PHYSICAL REVIEW D 101, 123527 (2020)

Perturbations and linearization stability of closed Friedmann universes

Hyerim Noh,'? Jai-chan Hwang®,

3, 2

2 and John D. Barrow

'Center for Large Telescope, Korea Astronomy and Space Science Institute, 34055 Daejon, Republic of Korea
*Centre Sor Theoretical Cosmology, DAMTP, University of Cambridge,
CB3 OWA Cambridge, United Kingdom
3Department of Astronomy and Atmospheric Sciences, Kyungpook National University,
41566 Daegu, Republic of Korea

® (Received 26 March 2020; accepted 4 June 2020; published 23 June 2020)

We consider perturbations of closed Friedmann universes. Perturbation modes of two lowest wave
numbers (L = 0 and 1) are generally known to be fictitious, but here we show that both are physical. The
issue is more subtle in Einstein static universes where closed background space has a timelike Killing
vector with the consequent occurrence of linearization instability. Proper solutions of the linearized
equation need to satisfy the Taub constraint on a quadratic combination of first-order variables. We evaluate
the Taub constraint in the two available fundamental gauge conditions, and show that in both gauges the
L > 1 modes should accompany the L = 0 (homogeneous) mode for vanishing sound speed, c,. For
c2 > 1/5 (a scalar field supported Einstein static model belongs to this case with ¢Z = 1), the L > 2 modes
are known to be stable. In order to have a stable Einstein static evolutionary stage in the early universe,
before inflation and without singularity, although the Taub constraint does not forbid it, we need to find a
mechanism to suppress the unstable L = 0 and L = 1 modes.

DOI: 10.1103/PhysRevD.101.123527

I. INTRODUCTION

The study of scalar, vector and tensor perturbations
of the Friedmann universes of general relativity began with
the famous paper of Lifshitz in 1946 [1,2]. Curiously, just
as the isotropic and homogeneous Newtonian cosmologies
were found later by Milne and McCrea [3], in 1934, then
their general relativistic counterparts by Friedmann [4,5] in
1922, so the Newtonian treatment of their scalar perturba-
tions, by Bonnor [6] in 1957, also followed the general
relativistic treatment of Lifshitz. Recently, the studies of the
stability of the Einstein static universe by Barrow et al. [7]
and Losic and Unruh [8] have drawn attention to a subtle
feature of the homogeneous and isotropic background
cosmological model that can cause perturbation theory
to fail due to the phenomenon of linearization instability.
This is the motivation for our study.

Linearization instability arises when the sum of the two
leading terms in perturbation around an exact solution
cannot be completed to a convergent expansion. That is, if
the metric is expanded as

0 1 2
Gab = Gy +eghy + g5+ (1)

where g,, and gg;)

equations, and gglb) is a solution of the linearized

Einstein equations, then the series expansion is said to
be linearization stable if the series (1) can be completed to

are solutions of the full Einstein
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form a convergent series. If not, it is said to be linearization
unstable. In general relativity, Fischer and Marsden, Arms,
and Moncrief [9-11] showed that compact spaces in

vacuum with Killing vectors are linearization unstable:

gl(llb) is linearization stable if and only if gfgj) has no Killing

fields. In Ref. [12], this feature was discussed in relation to
series expansions about the Mixmaster universe, which has
compact space sections and Killing symmetries, and Brill
provides several examples [13]. A comprehensive overview
is also given in the thesis of Altas [14].

Heuristically, the geometry of the solution space of
cosmologies with compact Cauchy surfaces is conical at
the points with Killing symmetries and so the perturba-
tion expansion is like trying to draw a tangent through
the apex of a cone: there are an infinite number of
possible tangents and the ones that form the leading
order of an expansion that converges to a true solution
corresponds to the tangents that run down the side of the
cone. This reminds us that there are two ways to obtain
a perturbed version of an exact solution. The first
(definitive but unrealistic) method is to find the general
solution of the equations and linearize about the exact
solution in question. The other method (used in practice)
is to linearize the equations about the exact solution and
solve the linearized equations. This does not necessarily
lead to the same result unless some extra constraints are
imposed (which we shall discuss below in the general
relativistic context).

© 2020 American Physical Society
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A typical example is provided by the equation

f(x,y) = x(x* +y*) =0, (2)

with the set of solutions (x,y) = (0,y), where y is
arbitrary. Now linearize Eq. (2) about the particular
solution (0,0). This yields

(3x% 4 y?)6x + 2xy8y = 0. (3)

We see that for (x,y) = (0,0) there is no restriction on the
linearized solutions and (6x,8y) are completely arbitrary.
However, from the exact solution, we know that although
there are linearized solutions to the linearized Eq. (3) with
ox # 0, they cannot arise from the linearizations of any
exact solution of Eq. (2) [14].

