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We consider perturbations of closed Friedmann universes. Perturbation modes of two lowest wave
numbers (L ¼ 0 and 1) are generally known to be fictitious, but here we show that both are physical. The
issue is more subtle in Einstein static universes where closed background space has a timelike Killing
vector with the consequent occurrence of linearization instability. Proper solutions of the linearized
equation need to satisfy the Taub constraint on a quadratic combination of first-order variables. We evaluate
the Taub constraint in the two available fundamental gauge conditions, and show that in both gauges the
L ≥ 1 modes should accompany the L ¼ 0 (homogeneous) mode for vanishing sound speed, cs. For
c2s > 1=5 (a scalar field supported Einstein static model belongs to this case with c2s ¼ 1), the L ≥ 2modes
are known to be stable. In order to have a stable Einstein static evolutionary stage in the early universe,
before inflation and without singularity, although the Taub constraint does not forbid it, we need to find a
mechanism to suppress the unstable L ¼ 0 and L ¼ 1 modes.
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I. INTRODUCTION

The study of scalar, vector and tensor perturbations
of the Friedmann universes of general relativity began with
the famous paper of Lifshitz in 1946 [1,2]. Curiously, just
as the isotropic and homogeneous Newtonian cosmologies
were found later by Milne and McCrea [3], in 1934, then
their general relativistic counterparts by Friedmann [4,5] in
1922, so the Newtonian treatment of their scalar perturba-
tions, by Bonnor [6] in 1957, also followed the general
relativistic treatment of Lifshitz. Recently, the studies of the
stability of the Einstein static universe by Barrow et al. [7]
and Losic and Unruh [8] have drawn attention to a subtle
feature of the homogeneous and isotropic background
cosmological model that can cause perturbation theory
to fail due to the phenomenon of linearization instability.
This is the motivation for our study.
Linearization instability arises when the sum of the two

leading terms in perturbation around an exact solution
cannot be completed to a convergent expansion. That is, if
the metric is expanded as

gab ¼ gð0Þab þ ϵgð1Þab þ ϵ2gð2Þab þ � � � ; ð1Þ

where gab and gð0Þab are solutions of the full Einstein

equations, and gð1Þab is a solution of the linearized
Einstein equations, then the series expansion is said to
be linearization stable if the series (1) can be completed to

form a convergent series. If not, it is said to be linearization
unstable. In general relativity, Fischer and Marsden, Arms,
and Moncrief [9–11] showed that compact spaces in
vacuum with Killing vectors are linearization unstable:

gð1Þab is linearization stable if and only if gð0Þab has no Killing
fields. In Ref. [12], this feature was discussed in relation to
series expansions about the Mixmaster universe, which has
compact space sections and Killing symmetries, and Brill
provides several examples [13]. A comprehensive overview
is also given in the thesis of Altas [14].
Heuristically, the geometry of the solution space of

cosmologies with compact Cauchy surfaces is conical at
the points with Killing symmetries and so the perturba-
tion expansion is like trying to draw a tangent through
the apex of a cone: there are an infinite number of
possible tangents and the ones that form the leading
order of an expansion that converges to a true solution
corresponds to the tangents that run down the side of the
cone. This reminds us that there are two ways to obtain
a perturbed version of an exact solution. The first
(definitive but unrealistic) method is to find the general
solution of the equations and linearize about the exact
solution in question. The other method (used in practice)
is to linearize the equations about the exact solution and
solve the linearized equations. This does not necessarily
lead to the same result unless some extra constraints are
imposed (which we shall discuss below in the general
relativistic context).
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A typical example is provided by the equation

fðx; yÞ ¼ xðx2 þ y2Þ ¼ 0; ð2Þ

with the set of solutions ðx; yÞ ¼ ð0; yÞ, where y is
arbitrary. Now linearize Eq. (2) about the particular
solution (0,0). This yields

ð3x2 þ y2Þδxþ 2xyδy ¼ 0: ð3Þ

We see that for ðx; yÞ ¼ ð0; 0Þ there is no restriction on the
linearized solutions and ðδx; δyÞ are completely arbitrary.
However, from the exact solution, we know that although
there are linearized solutions to the linearized Eq. (3) with
δx ≠ 0, they cannot arise from the linearizations of any
exact solution of Eq. (2) [14].
Fischer, Marsden and Moncrief [9] showed that the

gð1Þab is not a spurious solution if and only if it satisfies a
second-order constraint, involving integrals of the Taub
conserved quantity which therefore vanish [15]. In this
paper, we will evaluate the Taub constraint in different
gauges and determine the status of the first-order neutral
stability results for the Einstein static universe, which is a
prime candidate for the phenomenon of linearization
instability as it has compact space sections and many
Killing symmetries.
In the course of this analysis we will also identify some

features of gauge invariant perturbation claims in the
literature that appear to be discrepant in ways that do
appear to have been noticed in the past. Specifically, we
will address two issues in the cosmological scalar pertur-
bations of the homogeneous and isotropic Friedmann
universes. In some of the literature, the perturbations with
the two lowest wave numbers (L ¼ 0 and 1) are claimed to
be fictitious. Here, we show that both are physical.
In a closed background space with Killing vectors, in

order to be linearization stable the solution of a linearized
equation should satisfy a constraint on a quadratic combi-
nation of first-order variables; we call it the Taub constraint.
When the Taub constraint is evaluated under two gauge
conditions for a timelike Killing vector in an Einstein static
background, it implies that L ≥ 1 modes should accom-
pany the L ¼ 0 (homogeneous) mode, but this is true only
for vanishing sound speed.
In Sec. II, we review the equations and solutions for

linear perturbations of scalar type in the presence of
background curvature and we consider a complete set of
exact solutions with zero pressure and cosmological con-
stant (see Appendix A).
In Sec. III we investigate the physical nature of the two

lowest wave number modes (L ¼ 0 and 1) in the positive
curvature background. In Sec. IV we analyze the stability in
the Einstein static background in the presence of pressure
or a scalar field. In Sec. V we evaluate the Taub constraint
for a timelike Killing vector in the Einstein static model; the

Taub constraint is derived in Appendix B. Section VI is a
discussion of our results and their consequences. In
Secs. II–IV, we consider scalar-type linear perturbation
in the Friedmann background with spatial curvature, while
Sec. V considers second-order perturbations. Sections II
and III consider general background curvature K,
while Secs. IV and V are concerned with the positive
curvature background. In the case of the scalar field we
set c≡ 1≡ ℏ.

II. LINEAR PERTURBATIONS WITH
GENERAL CURVATURE

All results in this section are known in the literature, but
we pay special attention to three simple cases of perturbed
Friedmann universes. These are (i) the Einstein static
background withH ¼ 0, (ii) the homogeneous perturbation
with Δ ¼ 0, and (iii) the case with Δþ 3K ¼ 0, where K is
the curvature parameter in the Friedmann equation, equal to
0 or �1; the latter two cases are considered in the spherical
geometry; H is the Hubble-Lemaître parameter and Δ is a
Laplacian operator of the comoving three-space of the
Friedmann metric. In these simple cases some terms in
the perturbation equations automatically vanish, thus the
analysis and final results are often invalid; in such cases a
simple cure is to go back to the original perturbation
equations and check each case. We will study these simple
cases in more detail in later sections.

A. Basic equations

We consider perturbations of scalar-type in the
Friedmann background. Our metric convention follows
Bardeen’s in [16]

g̃00 ¼ −a2ð1þ 2αÞ; g̃0i ¼ −a2β;i;

g̃ij ≡ a2½ð1þ 2φÞγij þ 2γ;ijj�; ð4Þ

with x0 ¼ η the conformal time and aðtÞ is the expansion
scale factor. We introduce χ ≡ aðβ þ a

c _γÞ where the time
derivative is with respect to twhere cdt≡ adη. The energy-
momentum tensor is decomposed into fluid quantities
based on a timelike fluid four-vector, ũa, normalized with
ũaũa ≡ −1, so

T̃ab ¼ μ̃ũaũb þ p̃ðg̃ab þ ũaũbÞ þ π̃ab; ð5Þ

μ̃ ¼ ϱ̃c2; ϱ̃≡ ϱþ δϱ; p̃ ¼ pþ δp;

ũi ≡ −
a
c
v;i; π̃ij ≡ 1

a2

�
∇i∇j −

1

3
γijΔ

�
Π: ð6Þ

We may set δp≡ c2sc2δϱþ e with c2s ≡ _p=ð _ϱc2Þ, and
w≡ p=ðϱc2Þ; e is the entropic perturbation and Π is the
anisotropic stress. The spatial indices are raised and
lowered by γij and its inverse, and a vertical bar indicates
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the covariant derivative based on the metric tensor γij. One
representation of γij is

dl2 ≡ γijdxidxj

¼

8>><
>>:

dχ2 þ sin2χðdθ2 þ sin2θdϕ2Þ ðK ¼ þ1Þ;
dχ2 þ χ2ðdθ2 þ sin2θdϕ2Þ ðK ¼ 0Þ;
dχ2 þ sinh2χðdθ2 þ sin2θdϕ2Þ ðK ¼ −1Þ;

ð7Þ

with a normalized background curvature K.
The Friedmann equations are [4,5]

H2 ¼ 8πG
3

ϱ −
Kc2

a2
þ Λc2

3
;

_H þH2 ¼ −
4πG
3

�
ϱþ 3p

c2

�
þ Λc2

3
;

_H ¼ −4πG
�
ϱþ p

c2

�
þ Kc2

a2
;

