2k

p
�
; ð4:15Þ

where k is the comoving wave number. It is straightforward
to check that these elements satisfy the conditions (4.2)

and (4.3), as well as (4.9).12 In the classical theory, each
element vðλÞðk⃗Þ of this basis represents a complex classical
state where only one of the couples ðΓsðk⃗Þ;Πsðk⃗ÞÞ is
initially displaced from equilibrium.
Using (4.5), we obtain that the annihilation operators

associated with this choice are

â1ðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffi
a2V0

8κ

r � ffiffiffi
k

p
Γ̂0ðk⃗Þ þ i

4κ

a2
1ffiffiffi
k

p Π̂0ðk⃗Þ
�
; ð4:16Þ

â2ðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffi
a2V0

8κ

r � ffiffiffi
k

p
Γ̂þ2ðk⃗Þ þ i

4κ

a2
1ffiffiffi
k

p Π̂þ2ðk⃗Þ
�
; ð4:17Þ

â3ðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffi
a2V0

8κ

r � ffiffiffi
k

p
Γ̂−2ðk⃗Þ þ i

4κ

a2
1ffiffiffi
k

p Π̂−2ðk⃗Þ
�
: ð4:18Þ

We can see that â1ðk⃗Þ and â†1ðk⃗Þ respectively annihilate and
create quanta associated with the field Γ̂0ðk⃗Þ and do not
modify the quantum state associated with the degrees of
freedom of Γ̂�2ðk⃗Þ, and vice versa. This also implies that
the vacuum state can be expressed as the tensor product
j0i0 ⊗ j0iþ2 ⊗ j0i−2 of the vacuum of each degree of
freedom (recall that this is the state at time t0; time
evolution will be described in the next section).
From (4.10), we obtain that the field operators in Fourier

space at the initial time take the form

Γ̂0ðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffi
4κ

a2V0

s
1ffiffiffiffiffi
2k

p ðâ1ðk⃗Þ þ â†1ð−k⃗ÞÞ; ð4:19Þ

Γ̂þ2ðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffi
4κ

a2V0

s
1ffiffiffiffiffi
2k

p ðâ2ðk⃗Þ þ â†2ð−k⃗ÞÞ; ð4:20Þ

Γ̂−2ðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffi
4κ

a2V0

s
1ffiffiffiffiffi
2k

p ðâ3ðk⃗Þ þ â†3ð−k⃗ÞÞ; ð4:21Þ

and the momentum operators

Π̂0ðk⃗Þ ¼ −ia

ffiffiffiffiffiffiffiffiffiffi
k

8κV0

s
ðâ1ðk⃗Þ − â†1ð−k⃗ÞÞ; ð4:22Þ

Π̂þ2ðk⃗Þ ¼ −ia

ffiffiffiffiffiffiffiffiffiffi
k

8κV0

s
ðâ2ðk⃗Þ − â†2ð−k⃗ÞÞ; ð4:23Þ

Π̂−2ðk⃗Þ ¼ −ia

ffiffiffiffiffiffiffiffiffiffi
k

8κV0

s
ðâ3ðk⃗Þ − â†3ð−k⃗ÞÞ: ð4:24Þ

11In Ref. [30] we provide a detailed analysis of the relation
between the primordial power spectra Pss0 ðk⃗Þ and the angular
correlation functions for temperature and polarization in the
CMB.

12Under parity, P½vð1Þðk⃗Þ� ¼ vð1Þðk⃗Þ, P½vð2Þðk⃗Þ� ¼ vð3Þðk⃗Þ,
P½vð3Þðk⃗Þ� ¼ vð2Þðk⃗Þ. Hence (4.9) is satisfied.
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The power spectra [for field operators Γ̂sðk⃗Þ only] are

Pss0 ¼ ℏκ
k2

a2π2
δs;s0 : ð4:25Þ

In this last expression we have restored ℏ in order to show
explicitly the quantum nature of Pss0 . Note also that the
fiducial volume V0 introduced in our calculations does not
appear in these physical observables. The presence of the
Kronecker delta reveals the absence of correlations at the
initial time between Γ̂0, Γ̂þ2, and Γ̂−2 in the vacuum state
we have chosen. However, because these fields are coupled
in the physical Hamiltonian, the time evolution will
generate such correlations. Therefore, at later times, we
should expect nonvanishing off-diagonal components in
Pss0 . This happens because, in general, the time evolution
of any of the basis modes vðλÞðk⃗Þ will have nonzero values
in all six components.

V. DYNAMICS: S-MATRIX AND GENERATION
OF ENTANGLEMENT

Dynamics is simpler to write in the Heisenberg picture.
The Heisenberg operators are obtained from (4.10) simply

by applying time evolution to each element vðλÞS ðk⃗Þ of the
basis functions, namely

V̂Sðk⃗; tÞ ¼
X3
λ¼1

h
vðλÞS ðk⃗; tÞâλðk⃗Þ þ v̄ðλÞS ð−k⃗; tÞâ†λð−k⃗Þ

i
;

ð5:1Þ

where vðλÞS ðk⃗; tÞ denotes the solution to the classical

Hamilton’s equation with initial data vðλÞS ðk⃗Þ. With this,
the power spectra at any time are

Pss0 ðk⃗; tÞ ¼ V0

k3

2π2
X3
λ¼1

h
vðλÞs ðk⃗; tÞv̄ðλÞs0 ðk⃗; tÞ

i
; ð5:2Þ

where again, we are focusing here on the power spectra of
field operators and not momenta. This expression is exact,
in the sense that it is not the result of any perturbative
expansion in the shears σi. To evaluate the right-hand side,
all we need is to solve the set of coupled, second-order
ordinary differential equations (3.21) with appropriate
initial data, a task that is always possible to do using
numerical algorithms.
It is interesting to study the evolution also in the

Schrödinger picture, since it illuminates complementary
aspects of the dynamics, particularly regarding the gen-
eration of quantum entanglement between the different
perturbations. In order to write the evolution operator that
implements the dynamics, we first need to specify a final
Fock space. It is common in this context to use the label

in for the initial vacuum and Fock space, and out for the late
time counterparts.
The time evolution operator is a unitary map from the

Fock space F in to F out, known also as the S-matrix,
and denoted by Sðin;outÞ [28]. It is common to build Sðin;outÞ
from the standard textbook expression in terms of
the time-ordered exponential of the Hamiltonian,
T½expð−i=ℏ R tout

tin Ĥðt0Þdt0Þ� and use it as the starting point
for a perturbative expansion. However, it is more conven-
ient to express Sðin;outÞ in terms of the so-called Bogoliubov
coefficients αλλ0 ðkÞ and βλλ0 ðkÞ (see also Appendix C). If we
denote vðλÞin ðk⃗; tÞ and vðλÞoutðk⃗; tÞ as the three orthonormal
vectors that define the bases defining the in and out vacua,
respectively, these Bogoliubov coefficients are

αλλ0 ðk⃗Þ ≔
D
vðλ

0Þ
out ðk⃗; toutÞ; vðλÞin ðk⃗; toutÞ

E
;

βλλ0 ðk⃗Þ ≔ −
D
v̄ðλ

0Þ
out ðk⃗; toutÞ; vðλÞin ðk⃗; toutÞ

E
; ð5:3Þ

i.e. αλλ0 and βλλ0 “measure" the positive- and negative-norm
components of the in modes with respect to the out basis,
respectively. In terms of these coefficients, the S-matrix
takes the form of a generalized squeezing operator, and its
action on the in vacuum produces

Sðin;outÞjini¼N⊗
k⃗
exp

�X3
λ;λ0¼1

Vλλ0 ðk⃗Þâout†λ ðk⃗Þâout†λ0 ð−k⃗Þ
�
jouti;

ð5:4Þ

where N is a normalization factor and Vλλ0 ≔P
3
λ00¼1

1
2
β̄λ00λðk⃗Þᾱ−1λ0λ00 ðk⃗Þ, where α−1λλ0 is the inverse of the

matrix αλλ0 (the properties of these coefficients ensure that
αλλ0 is invertible).
One can prove from the properties of αλλ0 and βλλ0 (see

Appendix C) that Vλλ0 is symmetric. Expression (5.4) is
commonly interpreted by saying that the evolution of the
state jini from tin to tout results in “the exponential of a two-
particle state” in F out. More precisely, we can better
understand this result by expanding the exponential (5.4):

Sðin;outÞjini ¼ N⊗
k⃗
½joutk⃗i þ V11j1k⃗1−k⃗i1j0i2j0i3

þ V12ðj1k⃗i1j1−k⃗i2j0i3 þ j1−k⃗i1j1k⃗i2j0i3Þ
þ V13ðj1k⃗i1j0i2j1−k⃗i3
þ j1−k⃗i1j0i2j1k⃗i3Þ þ � � ��; ð5:5Þ

where states in the right-hand side belong to F out, and the
subscript λ ¼ 1, 2, 3 in the quantum states indicates that
they correspond to excitations created by aout†λ ðk⃗Þ over the
out vacuum state joutk⃗i ¼ j0k⃗i1j0k⃗i2j0k⃗i3 for the Fourier

mode k⃗ (jouti ¼⊗k⃗ joutk⃗i). We see from this expression

IVAN AGULLO, JAVIER OLMEDO, and V. SREENATH PHYS. REV. D 101, 123531 (2020)

123531-14



that the result of the evolution is the product of linear
combination of states containing 2N particles, with N ∈ N.
Furthermore, some of these pairs are made of quanta
associated with different degrees of freedom, and hence
they show the existence of quantum entanglement in the
final state. Note also that the entanglement only takes place
between quanta with wave numbers k⃗ and −k⃗. This is a
consequence of the homogeneity of the Bianchi I geometry,
that implies momentum conservation. One can then inter-
pret Eq. (5.5) by saying that the evolution has created pairs
of entangled quanta with opposite wave numbers.
The previous discussion is generic, in the sense that it is

valid regardless of the choice of basis vectors one uses to
define the out-Fock space F out. But if tout is chosen to be
the end of inflation, because at that time the Universe is
isotropic, the natural choice of F out is the product of the
Fock spaces for scalar and tensor perturbations constructed
from the familiar Bunch-Davies vacua. With this choice,
aout†λ with λ ¼ 1, 2, 3 creates quanta of the scalar, and tensor
perturbations with helicity þ2 and −2, respectively. The
final state (5.5) contains then correlations between scalar
and tensor quanta. These are the same correlations
described by the power spectra Pss0 ðk⃗Þ.
If the offdiagonal couplings Uμμ0 in the Hamiltonian