Fischer, Marsden and Moncrief [9] showed that the

gﬁllb) is not a spurious solution if and only if it satisfies a

second-order constraint, involving integrals of the Taub
conserved quantity which therefore vanish [15]. In this
paper, we will evaluate the Taub constraint in different
gauges and determine the status of the first-order neutral
stability results for the Einstein static universe, which is a
prime candidate for the phenomenon of linearization
instability as it has compact space sections and many
Killing symmetries.

In the course of this analysis we will also identify some
features of gauge invariant perturbation claims in the
literature that appear to be discrepant in ways that do
appear to have been noticed in the past. Specifically, we
will address two issues in the cosmological scalar pertur-
bations of the homogeneous and isotropic Friedmann
universes. In some of the literature, the perturbations with
the two lowest wave numbers (L = 0 and 1) are claimed to
be fictitious. Here, we show that both are physical.

In a closed background space with Killing vectors, in
order to be linearization stable the solution of a linearized
equation should satisfy a constraint on a quadratic combi-
nation of first-order variables; we call it the Taub constraint.
When the Taub constraint is evaluated under two gauge
conditions for a timelike Killing vector in an Einstein static
background, it implies that L > 1 modes should accom-
pany the L = 0 (homogeneous) mode, but this is true only
for vanishing sound speed.

In Sec. II, we review the equations and solutions for
linear perturbations of scalar type in the presence of
background curvature and we consider a complete set of
exact solutions with zero pressure and cosmological con-
stant (see Appendix A).

In Sec. III we investigate the physical nature of the two
lowest wave number modes (L = 0 and 1) in the positive
curvature background. In Sec. IV we analyze the stability in
the Einstein static background in the presence of pressure
or a scalar field. In Sec. V we evaluate the Taub constraint
for a timelike Killing vector in the Einstein static model; the

Taub constraint is derived in Appendix B. Section VI is a
discussion of our results and their consequences. In
Secs. II-1V, we consider scalar-type linear perturbation
in the Friedmann background with spatial curvature, while
Sec. V considers second-order perturbations. Sections II
and III consider general background curvature K,
while Secs. IV and V are concerned with the positive
curvature background. In the case of the scalar field we
setc=1=n.

II. LINEAR PERTURBATIONS WITH
GENERAL CURVATURE

All results in this section are known in the literature, but
we pay special attention to three simple cases of perturbed
Friedmann universes. These are (i) the Einstein static
background with H = 0, (ii) the homogeneous perturbation
with A = 0, and (iii) the case with A + 3K = 0, where K is
the curvature parameter in the Friedmann equation, equal to
0 or £1; the latter two cases are considered in the spherical
geometry; H is the Hubble-Lemaitre parameter and A is a
Laplacian operator of the comoving three-space of the
Friedmann metric. In these simple cases some terms in
the perturbation equations automatically vanish, thus the
analysis and final results are often invalid; in such cases a
simple cure is to go back to the original perturbation
equations and check each case. We will study these simple
cases in more detail in later sections.

A. Basic equations

We consider perturbations of scalar-type in the
Friedmann background. Our metric convention follows
Bardeen’s in [16]

Joo = —a*(1 + 2a), Joi = —a*p;.
9 = @[(1+20)r;; + 27 ). (4)

with x° = # the conformal time and a(t) is the expansion
scale factor. We introduce y = a(f 4+ ¢y) where the time
derivative is with respect to ¢ where cdt = adn. The energy-
momentum tensor is decomposed into fluid quantities
based on a timelike fluid four-vector, i,, normalized with

i, = -1, so

Tab = i,y + p(gab + ﬁaﬁb) + Zap, (5)
F=0c*  g=¢+d.  p=p+ép,
- a 5 1 1
u; E—;UJ, JTUE?<VZV]—§}’UA)H (6)

We may set 6p = c2c?6¢ +e with ¢2 = p/(¢c?), and
w = p/(oc?); e is the entropic perturbation and IT is the
anisotropic stress. The spatial indices are raised and
lowered by y;; and its inverse, and a vertical bar indicates
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the covariant derivative based on the metric tensor y;;. One
representation of y;; is

dfz = }/l’jdxidxj

dy® + sin’y(d6? + sin’0dg?) (K = +1),
= < dy? + y*(d6? + sin0d¢?) (K =0),
dy* + sinh’y(d6? + sin*0d¢?) (K = —1),

with a normalized background curvature K.
The Friedmann equations are [4,5]

o 87G K2 Ac?