_ϱþ 3H

�
ϱþ p

c2

�
¼ 0; ð8Þ

with H ≡ _a=a the Hubble-Lemaître parameter. The pres-
sure term was first considered by Lemaître [17–19]. The
general perturbation in the Friedmann background was
studied first by Lifshitz [1,2]. Lifshitz studied the scalar-,
vector- and tensor-type perturbations to the linear order in
the synchronous gauge (α≡ 0≡ β). Here we consider the
scalar-type perturbation in all fundamental gauges. Unless
mentioned otherwise, our study in Secs. II and III is valid
for all types of K, whereas Secs. IV and V concern the
positive curvature model.
To linear order in perturbation, the basic equations for

the scalar-type perturbation, without imposing the gauge
conditions, are [16]

κ ¼ 3Hα − 3 _φ − c
Δ
a2

χ; ð9Þ

4πGδϱþHκ þ c2
Δþ 3K

a2
φ ¼ 0; ð10Þ

κ þ c
Δþ 3K

a2
χ −

12πG
c2

a

�
ϱþ p

c2

�
v ¼ 0; ð11Þ

_κ þ 2Hκ þ
�
3 _H þ c2

Δ
a2

�
α ¼ 4πG

�
δϱþ 3δp

c2

�
; ð12Þ

φþ α −
1

c
ð _χ þHχÞ ¼ −

8πG
c4

Π; ð13Þ

δ _ϱþ 3H

�
δϱþ δp

c2

�
þ
�
ϱþ p

c2

��
3Hα − κ −

Δ
a
v

�
¼ 0;

ð14Þ

1

a4

�
a4
�
ϱþ p

c2

�
v

�
·
¼ 1

a

�
δpþðϱc2þpÞαþ2

3

Δþ3K
a2

Π
�
:

ð15Þ

We consider a gauge transformation, x̂c ¼ xc þ ξ̃cðxeÞ
with ξ̃0 ¼ ξ0 ≡ 1

a ξ
t and ξ̃i ¼ ξi ≡ 1

a ξ
ji; index of ξi is raised

and lowered using γij as the metric. To the linear order we
have [16]

α̂ ¼ α −
1

c
_ξt; β̂ ¼ β −

1

a
ξt þ a

c

�
1

a
ξ

�
·
;

γ̂ ¼ γ −
1

a
ξ; χ̂ ¼ χ − ξt; κ̂ ¼ κ þ 1

c

�
3 _H þ c2

Δ
a2

�
ξt;

φ̂ ¼ φ −
1

c
Hξt; δϱ̂ ¼ δϱ −

1

c
_ϱξt;

δp̂ ¼ δp −
1

c
_pξt; v̂ ¼ v −

c
a
ξt; ê ¼ e;

Π̂ ¼ Π; δϕ̂ ¼ δϕ −
1

c
_ϕξt: ð16Þ

By using χ instead of β and γ, all the perturbation variables
are spatially gauge invariant. We have the following
possible fundamental gauge conditions: the uniform-
curvature gauge (UCG, φ≡ 0), the uniform-density gauge
(UDG, δϱ≡ 0), the uniform-expansion gauge (UEG,
κ ≡ 0), the comoving gauge (CG, v≡ 0), the zero-shear
gauge (ZSG, χ ≡ 0), and the synchronous gauge (SG,
α≡ 0). We introduce gauge-invariant notations, like
vχ ≡ v − ðc=aÞχ ≡ −ðc=aÞχv, where vχ is gauge invariant
the same as v in the ZSG. One exception is the SG; after
imposing the gauge condition we still have nonvanishing
ξtðxÞ which is the remnant gauge mode in the SG. Thus,
χα ≡ χ − c

R
t αdt is not gauge invariant; the lower bound of

integration gives the remnant gauge mode with χ ∝ ξtðxÞ.
Concerning the spatial gauge transformation, our defini-
tions of χ and v are spatially gauge-invariant combinations;
χ is the same as (equivalent to) aβ under the spatial gauge
condition γ ≡ 0.
We note that in a static background with H ¼ 0, both φ

and δϱ become gauge invariant. In addition, for Δ ¼ 0
(thus, a homogeneous) mode, κ becomes gauge invariant
as well.

B. Exact equations and asymptotic solutions

A powerful large-scale conserved behavior of a combi-
nation of variables in the presence of K is known already.
The following analysis is valid for H ≠ 0; for H ¼ 0, φ
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and δ are gauge invariant, and we can show Φ ¼ 0,
(see Sec. IV). We define

Φ≡ φv −
Kc2

a2

4πGðϱþ p
c2Þ

φχ ¼ φv þ
K

Δþ 3K
δv

1þ w
; ð17Þ

where we used

c2
Δþ 3K

a2
φχ ¼ −4πGδϱv; ð18Þ

which follows from Eqs. (10) and (11); from Eq. (16) we
have

φχ ≡ φ −
H
c
χ and δϱv ≡ δϱþ 1

c2
3aH

�
ϱþ p

c2

�
v:

Note that for Δ ¼ −3K, Eq. (18) gives δϱv ¼ 0, and the
second expression in Eq. (17) does not apply; δϱv ¼ 0
follows from Eqs. (10) and (11) evaluated in the CG with
Δ ¼ −3K.
In Eq. (17), from the first relation, using Eqs. (9), (11)

and (13), and from the second relation, using Eqs. (9)–(11),
(14) and (15), respectively, we can derive

Φ ¼ H2

4πGðϱþ p
c2Þa

��
a
H
φχ

�
·
þ 8πG

c4
aΠ

�
; ð19Þ

_Φ ¼ Hc2sc2

4πGðϱþ p
c2Þ

Δ
a2

φχ −
H

ϱc2 þ p

�
eþ 2

3

Δ
a2

Π
�
: ð20Þ

Although we used Eq. (18) in deriving Eq. (20), we can
check by using the original Eqs. (9)–(15) that the result is
valid even for Δ ¼ −3K. Ignoring the imperfect fluid
contribution, thus setting e≡ 0≡ Π, we have

H2c2s
ðϱþ p

c2Þa3
�ðϱþ p

c2Þa3
H2c2s

_Φ
�·
− c2sc2

Δ
a2

Φ ¼ 0: ð21Þ

Using

v≡ zΦ; z≡
a

ffiffiffiffiffiffiffiffiffiffiffiffi
ϱþ p

c2

q
Hcs

; ð22Þ

we have

1

c2az2
ðaz2 _ΦÞ· − c2s

Δ
a2

Φ ¼ 1

a2z

�
v00 −

�
z00

z
þ c2sΔ

�
v

�
¼ 0;

ð23Þ

where a prime is the time derivative with respect to the
conformal time, η. In the large-scale (super-sound-horizon
scale) limit, z00=z ≫ c2sΔ, we have a general solution:

Φðx; tÞ ¼ CðxÞ þ dðxÞ
Z

t H2c2s
4πGðϱþ p

c2Þa3
dt: ð24Þ

Thus, the relatively growing solution ofΦ remains constant
in the super-sound-horizon scale. The sound-horizon van-
ishes for zero-pressure fluid, in which case we have _Φ ¼ 0,
and so Φ ¼ CðxÞ exactly.
The well-known equation in terms of v and z in Eq. (23)

first appeared in Eq. (44) of Field and Shepley’s 1968 paper
[20] in the context with general K (see also [21], Sec. Vof
[22] and Sec. III of [23]; in the absence of K, see [24–26]).
Using Eqs. (10) and (14), Eq. (17) can be arranged as

c2
Δþ 3K
a2H2

Φ ¼ −
�

δϱα
ðϱþ p

c2ÞH
�

·
−

3e
ϱc2 þ p

; ð25Þ

which is related to Eqs. (31) and (43) in [20]. Here, we
used αv ≡ α − 1

c2 ðavÞ·, vα ≡ v − c2
a

R
t αdt and δϱα ≡ δϱ −

_ϱ
R
t αdt which follow from Eq. (16); notice that the

remnant gauge degree of freedom in the SG imbedded
in the lower bound of integration of δϱα in Eq. (25)
disappears because of the time derivative. For Δ ¼ −3K
Eq. (25) is identically satisfied as we have δϱα ¼
δϱv − _ϱ

R
t αvdt with δϱv ¼ 0 and αv ¼ −e=ðϱc2 þ pÞ

which follows from Eq. (15).

C. Exact solutions for zero-pressure fluid

In the zero-pressure situation, with p ¼ 0 ¼ δp and
Π ¼ 0, but with general K and Λ, we have [see
Eqs. (20) and (24)]

Φ ¼ CðxÞ: ð26Þ

Again, the following analysis is valid forH ≠ 0; forH ¼ 0,
φ and δ are gauge invariant, and we have Φ ¼ 0; the static
case will be studied in Sec. IV. In the CG, Eq. (15) gives
αv ¼ 0. Using Eqs. (10) and (14), the second relation in
Eq. (17) gives �

δv
H

�
·
¼ −c2

Δþ 3K
a2H2

Φ; ð27Þ

with an exact solution:

δv ¼ −c2ðΔþ 3KÞCH
Z

t dt
_a2
: ð28Þ

The relatively decaying solution is absorbed in the lower
bound of the integration. From this one solution we can
derive all the other solutions in the same gauge and, using
the complete solutions in one gauge, we can derive all
solutions with all other gauge conditions. The complete
solutions are presented in Table 1 of [27], and are
reproduced in Appendix A in this paper; in our notation,
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paying particular attention to the k2 ¼ 0 and 3K modes in
the spherical geometry; we introduced the comoving wave
number with Δ ¼ −k2.
ForΔ ¼ −3K, we have δv ¼ 0 and we cannot begin with

the above two equations which become trivial. We need to
start from a nonvanishing solution. In the ZSG, from
Eqs. (9), (11), (13) and (15), we have

1

a
ðaφχÞ· ¼ −

4πGϱ
c2

avχ ;

1

a
ðavχÞ· ¼ −

c2

a
φχ ; thus

1

a3
½a2ðaφχÞ·�· ¼ 4πGϱφχ : ð29Þ

This can be written as

1

a3H

�
a2H2

�
a
H
φχ

�
·
�
·
¼ 0; ð30Þ

with the solution

φχ ¼ 4πGϱa2HC
Z

t dt
_a2
: ð31Þ

The normalization is made using Eq. (19). This solution
coincides with the one in Appendix A. From this we
obtain solutions of every variable in all gauge conditions.
The results are naturally (because φχ coincides) the same
as the ones derived from δv in Eq. (28) presented in
Appendix A.