(3.17) were zero, then the Bogoliubov coefficients, and
consequently the matrix Vλλ0 , would become diagonal. The
action of the S-matrix on the vacuum in that situation
would then be

Sðin;outÞjini ¼ N ⊗
3

λ¼1
ð⊗
k⃗
exp ½Vλλðk⃗Þâout†λ ðk⃗Þâout†λ ð−k⃗Þ�joutiÞ:

ð5:6Þ

The right-hand side is a product state that contains no
correlations or entanglement between different degrees of
freedom.
The main take-home points of this analysis are twofold:

(i) Anisotropies in the early Universe produce primordial
spectra that are in general anisotropic. This fact manifests
itself in that the spectra Pss0 ðk⃗; tÞ depend on the direction
of k⃗. (ii) Anisotropies generate quantum entanglement, or
correlations, between scalar and tensor perturbations, as
well as among the two tensor modes. As a consequence,
either the nondiagonal spectra, Pss0 ðk⃗; tÞ for s ≠ s0 is
nonzero, or, if we work in the Schrödinger picture, the
form of the final state is the one given in (5.4) rather than
(5.6). [The existence of entanglement can also be evaluated
by writing the density matrix associated with the final state
and by computing the entanglement entropy between the
degrees of freedom associated with the three fields Γ̂s (see
Appendix C.)] It is also important to emphasize that these
features are not necessarily washed out by the fact that
the Universe isotropizes at late time. A large expansion

will certainly red-shift all wave numbers, including those
containing anisotropies and entanglement, and the question
of whether they are observable in the CMB depends on the
details of the model. In general, anisotropic effects are
expected to be larger for the longest wavelengths we can
observe.
There exist however one difficulty that prevents us from

making concrete predictions about the effects of anisotro-
pies in the CMB, and it is the lack of a preferred initial state
in Bianchi I spacetimes in classical general relativity. In the
literature of quantum field theory in curved spacetimes, it is
known that the notion of adiabatic vacuum can be used to
provide a preferred choice of vacuum, at least for short
distances or wavelengths, relative to the radius of curvature
of the spacetime (which is proportional to the Hubble
radius in most models). In isotropic FLRW spacetimes, the
wavelength of any mode grows monotonically in time in an
expanding universe. If there was a phase of inflation during
which the Hubble radius remained constant, there is a time
at which the modes that we can probe in the CMB had all
arbitrarily small wavelength. So for them there exists a
preferred initial state. This is not always true in Bianchi I
geometries, as pointed out in [5,20]. There, even if the
universe expands—in the sense that volume grows in time
and the mean Hubble rate is positive—directional Hubble
rates can be negative, and hence wavelengths of modes
pointing in such directions would decrease in time. This
means that, in the presence of anisotropies, one cannot
guarantee that all the modes that we observe in the CMB
were in an adiabatic regime at some early time, and
consequently there is no unambiguous way of defining
an initial vacuum state. This is to say, the predictions for
anisotropies are subject to the choice of initial state, and no
universal statement can be made about the power spectra or
any other observable quantity unless one introduces extra
ingredients in the theory to single out a preferred choice.
We show this fact explicitly in the next section.

VI. EXAMPLE

This section illustrates the general analysis presented
above with a concrete example. We consider a scenario for
the early Universe in which the expansion is initially
dominated by anisotropies, followed by a phase of slow-
roll inflation. We will follow the evolution of cosmic
perturbations and compute the primordial power spectra
of scalar and tensor perturbations. We first obtain the
evolution of the Bianchi I geometry following Sec. II, and
then we evolve perturbations thereon.
(1) Evolution of the background fields.—

As explained in Sec. II, we first obtain the
evolution of the mean scale factor aðtÞ and the scalar
field ϕðtÞ. We consider initial data at a time t0 ¼ 0

given by að0Þ ¼ 1, Hð0Þ ¼ 3.5 × 10−5, ϕð0Þ ¼ 3.3,
and Σ ¼ 7.67 × 10−5, all in Planck units. Then, the
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Hamiltonian constraint (2.17) determines _ϕð0Þ up to a
sign, that we choose to be positive. For the scalar field
potential VðϕÞ we use the simple quadratic form
VðϕÞ ¼ 1

2
m2ϕ2, with m obtained from observations

[37], m ¼ 1.28 × 10−6, again in Planck units. We
obtain the solution to Eqs. (2.16) with this initial data,
and plot in Fig. 1 the time evolution of the kinetic and
the potential energy of the scalar field ϕðtÞ, together
with the evolution of the shear σ2ðtÞ ¼ Σ2=a6ðtÞ.
These are the three terms in the right-hand side of the
Friedmann equation (2.17). We see in Fig. 1 that the
solution we have chosen is dominated by the shear at
early times. But the cosmic expansion makes the
shear lose relative relevance, until finally the potential
energy dominates, the Universe enters in a phase of
slow-roll inflation, and it quickly isotropizes. On the
other hand, if we evolve backwards in time, we find
the big bang singularity at t ¼ −5.3 × 103 Planck
times.
Next, the evolution of the shears σiðtÞ is given by

Eqs. (2.19). To obtain the solution to these equations,
we first need to specify the value of the angle Ψ that
indicates the way the total shear σ is distributed
among the three principal directions. Notice that,
since σ1 þ σ2 þ σ3 ¼ 0, the three components cannot
have the same sign. We choose Ψ ¼ π=4 in this
example, and plot in Fig. 2 the evolution of the
directional scale factors aiðtÞ. We fix the freedom in
the value of the directional scale factors by choosing
a1ðtendÞ ¼ a2ðtendÞ ¼ a3ðtendÞ, where tend is the time
when inflation ends. Hence the three scale factors
aiðtÞ and their derivatives agree at late times, but they
differ significantly in the earliest stages of evolution.

For our choice of Ψ the scale factor a2 is initially
contracting (H2 < 0), while a1 and a3 are expanding.
This implies that the wavelength of Fourier modes of
perturbations with wave number k⃗ that point in the
direction of a2 will initially contract while the mean
scale factor aðtÞ expands. Therefore, these wave-
lengths grow when propagated back in time, and they
will not generically find an adiabatic regime, no
matter how far to the past we go [5,20]. As discussed
before, the absence of an adiabatic regime for
cosmological perturbations is a generic feature of
anisotropic spacetimes. We illustrate below with a
simple example that this fact translates into an
ambiguity in the predictions for the primordial power
spectra.

(ii) Initial state for perturbations.—
Let us start by thinking about states in the

Schrödinger picture. For the initial state of pertur-
bations at t0, we start by choosing the same one we
used in the example at the end of Sec. IV, and that is
specified in Eq. (4.15). As explained there, since
each of the three basis vectors vðλÞðk⃗Þ only contain a
nonzero entry in the “direction” of the field Γs, the
vacuum state they define is the product of a vacuum
for each field, j0i1 ⊗ j0i2 ⊗ j0i3. It is obvious that
this state does not contain correlations between
scalar and tensor modes. We call this state the
“instantaneous Minkowski vacuum,” because it cor-
responds to the state that one would choose in

FIG. 1. Evolution of the kinetic and potential energy densities
of the scalar field ϕðtÞ, and the shear σ2ðtÞ. The Universe is
initially dominated by the shear. During the forward evolution
σ2ðtÞ falls off as 1=a6ðtÞ and the potential energy gains relative
relevance until it dominates. At that time the Universe starts
expanding in an accelerated way and inflation begins.

FIG. 2. Evolution of the directional scale factors aiðtÞ. At late
times, when the Universe enters in a phase of accelerated
expansion, the three aiðtÞ and their derivatives quickly approach
each other (we have used the freedom in rescaling the coordinates
to make the value of all ai equal at late times). At early times the
three aiðtÞ are very different. In our example, the scale factor a2
bounces when we go backwards in time, while a1 and a3 go to
zero and reach the big bang singularity in a finite amount of
proper time.
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Minkowski spacetime. (In the terminology of adia-
batic states [38], this is a zeroth-order adiabatic
vacuum. It is also possible to build states of higher
order in the adiabatic expansion, see e.g. [39,40].)
As emphasized before, in Bianchi I spacetimes
there is no sense in which this initial state is
preferred with respect to any other. Therefore,
the form of the power spectra given below contains
information not only about the spacetime geometry
on which perturbations propagate upon, but also
about our choice of initial state. To illustrate this
point with a concrete example, we will also con-
sider the same Schrödinger state but now at a
different time, more concretely 4500 Planck sec-

onds before t0. We call this vacuum state fj0i. We
will show below that the power spectrum of j0i andfj0i at the end of inflation are quite different. Since
there is no preferred time to specify the initial state,
this simple example illustrates well the ambiguity
in the physical predictions.

(iii) Evolution of perturbations and observables.—
We will discuss here evolution in both the

Heisenberg and Schrödinger pictures. In order to
obtain the evolution of the operator fields Γ̂s in the
Heisenberg picture, all we need is the time evolution
of the basis elements vðλÞðk⃗Þ, and to plug the result in
(5.2). This requires us to solve the equations of
motion (3.20) using (4.15) as initial data at t0. At late
times, the basis element vðλÞðk⃗; tÞ will contain in
general nonzero values in all six components.
We compute the power spectra of the comoving

curvature perturbation

R̂ðk⃗Þ ¼ 1ffiffiffiffiffi
4κ

p
�
H
_ϕ

�
Γ̂0ðk⃗Þ; ð6:1Þ

and the two tensor perturbations Γ̂�2. Concretely, the
power spectra involving the comoving curvature
perturbations R̂ðk⃗Þ are related to the spectra Pss0

defined above by

PRðk⃗Þ ¼
1

4κ

�
H
_ϕ

�
2

P00ðk⃗Þ and

P�2Rðk⃗Þ ¼
1ffiffiffiffiffi
4κ

p
�
H
_ϕ

�
P�20ðk⃗Þ: ð6:2Þ

Figure 3 shows the result for all the spectra. Since the
direction dependence of power spectra is quantified
better in the harmonic space, we have presented the
results for the multipolar components PLM

ss0 . These
plots contain two main messages: (1) Power spectra
are anisotropic, in the sense that they depend strongly
on the direction of the wave number k⃗. (2) There

exist significant cross-correlations between scalar and
tensor modes, as well as between the two tensor
modes, that fall off approximately as 1=k. These two
facts find their origin in the anisotropic phase of the
Universe before the beginning of inflation, and make
manifest that, even though the background spacetime
isotropizes, perturbations maintain memory of that
phase. More concretely, the effects of the anisotropic
phase on the correlation functions are larger for
infrared scales (large angular correlations).
However, as advertised above, the results in Fig. 3

depend on the choice of vacuum state. Let us consider
the vacuum state defined by the initial data for
the basis modes (4.15), but now imposed at t̃0 ¼
t0 − 4.5 × 103 Planck times, rather than t0. The new
initial time t̃0 is far enough from the big bang
singularity for the semiclassical approximation to
be valid. Using the initial data (4.15) at the new
initial time gives rise to different basis functions
ṽðλÞðk⃗; tÞ, and consequently to a different Heisenberg
state j0̃i. Figure 4 shows the lowest multipoles of the
scalar and tensor power spectra computed from this
state, P̃LM

ss0 ðkÞ, and shows that it differs substantially
fromPLM

ss0 ðkÞ. In order to remove the ambiguity in the
physical predictions, one needs to introduce addi-
tional physical input. As an example, we argue in
Ref. [30] that in models of quantum cosmology where
the big bang singularity is replaced by a cosmic
bounce, the ambiguity disappears, since all Fourier
modes relevant for the CMB start in an adiabatic
regime in the prebounce contracting phase.