T3 T

. 4nG 3p Ac?
HyH =7 (o420  2C
+ 3 <Q+CZ>+ 3
. Kc?
H:—4ﬂG(g+£2>+—2,
C a
Q'+3H(Q+§> ~0, (8)

with H = d/a the Hubble-Lemaitre parameter. The pres-
sure term was first considered by Lemaitre [17-19]. The
general perturbation in the Friedmann background was
studied first by Lifshitz [1,2]. Lifshitz studied the scalar-,
vector- and tensor-type perturbations to the linear order in
the synchronous gauge (@ = 0 = ). Here we consider the
scalar-type perturbation in all fundamental gauges. Unless
mentioned otherwise, our study in Secs. II and III is valid
for all types of K, whereas Secs. IV and V concern the
positive curvature model.

To linear order in perturbation, the basic equations for
the scalar-type perturbation, without imposing the gauge
conditions, are [16]

A
k=3Ha—3¢p—c—yx. (9)
a
A+3K
47GSo + Hx + ¢? +2 p=0, (10)
a
A+ 3K 122G
K+c o A CZ a(g—i—%)yzo, (11)

. A 36
K+ 2Hk + <3H+c2—2)a:4nG<6Q+—zp>, (12)
a c

1, . 87G
§0+0‘_2(Z+H1)——7H, (13)

5 A
5@+3H(5Q+—’2’> + (g+%> <3Ha—1<——y> —0,
C C a

(14)
1, P\ ] 1 5 2A+3K
p [a <e+cz>v] —a[5p+(gc +p)a+3 s IT}.
(15)

We consider a gauge transformation, ¢ = x¢ + &(x°)
with & = 0 =1¢ and & = ¢ = L&lf; index of & is raised
and lowered using y;; as the metric. To the linear order we
have [16]

1 a(l_\
a=a--¢, ﬁ—ﬂ——?+‘(f>’
a Cc \a
1 1/, A
v=r—=¢& r=x-¢&, 1?=K+—<3H+02—2>5’,
a c a

R 1 R 1.
$=¢——HE, 80 = 50 ——0¢&',
C C

1
6p=op-_pe. b=v-&  e=e

=11, 5&:545—%(/}5’. (16)

By using y instead of § and y, all the perturbation variables
are spatially gauge invariant. We have the following
possible fundamental gauge conditions: the uniform-
curvature gauge (UCG, ¢ = 0), the uniform-density gauge
(UDG, 60 =0), the uniform-expansion gauge (UEG,
k = 0), the comoving gauge (CG, v = 0), the zero-shear
gauge (ZSG, y =0), and the synchronous gauge (SG,
a=0). We introduce gauge-invariant notations, like
v, =v - (c/a)y = —(c/a)y,, where v, is gauge invariant
the same as v in the ZSG. One exception is the SG; after
imposing the gauge condition we still have nonvanishing
&'(x) which is the remnant gauge mode in the SG. Thus,
Xa =) — ¢ ["adtis not gauge invariant; the lower bound of
integration gives the remnant gauge mode with y o &'(x).
Concerning the spatial gauge transformation, our defini-
tions of y and v are spatially gauge-invariant combinations;
y is the same as (equivalent to) af under the spatial gauge
condition y = 0.

We note that in a static background with H = 0, both ¢
and §¢ become gauge invariant. In addition, for A =0
(thus, a homogeneous) mode, k becomes gauge invariant
as well.

B. Exact equations and asymptotic solutions

A powerful large-scale conserved behavior of a combi-
nation of variables in the presence of K is known already.
The following analysis is valid for H # 0; for H =0, ¢
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and 6 are gauge invariant, and we can show @® =0,
(see Sec. IV). We define

Kc?
@ = v g% )
= 4nG(g+§)¢* TP T AT K +w
where we used
A+3K
CzT(/’)r = —41Géo,, (18)

which follows from Egs. (10) and (11); from Eq. (16) we
have

H 1 p
P=0= X and 5Qv550+?3(1H Q-l-? v.

Note that for A = —3K, Eq. (18) gives dg, = 0, and the
second expression in Eq. (17) does not apply; d¢, =0
follows from Egs. (10) and (11) evaluated in the CG with
A = -3K.