D. Scalar fields

For a minimally coupled scalar field, the equations for
the fluid, Eq. (8) for the background, and Eqs. (9)–(15)
for perturbations, remain valid with the fluid quantities
replaced by the ones for the scalar field. Additionally, we
have the scalar field equation of motion which also follows
from the conservation equations, the last one in Eq. (8) and
Eq. (14). For the background, we have

ϱ ¼ 1

2
_ϕ2 þ V; p ¼ 1

2
_ϕ2 − V; ð32Þ

ϕ̈þ 3H _ϕþ V;ϕ ¼ 0: ð33Þ

For the perturbation, we have

δϱ ¼ _ϕδ _ϕ − _ϕ2αþ V;ϕδϕ;

δp ¼ _ϕδ _ϕ − _ϕ2α − V;ϕδϕ;

ðϱþ pÞv ¼ 1

a
_ϕδϕ; Π ¼ 0; ð34Þ

δϕ̈þ 3Hδ _ϕþ
�
V;ϕϕ −

Δ
a2

�
δϕ

¼ _ϕðκ þ _αÞ þ ð2ϕ̈þ 3H _ϕÞα: ð35Þ

The gauge transformation property of the scalar field is
presented in Eq. (16).
The scalar field can be treated as a fluid, as identified in

Eqs. (32) and (34). The CG (v≡ 0) coincides with the
uniform-field gauge (UFG, δϕ≡ 0). In this gauge we have

δϕv ¼ δμv; thus e ¼ ð1 − c2sÞδμv with

c2s ≡ _p
_ϱ
¼ −1 −

2ϕ̈

3H _ϕ
: ð36Þ

Using this e and Eq. (18), Eq. (20) gives

_Φ ¼ Hc2Ac
2

4πGðϱþ p
c2Þ

Δ
a2

φχ with c2AΔ≡ Δþ 3ð1 − c2sÞK:

ð37Þ

Thus, the equations in Sec. II B with e ¼ 0 ¼ Π are valid
with c2s replaced by c2A, see Sec. III of [23]; in the absence of
K, we have c2A ¼ 1 [26].

III. THE PHYSICAL NATURE OF THE
k2 = 0 AND k2 = 3K MODES

In the spherical geometry the mode function has discrete
wave numbers with k2 ≡ ðn2 − 1ÞK and n ¼ 1; 2;…; we
often keep K explicitly even though we normalized it
earlier as K ¼ 1. In the literature the two lowest wave
numbers with n ¼ 1 and 2, thus k2 ¼ 0 and 3K, are claimed
to be fictitious perturbations [1,2,28]. Our review in the
previous section shows no particular trouble for Δ ¼ 0 and
−3K cases. In this section we study the individual case in
more detail and show the physical nonfictitious nature of
these two modes.

A. k2 = 0 (homogeneous) modes

First, we consider the k2 ¼ 0 mode. By setting Δ ¼ 0
our basic equations in (9)–(15) become a set of ordinary
differential equations depending only on time and are
therefore spatially homogeneous.
For Δ ¼ 0 we have Φ ¼ φþ δ=½3ð1þ wÞ� and from

Eqs. (9) and (14) we can show

�
φþ δ

3ð1þ wÞ
�

·
þ He
ϱc2 þ p

¼ 0: ð38Þ

Thus, for e ¼ 0, we have
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φþ δ

3ð1þ wÞ ¼ C: ð39Þ

In the UDG (δ≡ 0), which is possible for H ≠ 0, we
have (for e ¼ 0)

φδ ≡ φþ δ

3ð1þ wÞ ¼ C: ð40Þ

From Eqs. (14) and (10), we have

κδ ¼ −
3Kc2

a2H
C; αδ ¼ −

Kc2

a2H2
C; ð41Þ

and the solutions for other variables in the same gauge
follow from Eqs. (13) and (11):

χδ ¼
c
a

Z
t
a

��
1−

Kc2

a2H2

�
Cþ 8πG

c4
Π
�
dt;

4πG
c2

�
ϱþ p

c2

�
avδ ¼ −

Kc2

a2H
CþKc2

a3

Z
t
a

��
1−

Kc2

a2H2

�
C

þ 8πG
c4

Π
�
dt: ð42Þ

As we have solutions for a complete set of variables in
the UDG, the solutions in any other gauge can be derived
using the gauge transformation properties in Eq. (16). As
an example, density perturbation in the CG, δv, and the
curvature perturbation in the ZSG, φχ , can be derived in the
following way. From Eq. (16) we have

δv ≡ δþ 3

c2
aHð1þ wÞv≡ 3

c2
aHð1þ wÞvδ;

φχ ≡ φ −
1

c
Hχ ¼ φδ −

1

c
Hχδ: ð43Þ

For comparison with exact solutions in the zero-pressure
case presented in Sec. II C and Appendix A, it is convenient
to have

a
H

−
Z

t
a

�
1 −

Kc2

_a2

�
dt ¼ 4πGϱa3

Z
t dt
_a2
: ð44Þ

For a static background we haveH ¼ 0 so we have to go
back to the original equations in (9)–(15) and the gauge
transformation properties in Eq. (16); as δ is naturally
gauge invariant, we cannot take the UDG. Although we
cannot construct φδ, the combination φþ δ=½3ð1þ wÞ� is
fine and still gives C, which in fact vanishes, see Eq. (10).
The static situation will be studied in Sec. IV C.

B. k2 = 3K modes

For k2 ¼ 3K we have Δþ 3K ¼ 0. As we have Δþ 3K
terms often appearing in our basic equations, many variables

vanish in some gauges. Following Bardeen [28] we consider
the case of the UEG with κ ≡ 0. Equations (10)–(12) give
δ ¼ 0, v ¼ 0 and α ¼ −e=ðϱc2 þ pÞ, respectively; thus, the
UDG and the CG also give the identical results. Despite this
simplification in the three gauges (UEG, UDG and CG),
Eqs. (9) and (13) give the following equations:

_φ¼Kc
a2

χ−
He

ϱc2þp
;

1

ca
ðaχÞ·¼φ−

e
ϱc2þp

þ8πG
c4

Π;

1

a3

�
a3
�
_φþ He

ϱc2þp

��
·
−
Kc2

a2

�
φ−

e
ϱc2þp

�
¼8πG

c2
K
a2

Π;

ð45Þ

which are valid for the three gauge conditions. For
e ¼ 0 ¼ Π we have

_φ ¼ Kc
a2

χ;
1

ca
ðaχÞ· ¼ φ;

1

a3
ða3 _φÞ· − Kc2

a2
φ ¼ 0:

ð46Þ

These are nontrivial equations and as the gauge modes are
completely fixed in all three gauges, the variables cannot be
removed by gauge transformation. Equations in the other
remaining gauges (the ZSG and UCG) are more nontrivial.
Each variable in all these gauge conditions has a unique
gauge-invariant combination.
An exception is the SG where even after fixing α≡ 0

in all coordinates we have nonvanishing ξt, where ξtðxÞ is
the remnant gauge mode. From Eqs. (10) and (12), for
δp ¼ c2sδϱ with c2s ≡ _p= _ϱ, we have the solution δϱ ∝
Hðϱþ p=c2Þ which is exactly the behavior of the gauge
mode as we have δϱ̂ ¼ δϱþ c−13Hðϱþ p=c2ÞξtðxÞ. Thus,
this solution can be removed as a fictitious gauge mode.
By removing this gauge mode, and by setting ξtðxÞ ¼ 0 so
δ ¼ 0, the result becomes identical to taking the UDG. The
complication caused by the remnant gauge mode in the SG
can be overcome by removing the gauge mode (as we just
did and Lifshitz did in [1]), by transforming to another
gauge, or by constructing the gauge-invariant combinations
in the SG as Field and Shepley did in [20]. In any case the
results are the same as our analysis made above under the
other fundamental gauge conditions: without any remnant
gauge mode.
In the zero-pressure fluid with general K and Λ, the

complete solutions in all fundamental gauge conditions are
presented in Appendix A for these two modes.