To describe the evolution in the Schrödinger picture, we
need to provide a reference state at late times that plays
the role of the “out” vacuum. Since the inflationary phase
makes the Universe highly isotropic, it is natural to use the
familiar Bunch-Davies vacuum there. Such state is given by
the positive-negative norm decomposition defined by using
the following basis elements:

vð1ÞBDðk⃗Þ ¼
�
ΓBD
β ðk; ηÞ; 0; 0; a

2

4κ

d
dη

ΓBD
β ðk; ηÞ; 0; 0

�				
ηend

;

vð2ÞBDðk⃗Þ ¼
�
0;ΓBD

ν ðk; ηÞ; 0; 0; a
2

4κ

d
dη

ΓBD
ν ðk; ηÞ; 0

�				
ηend

;

vð3ÞBDðk⃗Þ ¼
�
0; 0;ΓBD

ν ðk; ηÞ; 0; 0; a
2

4κ

d
dη

ΓBD
ν ðk; ηÞ

�				
ηend

;

ð6:3Þ

where

ΓBD
β ðk; ηÞ≡

ffiffiffiffiffiffiffiffiffiffi
4κ

a2V0

s ffiffiffiffiffi
ηπ

4

r
Hð1Þ

β ð−kηÞ; ð6:4Þ
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FIG. 4. Comparison between multipoles L ¼ 0 and L ¼ 2 of PLM
ss0 ðkÞ and P̃LM

ss0 ðkÞ, obtained from the two vacua considered in this
section. For illustrative purposes we show in this plot only the results for scalar perturbations (left) and one of the two tensor modes
(right). We observe significant differences, especially in tensor modes and at infrared scales (precisely because they are more sensitive to
anisotropies).

FIG. 3. Multipoles PLM
ss0 ðkÞ resulting from the decomposition of the primordial power spectra Pss0 ðk⃗Þ in spin-weighted spherical

harmonics. Departure from isotropy is encoded in multipoles with L > 0. These anisotropic features are significantly larger for infrared
scales. We recover nearly scale invariant and isotropic power spectra for large k. k⋆ is a reference scale, and it corresponds to a wave
number whose physical value today is 0.05 Mpc−1.
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η corresponds to conformal time, and ηend denotes the

end of inflation. Hð1Þ
β ðxÞ is a Hankel function, and

β ¼ 3=2þ 2ϵþ δ, and ν ¼ 3=2þ ϵ, where ϵ and δ are
the standard slow-roll parameters. The “out” vacuum state
is therefore the familiar tensor product of the Bunch-Davies
vacuum for scalar and tensor modes.
With this, the mode functions defining our initial vacuum

vðλÞðk⃗Þ, after they are evolved until the end of inflation can
be written in terms of the Bunch-Davies modes and their
conjugates via the Bogoliubov coefficients αλλ0 and βλλ0 as

vðλÞ
�
k⃗; ηend

�
¼

X3
λ0¼1

αλλ0v
ðλ0Þ
BDðk⃗Þ þ βλλ0 v̄

ðλÞ
BDðk⃗Þ: ð6:5Þ

We show here the value of some of these coefficients for the
example considered in this section. For k⃗ pointing in the
principal direction of the scale factor a1, and for
k=k⋆ ¼ 2 × 10−3, we obtain

α11 ¼ 6.49 × 10−1 − 1.01i;

β11 ¼ 6.84 × 10−1 − 2.98 × 10−3i;

α12 ¼ 1.37 × 10−1 þ 6.55 × 10−2i;

β12 ¼ −3.52 × 10−3 þ 4.71 × 10−2i;

α13 ¼ −3.82 × 10−13 − 4.09 × 10−13i;

β13 ¼ 1.76 × 10−13 − 9.12 × 10−14i;

α21 ¼ 1.36 × 10−1 þ 6.72 × 10−1i;

β21 ¼ −3.47 × 10−3 þ 4.74 × 10−2i;

α22 ¼ 3.37 × 10−1 − 1.16 × 100i;

β22 ¼ 6.91 × 10−2 − 1.02 × 10−1i;

α23 ¼ 1.63 × 10−12 þ 3.61 × 10−12i;

β23 ¼ −2.04 × 10−12 − 11.90 × 10−13i;

α31 ¼ −4.83 × 10−13 − 2.68 × 10−13i;

β31 ¼ 2.61 × 10−14 − 8.42 × 10−14i;

α32 ¼ 2.09 × 10−12 þ 3.01 × 10−12i;

β32 ¼ −1.38 × 10−12 − 1.76 × 10−13i;

α33 ¼ 1.00þ 7.05 × 10−2i;

β33 ¼ −3.48 × 10−2 − 9.50 × 10−2i: ð6:6Þ

Hence, the value of these coefficients contain information
about the evolution of the initial vacuum state to the
end of inflation in a particular direction. More explicitly,
from them we can compute the coefficients Vλλ0 ðk⃗Þ ≔P

3
λ00¼1

1
2
β̄λ00λðk⃗Þᾱ−1λ0λ00 ðk⃗Þ. In this particular case (i.e. k⃗ point-

ing in the direction of a1), they are

V11 ¼ ð1.53 − 2.37iÞ × 10−1;

V22 ¼ ð1.19 − 2.60iÞ × 10−1;

V33 ¼ ð1.39þ 4.84iÞ × 10−2;

V12 ¼ ð1.34 − 0.96iÞ × 10−2;

V13 ¼ ð−2.70 − 9.48iÞ × 10−14;

V23 ¼ ð−2.15þ 9.74iÞ × 10−13: ð6:7Þ

Substituting them in expression (5.4), we obtain the explicit
form of the evolution of the initial state written in terms of
excited states over the Bunch-Davies vacuum. We can
explicitly see that the “in” vacuum evolves to an excited
and entangled state between scalar and tensor perturbations
at the end of inflation, and all details about this entangle-
ment (entanglement entropy, mutual information, etc.)
can be now straightforwardly computed using the coef-
ficients Vλλ0 ðk⃗Þ.

VII. CONCLUSIONS

This paper contains a detailed derivation of the classical
and quantum theory of gauge invariant linear cosmologi-
cal perturbations in Bianchi I spacetimes from a
Hamiltonian viewpoint. At the classical level, the problem
of isolating the gauge invariant degrees of freedom and
their dynamics in phase space reduces to solving a
Hamilton-Jacobi-like equation for the generating function
of a canonical transformation. Among the possible
choices, we consider a particular set of gauge invariant
fields that reduce to the familiar scalar and tensor
perturbations commonly used in the isotropic limit. The
presence of anisotropies introduces terms in the physical
Hamiltonian that couple these fields among themselves.
These couplings introduce subtleties in the quantization
process, but as long as one is restricted to linear pertur-
bations, the formulation of the quantum theory and the
derivation of its physical predictions can be done in an
exact manner, without relying on any perturbative expan-
sion on the anisotropies. We have described in detail this
quantum theory from a canonical viewpoint, and spelled
out the time evolution of quantum perturbations both in
the Heisenberg and the Schrödinger pictures. In the latter,
the couplings in the Hamiltonian induce entanglement
in the quantum state of scalar and tensor modes, as well as
for tensor modes with different polarizations.
Therefore, if an anisotropic phase existed in the

early Universe before inflation, one should expect the
quantum state of cosmic perturbations at the onset of
the slow-roll era to be anisotropic, and to contain
nontrivial entanglement between the different types of
perturbations. These two features can be imprinted in
the CMB through anisotropic power spectra and cross-
correlations between scalars and tensors modes. Some
of the phenomenological consequences of entanglement
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between scalar and tensors perturbations in inflation
have been discussed in the literature (see e.g. [41,42]);
the framework constructed in this paper provides a
concrete mechanism to generate the entanglement
postulated in these works. We have developed the tools
needed to explicitly compute all aspects of this entan-
glement, both in the Heisenberg and the Schrödinger
pictures.
One of the advantages of (and partially the motivation

for) the Hamiltonian formulation presented in this paper is
that it is suitable to be applied to theories of canonical
quantum gravity. We show a concrete example in a
companion paper [30], where we use our formalism on a
quantum Bianchi I spacetime, as predicted by loop quan-
tum cosmology, where the big bang singularity is replaced
by a cosmic bounce [43–45]. Such anisotropic bounce
connects two isotropic FLRW spacetimes in the past and
future. In that scenario perturbations find an adiabatic
regime in the remote past, which makes a preferred initial
quantum state for perturbations available. Therefore, that
setting offers a clean scenario where concrete predictions
arising from an anisotropic phase of the Universe can
be made.
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APPENDIX A: TOTAL HAMILTONIAN FOR
PERTURBATIONS: FOURIER EXPANSION

This appendix provides further details, omitted in the
main text, about the SVT decomposition of perturbations on
Bianchi I spacetimes. Let us first recall that the linearized
scalar and vector constraints of general relativity take the
following general form (see Sec. II for the definitions of the
different quantities that appear in this equation):