In Eq. (17), from the first relation, using Egs. (9), (11)
and (13), and from the second relation, using Egs. (9)—(11),
(14) and (15), respectively, we can derive

H? a - 87G
o1 (2 °rG m|. (19
4nc<e+§>a[(ﬂ‘”’f) T } 19)

Hc2c2 A H 2A
_ s 2,1 ). 20
4nGlo+B)a® ™ cher(eJr?’a2 > 20)

Although we used Eq. (18) in deriving Eq. (20), we can
check by using the original Egs. (9)—(15) that the result is
valid even for A = —3K. Ignoring the imperfect fluid
contribution, thus setting ¢ = 0 =I1, we have

H%c? +5)a® .7 A
Cy |:(Q c2) q):| _ 6302_2(1) =0. (21)
a

(e+5H)a | He
Using
a, /Q-i-%
=70, =—, 22
V=2 4 He. (22)
we have
1 1 Z//
2 2 _ 2 _
Zar? (az’®) —Cs;CD—a—zZ[v”— <?+CSA =0,

(23)

where a prime is the time derivative with respect to the
conformal time, #. In the large-scale (super-sound-horizon
scale) limit, z”/z > c2A, we have a general solution:

; 2,2
O(x, 1) = C(x) + d(x) / 4ﬂGH a4 (4)

(¢ +5)a

Thus, the relatively growing solution of @ remains constant
in the super-sound-horizon scale. The sound-horizon van-
ishes for zero-pressure fluid, in which case we have ® = 0,
and so ® = C(x) exactly.

The well-known equation in terms of v and z in Eq. (23)
first appeared in Eq. (44) of Field and Shepley’s 1968 paper
[20] in the context with general K (see also [21], Sec. V of
[22] and Sec. III of [23]; in the absence of K, see [24-26]).
Using Egs. (10) and (14), Eq. (17) can be arranged as

60, : 3e
b =— - , (25
QQ+%H> oc? 4+ p (25)

which is related to Egs. (31) and (43) in [20]. Here, we
used a, = a — % (av), vasv—%zf’adt and ¢, = 60 —
0 f "adt which follow from Eq. (16); notice that the
remnant gauge degree of freedom in the SG imbedded
in the lower bound of integration of ¢, in Eq. (25)
disappears because of the time derivative. For A = —3K
Eq. (25) is identically satisfied as we have &g, =
50, — 0 ['a,dt with S¢, =0 and a,=—e/(oc* + p)
which follows from Eq. (15).

LA+ 3K
a*H?

C

C. Exact solutions for zero-pressure fluid

In the zero-pressure situation, with p =0 = dp and
I[T=0, but with general K and A, we have [see
Egs. (20) and (24)]

@ = C(x). (26)

Again, the following analysis is valid for H # 0; for H = 0,
@ and 6 are gauge invariant, and we have @ = 0; the static
case will be studied in Sec. IV. In the CG, Eq. (15) gives
a, = 0. Using Egs. (10) and (14), the second relation in
Eq. (17) gives

5,\ A+3K
(ﬁ) == ® (27)

with an exact solution:

tdt
5, = —c}(A+3K)CH | %5, (28)
a

The relatively decaying solution is absorbed in the lower
bound of the integration. From this one solution we can
derive all the other solutions in the same gauge and, using
the complete solutions in one gauge, we can derive all
solutions with all other gauge conditions. The complete
solutions are presented in Table 1 of [27], and are
reproduced in Appendix A in this paper; in our notation,
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paying particular attention to the k> = 0 and 3K modes in
the spherical geometry; we introduced the comoving wave
number with A = —k?.

For A = —3K, we have §,, = 0 and we cannot begin with
the above two equations which become trivial. We need to
start from a nonvanishing solution. In the ZSG, from
Egs. (9), (11), (13) and (15), we have

1 ) 47Go
E(“%() = —TCIU)(,
1 ) c?
Z(av%) ==—wy thus
1
—la*(an,)] = 4nGeg,. (29)

This can be written as

ﬁ {asz (% (p)(> ] —o, (30)

with the solution

) tdt
¢, = 4nGoa"HC - (31)

The normalization is made using Eq. (19). This solution
coincides with the one in Appendix A. From this we
obtain solutions of every variable in all gauge conditions.
The results are naturally (because ¢, coincides) the same
as the ones derived from 6, in Eq. (28) presented in
Appendix A.

D. Scalar fields

For a minimally coupled scalar field, the equations for
the fluid, Eq. (8) for the background, and Eqs. (9)—(15)
for perturbations, remain valid with the fluid quantities
replaced by the ones for the scalar field. Additionally, we
have the scalar field equation of motion which also follows
from the conservation equations, the last one in Eq. (8) and
Eq. (14). For the background, we have

1. 1.
Q=§¢2+V, P=§¢2—V, (32)

$+3Hp+V 4 =0. (33)
For the perturbation, we have
80 = o — *a +V 45
op = o — o~V 45¢.

(e+p)v= écﬁ&f;, =0, (34)

5+ 3HSP + (V,M - %) 5¢b
= d(x+ ) + (24 + 3H)a. (35)

The gauge transformation property of the scalar field is
presented in Eq. (16).