C. Disagreements in the literature

The original comments on the fictitious nature of k2 ¼ 0
and 3K modes in spherical geometry were made by Lifshitz
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[1,2] and Bardeen [28]; see also [29]. Here we analyze their
arguments.
Lifshitz has introduced a scalar harmonic functionQ and

constructed the vector and tensor harmonic functions as
[Eqs. (3.4), (3.10) and (3.11) in [1]]

ΔQ ¼ −ðn2 − 1ÞQ; Pi ≡ 1

n2 − 1
Q;i;

Pij ≡ 1

n2 − 1
Q;ijj þ

1

3
γijQ: ð47Þ

Thus, k2 ¼ n2 − 1 with n ¼ 1; 2;…; Pij is traceless with
Pi
i ¼ 0. In a footnote below this equation Lifshitz mentions

that Pij cannot be constructed for n ¼ 1 and 2; Pi and Pij

diverge (indeterminate as we have Q;i ¼ 0 for n ¼ 1 with
Q ¼ P

l;m Q1lm ¼ Q100 ¼ constant), and Pij vanishes
for n ¼ 2 (we have Q;ijj ¼ −γijQ for n ¼ 2 with
Q ¼ P

l;m Q2lm); see Eq. (88). Thus, the vector and tensor
harmonic functions Pi and Pij constructed in this way have
trouble in handling n ¼ 1 and 2 modes properly.
Lifshitz has taken the synchronous gauge setting

α≡ 0≡ β in our notation; thus we have α ¼ 0 and
χ ¼ a2

c _γ in our equations. The spatial metric is expanded
using the tensor harmonic function as [Eq. (4.1) in [1]]

g̃ij≡a2ðγijþhijÞ; hij≡μ
1

3
γijQþλPij; h≡hii¼μQ:

ð48Þ

Compared with our metric convention in Eq. (4), we have

φ ¼ 1

6
ðμþ λÞQ; γ ¼ λ

2ðn2 − 1ÞQ: ð49Þ

Notice that λ is involved with a 1=ðn2 − 1Þ factor which is
troublesome for n ¼ 1.
Below Eq. (4.5) Lifshitz has made a major comment

concerning our issue: “For n ¼ 1, 2, we must put λ ¼ 0
because the tensor Pij does not exist for these values of n.”
By setting λ ¼ 0 we have γ ¼ 0 in our notation, thus
together with β ¼ 0 we have χ ¼ 0. Thus, for these two
modes Lifshitz sets α ¼ 0 and χ ¼ 0 simultaneously. As we
set α ¼ 0 and χ ¼ 0 simultaneously, with e ¼ 0 ¼ Π, all
variables in Eqs. (9)–(15) vanish. Thus, all perturbations
disappear for these two modes n ¼ 1 and 2. Setting
α ¼ 0 ¼ χ, however, is like imposing two temporal gauge
(hypersurface, slicing) conditions simultaneously which is
not allowed even for n ¼ 1 and 2. Although Pi and Pij

cannot be constructed for n ¼ 1 and/or 2 it is merely due to
the way of constructing Pi and Pij in Eq. (47) which can be
avoided by simply not introducing such vector and tensor
harmonics, see our Eq. (4).
Bardeen has similarly introduced harmonic functions as

[Eqs. (2.7)–(2.9) in [28]]

ΔQ¼ −k2Q; Qi ≡−
1

k
Q;i; Qij ≡ 1

k2
Q;ijj þ

1

3
γijQ:

ð50Þ

Compared with Lifshitz’s notation we have Qij ¼ Pij and
Qi ¼ −kPi; thusQi andQij diverge (are indeterminate) for
n ¼ 1, and Qij vanishes for n ¼ 2. The metric tensor is
expanded using the harmonic functions as [Eq. (2.14)
in [28]]

g̃00 ¼ −a2ð1þ 2AQÞ; g̃0i ¼ −a2BQi;

g̃ij ¼ a2½ð1þ 2HLQÞγij þ 2HTQij�: ð51Þ
Compared with our metric convention (which is in fact the
convention of Bardeen’s other work [16]), in Eq. (4), we
have

α ¼ AQ; β ¼ −
1

k
BQ;

φ ¼
�
HL þ 1

3
HT

�
Q; γ ¼ 1

k2
HTQ; ð52Þ

thus B and HT are involved with 1=k and 1=k2 factors
which are troublesome for vanishing k; see below Eq. (211)
in [30].
Concerning n ¼ 1 and 2 modes, below Eq. (4.9) Bardeen

mentions: “A spatially homogeneous perturbation or
the lowest inhomogeneous mode k2 ¼ 3K in a closed
universe require special treatment in that Qi and/or Qij

vanish identically, ΦH, ΦA, and vs are no longer gauge-
invariant. … A homogeneous scalar perturbation is really
no perturbation at all, but an inappropriate choice of
background.” Compared with our notation, we have
[Eqs. (3.9)–(3.11) in [28]]

φχ ≡ φ −
H
c
χ ¼

�
HL þ 1

3
HT þH

�
a
kc

B −
a2

k2c2
_HT

��
Q

≡ΦHQ;

αχ ≡ α −
1

c
_χ ¼

�
Aþ 1

kc
ðaBÞ· − 1

k2c2
ða2 _HTÞ·

�
Q

≡ΦAQ;

vχ ≡ v −
c
a
χ ¼ 1

k

�
vB −

a
k

_HT

�
Q≡ 1

k
vsQ; ð53Þ

where vB is Bardeen’s v; compared with our v we have

ũi ≡ −
a
c
v;i;

ũi

ũ0
¼

�
−
1

c
vþ β

�ji ≡ 1

c
vBQi ¼ −

1

kc
vBQji; thus;

v ¼ 1

k
ðvB − cBÞQ: ð54Þ
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Although Bardeen’s definitions of ΦH, ΦA and vs in
Eq. (53) have problems for k ¼ 0, in our notation, φχ ,
αχ and vχ , thus ΦH, ΦA and vs, are gauge invariant
independently of the value of k.
Concerning the homogeneous perturbation: the n ¼ 1

(homogeneous) mode scalar perturbation is a correct result
from the perturbation and is handled properly while main-
taining the homogeneous and isotropic nature of the back-
ground. This becomes clear in the Einstein static model as
presented in Eq. (75). Compared with this proper treatment,
the perturbation of the background equations, although it
happens to give the same result as in Eq. (78), is a hand-
waving procedure.Rigorously,wehave to perturb the original
Einstein’s equation around the background, instead of simply
perturbing the background equations, see Sec. IVD.
Below Eq. (6.26) of [28] Bardeen addresses the n ¼ 2

mode by analyzing it in the UEG, and states “Since Qij

vanishes identically, Eq. (6.23) no longer applies.”
Bardeen’s Eq. (6.23) is a combination of our Eqs. (9)
and (11) which do apply and gives vκ ¼ 0. Although many
variables vanish in this gauge, there are still surviving ones
in the same gauge (these are φκ and χκ) as in Eq. (45).
Concerning these variables, below Eq. (6.27), Bardeen
mentions “The amplitude [φκ] now depends on the way
spatial coordinates are propagated from one hypersurface to
the next through the hypersurface condition Eq. (5.22). The
traceless part of the metric tensor perturbation and the
spatial curvature perturbation vanish. The absence of any
physical adiabatic mode when k2 ¼ 3K was first recog-
nized by Lifshitz and Khalatnikov.”
Bardeen’s Eq. (5.22) is our Eq. (9). Together with

Eq. (13) it gives Eqs. (45) and (46). We find no reason
why these equations and behaviors of the gauge-invariant
variables φκ and χκ should be regarded as coordinate
effects. In Bardeen’s statement “the traceless part of the
metric tensor perturbation” is HT in Eq. (51), thus our γ,
which can be set zero as the spatial gauge condition
(without any effect in our formulation as we are using χ,
which remains the same). However, his “spatial curvature
perturbation” is our φκ which follows Eq. (45) and has no
reason to vanish; if it vanishes χκ should vanish as well
which implies that all perturbation variables in the UEG
vanish. Vanishing φ after imposing the UEG is like
imposing two gauge conditions (the UEG and the UCG)
simultaneously, which is not allowed for general perturba-
tion including the k2 ¼ 3K mode.

IV. STABILITY OF THE EINSTEIN STATIC
MODEL WITH PRESSURE

Einstein proposed in 1917 a static and closed world
model by employing the cosmological constant in a closed
universe [31], for a centennial review see [32]. Here, we
consider the presence of an additional pressure. In the static
background, Eq. (8) gives field equations:

8πG
3

ϱ0 ¼
Kc2

a20
−
Λc2

3
;

4πG

�
ϱ0 þ

3p0

c2

�
¼ Λc2;

4πG
�
ϱ0 þ

p0

c2

�
¼ Kc2

a20
; ð55Þ

thus

a20 ¼
Kc2

4πGð1þ wÞϱ0
¼ 1þ 3w

1þ w
K
Λ
: ð56Þ

We have w > −1=3 for K > 0 and Λ > 0.
To the linear order, ignoring stress, Eqs. (9)–(15) give

κ ¼ −3 _φ − c
Δ
a20

χ; ð57Þ

4πGδϱþ c2
Δþ 3K

a20
φ ¼ 0; ð58Þ

κ þ c
Δþ 3K

a20
χ −

12πG
c2

a0

�
ϱ0 þ

p0

c2

�
v ¼ 0; ð59Þ

_κ þ c2
Δ
a20

α ¼ 4πG

�
δϱþ 3δp

c2

�
; ð60Þ

φþ α −
1

c
_χ ¼ 0; ð61Þ

δ _ϱ −
�
ϱ0 þ

p0

c2

��
κ þ Δ

a0
v

�
¼ 0; ð62Þ

_v ¼ 1

a0

�
δp

ϱ0 þ p0

c2
þ c2α

�
: ð63Þ

The gauge transformation properties in Eq. (16) become

α̂ ¼ α −
1

c
_ξt; φ̂ ¼ φ; χ̂ ¼ χ − ξt;

κ̂ ¼ κ þ c
Δ
a20

ξt; δϱ̂ ¼ δϱ; δp̂ ¼ δp; v̂ ¼ v −
c
a0

ξt;

Π̂ ¼ Π; δϕ̂ ¼ δϕ −
1

c
_ϕ0ξ

t: ð64Þ

Thus, δϱ and φ are naturally gauge invariant, and κ becomes
gauge invariant forΔ ¼ 0. As we haveΦ ¼ 0we cannot use
the equations and solutions in Secs. II B and II C.
Without imposing the gauge condition, from Eqs. (60),

(62) and (63), we can derive [except for the Δþ 3K ¼ 0
case, where we have δϱ ¼ 0 from Eq. (58), see below] the
following second-order density perturbation equation:
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δϱ̈ ¼
�
4πGð1þ wÞð1þ 3c2sÞϱ0 þ c2sc2

Δ
a20

�
δϱ

¼ c2

a20
½K þ c2sðΔþ 3KÞ�δϱ: ð65Þ

The solution is [Eq. (226) in [29] and Eq. (34) in [33]]

δϱ ∝ φ ∝ e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGð1þwÞð1þ3c2sÞϱ0−c2sc2k2=a20

p
t

¼ e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K−c2sðk2−3KÞ

p
ct=a0 ∝ e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1−ðLþ3ÞðL−1Þc2s �K

p
ct=a0 ;

ð66Þ

where we set

Δ ¼ −k2 ¼ −ðn2 − 1ÞK ¼ −LðLþ 2ÞK;

ðL ¼ n − 1 ¼ 0; 1; 2;…Þ: ð67Þ

For a stable solution we need

c2s ≥
1

ðLþ 3ÞðL − 1Þ ; ð68Þ

and for L ≥ 2 we have c2s ≥ 1=5 [7,29,33,34]. The L ¼ 0
and 1 modes are always unstable; although these two
modes were often ignored in the literature as fictitious
perturbations, we have shown that these are physical.
Equation (65) is not applicable for L ¼ 1, thus k2 ¼ 3K.