Sð1Þðx⃗Þ ¼ 2κffiffiffi
h

p
�
2π
∘
ijδπ

ij − π
∘ i

iδπj
j þ δhij

�
2π
∘ i
kπ
∘ jk − π

∘ ijπ∘ k
k
�
−
1

2
h
∘ ij
δhij

�
π
∘
klπ

∘ kl − 1

2
π
∘
k
kπ
∘
l
l
��

þ
ffiffiffi
h

p

2κ

�
h
∘ ij
h
∘ kl

− h
∘ ik

h
∘ jl�

δhij;k;l þ h
∘ ij
δhij

�
−

p2
ϕ

4
ffiffiffi
h

p þ 1

2

ffiffiffi
h

p
VðϕÞ

�
þ

ffiffiffi
h

p
Vϕδϕþ pϕδpϕffiffiffi

h
p ; ðA1Þ

V ð1Þ
i ðx⃗Þ ¼ π

∘ jkðδhjk;i − 2δhij;kÞ − 2hijδπ
jk
;k þ πϕδϕ;i; ðA2Þ

where a comma indicates coordinate derivative, e.g.
δhij;k ≡ ∂khij. We now Fourier expand the perturbations
δhij, δπij, δpϕ, δϕ as in (3.3) and (3.4), and furthermore
carry out the SVT decomposition as defined in (3.6). This
decomposition must be implemented in the phase space as a
time-dependent canonical transformation, since the matri-

ces AðnÞ
ij depend on time via h

∘
ij and the orthonormal vectors

ðk̂; x̂; ŷÞ. Concretely, the time derivatives of h
∘
ij and

ðk̂; x̂; ŷÞ, denoted as ð∂tÞ and understood as their Poisson
bracket with the background Hamiltonian HBI, are

1

N
∂th

∘
ij ¼

4κffiffiffi
h
∘q �

π
∘
ij −

1

2
h
∘
ijπ
∘
�
; ðA3Þ

1

N
∂tk̂i ¼

2κffiffiffi
h
∘q k̂jk̂k

�
π
∘ jk − 1

2
h
∘ jk

π
∘
l
l
�
k̂i; ðA4Þ

1

N
∂tx̂i ¼

4κffiffiffi
h
∘q �

π
∘
i
j −

1

2
h
∘
i
j
π
∘
k
k
�
x̂j þ Rxxx̂i þ Rxyŷi; ðA5Þ

1

N
∂tŷi ¼

4κffiffiffi
h
∘q �

π
∘
i
j −

1

2
h
∘
i
j
π
∘
k
k
�
ŷj þ Ryyŷi þ Ryxx̂i; ðA6Þ

where N is the lapse function and

Rxx ¼ −
2κffiffiffi
h
∘q �

π
∘ ij − 1

2
h
∘ ij
π
∘
k
k
�
x̂ix̂j; ðA7Þ

Ryy ¼ −
2κffiffiffi
h
∘q �

π
∘ ij − 1

2
h
∘ ij
π
∘
k
k
�
ŷiŷj; ðA8Þ

Rxy ¼ Ryx ¼ −
2κffiffiffi
h
∘q �

π
∘ ij − 1

2
h
∘ ij
π
∘
k
k
�
x̂iŷj: ðA9Þ
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These equations can be easily obtained from the definition
of k̂, the orthonormality conditions of ðk̂; x̂; ŷÞ, the equa-
tions of motion of the background variables, and the extra
condition Rxy ¼ Ryx, that introduces convenient simplifi-
cations (see Refs. [5,20] for additional details). It is also
convenient to compute the time derivative of the comoving
wave number

1

N
∂tk ¼ −

2κffiffiffi
h
∘q kk̂ik̂j

�
π
∘ ij − 1

2
h
∘ ij
π
∘
k
k
�
: ðA10Þ

From these quantities, it is straightforward to obtain the

time derivatives of the matrices AðnÞ
ij . For the canonical

transformation that implements the SVT decomposition,
we adopt a mode-by-mode type 3 generating function,
which depends on new configuration variables γn and old
momenta δπ̃ij. More explicitly

gðk⃗Þ ¼ −δπ̃ijðk⃗Þ
X6
n¼1

AðnÞ
ij ðk⃗Þγnðk⃗Þ: ðA11Þ

New momenta are defined as

πnðk⃗Þ ¼ −
∂gðk⃗Þ
∂γnðk⃗Þ

: ðA12Þ

As we see, gðk⃗Þ depends on the time-dependent

matrices AðnÞ
ij ðk⃗Þ. This fact will be important to obtain

the Hamiltonian for the new variables. Let us now focus on

the linear constraints Sð1Þðx⃗Þ and V ð1Þ
i ðx⃗Þ. In terms of the

new canonical variables γαðk⃗Þ and παðk⃗Þ (we have also
incorporated the perturbations of the scalar field) they take
the form:

S̃ð1Þðk⃗Þ ¼ γ0ffiffiffiffiffi
4κ

p a3Vϕ þ
γ1ffiffiffi
3

p
�
−
a3jk⃗j2
κ

−
κp2

a

24a
−
3p2

ϕ

4a3
þ 3

2
a3V þ a3

4κ
σ2
�
þ γ2ffiffiffi

6
p

κ

�
a3jk⃗j2 þ κapaffiffiffi

6
p σð2Þ þ a3σ2ð2Þ

þ 1

2
a3σ2ð3Þ þ

1

2
a3σ2ð4Þ − a3σ2ð5Þ − a3σ2ð6Þ

�
þ γ3ffiffiffi

2
p

κ

�
κapa

3
ffiffiffi
2

p σð3Þ þ
a3σð2Þσð3Þffiffiffi

3
p þ a3σð3Þσð5Þ þ a3σð4Þσð6Þ

�
þ γ4ffiffiffi

2
p

κ

�
κapa

3
ffiffiffi
2

p σð4Þ þ
a3σð2Þσð4Þffiffiffi

3
p − a3σð4Þσð5Þ þ a3σð3Þσð6Þ

�
þ γ5ffiffiffi

2
p

κ

�
κapa

3
ffiffiffi
2

p σð5Þ −
2a3σð2Þσð5Þffiffiffi

3
p

þ 1

2
a3σ2ð3Þ −

1

2
a3σ2ð4Þ

�
þ γ6ffiffiffi

2
p

κ

�
κapa

3
ffiffiffi
2

p σð6Þ −
2a3σð2Þσð6Þffiffiffi

3
p þ a3σð3Þσð4Þ

�
þ 2

ffiffiffi
κ

p
pϕ

a3
π0 −

κpaffiffiffi
3

p
a2

π1

þ 2σð2Þπ2 þ 2σð3Þπ3 þ 2σð4Þπ4 þ 2σð5Þπ5 þ 2σð6Þπ6; ðA13Þ

k̂iṼ ð1Þ
i ðk⃗Þ ¼ ijk⃗j

�
γ0

pϕffiffiffiffiffi
4κ

p þ γ1

�
apa

6
ffiffiffi
3

p −
ffiffiffi
2

p
a3σð2Þ
3κ

�
− γ2

� ffiffiffi
2

3

r
apa

3
þ a3σð2Þ

6κ

�
þ a3σð5Þ

2κ
γ5

þ a3σð6Þ
2κ

γ6 −
2ffiffiffi
3

p π1 − 2

ffiffiffi
2

3

r
π2

�
; ðA14Þ

x̂iṼ ð1Þ
i ðk⃗Þ ¼ ijk⃗j

�
a3σð3Þffiffiffi

6
p

κ
γ1 −

a3σð3Þ
2

ffiffiffi
3

p
κ
γ2 þ

�
apa

3
ffiffiffi
2

p þ a3σð2Þffiffiffi
3

p
κ

�
γ3 þ

a3σð3Þ
2κ

γ5 þ
a3σð4Þ
2κ

γ6 þ
ffiffiffi
2

p
π3

�
; ðA15Þ

ŷiṼ ð1Þ
i ðk⃗Þ ¼ ijk⃗j

�
a3σð4Þffiffiffi

6
p

κ
γ1 −

a3σð4Þ
2

ffiffiffi
3

p
κ
γ2 þ

�
apa

3
ffiffiffi
2

p þ a3σð2Þffiffiffi
3

p
κ

�
γ4 −

a3σð4Þ
2κ

γ5 þ
a3σð3Þ
2κ

γ6 þ
ffiffiffi
2

p
π4

�
: ðA16Þ

With these expressions, one can check the following algebra of the linearized constraints:

fS̃ð1Þðk⃗Þ; k̂iṼ ð1Þ
i ðk⃗0Þg ¼ −ijk⃗jδk⃗;−k⃗0Sð0Þ ≈

∘
0;

fS̃ð1Þðk⃗Þ; x̂iṼ ð1Þ
i ðk⃗0Þg ¼ 0;

fS̃ð1Þðk⃗Þ; ŷiṼ ð1Þ
i ðk⃗0Þg ¼ 0;

fṼ ð1Þ
i ðk⃗Þ; Ṽ ð1Þ

j ðk⃗0Þg ¼ 0: ðA17Þ

HAMILTONIAN THEORY OF CLASSICAL AND QUANTUM GAUGE … PHYS. REV. D 101, 123531 (2020)

123531-21



Here, the symbol ≈
∘
0 means that we evaluate the background quantities on shell. These expressions show that the linear

constraints form a first class system. From (A13)–(A16), it is trivial to obtain the Poisson brackets between the canonical
variables γnðk⃗Þ and πnðk⃗Þ and the linearized constraints (for instance, fγ1; S̃ð1Þg is given by the coefficient multiplying π1 in
S̃ð1Þ). These Poisson brackets indicate the way all these variables change under the gauge transformations generated by the
constraints; i.e., none of them are gauge invariant.