The scalar field can be treated as a fluid, as identified in
Egs. (32) and (34). The CG (v =0) coincides with the
uniform-field gauge (UFG, 8¢ = 0). In this gauge we have

S, = Su,, thus e = (1 —c?)éu, with
) 0
2P 20 (36)
¢ 3HG

Using this e and Eq. (18), Eq. (20) gives

Hcic? A .
= ith A=A +3(1-c3)K.
47[G(Q+C£2) azqa)( W CA + ( CA)

(37)

Thus, the equations in Sec. II B with e = 0 = II are valid
with ¢2 replaced by c3, see Sec. Il of [23]; in the absence of
K, we have ¢ =1 [26].

III. THE PHYSICAL NATURE OF THE
k*=0 AND k*=3K MODES

In the spherical geometry the mode function has discrete
wave numbers with k> = (n> — 1)K and n = 1,2, ...; we
often keep K explicitly even though we normalized it
earlier as K = 1. In the literature the two lowest wave
numbers with n = 1 and 2, thus k2 = 0 and 3K, are claimed
to be fictitious perturbations [1,2,28]. Our review in the
previous section shows no particular trouble for A = 0 and
—3K cases. In this section we study the individual case in
more detail and show the physical nonfictitious nature of
these two modes.

A. k* =0 (homogeneous) modes

First, we consider the k> = 0 mode. By setting A =0
our basic equations in (9)—(15) become a set of ordinary
differential equations depending only on time and are
therefore spatially homogeneous.

For A =0 we have ® = ¢+ 6/[3(1 + w)] and from
Egs. (9) and (14) we can show

<<”+3<1iw>>'+

Thus, for e = 0, we have

H
= j =0, (38)
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0
(ﬂ+m:C. (39)

In the UDG (6 = 0), which is possible for H # 0, we
have (for e = 0)

5
—pt+—" _—C. 40
®s ¢+3(1+W) (40)

From Egs. (14) and (10), we have

3K c? Kc?
B a’*H C % = _a2H2

Ks = C’ (41)
and the solutions for other variables in the same gauge
follow from Eqgs. (13) and (11):

c [t Kc? 872G
}(5—5/ a{(l—ﬁ)C‘i‘TH]d[,

4G p Kc? Kc* [t Kc?
7("*?)“”6:‘%”7 A\~ )€

872G
+ %H] dr. (42)
C

As we have solutions for a complete set of variables in
the UDG, the solutions in any other gauge can be derived
using the gauge transformation properties in Eq. (16). As
an example, density perturbation in the CG, J,, and the
curvature perturbation in the ZSG, ¢, can be derived in the
following way. From Eq. (16) we have

3 3
6, =0+ FaH(1 +w)v=—5aH(1 +w)vs,
c c
1 1
0y = = Hy =5 = Hys. (43)

For comparison with exact solutions in the zero-pressure
case presented in Sec. I C and Appendix A, it is convenient
to have

a t Kc? tdt
ﬁ_ (1(1 —?> dt = 477GQ613 / ? (44)

For a static background we have H = 0 so we have to go
back to the original equations in (9)—(15) and the gauge
transformation properties in Eq. (16); as 6 is naturally
gauge invariant, we cannot take the UDG. Although we
cannot construct @5, the combination ¢ + §/[3(1 + w)] is
fine and still gives C, which in fact vanishes, see Eq. (10).
The static situation will be studied in Sec. IV C.

B. k2 =3K modes

For k> = 3K we have A + 3K = 0. As we have A + 3K
terms often appearing in our basic equations, many variables

vanish in some gauges. Following Bardeen [28] we consider
the case of the UEG with x = 0. Equations (10)-(12) give
6=0,v=0anda = —e/(Qc2 + p), respectively; thus, the
UDG and the CG also give the identical results. Despite this
simplification in the three gauges (UEG, UDG and CG),
Egs. (9) and (13) give the following equations:

. Kc He

1 e 8rG

ca<a)() ¢ ch—i—p c*

17, - He - Kc? e 8ﬂGKH
—\a 2 e — ,
a’ ¢ o’ +p 2 \? o’ +p c? a?

(45)

which are valid for the three gauge conditions. For
e = 0 =1II we have

1 o Kc?
_3(a3fﬂ) -—5¢=0.
a a

(46)

. Kc 1 ( )
= — X, —\a = ;
=X ) =e

These are nontrivial equations and as the gauge modes are
completely fixed in all three gauges, the variables cannot be
removed by gauge transformation. Equations in the other
remaining gauges (the ZSG and UCG) are more nontrivial.
Each variable in all these gauge conditions has a unique
gauge-invariant combination.