In this case from Eq. (58) we have δϱ ¼ 0, but as φ obeys
the same equation, the solution in terms of φ remains valid,
see Sec. IV B.

A. Complete solutions for general k2 =LðL+ 2ÞK
The variables δ and φ are gauge invariant, and the

solutions for them are given in Eq. (66). Solutions for other
variables in all other gauges can be derived from a known
solution. From Eqs. (57)–(63), or using the gauge trans-
formation properties in Eq. (64), for the relatively growing
mode, we can show

φ ∝ eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1−ðLþ3ÞðL−1Þc2s �K

p
ct=a0 ; δ ¼ ð1þ wÞðLþ 3ÞðL − 1Þφ; κχ ¼ −3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − ðLþ 3ÞðL − 1Þc2s �K

q c
a0

φ;

vχ ¼ −c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðLþ 3ÞðL − 1Þc2s

K

r
φ; αχ ¼ −φ; κv ¼ ðLþ 3ÞðL − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − ðLþ 3ÞðL − 1Þc2s �K

q c
a0

φ

χv ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðLþ 3ÞðL − 1Þc2s

K

r
φ; αv ¼ −ðLþ 3ÞðL − 1Þc2sφ; χκ ¼ 3a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðLþ 3ÞðL − 1Þc2s

p
LðLþ 2Þ ffiffiffiffi

K
p φ;

vκ ¼ −c
ðLþ 3ÞðL − 1Þ
LðLþ 2Þ ffiffiffiffi

K
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðLþ 3ÞðL − 1Þc2s

q
φ; ακ ¼ −

ðLþ 3ÞðL − 1Þ
LðLþ 2Þ ð1þ 3c2sÞφ: ð69Þ

These are complete solutions. Since all these variables
are proportional to φ, they share the same equation
in (65).
The solutions for vκ, ακ and χκ diverge when L ¼ 0. This

happens because we cannot take the UEG for L ¼ 0 and κ
becomes gauge invariant for this situation. As we have φ ¼P

L;l;m φLlmQLlm [see Eq. (85) for a proper expansion],
the breakdown of the UEG for L ¼ 0 implies the break-
down of the UEG in general in the Einstein static model.
Thus the UEG is not available for the Einstein static model.
Excluding solutions in the UEG, the above solutions are
generally valid for all L including L ¼ 0 and 1; the latter
special cases will be displayed below.

B. k2 = 3K mode (L= 1)

From Eq. (58) we have δϱ ¼ 0 which is naturally gauge
invariant. From Eqs. (57), (60) and (61) another naturally
gauge invariant variable φ follows:

φ̈ ¼ Kc2

a20
φ ¼ 4πGð1þ wÞϱ0φ; thus;

φ ∝ e�
ffiffiffi
K

p
ct=a0 ∝ e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGð1þwÞϱ0

p
t; ð70Þ

which is exponentially unstable; although δϱ ¼ 0, the
solution for φ in Eq. (66) remains valid. By taking
either the UEG (κ≡ 0) or the CG (v≡ 0) we have
κ ¼ v ¼ α ¼ 0, thus

vκ ¼ 0 ¼ ακ; κv ¼ 0 ¼ αv: ð71Þ

In both gauges we still have nontrivial equations in (57)
and (61)

_φ ¼ Kc
a20

χ; φ ¼ 1

c
_χ; ð72Þ
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a combination of which leads to Eq. (70). For relatively
growing solutions we can show

φ ∝ eþ
ffiffiffi
K

p
ct=a0 ; δ ¼ 0; vχ ¼ −

cffiffiffiffi
K

p φ;

κχ ¼ −3
ffiffiffiffi
K

p
c

a0
φ; αχ ¼ −φ; χv ¼ χκ ¼

a0ffiffiffiffi
K

p φ;

ð73Þ

so the general solutions in Eq. (69) remain valid for L ¼ 1.

C. k2 = 0 mode (L= 0)

Equation (64) shows that besides δϱ and φ, the variable κ
is also gauge invariant. Equation (65) gives

δϱ̈ ¼ 4πGð1þ wÞð1þ 3c2sÞϱ0δϱ ¼ ð1þ 3c2sÞ
Kc2

a20
δϱ;

ð74Þ

with the solution

δϱ ∝ e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGð1þwÞð1þ3c2sÞϱ0

p
t ¼ e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ3c2sÞK

p
ct=a0 : ð75Þ

This mode is exponentially unstable for c2s > −1=3. All
surviving variables satisfy the same equation as δϱ in
Eq. (74). For relatively growing modes we have

φ ∝ eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ3c2sÞK

p
ct=a0 ; δ¼ −3ð1þwÞφ;

κ ¼ −3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3c2sÞK

q c
a0

φ; αv ¼ 3c2sφ; αχ ¼ −φ;

vχ ¼ −c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3c2s

K

r
φ; χv ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3c2s

K

r
φ: ð76Þ

Thus, the general solutions in Eq. (69) remain valid for
L ¼ 0. Since κ is gauge invariant, we do not have variables
like vκ, ακ and χκ which display divergent behavior
in Eq. (69).

D. Stability of the static background

By directly perturbing the background equations to
the linear order, with a ¼ a0 þ δa, ϱ ¼ ϱ0 þ δϱ and
p ¼ p0 þ δp, the first two in Eq. (8) give

δä
a0

¼ −
4πG
3

�
δϱþ 3δp

c2

�
;

4πG
3

δϱ ¼ −
Kc2

a20

δa
a0

; thus;

δä ¼ ð1þ 3c2sÞ
Kc2

a20
δa; ð77Þ

with the solution [Eq. (225) in [29]]:

δa ∝ δϱ ∝ e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ3c2sÞK

p
ct=a0 : ð78Þ

Thus, the static background is exponentially unstable for
c2s > −1=3.
The behavior of δϱ happens to coincide with the

homogeneous perturbation mode in Eq. (75). We note,
however, that in our proper perturbation of Einstein
equations with the results in Eq. (76), even for the
homogeneous mode, besides δgij, the quantity δg00 is
excited in the ZSG (δg0i ≡ 0), and both δg00 and δg0i
are excited in the CG. By perturbing the background metric
with a ¼ a0 þ δa we effectively have α ¼ δa=a0 ¼ φ
which differs from our result in the ZSG with α ¼ −φ,
and in the CG with α ¼ 3c2sφ. Thus, despite a coincidence
in δϱ, perturbing the Friedmann equation alone [35] is a
hand-waving procedure. The correct way is to perturb the
original Einstein equations, as we did in Sec. IV C; see
Sec. 5.7 in [29].

E. Einstein static background with scalar field

In the Einstein static background, we set ϕ̈0 ≡ 0 but
_ϕ0 ≠ 0 [7]; if _ϕ0 ¼ 0 we have w ¼ −1, δϱ ¼ 0 ¼ δp and
the case becomes trivial. From Eq. (33) we have V;ϕ ¼ 0

and so V ¼ V0. Thus, we have

ϱ0 ¼
1

2
_ϕ2
0 þ V0; p0 ¼

1

2
_ϕ2
0 − V0; ð79Þ

for the background, and

δϱ ¼ δp ¼ _ϕ0δ _ϕ − _ϕ2
0α; ðϱ0 þ p0Þv ¼ 1

a0
_ϕ0δϕ; ð80Þ

δϕ̈ −
Δ
a2

δϕ ¼ _ϕ0ðκ þ _αÞ; ð81Þ

for the perturbation. Equations (55) and (56) for the
background and Eqs. (57)–(63) for the perturbation remain
valid with the fluid quantities replaced as above.
Equations (55) and (56) give

8πG
3

ϱ0 ¼
8πG
3

�
1

2
_ϕ2
0 þ V0

�
¼ K

a20
−
Λ
3
;

4πGðϱ0 þ 3p0Þ ¼ 8πGð _ϕ2
0 − V0Þ ¼ Λ;

4πGðϱ0 þ p0Þ ¼ 4πG _ϕ2
0 ¼

K
a20

: ð82Þ

a. In the presence of Λ, we have

K
a20

¼Λ
1þw
1þ3w

¼Λ
2

_ϕ2
0

_ϕ2
0−V0

; w≡p0

ϱ0
¼

_ϕ2
0−2V
_ϕ2
0þ2V

; ð83Þ

thus, for K > 0 and Λ > 0 we have _ϕ2
0 > V0 and

−1=3 < w < 1.
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b. In the absence of Λ, we have

_ϕ2
0 ¼ V0 ¼

K
4πGa20

; w ¼ −
1

3
: ð84Þ

As we have δp ¼ δϱ the rest of the analyses made for the
fluid case remains valid with c2s ≡ δp=δϱ ¼ 1; notice that,
as we have V;ϕ ¼ 0 for the background, see Eqs. (33) and
(34), this is true independently of the scalar field potential.
Thus, all L ≥ 2 modes are stable, but L ¼ 0 and 1 modes
are unstable, as in the fluid case. The equation of motion in
Eq. (81) is consistent with Eqs. (62) and (63), and δϕ is
determined by δϕ ¼ a0 _ϕ0v.