Next, we obtain the Fourier transform of the second-order scalar constraint S̃ð2Þðk⃗Þ. But we must keep in mind that, since
we are dealing with a time-dependent canonical transformation, we must add the time derivative of the generating function
gðk⃗Þ. The result is the following second-order Hamiltonian for γαðk⃗Þ and παðk⃗Þ:

Z
d3xSð2Þðx⃗Þ ¼

X
k⃗

jγ20j
�
a3Vϕϕ

8κ
þ a3jk⃗j2

8κ

�
þ jγ21j

�
−
a3jk⃗j2
12κ

þ κp2
a

288a
þ 5p2

ϕ

16a3
−
a3σ2

48κ
þ 1

8
a3V

�

þ jγ22j
�
−
a3jk⃗j2
24κ

þ 5κp2
a

144a
þ p2

ϕ

8a3
þ apaσð2Þ

3
ffiffiffi
6

p þ
a3σ2ð2Þ
8κ

−
a3σ2ð3Þ
24κ

−
a3σ2ð4Þ
24κ

þ
5a3σ2ð5Þ
24κ

þ
5a3σ2ð6Þ
24κ

−
1

4
a3V

�
þ jγ23j

�
5κp2

a

144a
þ p2

ϕ

8a3
þ apaσð2Þ

6
ffiffiffi
6

p −
a3σ2ð2Þ
6κ

þ a3σ2

8κ
þ apaσð5Þ

6
ffiffiffi
2

p þ a3σð2Þσð5Þ
2

ffiffiffi
3

p
κ

−
1

4
a3V

�
þ jγ24j

�
5κp2

a

144a
þ p2

ϕ

8a3
þ apaσð2Þ

6
ffiffiffi
6

p −
a3σ2ð2Þ
6κ

þ a3σ2

8κ
−
apaσð5Þ
6

ffiffiffi
2

p −
a3σð2Þσð5Þ
2

ffiffiffi
3

p
κ

−
1

4
a3V

�
þ jγ25j

�
a3jk⃗j2
8κ

þ 5κp2
a

144a
þ p2

ϕ

8a3
−
apaσð2Þ
3

ffiffiffi
6

p þ
5a3σ2ð2Þ
24κ

þ
a3σ2ð3Þ
8κ

þ
a3σ2ð4Þ
8κ

þ
a3σ2ð5Þ
8κ

−
a3σ2ð6Þ
8κ

−
1

4
a3V

�
þ jγ26j

�
a3jk⃗j2
8κ

þ 5κp2
a

144a
þ p2

ϕ

8a3
−
apaσð2Þ
3

ffiffiffi
6

p þ
5a3σ2ð2Þ
24κ

þ
a3σ2ð3Þ
8κ

þ
a3σ2ð4Þ
8κ

−
a3σ2ð5Þ
8κ

þ
a3σ2ð6Þ
8κ

−
1

4
a3V

�
−
3κ

a3
jπ21j þ

2κ

a3
ðjπ20j þ jπ21j þ jπ22j þ jπ23j þ jπ24j þ jπ25j þ jπ26jÞ þ

ffiffiffi
3

p

4
ffiffiffi
κ

p a3Vϕℜ½γ0γ̄1� þℜ½γ1γ̄2�
�
a3jk⃗j2
6

ffiffiffi
2

p
κ

−
apaσð2Þ
12

ffiffiffi
3

p −
a3σ2ð2Þ
6

ffiffiffi
2

p
κ
−

a3σ2ð3Þ
12

ffiffiffi
2

p
κ
−

a3σ2ð4Þ
12

ffiffiffi
2

p
κ
þ
a3σ2ð5Þ
6

ffiffiffi
2

p
κ
þ
a3σ2ð6Þ
6

ffiffiffi
2

p
κ

�
þℜ½γ1γ̄3�

�
−
apaσð3Þ
12

ffiffiffi
3

p −
a3σð2Þσð3Þ
6

ffiffiffi
2

p
κ

−
a3σð3Þσð5Þ
2

ffiffiffi
6

p
κ

−
a3σð4Þσð6Þ
2

ffiffiffi
6

p
κ

�
þℜ½γ1γ̄4�

�
−
apaσð4Þ
12

ffiffiffi
3

p −
a3σð2Þσð4Þ
6

ffiffiffi
2

p
κ

þ a3σð4Þσð5Þ
2

ffiffiffi
6

p
κ

−
a3σð3Þσð6Þ
2

ffiffiffi
6

p
κ

�
þℜ½γ1γ̄5�

�
−
a3σ2ð3Þ
4

ffiffiffi
6

p
κ
þ
a3σ2ð4Þ
4

ffiffiffi
6

p
κ
−
apaσð5Þ
12

ffiffiffi
3

p þ a3σð2Þσð5Þ
3

ffiffiffi
2

p
κ

�
þℜ½γ1γ̄6�

�
−
a3σð3Þσð4Þ
2

ffiffiffi
6

p
κ

−
apaσð6Þ
12

ffiffiffi
3

p

þ a3σð2Þσð6Þ
3

ffiffiffi
2

p
κ

�
þℜ½γ2γ̄3�

�
apaσð3Þ
3

ffiffiffi
6

p þ a3σð2Þσð3Þ
3k

−
a3σð3Þσð5Þ
2

ffiffiffi
3

p
k

−
a3σð4Þσð6Þ
2

ffiffiffi
3

p
k

�
þℜ½γ2γ̄4�

�
apaσð4Þ
3

ffiffiffi
6

p

þ a3σð2Þσð4Þ
3κ

þ a3σð4Þσð5Þ
2

ffiffiffi
3

p
κ

−
a3σð3Þσð6Þ
2

ffiffiffi
3

p
κ

�
þℜ½γ2γ̄5�

�a3σ2ð3Þ
2

ffiffiffi
3

p
κ
−
a3σ2ð4Þ
2

ffiffiffi
3

p
κ
−
1

3

ffiffiffi
2

3

r
apaσð5Þ

−
a3σð2Þσð5Þ

6κ

�
þℜ½γ2γ̄6�

�
a3σð3Þσð4Þffiffiffi

3
p

κ
−
1

3

ffiffiffi
2

3

r
apaσð6Þ −

a3σð2Þσð6Þ
6κ

�
þℜ½γ3γ̄4�

�
apaσð6Þ
3

ffiffiffi
2

p

þ a3σð2Þσð6Þffiffiffi
3

p
κ

�
þℜ½γ3γ̄5�

�
apaσð3Þ
3

ffiffiffi
2

p −
a3σð2Þσð3Þ
2

ffiffiffi
3

p
κ

−
a3σð4Þσð6Þ

2κ

�
þℜ½γ3γ̄6�

�
apaσð4Þ
3

ffiffiffi
2

p −
a3σð2Þσð4Þ
2

ffiffiffi
3

p
κ

þ a3σð4Þσð5Þ
2κ

�
þℜ½γ4γ̄5�

�
−
apaσð4Þ
3

ffiffiffi
2

p þ a3σð2Þσð4Þ
2

ffiffiffi
3

p
κ

þ a3σð3Þσð6Þ
2κ

�
þℜ½γ4γ̄6�

�
apaσð3Þ
3

ffiffiffi
2

p

−
a3σð2Þσð3Þ
2

ffiffiffi
3

p
κ

−
a3σð3Þσð5Þ

2κ

�
þ a3σð5Þσð6Þ

2κ
ℜ½γ5γ̄6� −ℜ½γ1π̄0�

ffiffiffiffiffi
3κ

p
pϕ

a3
−ℜ½γ1π̄2�

σð2Þffiffiffi
3

p −ℜ½γ1π̄3�
σð3Þffiffiffi
3

p
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−ℜ½γ1π̄4�
σð4Þffiffiffi
3

p −ℜ½γ1π̄5�
σð5Þffiffiffi
3

p −ℜ½γ1π̄6�
σð6Þffiffiffi
3

p −ℜ½γ2π̄1�
σð2Þffiffiffi
3

p þℜ½γ2π̄3�
2

ffiffiffi
2

p
σð3Þffiffiffi
3

p þℜ½γ2π̄4�
2

ffiffiffi
2

p
σð4Þffiffiffi
3

p

−ℜ½γ2π̄5�
ffiffiffi
2

p
σð5Þffiffiffi
3

p −ℜ½γ2π̄6�
ffiffiffi
2

p
σð6Þffiffiffi
3

p −ℜ½γ3π̄1�
σð3Þffiffiffi
3

p −ℜ½γ3π̄2�
ffiffiffi
2

p
σð3Þffiffiffi
3

p −ℜ½γ3π̄4�
�
σð6Þffiffiffi
2

p −
ffiffiffi
2

p
σ6

�

þℜ½γ3π̄5�
ffiffiffi
2

p
σð3Þ þℜ½γ3π̄6�

ffiffiffi
2

p
σð4Þ −ℜ½γ4π̄1�

σð4Þffiffiffi
3

p −ℜ½γ4π̄2�
ffiffiffi
2

p
σð4Þffiffiffi
3

p −ℜ½γ4π̄3�
�
σð6Þffiffiffi
2

p −
ffiffiffi
2

p
σ6

�
−ℜ½γ4π̄5�

ffiffiffi
2

p
σð4Þ þℜ½γ4π̄6�

ffiffiffi
2

p
σð3Þ −ℜ½γ5π̄1�

σð5Þffiffiffi
3

p −ℜ½γ5π̄2�
ffiffiffi
2

p
σð5Þffiffiffi
3

p −ℜ½γ6π̄1�
σð6Þffiffiffi
3

p −ℜ½γ6π̄2�
ffiffiffi
2

p
σð6Þffiffiffi
3

p

þℜ½γ1π̄1�
κpa

6a2
þℜ½γ2π̄2�

�
2κpa

3a2
þ

ffiffiffi
2

3

r
σð2Þ

�
þℜ½γ3π̄3�

�
2κpa

3a2
þ

ffiffiffi
2

3

r
σð2Þ −

σð2Þffiffiffi
6

p −
σð5Þffiffiffi
2

p þ
ffiffiffi
2

p
σð5Þ

�
þℜ½γ4π̄4�

�
2κpa

3a2
þ

ffiffiffi
2

3

r
σð2Þ −

σð2Þffiffiffi
6

p þ σð5Þffiffiffi
2

p −
ffiffiffi
2

p
σð5Þ

�
þℜ½γ5π̄5�

�
2κπa
3a2

−
ffiffiffi
2

3

r
σð2Þ

�
þℜ½γ6π̄6�

�
2κπa
3a2

−
ffiffiffi
2

3

r
σð2Þ

�
: ðA18Þ

It is an interesting exercise to compute the time evolution of the linear constraints

1

N
d
dt

ðS̃ð1Þðk⃗ÞÞ≈∘ fS̃ð1Þðk⃗Þ;Sð2Þg þ 1

N
∂tS̃

ð1Þðk⃗Þ ¼ ikiṼ ð1Þ
i ðk⃗Þ; ðA19Þ

1

N
d
dt

ðk̂iṼ ð1Þ
i ðk⃗ÞÞ≈∘ fk̂iṼ ð1Þ

i ðk⃗Þ;Sð2Þg þ 1

N
∂tðk̂iṼ ð1Þ

i ðk⃗ÞÞ ¼
ffiffiffi
2

p
σð4ÞŷiṼ

ð1Þ
i ðk⃗Þ þ k̂iṼ ð1Þ

i ðk⃗Þ
�
κpa

6a2
−

ffiffiffi
2

3

r
σð2Þ þ

ffiffiffi
2

p
σð3Þ

�
; ðA20Þ

1

N
d
dt

ðx̂iṼ ð1Þ
i ðk⃗ÞÞ≈∘ fx̂iṼ ð1Þ

i ðk⃗Þ;Sð2Þg þ 1

N
∂tðx̂iṼ ð1Þ

i ðk⃗ÞÞ ¼ −
σð6Þffiffiffi
2

p ŷiṼ ð1Þ
i ðk⃗Þ þ x̂iV ð1Þ

i ðk⃗Þ
�
κpa

6a2
þ σð2Þffiffiffi

6
p −

σð5Þffiffiffi
2

p
�
; ðA21Þ

1

N
d
dt

ðŷiṼ ð1Þ
i ðk⃗ÞÞ≈∘ fŷiṼ ð1Þ

i ðk⃗Þ;Sð2Þg þ 1

N
∂tðŷiṼ ð1Þ

i ðk⃗ÞÞ ¼ −
σð6Þffiffiffi
2

p x̂iṼ ð1Þ
i ðk⃗Þ þ ŷiṼ ð1Þ

i ðk⃗Þ
�
κpa

6a2
þ σð2Þffiffiffi

6
p þ σð5Þffiffiffi

2
p

�
: ðA22Þ

We see that the right-hand sides of these equations are linear combinations of the constraints themselves, and hence vanish
on-shell, as expected from a system of first class constraints.