An exception is the SG where even after fixing a =0
in all coordinates we have nonvanishing &, where £(x) is
the remnant gauge mode. From Egs. (10) and (12), for
Sp = c28¢ with ¢2 = p/o, we have the solution S¢
H(o + p/c?) which is exactly the behavior of the gauge
mode as we have 50 = 6¢ + ¢~'3H(¢ + p/c?)& (x). Thus,
this solution can be removed as a fictitious gauge mode.
By removing this gauge mode, and by setting &'(x) = 0 so
0 = 0, the result becomes identical to taking the UDG. The
complication caused by the remnant gauge mode in the SG
can be overcome by removing the gauge mode (as we just
did and Lifshitz did in [1]), by transforming to another
gauge, or by constructing the gauge-invariant combinations
in the SG as Field and Shepley did in [20]. In any case the
results are the same as our analysis made above under the
other fundamental gauge conditions: without any remnant
gauge mode.

In the zero-pressure fluid with general K and A, the
complete solutions in all fundamental gauge conditions are
presented in Appendix A for these two modes.

C. Disagreements in the literature

The original comments on the fictitious nature of k*> = 0
and 3K modes in spherical geometry were made by Lifshitz
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[1,2] and Bardeen [28]; see also [29]. Here we analyze their
arguments.

Lifshitz has introduced a scalar harmonic function Q and
constructed the vector and tensor harmonic functions as
[Egs. (3.4), (3.10) and (3.11) in [1]]

1
AQ = —(n* - 1)0, Pi=——-0,
n-—1
1 1
Pij=—3—1Qu 3740 (47)
Thus, k¥ = n? — 1 with n = 1,2, ...; P;; is traceless with

P! = 0. In a footnote below this equation Lifshitz mentions
that P;; cannot be constructed for n = 1 and 2; P; and P;;
diverge (indeterminate as we have Q; = 0 for n = 1 with
Q=2 rmQitm= Q0= constant),' and P;; vanishes
for n=2 (we have Q;;=-y;Q for n=2 with
0 => ;. Qarm); see Eq. (88). Thus, the vector and tensor
harmonic functions P; and P;; constructed in this way have
trouble in handling » = 1 and 2 modes properly.

Lifshitz has taken the synchronous gauge setting
a=0=p in our notation; thus we have a =0 and
¥ = ”72;/ in our equations. The spatial metric is expanded
using the tensor harmonic function as [Eq. (4.1) in [1]]

~ 1 .

Gy=a*(yij+hy),  hy Eﬂg}’ijQ-f'/lPij» h=h;=uQ.
(48)

Compared with our metric convention in Eq. (4), we have

A

(n+21)0, }’:m

= 0. (49)

N =

Notice that 4 is involved with a 1/(n* — 1) factor which is
troublesome for n = 1.

Below Eq. (4.5) Lifshitz has made a major comment
concerning our issue: “For n =1, 2, we must put A =0
because the tensor P;; does not exist for these values of n.”
By setting A =0 we have y =0 in our notation, thus
together with f = 0 we have y = 0. Thus, for these two
modes Lifshitz sets « = 0 and y = 0 simultaneously. As we
set ¢ = 0 and y = 0 simultaneously, with e = 0 =TI, all
variables in Egs. (9)—(15) vanish. Thus, all perturbations
disappear for these two modes n =1 and 2. Setting
a = 0 = y, however, is like imposing two temporal gauge
(hypersurface, slicing) conditions simultaneously which is
not allowed even for n =1 and 2. Although P; and P;;
cannot be constructed for n = 1 and/or 2 it is merely due to
the way of constructing P; and P;; in Eq. (47) which can be
avoided by simply not introducing such vector and tensor
harmonics, see our Eq. (4).

Bardeen has similarly introduced harmonic functions as
[Egs. (2.7)—=(2.9) in [28]]

2O =0, Qi=—1

1 1
=% Q=150 T375C

(50)

Compared with Lifshitz’s notation we have Q;; = P;; and
Q; = —kP;; thus Q; and Q;; diverge (are indeterminate) for
n =1, and Q;; vanishes for n = 2. The metric tensor is
expanded using the harmonic functions as [Eq. (2.14)
in [28]]

Joo = —a*(1 +2AQ), Joi = —a’BQ;.
3y = @[(1 +2H, Q)yy; + 2H7 0, (1)

Compared with our metric convention (which is in fact the
convention of Bardeen’s other work [16]), in Eq. (4), we
have

1
(Z:AQ, ﬁ:—%BQ,

1 1
P = (HL +§HT>Q7 VZPHTQ7 (52)
thus B and H; are involved with 1/k and 1/k* factors
which are troublesome for vanishing k; see below Eq. (211)
in [30].