V. THE TAUB CONSTRAINT

Losic and Unruh [8] state in their conclusions that “the
requirement that the second order Einstein constraint

equations be integrable demands that any inhomogenous
linear mode perturbations of the Einstein static universe
must be accompanied by the homogenous linear mode
with comparable amplitude.” In order for a solution of the
linearized equation to be a proper solution of the exact
equation, it should satisfy a constraint to the second order.
We may call it the Taub constraint [36]. Here we evaluate
the Taub constraint based on a timelike Killing vector in an
Einstein static background. The Taub constraint is derived
in Appendix B considering the general background metric,
see Eqs. (B9) and (B15). Our result confirms Losic and
Unruh’s above conclusion, but only for c2s ¼ 0, whereas
they were claiming it was true for arbitrary c2s.

A. Spherical harmonic expansion

When we consider the spherical background geometry
we need harmonics in spherical geometry. We expand

φðt; χ; θ;ϕÞ≡ φkðtÞQðk; χ; θ;ϕÞ≡ X
n;l;m

φnlmðtÞQnlmðχ; θ;ϕÞ≡
X

n¼1;2;…

Xn−1
l¼0

Xl
m¼−l

φnlmðtÞΠnlðχÞYm
l ðθ;ϕÞ;

φnlmðtÞ ¼
Z

φðt; χ; θ;ϕÞΠnlðχÞYm�
l ðθ;ϕÞ ffiffiffi

γ
p

d3x; ð85Þ

where ΠnlðχÞ is an associated Legendre function with proper normalization [29]:

Z
π

0

ΠnlðχÞΠn0lðχÞsin2χdχ ¼ δnn0 ; ΠnlðχÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nΓðnþ lþ 1Þ

Γðn − lÞ

s
1ffiffiffiffiffiffiffiffiffi
sin χ

p P−l−1=2
n−1=2 ðcos χÞ: ð86Þ

Using the spatial metric in Eq. (7) it is convenient to have

γχχ ¼ 1; γθθ ¼ sin2χ; γϕϕ ¼ sin2χsin2θ; γχχ ¼ 1; γθθ ¼ 1

sin2χ
; γϕϕ ¼ 1

sin2χsin2θ
;

ΓðγÞ χ
θθ ¼ − sin χ cos χ; ΓðγÞ χ

ϕϕ ¼ − sin χ cos χsin2θ; ΓðγÞ θ
χθ ¼

cos χ
sin χ

; ΓðγÞ θ
ϕϕ ¼ − sin θ cos θ;

ΓðγÞ ϕ
χϕ ¼ cos χ

sin χ
; ΓðγÞ ϕ

θϕ ¼ cos θ
sin θ

; or 0 otherwise: ð87Þ

For n ¼ 1 and 2 the harmonic functions Q are

Qjn¼1 ¼ Q100 ¼
1ffiffiffi
2

p
π
; Qjn¼2 ¼ Q200 þQ21−1 þQ210 þQ211 ¼

ffiffiffi
2

p

π
½cos χ þ sin χðcos θ − 2i sin θ sinϕÞ�: ð88Þ

We have Q;i ¼ 0 for n ¼ 1, and Q;ijj ¼ −γijQ for n ¼ 2.
Using n ¼ Lþ 1, thus k2 ¼ n2 − 1 ¼ LðLþ 2Þ, we have

φðt;xÞ ¼ φðt; χ; θ;ϕÞ ¼
X

L¼0;1;…

XL
l¼0

Xl
m¼−l

φLlmðtÞΠLlðχÞYm
l ðθ;ϕÞ;

Δφðt;xÞ ¼ −
X
n;l;m

ðn2 − 1ÞφnlmðtÞΠnlYm
l ¼ −

X
L;l;m

LðLþ 2ÞφLlmðtÞΠLlYm
l : ð89Þ
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It is convenient to haveZ
φ2 ffiffiffi

γ
p

d3x ¼
X
L;l;m

jφnlmj2;
Z

φjiφ;i
ffiffiffi
γ

p
d3x ¼ −

Z
φΔφ

ffiffiffi
γ

p
d3x ¼

X
L;l;m

LðLþ 2ÞjφLlmj2;
Z ffiffiffi

γ
p

φjijφ;ijjd3x ¼
Z

φΔðΔþ 2KÞφ ffiffiffi
γ

p
d3x ¼

X
L;l;m

ðL2 þ 2L − 2ÞLðLþ 2ÞK2jφnlmj2: ð90Þ

B. The Taub constraint in two gauges

Complete solutions are presented in Eq. (69); φ and δ are gauge invariant and solutions in the UEG are not valid. Using
the mode expansion in Eq. (89), the solutions can be written as

φ ¼
X
L;l;m

φLlmðtÞΠLlYm
l ¼

X
L;l;m

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1−ðLþ3ÞðL−1Þc2s �K

p
cðt−t0Þ=a0φLlmðt0ÞΠLlYm

l ;

δLlm ¼ ð1þ wÞðLþ 3ÞðL − 1ÞφLlm; κχLlm ¼ −3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − ðLþ 3ÞðL − 1Þc2s �K

q c
a0

φLlm;

vχLlm ¼ −c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðLþ 3ÞðL − 1Þc2s

K

r
φLlm; αχLlm ¼ −φLlm; χvLlm ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðLþ 3ÞðL − 1Þc2s

K

r
φLlm;

κvLlm ¼ ðLþ 3ÞðL − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − ðLþ 3ÞðL − 1Þc2s �K

q c
a0

φLlm; αvLlm ¼ −c2sðLþ 3ÞðL − 1ÞφLlm: ð91Þ

We have shown that these solutions are valid for all L values. For the L ¼ 0mode, the temporal dependence of all variables

is ∝ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ3c2sÞK

p
ct=a0 , and so is unstable for c2s > −1=3. For the L ¼ 1 mode the temporal dependence of all variables

becomes ∝ e
ffiffiffi
K

p
ct=a0 , and so is unstable, independently of c2s . For c2s > 1=5 all modes with L ≥ 2 become stable as presented

in Eq. (68) [7,29,33,34].
Now, we can evaluate the Taub constraint in Eq. (B17) using Eq. (B20) and the linear solutions in Eq. (91). In the ZSG

and the CG, respectively, we have

T ZSG ¼
X

L¼0;1;…

XL
l¼0

Xl
m¼−l

½7L2 þ 14L − 15 − ð2L2 þ 4L − 3ÞðLþ 3ÞðL − 1Þc2s �KjφLlmj2 ¼ 0; ð92Þ

T CG ¼
X

L¼0;1;…

XL
l¼0

Xl
m¼−l

½3ð2L2 þ 4L − 5Þ − ðLþ 3Þ2ðL − 1Þ2c2s �KjφLlmj2 ¼ 0: ð93Þ

The Taub constraint apparently depends on the gauge
condition. Taub constraint on the ZSG applies to the linear
solutions in the ZSG, and likewise for the CG. We have
T L¼1 > 0 and T L¼0 < 0 in both gauges.
For c2s ¼ 0, in both gauges we have T L≥1 > 0 and

T L¼0 < 0, thus the Taub constraint demands that the
homogeneous perturbation (L ¼ 0mode) should be excited
as long as we have nonvanishing inhomogeneous pertur-
bation; the solutions in Eq. (91) show that for c2s ¼ 0, all
perturbations are unstable proportional to e

ffiffiffi
K

p
ct=a0 inde-

pendently of L.
Similarly, in the ZSG, for c2s > 41=65we have T L¼1 > 0

while all contributions from the other modes are pure
negative. Thus, in this case, the L ¼ 1 mode should be
excited as long as we have any other perturbation mode in

the ZSG. Concerning the L ¼ 1mode, a similar conclusion
does not follow in the CG, as we need c2s ≤ 1.

VI. DISCUSSION

We have shown that the lowest two (L ¼ 0 and 1) per-
turbation modes in closed universes are not fictitious
perturbations, see Secs. II and III. However, the case is
more subtle than normally considered as we often have
linearization stability issues in a closed space with the
Killing symmetry. The Einstein static model is such a
closed space with a timelike Killing vector. The Taub
constraint provides a constraint on quadratic combinations
of linear order variables for linearization stability to hold.
We have derived the Taub constraint in general background
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metric in Appendix B; these are Eqs. (B9) and (B15) for
general background, and Eqs. (B16) and (B17) for cos-
mological background. We have evaluated the Taub con-
straint in the Einstein static model with a timelike Killing
vector, see Secs. IV and V. The results are presented in
Eqs. (92) and (93) for two fundamental gauge conditions
available in the Einstein static model with pressure. The
result can be compared with other works as follows.
According to Losic and Unruh [8] T L≥2 should be pure

positive; they ignored the L ¼ 1 mode as a gauge mode.
But in such a case the Taub constraint demands the
presence of the L ¼ 0 mode which is negative. Although
Losic and Unruh have claimed this is the case for general
c2s , Eqs. (92) and (93) show that this is true only for c2s ¼ 0
in both the ZSG and the CG. The gauge condition adopted
by Losic and Unruh, and whether they were using the same
fluid as ours are unclear to us.
For c2s > 1=5 we have that the L ≥ 2 modes are stable,

while L ¼ 0 and 1 modes are unstable. Although Losic and
Unruh have stated that the perturbation should accompany
the unstable L ¼ 0 mode, our result does not confirm the
case at least in our two gauge conditions; it is true only for
c2s ¼ 0 and in this case all modes are unstable.
Studying a conformal variation Gibbons [33,34] con-