APPENDIX B: DECOUPLING GAUGE INVARIANT VARIABLES

In this appendix we provide further information about the canonical transformation introduced in Eq. (3.9). In Eq. (3.10)
we provided expressions for the new conjugate momenta Πα for α ¼ 3, 4, 5, 6. We complement that information with the
form of the new pure gauge configuration variables Γα for α ¼ 3, 4, 5, 6 in terms of old ones, namely,

Γ3ðk⃗Þ ¼
ffiffiffi
3

2

r
a2jk⃗j

κpa þ
ffiffiffi
6

p
a2σð2Þ

�
γ2 −

ffiffiffi
2

p
γ1
�
; ðB1Þ

Γ4ðk⃗Þ ¼ −
ffiffiffi
3

2

r
1

2jk⃗jðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ

�
κpaγ2 þ 2

ffiffiffi
3

p
a2σð2Þγ1

�
; ðB2Þ

Γ5 ¼ −
γ3ffiffiffi
2

p þ
ffiffiffi
3

p
a2σð3Þ

κpa þ
ffiffiffi
6

p
a2σð2Þ

�
γ2 −

ffiffiffi
2

p
γ1
�
; ðB3Þ
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Γ6 ¼ −
γ4ffiffiffi
2

p þ
ffiffiffi
3

p
a2σð4Þ

κpa þ
ffiffiffi
6

p
a2σð2Þ

�
γ2 −

ffiffiffi
2

p
γ1
�
: ðB4Þ

On the other hand, we also wrote in Eq. (3.16) the form of the gauge invariant variables Γ0, Γ1, and Γ2. We write here their
conjugate momenta (also gauge invariant)

Π0 ¼ π0 þ
3p2

ϕ

4aðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ

γ0 −
�

3
ffiffiffiffiffi
3κ

p
p3
ϕ

2a2ðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ2

þ 3a2pϕσð2Þ
2

ffiffiffiffiffi
2κ

p ðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ

þ 3
ffiffiffi
3

p
a4pϕ

2
ffiffiffi
κ

p ðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ2

ðσ2ð5Þ þ σ2ð6ÞÞ þ
ffiffiffi
3

p
a5Vϕ

2
ffiffiffi
κ

p ðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ

�
γ1 þ

� ffiffiffiffiffi
3κ

2

r
3p3

ϕ

2a2ðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ2

þ
ffiffiffiffiffi
3

2κ

r
3a4pϕ

2ðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ2

ðσ2ð5Þ þ σ2ð6ÞÞ −
ffiffiffiffiffi
3

2κ

r
κpϕpa − 2a5Vϕ

4ðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ

�
γ2 −

3a2pϕσð5Þ
4

ffiffiffi
κ

p ðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ

γ5

−
3a2pϕσð6Þ

4
ffiffiffi
κ

p ðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ

γ6 ðB5Þ

Π1 ¼ π5 −
3a2pϕσð5Þ

4
ffiffiffi
κ

p ðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ

γ0 þ
� ffiffiffi

3

2

r
a5

2κðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ

ðσ2ð3Þ − σ2ð4ÞÞ −
3

ffiffiffi
3

p
ap2

ϕσð5Þ
2ðκpa þ

ffiffiffi
6

p
a2σð2ÞÞ2

−
3

ffiffiffi
3

p
a7σð5Þ

2κðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ2

ðσ2ð5Þ þ σ2ð6ÞÞ −
3a5σð2Þσð5Þ

2
ffiffiffi
2

p
κðκpa þ

ffiffiffi
6

p
a2σð2ÞÞ

þ a3σð5Þ
2

ffiffiffi
3

p
κ

�
γ1 þ

� ffiffiffi
3

2

r
3ap2

ϕσð5Þ
2ðκpa þ

ffiffiffi
6

p
a2σð2ÞÞ2

−
ffiffiffi
3

p
a5

4κðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ

ðσ2ð3Þ − σ2ð4ÞÞ þ
ffiffiffi
3

2

r
3a7σð5Þ

2κðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ2

ðσ2ð5Þ þ σ2ð6ÞÞ þ
3a5σð2Þσð5Þ

4κðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ

−
5a3σð5Þ
4

ffiffiffi
6

p
κ

�
γ2

þ a3σð3Þ
2

ffiffiffi
2

p
κ
γ3 −

a3σð4Þ
2

ffiffiffi
2

p
κ
γ4 þ

�
apa

6
−
a3σð2Þ
2

ffiffiffi
6

p
κ
−

3a5σ2ð5Þ
4κðκpa þ

ffiffiffi
6

p
a2σð2ÞÞ

�
γ5 −

3a5σð5Þσð6Þ
4κðκpa þ

ffiffiffi
6

p
a2σð2ÞÞ

γ6 ðB6Þ

Π2 ¼ π6 −
3a2pϕσð6Þ

4
ffiffiffi
κ

p ðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ

γ0 −
�

3
ffiffiffi
3

p
ap2

ϕσð6Þ
2ðκpa þ

ffiffiffi
6

p
a2σð2ÞÞ2

þ 3a5σð2Þσð6Þ
2

ffiffiffi
2

p
κðκpa þ

ffiffiffi
6

p
a2σð2ÞÞ

−
ffiffiffi
3

2

r
a5σð3Þσð4Þ

κðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ

þ 3
ffiffiffi
3

p
a7σð6Þ

2κðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ2

ðσ2ð5Þ þ σ2ð6ÞÞ −
a3σð6Þ
2

ffiffiffi
3

p
κ

�
γ1

þ
� ffiffiffi

3

2

r
3ap2

ϕσð6Þ
2ðκpa þ

ffiffiffi
6

p
a2σð2ÞÞ2

þ 3a5σð2Þσð6Þ
4κðκpa þ

ffiffiffi
6

p
a2σð2ÞÞ

−
ffiffiffi
3

p
a5σð3Þσð4Þ

2κðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ

þ
ffiffiffi
3

2

r
3a7σð6Þ

2κðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ2

ðσ2ð5Þ þ σ2ð6ÞÞ −
5a3σð6Þ
4

ffiffiffi
6

p
κ

�
γ2 þ

a3σð4Þ
2

ffiffiffi
2

p
κ
γ3 þ

a3σð3Þ
2

ffiffiffi
2

p
κ
γ4

−
3a5σð5Þσð6Þ

4κðκpa þ
ffiffiffi
6

p
a2σð2ÞÞ

γ5 þ
�
apa

6
−
a3σð2Þ
2

ffiffiffi
6

p
κ
−

3a5σ2ð6Þ
4κðκpa þ

ffiffiffi
6

p
a2σð2ÞÞ

�
γ6: ðB7Þ

As a check, one can easily see that these variables satisfy the canonical Poisson algebra

fΓαðk⃗Þ;Πβðk⃗0Þg ¼ V−1
0 δαβδk⃗;−k⃗0 ;

fΓαðk⃗Þ;Γβðk⃗0Þg ¼ 0;

fΠαðk⃗Þ;Πβðk⃗0Þg ¼ 0: ðB8Þ
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The total Hamiltonian for the perturbations Htotal ¼R
d3xNSð2Þðx⃗Þ can now be written in terms of these new

variables, starting from Eq. (18) (again, one needs to
perform a time-dependent canonical transformation). One
obtains

Htotal ¼ Hpert þ
NðtÞ
2aðtÞ

X
k⃗

X6
α;α0¼3

Ũαα0Γαðk⃗ÞΓ̄α0 ðk⃗Þ

þ
X
k⃗

X6
α¼3

Λαðk⃗ÞΠαðk⃗Þ; ðB9Þ

where Λαðk⃗Þ are functions of the perturbations of the lapse
and shift, that also depend linearly on Γαðk⃗Þ andΠαðk⃗Þwith
α ¼ 3, 4, 5, 6. But note that Λαðk⃗Þ are multiplying the
linearized constraints, so they are Lagrange multipliers and,
furthermore, they do not affect the dynamics of the gauge
invariant variables, since the constraints vanish on-shell.
The term Hpert was defined in (3.17) and it only involves
gauge invariant variables. Hence, this expression for Htotal
shows explicitly that the dynamics of the gauge invariant
degrees of freedom Γα, Πα for α ¼ 0, 1, 2 decouples from
pure gauge ones. This is why in Sec. III B we restricted our
attention to the term Hpert.

APPENDIX C: FOCK QUANTIZATION OF
TWO HARMONIC OSCILLATORS WITH

A TIME-DEPENDENT COUPLING:
A PEDAGOGICAL EXAMPLE

This appendix summarizes the Hamiltonian formulation
of classical and quantum theories of two coupled harmonic
oscillators, with spring “constants” that depend on time.
This system has many similarities with the evolution of
cosmological perturbations in Bianchi I spacetimes dis-
cussed in the main body of this article, although the phase
space of the latter is infinite dimensional. Hence, the goal of
this appendix is to serve as a pedagogical introduction to
the Fock quantization techniques of coupled linear systems
used in this paper, in the simpler situation of a finite
dimensional model.