Concerning n = 1 and 2 modes, below Eq. (4.9) Bardeen
mentions: “A spatially homogeneous perturbation or
the lowest inhomogeneous mode k*> = 3K in a closed
universe require special treatment in that Q; and/or Q;;
vanish identically, ®y, ®,, and v, are no longer gauge-
invariant. ... A homogeneous scalar perturbation is really
no perturbation at all, but an inappropriate choice of
background.” Compared with our notation, we have
[Egs. (3.9)—(3.11) in [28]]

H 1 a a’ .
Py =¢=X= H,+7Hr+H(—B—-—55Hr||Q

3 kc k2t
=040,
1. 1 ) 1 C.
a){Ea—E}(: [A—‘rE(ClB) ——kzcz(azHT):|Q
=¢AQ’
c 1 a - 1
U}{EU—;X:z(vB_zHT>QEzUsQ» (53)

where vp is Bardeen’s v; compared with our v we have

it 1 li 1 . 1 .
5= <_”+ﬁ> =-—030' = ——vQ", thus,
i c c kc
1
7 (vs = ¢B)Q. (54)
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Although Bardeen’s definitions of ®,, ®, and v, in
Eq. (53) have problems for k =0, in our notation, ?ys
a, and v,, thus ®y, ®, and v, are gauge invariant
independently of the value of k.

Concerning the homogeneous perturbation: the n =1
(homogeneous) mode scalar perturbation is a correct result
from the perturbation and is handled properly while main-
taining the homogeneous and isotropic nature of the back-
ground. This becomes clear in the Einstein static model as
presented in Eq. (75). Compared with this proper treatment,
the perturbation of the background equations, although it
happens to give the same result as in Eq. (78), is a hand-
waving procedure. Rigorously, we have to perturb the original
Einstein’s equation around the background, instead of simply
perturbing the background equations, see Sec. IV D.

Below Eq. (6.26) of [28] Bardeen addresses the n = 2
mode by analyzing it in the UEG, and states “Since Q;;
vanishes identically, Eq. (6.23) no longer applies.”
Bardeen’s Eq. (6.23) is a combination of our Egs. (9)
and (11) which do apply and gives v, = 0. Although many
variables vanish in this gauge, there are still surviving ones
in the same gauge (these are ¢, and y,) as in Eq. (45).
Concerning these variables, below Eq. (6.27), Bardeen
mentions “The amplitude [¢,] now depends on the way
spatial coordinates are propagated from one hypersurface to
the next through the hypersurface condition Eq. (5.22). The
traceless part of the metric tensor perturbation and the
spatial curvature perturbation vanish. The absence of any
physical adiabatic mode when k* = 3K was first recog-
nized by Lifshitz and Khalatnikov.”

Bardeen’s Eq. (5.22) is our Eq. (9). Together with
Eq. (13) it gives Egs. (45) and (46). We find no reason
why these equations and behaviors of the gauge-invariant
variables ¢, and y, should be regarded as coordinate
effects. In Bardeen’s statement “the traceless part of the
metric tensor perturbation” is Hy in Eq. (51), thus our y,
which can be set zero as the spatial gauge condition
(without any effect in our formulation as we are using y,
which remains the same). However, his “spatial curvature
perturbation” is our ¢, which follows Eq. (45) and has no
reason to vanish; if it vanishes y, should vanish as well
which implies that all perturbation variables in the UEG
vanish. Vanishing ¢ after imposing the UEG is like
imposing two gauge conditions (the UEG and the UCG)
simultaneously, which is not allowed for general perturba-
tion including the k*> = 3K mode.

IV. STABILITY OF THE EINSTEIN STATIC
MODEL WITH PRESSURE

Einstein proposed in 1917 a static and closed world
model by employing the cosmological constant in a closed
universe [31], for a centennial review see [32]. Here, we
consider the presence of an additional pressure. In the static
background, Eq. (8) gives field equations:

82G Kc?  Ac?

ap
3
4nG (QQ + @) = A,
c
Po KC2
4rzG Q0+—2 =5 (55)
c ag
thus
Kc? 1+3wk
a%: c _ + wK (56)

A4zG(1+w)oy 1+w A’

We have w > —1/3 for K > 0 and A > 0.
To the linear order, ignoring stress, Eqgs. (9)—(15) give

A
K= _3¢ - C_z)(’ (57)
ay
A+ 3K
47Géo + c? 2 @ =0, (58)
0
A+3K 122G
Kt c—5—y— Za()(Qo—l-p—g)v:O, (59)
ag c c
36
K+c2—2a—4nG<5Q+—2p>, (60)
ag c
1.
(p—l—a—g)(:O, (61)
. A
56 — (go +p—§> (K-l——l)) =0, (62)
C ag
| op 5
vV=—|—— t+cal. 63
ao(QoJrf? ) ©3)

The gauge transformation properties in Eq. (16) become

. 1. A .

d=a=--&  9=¢  F=x-&
A

R=xtcs&. So=d0, Sp=0p, P=uv-—&
ay o

R . 1.