cluded that T L≥2 > 0, T L¼1 ¼ 0 and T L¼0 < 0 for c2s ¼ 0.
Although we expressed Gibbons’s result using T , his
method is based on second-order variation of entropy
and the exact relation to our method is unclear. The
conformal variation, δgab ¼ ϕgab, implies α ¼ φ and
χ ¼ 0 in our notation, and this differs from the ZSG where
α ¼ −φ and χ ¼ 0. The conformal variation is not available
in a proper perturbation theory.
The presence of stable perturbation modes with L ≥ 2

for c2s > 1=5 has suggested the Einstein static model with
pressure might be a potential evolutionary stage in the early
universe, before inflation without singularity [7,37]. An
Einstein static phase supported by a massless scalar field
belongs to this case with c2s ¼ 1, see below Eq. (84).
Although it has been suggested that the excitation of L ≥ 2
modes should accompany the homogeneous (L ¼ 0) mode
[8], which is always unstable, our result shows that this
applies only for c2s ¼ 0. For c2s > 1=5, the Taub constraint
in two gauge conditions in Eqs. (92) and (93) shows that it
is not necessary to accompany L ¼ 0 and/or L ¼ 1 modes,
both of which are unstable; for c2s ¼ 1=5, we can show that
the L ¼ 0 mode is negative, the L ¼ 1 to 3 modes are
positive and the L ≥ 4 modes are negative again in the
ZSG, whereas the L ¼ 0 mode is negative; the L ¼ 1–4
modes are positive and the L ≥ 5 modes are negative again

in the CG. As both the L ¼ 0 and L ¼ 1modes are unstable
even for c2s > 1=5, these two modes must be suppressed to
have a stable Einstein static stage. How to avoid exciting
these lowest two modes for a successful realization is a
question yet to be answered.
Previously the L ¼ 0 and 1 (thus n ¼ 1 and 2) modes

were generally regarded as fictitious, thus largely ignored
in the literature, see [38–40]. The physical nature of these
two modes with newly restored honor in this paper implies
that one needs to properly take into account of these two
modes in the future cosmological calculation of closed
Friedmann world model. These include the full sky galaxy
correlation function and power spectrum (see [41,42] in flat
background), the CMB (cosmic microwave background
radiation) anisotropy power spectra (see [43,44] for con-
tributions of monopole and dipole in flat background), and
others like the luminosity distance and redshift (see [45,46]
in flat background). Recent measurement of cosmological
parameters shows a tendency of favoring slightly positive
curvature [47–52].
Although he missed the opportunity to predict the

dynamic universe, Einstein’s legacy of establishing modern
cosmology over 100 years ago by introducing the cosmo-
logical principle and the enigmatic cosmological constant
may yet be extended by his choice of the spherical
geometry with closed topology [31].
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APPENDIX A: EXACT SOLUTIONS
FOR A ZERO-PRESSURE FLUID

Here, we present a complete set of exact solutions
including the cases of k2 ¼ 0 and 3K. We consider a
zero-pressure fluid (p ¼ 0 ¼ δp, Π ¼ 0) with the cosmo-
logical constant and the background curvature. Relatively
decaying solutions are absorbed in the lower bound of
integration, and gðxÞ is the remnant gauge mode in the SG.
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General k2 k2 ¼ 0 k2 ¼ 3K

vχ C c2
aH ð1þ a2H _H

R
t dt
_a2Þ C c2

aH ð1þ a2H _H
R
t dt
_a2Þ C c2

aH ð1þ a2H _H
R
t dt
_a2Þ

vκ C ðk2−3KÞc2
k2c2−3a2 _H

c2
aH ð1þ a2H _H

R
t dt
_a2Þ C Kc2

a2 _H
c2
aH ð1þ a2H _H

R
t dt
_a2Þ 0

vα g c
a g c

a g c
a

vφ C c2
aH ð1þ Kc2H

R
t dt
_a2Þ C c2

aH ð1þ Kc2H
R
t dt
_a2Þ C c2

aH ð1þ Kc2H
R
t dt
_a2Þ

vδ −Cðk2 − 3KÞ c4
3a

R
t dt
_a2 CKc4

a

R
t dt
_a2 0

χv C c
H ð1þ a2H _H

R
t dt
_a2Þ C c

H ð1þ a2H _H
R
t dt
_a2Þ C c

H ð1þ a2H _H
R
t dt
_a2Þ

χκ C 12πGϱa2

k2c2−3a2 _H
c
H ð1þ a2H _H

R
t dt
_a2Þ −C 4πGϱ

_H
c
H ð1þ a2H _H

R
t dt
_a2Þ C c

H ð1þ a2H _H
R
t dt
_a2Þ

χα χv − g χv − g χv − g

χφ −C4πGϱa2c
R
t dt
_a2 −C4πGϱa2c

R
t dt
_a2 −C4πGϱa2c

R
t dt
_a2

χδ C c
H ½1þ ðk2c2

3
− 4πGϱa2ÞH R

t dt
_a2� C c

H ð1 − 4πGϱa2H
R
t dt
_a2Þ C c

H ð1þ a2H _H
R
t dt
_a2Þ

κv C ðk2−3KÞc2
a2H ð1þ a2H _H

R
t dt
_a2Þ −C 3Kc2

a2H ð1þ a2H _H
R
t dt
_a2Þ 0

κχ −C 12πGϱ
H ð1þ a2H _H

R
t dt
_a2Þ −C 12πGϱ

H ð1þ a2H _H
R
t dt
_a2Þ −C 12πGϱ

H ð1þ a2H _H
R
t dt
_a2Þ

κα κv þ g 1
c ð3 _H − k2c2

a2 Þ κv þ g 1
c 3

_H −g 1
c 12πGϱ

κφ −C 4πGϱ
H ð3þ k2c2H

R
t dt
_a2Þ −C 12πGϱ

H −C 12πGϱ
H ð1þ Kc2H

R
t dt
_a2Þ

κδ C ðk2−3KÞc2
a2H ð1þ 1

3
k2c2H

R
t dt
_a2Þ −C 3Kc2

a2H 0

αv 0 0 0

αχ −C4πGϱa2H
R
t dt
_a2 −C4πGϱa2H

R
t dt
_a2 −C4πGϱa2H

R
t dt
_a2

ακ −C ðk2−3KÞc2
ðk2c2−3a2 _HÞ2 4πGϱa

2ð3þ k2c2H
R
t dt
_a2Þ CKc2

a2
4πGϱ

_H
0

αφ −C 4πGϱ
H2 −C 4πGϱ

H2 −C 4πGϱ
H2

αδ C ðk2−3KÞc2
3a2H2 −C Kc2

a2H2 0

φv Cð1þ Kc2H
R
t dt
_a2Þ Cð1þ Kc2H

R
t dt
_a2Þ Cð1þ Kc2H

R
t dt
_a2Þ

φχ C4πGϱa2H
R
t dt
_a2 C4πGϱa2H

R
t dt
_a2 C4πGϱa2H

R
t dt
_a2

φκ C 4πGϱa2

k2c2−3a2 _H
ð3þ k2c2H

R
t dt
_a2Þ −C 4πGϱ

_H
Cð1þ Kc2H

R
t dt
_a2Þ

φα φv − g H
c φv − g H

c φv − g H
c

φδ Cð1þ 1
3
k2c2H

R
t dt
_a2Þ C Cð1þ Kc2H

R
t dt
_a2Þ

δv Cðk2 − 3KÞc2H R
t dt
_a2 −3CKc2H

R
t dt
_a2 0

δχ C½3þ ðk2c2 − 12πGϱa2ÞH R
t dt
_a2� 3Cð1 − 4πGϱa2H

R
t dt
_a2Þ 3Cð1þ a2H _H

R
t dt
_a2Þ

δκ C ðk2−3KÞc2
k2c2−3a2 _H

ð3þ k2c2H
R
t dt
_a2Þ C 3Kc2

a2 _H
0

δα δv þ 3g H
c δv þ 3g H

c 3g H
c

δφ Cð3þ k2c2H
R
t dt
_a2Þ 3C 3Cð1þ Kc2H

R
t dt
_a2Þ

APPENDIX B: TAUB CONSTRAINT

1. Derivation

Einstein’s equations are

Ẽab ≡ R̃ab −
1

2
g̃abR̃þ Λg̃ab −

8πG
c4

T̃ab ¼ 0: ðB1Þ

To second order in perturbation, the metric tensor and its inverse are

g̃ab ≡ gab þ hab; g̃ab ¼ gab − hab þ hachcb; ðB2Þ
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where hab includes the second order and its indices are raised and lowered using the background metric gab and its inverse
metric gab. The connection is

Γ̃a
bc ¼ Γa

bc þ
1

2
ðhab∶c þ hac∶b − hbc∶aÞ −

1

2
hadðhbd∶c þ hcd∶b − hbc∶dÞ; ðB3Þ

where a colon indicates the covariant derivative using the background metric gab. The curvatures are

R̃a
bcd ¼ Ra

bcd þ hab∶½dc� þ ha½d∶fbgc� − hb½d∶ac� − haeðheb∶½dc� þ he½d∶fbgc� − hb½d∶fegc�Þ

þ 1

2
ðheb∶½d þ he½d∶fbg − hb½d∶eÞðhac�∶e − hafeg∶c� − hc�e∶aÞ;

R̃ab ¼ Rab þ
1

2
ðhca∶bc þ hcb∶ac − hab∶cc − h∶abÞ −

1

2
hceðhea∶bc þ heb∶ac − hec∶ab − hab∶ecÞ

þ 1

4
ðhea∶b þ heb∶a − hab∶eÞðh;e − 2hce∶cÞ þ

1

4
hcd∶ahcd∶b þ

1

2
hc∶da ðhbc∶d − hbd∶cÞ≡ Rab þ RL

ab þ RQ
ab;

R̃ ¼ R − habRab þ hab∶ab − h∶aa þ hachcbRab þ habð−hca∶cb þ hab∶cc − hca∶bc þ h;a∶bÞ

− hab∶bhca∶c þ hab∶bh;a −
1

4
h∶ah;a þ

1

4
hab;cð3hab∶c − 2hac∶bÞ≡ Rþ RL þ RQ; ðB4Þ

where h≡ hcc and we have A½ab� ≡ 1
2
ðAab − AbaÞ. The indices L and Q indicate the linear and quadratic parts, respectively.