1. Classical theory

Consider two point masses m1 and m2, each of them
attached to a spring, with time-dependent spring con-
stants k1ðtÞ and k2ðtÞ respectively, and joined together
by another spring with constant kcðtÞ, also time depen-
dent. The phase space V of this system is four
dimensional. Elements v of V are characterized by the
values of two pairs of canonically conjugated variables
va ¼ ðx1; x2; p1; p2Þ, where the index a runs from 1 to 4.
The basic Poisson brackets are

fva; vbg ¼ Ωab; with Ωab ¼
�

0 I2×2
−I2×2 0

�
; ðC1Þ

or, written in components

fxi; xjg ¼ 0; fpi; pjg ¼ 0; fxi; pjg ¼ δji : ðC2Þ

Dynamics in V is generated by the Hamiltonian

HðtÞ ¼ 1

2
pipjM−1

ij þ 1

2
xixjKijðtÞ; ðC3Þ

where

Mij ¼
�
m1 0

0 m2

�
;

Kij ¼
�
k1ðtÞ þ kcðtÞ −kcðtÞ

−kcðtÞ k2ðtÞ þ kcðtÞ

�
: ðC4Þ

Hamilton’s equations are

_xi ¼ fxi; Hg ¼ M−1
ij p

j;

_pi ¼ fpi;Hg ¼ −Kijxj: ðC5Þ

More explicitly

_x1 ¼ p1=m1;

_p1 ¼ −ðk1 þ kcÞx1 þ kcx2;

_x2 ¼ p2=m2;

_p2 ¼ kcx1 − ðk2 þ kcÞx2: ðC6Þ

These equations can be combined into second-order
differential equations

ẍiðtÞ þ Λi
jðtÞxjðtÞ ¼ 0; ðC7Þ

where Λi
jðtÞ ¼ MikKkjðtÞ. If Λi

jðtÞ were time indepen-
dent, these equations could be easily decoupled, and both
the classical and quantum theories would reduce to the
study of two independent oscillators. But in the time-
dependent situation one cannot diagonalize simultane-
ously Λi

jðtÞ and the differential operator δji
d2

dt2 by means
of usual transformations local in time. However, in
spite of the coupling between the point masses, the
equations of motion are linear, and consequently the
space of solutions is a vector space (i.e. linear combina-
tions of solutions are solutions). It is this linear structure
that makes it possible to quantize the system in an
exact way.
In the remainder of this subsection we will write the

classical theory in a convenient form that will serve as
starting point to build a Fock quantization in the next
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subsection. First, consider the complex phase space VC,
constructed by taking all possible linear combination with
complex coefficients of elements of V . It turns out that VC
carries a natural product on it, which originates from the
symplectic structure of the Hamiltonian theory, and plays a
central role in the quantization of the system. Given two
elements of VC, vð1Þ ¼ ðx⃗ð1Þ; p⃗ð1ÞÞ and vð2Þ ¼ ðx⃗ð2Þ; p⃗ð2ÞÞ,
their product is the complex number given by

hvð1Þ; vð2Þi≡ iα−1vð1Þa v̄ð2Þb Ωab ¼ iα−1
�
x̄ð1Þi pið2Þ − p̄ið1Þxð2Þi

�
ðC8Þ

(sum over repeated indices is understood). In this expres-
sion, α is an arbitrary parameter with dimensions of action,
and it is introduced to make this product dimensionless.
Physical predictions will be insensitive to the choice of α.
Although it is natural to fix α ¼ ℏ, we prefer not to make
such a choice, because that would make unclear how to take
the classical limit in several expressions below, since this
limit corresponds to ℏ → 0 with fixed α.
We will now take advantage of the product (C8) to

describe in more detail the classical theory and, in the
next section, to quantize it. It is easy to check that (C8)
satisfies all properties of a Hermitian inner product,
except that it is not positive definite in VC. Therefore,
the obvious candidate for Hilbert space of the quantum
theory, namely the Cauchy completion of the vector space
VC with the product h·; ·i, is not a viable choice. The
standard way to proceed is to notice that VC can always
be written as the direct sum of two subspaces VC ¼
Vþ
C ⊕ V−

C, satisfying that h·; ·i is positive definite when
restricted to Vþ

C , and negatively definite in V−
C.

13 It is
convenient to choose V−

C to be the complex conjugate of
Vþ
C . It is the subspace Vþ

C that will be used to build the
Hilbert space of the quantum theory.
A convenient practical way to make a choice of Vþ

C is to
choose a set fvðλÞg, with λ ¼ 1, 2, of two orthogonal
elements of VC of positive norm (and equal 1 for conven-
ience). Vþ

C arises then as the subspace spanned by fvðλÞg;
the conjugate set, fv̄ðλÞg, spans V−

C, and therefore both sets
together form a complete basis of VC. Once this choice has
been made, any element v of our physical, real phase space
V can be written in a unique manner in terms of this basis
(since V is a subspace of VC)

v ¼ ðx⃗; p⃗Þ ¼
X2
λ¼1

aλvðλÞ þ āλv̄ðλÞ; ðC9Þ

where aλ are complex coefficients. These coefficients can
be then determined by projecting v on the basis element vλ

aλ ¼ hvðλÞ; vi: ðC10Þ

Then, using (C10), the canonical Poisson brackets for xi
and pj (C2) imply14

faλ; aλ0g ¼ i
α
hvðλÞ; v̄ðλ0Þi ¼ 0;

faλ; āλ0g ¼ −
i
α
hvðλÞ; vðλ0Þi ¼ −

i
α
δλ;λ

0
: ðC13Þ

(Note that aλ is dimensionless.) An important fact to keep
in mind in this construction is that there is ambiguity in the
choice of Vþ

C : there are (infinitely) many different ways of
splitting VC into a direct sum of two subspaces with the
properties mentioned above. If the Hamiltonian is time
independent, the symmetry under time translations of the
system provides a natural choice of Vþ

C , commonly called
the positive frequency subspace. But this choice is not
available in a general time-dependent situation.15

We will now discuss the classical dynamics. Time
evolution from time t0 to t will map each of the basis
elements vðλÞ ∈ Vþ

C to another element vðλÞðtÞ ≔ Et;t0v
ðλÞ of

VC, where Et;t0 is the canonical map implementing the
Hamiltonian flow in phase space. Then, we can substitute
vðλÞðtÞ in Eq. (C9) to obtain the evolution of an arbitrary
element of the real phase space v ∈ V

vðtÞ ¼ ðx⃗ðtÞ; p⃗ðtÞÞ ¼
X2
λ¼1

aλvðλÞðtÞ þ āλv̄ðλÞðtÞ: ðC14Þ

13A pedagogical mathematical analogy is used to consider
the Minkowski spacetime M2 in two spacetime dimensions,
and think about different ways of writing M2 as a direct sum
of two mutually orthogonal one-dimensional subspaces, M2 ¼
Mþ ⊕ M−, with Mþ spacelike and M− timelike, so the Min-
kowski metric is positive and negative definite when restricted to
them, respectively. Familiarity with special relativity tells us that
there are infinitely many different choices for Mþ, as many as
inertial reference frames.

14For the inverse to also be true, i.e. for the algebra of creation
and annihilation operators to imply the canonical Poisson
brackets, the basis vectors vðλÞa must also satisfy the condition:

1

α

X2
λ¼1

�
vðλÞa v̄ðλÞb − v̄ðλÞa vðλÞb

�
¼ iΩab; ðC11Þ

where

Ωab ¼
�

0 I2×2
−I2×2 0

�
: ðC12Þ

15This issue has important consequences in a field theory
with infinitely many degrees of freedom, where the Stone-von
Newman theorem does not apply. For a finite number of harmonic
oscillators, different choices of Vþ

C give rise to Hilbert spaces that
are all unitarily equivalent, although the state that we call “the
vacuum” depends on the choice.
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As an example, consider the positive norm subspace Vþ
C

spanned by

vð1Þ ¼
�� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2w1ðt0Þm1=α
p

0

�
;

� −iw1ðt0Þm1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w1ðt0Þm1=α

p
0

��
;

vð2Þ ¼
�� 0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w2ðt0Þm2=α

p
�
;

� 0
−iw2ðt0Þm2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w1ðt0Þm2=α

p
��

ðC15Þ

where t0 is a chosen instant of time and wiðtÞ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kiðtÞ=mi

p
. These two basis vectors, together with their

conjugates, provide a complete basis in VC. It is straight-
forward to show the orthonormality relations hvð1Þ; vð1Þi ¼
hvð2Þ; vð2Þi ¼ 1, hvð1Þ; vð2Þi ¼ hvð1Þ; v̄ð1Þi ¼ hvð1Þ; v̄ð2Þi ¼
hvð2Þ; v̄ð2Þi ¼ 0, as well as properties (C11). If the two
oscillators were decoupled and the spring constants were
time independent, vð1Þ and vð2Þ in (C15) would be the initial
data for positive frequency solutions for which only the first
or second oscillator is excited, respectively:

vð1ÞðtÞ ≔ Et;t0v
ð1Þ ¼

�� e−iw1tffiffiffiffiffiffiffiffiffiffiffiffiffi
2w1m1=α

p
0

�
;

� −iw1m1e−iw1tffiffiffiffiffiffiffiffiffiffiffiffiffi
2w1m1=α

p
0

��
;

vð2ÞðtÞ ≔ Et;t0v
ð1Þ ¼

�� 0

e−iw2tffiffiffiffiffiffiffiffiffiffiffiffiffi
2w2m2=α

p
�
;

� 0
−iw2m2e−iw2tffiffiffiffiffiffiffiffiffiffiffiffiffi

2w2m2=α
p

��
:

ðC16Þ

But in the time-dependent case under consideration, the
form of vð1ÞðtÞ and vð2ÞðtÞ is more complicated, and will
generically contain excitations in both oscillators, even if
only one of them was initially excited.

2. Quantum theory

Now that we have written the classical theory in a
convenient way, the quantization is straightforward. Given
a positive-negative norm decomposition, VC ¼ Vþ

C ⊕ V−
C,

the one-particle Hilbert space h is simply given by Vþ
C

equipped with the Hermitian inner product h·; ·i. The
Hilbert space of the theory is then the symmetric Fock
space F constructed from h (see e.g. Appendix A of [28]
for details of this construction).16 The position and momen-
tum operators at the initial time t0 are represented in F as

V̂ ¼ ðˆx⃗; ˆp⃗Þ ¼
X2
λ¼1

âλvðλÞ þ â†λ v̄
ðλÞ: ðC17Þ

The commutation relations are obtained from the Poisson
brackets of the classical theory via the Dirac replacement
rule f·; ·g → ½·; ·�=ðiℏÞ. Therefore

½V̂a; V̂b� ¼ iℏΩab; ðC18Þ

or more explicitly

½x̂i; x̂j� ¼ 0; ½p̂i; p̂j� ¼ 0; ½x̂i; p̂j� ¼ iℏδji : ðC19Þ

And from (C13) we have

½âλ; âλ0 � ¼ −
ℏ
α
hvðλÞ; v̄ðλ0Þi ¼ 0;

½âλ; â†λ0 � ¼
ℏ
α
hvðλÞ; vðλ0Þi ¼ ℏ

α
δλ;λ0 : ðC20Þ

These commutation relations reveal that âλ and â†λ are
creation and annihilation operators. With the choice α ¼ ℏ,
we recover the textbook expression ½âλ; â†λ0 � ¼ δλλ0 . Now,
the state j0i that is annihilated by the operators âλ is called
the Fock vacuum. A basis of the Fock space is obtained by
acting repeatedly on j0i with the creation operators a†λ :

jn1; n2i≡ ðαℏÞ
n1
2

n2
2 ðn1!n2!Þ−1=2ðâ†1Þn1ðâ†2Þn2 j0i, for all inte-

gers n1 and n2. It should be obvious from this construction
that the notion of vacuum depends on our initial choice of
positive norm subspace Vþ

C , since the definition of anni-
hilation operators âλ rests on that choice.
Let us now consider quantum evolution. Given initial

and final times, t0 and t > t0, dynamics can be imple-
mented either in the Heisenberg or Schrödinger pictures.
Formally, time evolution is generated by the standard
time-ordered exponential Ût;t0 ¼T½expð−i=ℏR t

t0
Ĥðt0Þdt0Þ�,

where ĤðtÞ is the quantum Hamiltonian obtained from
Eq. (C3). This unitary operator Ût;t0 is the starting point of
the perturbative expansion for small coupling constant
kc ≪ k1; k2, obtained by truncating the exponential at a
suitable order in powers of kc.
However, if one looks for exact solutions for general

values of the coupling kc, it is more convenient to proceed
in a different way, which in fact is closer to what is
commonly done in quantum field theories in curved
spacetimes. In the Heisenberg picture, where states do
not evolve in time, the evolution of position and momentum
operators can be obtained from the classical expression
(C14) by simply substituting aλ and āλ by the associated
operators or, equivalently, by substituting the basis vectors
vðλÞ in (C17) by the classical solutions vðλÞðtÞ ¼ Et;t0v

ðλÞ

16In textbooks, it is more common to use the space of square
integrable functions in the configuration space to build the Hilbert
space of a finite set of harmonic oscillators. We use here a
different representation, namely a Fock representation based on
the classical phase space. Both representations are, of course,
unitarily equivalent, and hence describe the same physics. The
Fock approach is however convenient in quantum field theory,
due to the infinite number of degrees of freedom of the system.
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V̂ðtÞ ¼ ðˆx⃗ðtÞ; ˆp⃗ðtÞÞ ¼
X2
λ¼1

âλvðλÞðtÞ þ â†λ v̄
ðλÞðtÞ: ðC21Þ

Therefore, to evolve the position and momentum operator
we just need the solution to the classical equations of
motion (C7) for each basis vector vðλÞ. No perturbative
expansion is required in this calculation, and therefore the
result is valid for arbitrary values of the coupling kc.
In the Schrödinger picture, the evolution of the Fock

vacuum can be written as17

Ût;t0 j0i ¼ N exp

�
α

ℏ

X2
λ;λ0¼1

Vλλ0a
†
λa

†
λ0

�
j0i; ðC22Þ

where N2 ¼ ðP∞
n;m¼0 jΔnmj2n!m!Þ−1, with

Δnm ≔
X

n1;n2;n3

1

n1!n2!n3!
ðV11Þn1ðV22Þn2ð2V12Þn3

× δ2n1þn3;nδ2n2þn3;m;

and Vλλ0 ðt; t0Þ ≔
P

λ00
1
2
β̄λ00λðt; t0Þᾱ−1λ0λ00 ðt; t0Þ. In these

expressions, αλλ0 ðt; t0Þ and βλλ0 ðt; t0Þ are the Bogoliubov
coefficients18 αλλ0 ðt;t0Þ≔ hvðλ0Þðt0Þ;vðλÞðtÞi, and βλλ0 ðt;t0Þ≔
−hv̄ðλ0Þðt0Þ;vðλÞðtÞi. They satisfy the following properties:X

λ00
αλλ00 ᾱλ0λ00 − βλλ00 β̄λ0λ00 ¼ δλλ0 ; ðC23Þ

X
λ00

αλλ00βλ0λ00 − βλλ00αλ0λ00 ¼ 0: ðC24Þ

In addition, ᾱ−1λ0λ00 ðt; t0Þ is the λ0λ00 component of the inverse
of matrix ᾱðt; t0Þ [Eqs. (C23) and (C24) guarantee that this
matrix is invertible]. Furthermore, from Eq. (C24), one can
easily prove that the matrix Vλλ0 is symmetric, Vλλ0 ¼ Vλ0λ.
The state (C22) is an excited state, and has a quite

interesting structure. These details are further discussed in
the next subsection in a concrete scenario of direct
relevance for the main body of this paper.

3. The in and out representations and the S-matrix

Consider now the example in which the following two
conditions hold:
(1) The spring “constants” k1ðtÞ and k2ðtÞ are indeed

constant k1ðtÞ ¼ kin1 and k2ðtÞ ¼ kin2 in the past until

t ¼ tin, then vary smoothly till t ¼ tout, and then
become constant again k1ðtÞ ¼ kout1 and k2ðtÞ ¼ kout2

to the future of tout.
(2) The coupling between the oscillators kcðtÞ vanishes

to the past of tin and to the future of tout, but it is
nonzero in between.

Then, before tin and after tout the two oscillators are time
independent and uncoupled, although their initial and final
spring constants are different. We are concerned now with
describing the evolution of the system from an initial time
t1 < tin to a final instant t2 > tout. Note that since the
Hamiltonian is time independent in the past and in the
future, we have two natural quantum representations, the in
and out, that are selected by the time translational sym-
metry in each asymptotic region. We will denote the
associated Fock space as F in and F out, respectively. The
vacuum state in F in, jini, is the preferred notion of vacuum
(ground state of the Hamiltonian) to the past of tin and,
similarly, the vacuum state in F out, jouti is the ground state
of the Hamiltonian to the future of tout. We want to answer
the following question: if the system is prepared at t1 in the
jini state, and then evolved to t2, how does the evolved state
look when compared to jouti? Note that this question is
slightly different from the discussion on time evolution
around Eq. (C22); now we want to express the evolved state
in the out Fock space. The operator providing this evolution
is known as the S-matrix, and we will denote it as Sðin;outÞ.
Its action on jini produces

Sðin;outÞjini ¼ N exp

�
α

ℏ

X2
λ;λ0¼1

Vλλ0 â
out†
λ âout†λ0

�
jouti; ðC25Þ

where, as before, Vλλ0 ≔
P

λ00
1
2
β̄λ00λᾱ

−1
λ0λ00 , but the Bogoliubov

coefficients that appear in this equation are now given by

αλλ0 ≔
D
vðλ

0Þ
out ðt2Þ; vðλÞin ðt2Þ

E
; βλλ0 ≔ −

D
v̄ðλ

0Þ
out ðt2Þ; vðλÞin ðt2Þ

E
:

ðC26Þ

Equation (C25) tells us that the ground state at early times
evolves to a state which is quite different from the vacuum
in the out region. Expanding the exponential in (C25) one
can see that the evolved state is made of linear combina-
tions of states containing an even number of excitations at
late times

Sðin;outÞjini ¼ N

�
jouti þ

ffiffiffiffi
2!

p
V11j21i þ

ffiffiffiffi
2!

p
V22j22i

þ 2V12j1112i þ
ffiffiffiffi
3!

p

2!
4V11V12j3112i þ � � �

�
;

ðC27Þ

17It would be incorrect to identify the unitary operator Ût;t0
with the nonunitary operator written in the right-hand side of this
equation. Rather, this expression only tells us the result of acting
with Ût;t0 on the vacuum.

18Note that these coefficients encode the classical dynamics, in
the sense that they provide the relation between vðλÞðtÞ and initial
data vðλÞðt0Þ: vðλÞðtÞ ¼

P
λ0 αλλ0 ðt; t0Þvðλ0Þðt0Þ þ βλλ0 ðt; t0Þv̄ðλ0Þðt0Þ.
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where jn1m2i indicates a state in F out with n excitations in
the first oscillator and m in the second. This result is
commonly interpreted by saying that the evolution has
created pairs of excitations. For a general coupling kcðtÞ,
this state cannot be written as the product of two states each
belonging to the Hilbert space of one of the oscillators, and
hence the two oscillators become entangled quantum
mechanically at late times. Since there is no entanglement
in the initial state jini, this entanglement can be entirely
attributed to the coupling between the oscillators at
intermediate stages of the evolution. Recall now that a
density matrix represents a pure state if and only if it is
idempotent, i.e. its square is itself (or equivalently if the
trace of the density matrix squared is equal to one).
One way of showing explicitly the existence of entan-

glement between the two oscillators in the final state is by
following the textbook recipe: Think about oscillator 1 and
oscillator 2 as two subsystems. Build the density matrix ρ
for the pure state (C25)

ρ ¼ Sðin;outÞjinihinjS†
ðin;outÞ: ðC28Þ

Now, trace-out from ρ the degrees of freedom of one of the
subsystems, say oscillator 1

ρred≔Tr1½ρ�¼N2
X∞

n2;m2;k¼0

k!
ffiffiffiffiffiffiffi
n2!

p ffiffiffiffiffiffiffiffi
m2!

p
Δkn2Δ̄km2

jn2ihm2j:

ðC29Þ

The square of this reduced density matrix, ρ2red, has trace
different from one for a generic coupling kcðtÞ, and hence it
represents a mixed state. An equivalent way of accounting
for this entanglement is by simply computing the Von
Neumann entropy of ρred, which agrees with the entangle-
ment entropy between the two oscillators (since the initial

state is a pure state). On the other hand, in the absence of
coupling, kcðtÞ ¼ 0 for all t, one finds that the Bogoliubov
coefficients β12 and β21 vanish, and the final state becomes
a product state

Sðin;outÞjini ¼ N

�
exp

�
α

ℏ
V11â

out†
1 âout†1

�
⊗ exp

�
α

ℏ
V22â

out†
2 âout†2

��
jouti: ðC30Þ

The reduced density matrix represents then a pure state, and
the two oscillators are unentangled, as expected.
The existence of entanglement can also be understood by

computing the correlation functions of this theory. In the
“in” vacuum they are

hinjV̂ðaV̂bÞjini ¼
ℏ
α

X2
λ¼1

ðvðλÞinðav̄
ðλÞ
inbÞÞ; ðC31Þ

where the brackets around indices indicates symmetrization
(the antisymmetric part is state independent and completely
determined by the canonical commutation relations). The
time evolution of this expression is more easily computed
using the Heisenberg picture, and it only requires one to
evolve the “in" modes in the right-hand side. The entan-
glement between the two oscillators is manifest in the time
evolution of the cross-correlation

hinjx̂1ðtÞx̂2ðtÞjini; ðC32Þ

which turns out to be equal to zero for early times t < tin,
but it generically becomes different from zero at late
times if the coupling kcðtÞ is different from zero at some
intermediate time.
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