The quadratic part includes the terms with quadratic combination of two first (linear) order terms. The linear part can be

decomposed into the first-order and second-order perturbations, like RL
ab ¼ Rð1Þ

ab þ Rð2Þ
ab ; for example, to the second order,

we have hab ¼ hð1Þab þ hð2Þab ≡ hLab.
The background and first-order Einstein equation give Eab ¼ 0 and Eð1Þab ¼ 0. The equation to the second order can be

arranged as

ELab ≡ R̃Lab −
1

2
gabR̃L þ hab

�
1

2
R − Λ

�
−
8πG
c4

TLab ¼ −EQab ≡ 8πG
c4

tab; ðB5Þ

with

8πG
c4

tab ¼ 1

2
hcdðha∶bc d þ hb∶ac d − hcd∶ab − hab∶cdÞ −

1

4
ðhca∶b þ hcb∶a − hab∶cÞðh;c − 2hdc∶dÞ −

1

4
hcd∶ahcd∶b

−
1

2
hac∶dðhbc∶d − hbd∶cÞ þ hcðaðhd∶bÞc d þ hbÞd∶cd − hbÞ∶dc d − h∶bÞcÞ − hachbdRcd − 2hcdhðac R

bÞ
d

þ 1

2
gab

�
hcehedRcd − hcdðhec∶de þ hec∶ed − hcd∶ee − h;c∶dÞ −

1

4
h∶ch;c þ h∶chdc∶d − hcd∶dhec∶e

þ 1

4
hcd∶eð3hcd∶e − 2hde∶cÞ

�
þ 1

2
habðhcdRcd þ h∶cc − hcd∶cdÞ þ hachbc

�
1

2
R − Λ

�
þ 8πG

c4
TQab: ðB6Þ

This was presented by Taub in Eq. (3.5) of [36] for the Minkowski background. Here we consider a general background
metric gab.
From Ẽab

;b ≡ 0, we have Eab
∶b ¼ 0 ¼ Eð1Þab

∶b and Eð2Þab
∶b ¼ 0. Thus ELab

∶b ¼ 0, and we have EQab
∶b ¼ 0 ¼ tab∶b.

For a Killing vector ξa, where ξa∶b þ ξb∶a ≡ 0, we have

0 ¼ ð ffiffiffiffiffiffi
−g

p
tabξbÞ∶a ¼ ð ffiffiffiffiffiffi

−g
p

tabξbÞ;a: ðB7Þ

thus [see Eq. (4.7) of [36]]

0 ¼
Z

ð ffiffiffiffiffiffi
−g

p
tabξbÞ∶ad4x ¼

Z ffiffiffiffiffiffi
−g

p
tabξbd3σa ¼

Z ffiffiffiffiffiffi
−g

p
tabξbnad3x; ðB8Þ
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with na the timelike normal (ni ≡ 0) four vector. Therefore,
we define

T ≡ −
8πG
c4

Z ffiffiffiffiffiffi
−g

p
t0bξbd3x ¼

Z ffiffiffiffiffiffi
−g

p
EQ0bξbd3x ¼ 0;

ðB9Þ

and call this the Taub constraint. In the presence of the
Killing vectors in the background metric gab, Fischer,
Marsden and Moncrief [9,10] have proved the violation
of this condition as the criterion of linearization instability
for the vacuum case. Similar results hold for Einstein field
equations coupled with matter fields such as scalar fields,
electromagnetic fields and Yang-Mills fields [11,53,54].

2. ADM constraint formulation

Evaluation of Eq. (B9) with Eq. (B6) needs complicated
algebra. There is a simpler formulation using the constraint
equations. The ADM (Arnowitt-Deser-Misner) energy
and momentum constraint equations can be written as
[Eq. (3.14) in [55]],

E0 ≡ KijKij − K2 − RðhÞ þ 16πG
c4

Eþ 2Λ ¼ 0; ðB10Þ

Ei ≡ Kijkj − Kki −
8πG
c4

Ji ¼ 0: ðB11Þ

The indices and the covariant derivatives (k) in the ADM
notation are based on the ADM metric hij ≡ g̃ij. From
Eq. (B1), we can show

Ẽ00 ¼ −
1

2N2
E0; Ẽ0i ¼ 1

N
Ei þ Ni

4N4
E0: ðB12Þ

To the second order, we have

Ẽ00 ¼ Eð0Þ00 þ EL00 þ EQ00; Ẽ0i ¼ EL0i þ EQ0i;

E0 ≡ Eð0Þ0 þ EL0 þ EQ0; Ei ≡ ELi þ EQi: ðB13Þ

As we have Eð0Þ00 ¼ 0 ¼ Eð0Þ0 for the background, and
Eð1Þ00 ¼ 0 ¼ Eð1Þ0 and Eð1Þ0i ¼ 0 ¼ Eð1Þi for the first-order
perturbation, the quadratic parts become

EQ00 ¼ −
1

2ðNð0ÞÞ2 E
Q0; EQ0i ¼ 1

Nð0Þ E
Qi: ðB14Þ

Using this Eq. (B9) gives for the Taub constraint

T ¼
Z ffiffiffiffiffiffi

−g
p

ξbEQ0bd3x

¼
Z ffiffiffiffiffiffiffiffi

hð0Þ
p

Nð0Þðξ0EQ00 þ ξiEQ0iÞd3x

¼
Z ffiffiffiffiffiffiffiffi

hð0Þ
p �

−
1

2Nð0Þ ξ0E
Q0 þ ξiEQi

�
d3x; ðB15Þ

where we used
ffiffiffiffiffiffi−gp ¼ Nð0Þ ffiffiffiffiffiffiffiffi

hð0Þ
p

. This is an alternative
presentation of the Taub constraint to Eq. (B9) which needs
only the energy and momentum constraint equations.
In the cosmological background, the Taub constraint

derived in Eq. (B15) yields

T ¼
Z ffiffiffi

γ
p

a4ðξ0EQ00 þ ξiEQ0iÞd3x

¼
Z ffiffiffi

γ
p

a3
�
−

1

2a
ξ0EQ0 þ ξiEQi

�
d3x; ðB16Þ

where γ is the determinant of γij. The Friedmann metric has
six spacelike Killing vectors [56]. Einstein’s static model
has an additional timelike Killing vector with ξa ≡ δa0 . We
will consider the Taub constraint based on this timelike
Killing vector. Using ξa ¼ −δ0a, Eq. (B16) gives

T ¼
Z ffiffiffiffiffiffi

−g
p

ξbEQ0bd3x

¼ −a40

Z ffiffiffi
γ

p
EQ00d3x ¼ 1

2
a20

Z ffiffiffi
γ

p
EQ0d3x: ðB17Þ

Thus, for evaluation of the Taub constraint in our case, we
only need the energy constraint equation to second order.

3. The energy constraint equation to second order

The fully nonlinear and exact perturbation equations in
the presence of background curvature were presented in
[57]; the equations are derived by taking a spatial gauge
γ ≡ 0 in the metric in Eq. (4) and replacing aβ;i and −v;i by
χi and vi, respectively, now including the vector-type
perturbation as well. The ADM energy constraint equation
gives [Eq. (3.2) in [57]]

E0 ¼ −
6

c2

�
H2 −

8πG
3

ϱ̃þ Kc2

a2ð1þ 2φÞ −
Λc2

3

�
þ 4

c2
Hκ

þ 4Δφ
a2ð1þ 2φÞ2 −

2

3c2
κ2 þ 16πG

c2

�
ϱ̃þ p̃

c2

�
ðγ2 − 1Þ

−
6φjiφ;i

a2ð1þ 2φÞ3 þ K̄i
jK̄

j
i ; ðB18Þ

with γ the Lorentz factor, and N the lapse function, where
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γ ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vkvk

c2ð1þ2φÞ

q ; N ≡ aN ≡ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2αþ χkχk

a2ð1þ 2φÞ

s
;

K̄i
jK̄

j
i ¼

1

a4N 2ð1þ 2φÞ2
�
1

2
χijjðχijj þ χjjiÞ −

1

3
χijiχjjj −

4

1þ 2φ

�
1

2
χiφjjðχijj þ χjjiÞ −

1

3
χijiχjφ;j

�

þ 2

ð1þ 2φÞ2
�
χiχiφ

jjφ;j þ
1

3
χiχjφ;iφ;j

��
: ðB19Þ

To second order, we have

E0 ¼ −
6

c2

�
H2 −

8πG
3

ϱþ Kc2

a2
−
Λc2

3

�
þ 4

c2

�
4πGδϱþHκ þ c2

Δþ 3K
a2

φ

�

þ 16πG
c2

�
ϱþ p

c2

�
vivi
c2

−
2

3c2
κ2 −

2

a2
½3φjiφ;i þ 4φð2Δþ 3KÞφ� þ 1

a4

�
1

2
χijjðχijj þ χjjiÞ −

1

3
χijiχjjj

�
≡ Eð0Þ0 þ EL0 þ EQ0: ðB20Þ

For the scalar perturbation, we have vi ≡ −v;i and χi ≡ χ;i. The evaluation of the Taub constraint in Eq. (B17) using
Eq. (B20) in a couple of gauge conditions in Einstein’s static model is presented in Sec. V.
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