=11, 5¢p = 5 — —oé'. (64)

C

Thus, d¢ and ¢ are naturally gauge invariant, and x becomes
gauge invariant for A = 0. As we have @ = 0 we cannot use
the equations and solutions in Secs. II B and II C.
Without imposing the gauge condition, from Egs. (60),
(62) and (63), we can derive [except for the A +3K =0
case, where we have d¢ = 0 from Eq. (58), see below] the
following second-order density perturbation equation:
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A
86 = [4nG(1 4+ w)(1 4 3c})oo + cic* = | do
0

2

£ K + (A + 3K)]d0

=5 (65)

The solution is [Eq. (226) in [29] and Eq. (34) in [33]]

5@ x @ e:l:\/4ﬂG(1+w)(1+3c§)go—cﬁczk2/a(2)t
_ ei\/K—c%(kz—?aK)ct/uU x et [1=(L+3)(L-1)c?]Kct/ay
(66)
where we set
A=-k>=—-(n*-1)K=-L(L+2)K
(L=n-1=0,1,2,...). (67)
For a stable solution we need
@ et [1—(L+3)(L—l)c%]Kct/aO7 5= (1 4 W) (L + 3)(L —
1—(L+3)(L-1)c
v, = —c\/ X Q, O = =@,
1—(L+3)(L-1)c
o = a4 K) %, 43~
L+3)(L-1)
UK:—C< * \/1 (L+3)(L-1)cto, a. = —
L(L+ 2

These are complete solutions. Since all these variables
are proportional to ¢, they share the same equation
in (65).

The solutions for v,, @, and y, diverge when L = 0. This
happens because we cannot take the UEG for L = 0 and «
becomes gauge invariant for this situation. As we have ¢ =
> L.em PrLemQrem [see Eq. (85) for a proper expansion],
the breakdown of the UEG for L = 0 implies the break-
down of the UEG in general in the Einstein static model.
Thus the UEG is not available for the Einstein static model.
Excluding solutions in the UEG, the above solutions are
generally valid for all L including L = 0 and 1; the latter
special cases will be displayed below.

B. k> =3K mode (L=1)

From Eq. (58) we have ¢ = 0 which is naturally gauge
invariant. From Egs. (57), (60) and (61) another naturally
gauge invariant variable ¢ follows:

1
2>

TT(L+3)(L-1) (68)
and for L > 2 we have ¢ > 1/5[7,29,33,34]. The L =0
and 1 modes are always unstable although these two
modes were often ignored in the literature as fictitious
perturbations, we have shown that these are physical.

Equation (65) is not applicable for L = 1, thus k> = 3K.
In this case from Eq. (58) we have d¢ = 0, but as ¢ obeys
the same equation, the solution in terms of ¢ remains valid,
see Sec. IV B.

A. Complete solutions for general k>=L(L+2)K

The variables 6 and ¢ are gauge invariant, and the
solutions for them are given in Eq. (66). Solutions for other
variables in all other gauges can be derived from a known
solution. From Eqgs. (57)—(63), or using the gauge trans-
formation properties in Eq. (64), for the relatively growing
mode, we can show

) _ _ _ D2k E
Do: =3yl = (L4 3)L- DK .
= (L4+3) (L~ 1)y/[1 = (L+3)(L - 1)eHK g
do
1—(L+3)(L-1)c2
1 .% ’ K:3 \/ . ’
Jese 2 =340 LL+2vE "
(L+3)(L-1) 5
Sy e (69)
Kc 2
p =—5 @ =4nG(1 +w)oyp, thus,
0
¢ ei\/l?ct/ag o ei\/4ﬂG(l+w)got’ (70)

which is exponentially unstable; although d¢ = 0, the
solution for ¢ in Eq. (66) remains valid. By taking
either the UEG (k=0) or the CG (v=0) we have
k=v=a =0, thus

v, =0=aq, Kk, =0=a,. (71)

In both gauges we still have nontrivial equations in (57)
and (61)

. Kc 1.
O =54 »=—7. (72)
Clo C
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a combination of which leads to Eq. (70). For relatively
growing solutions we can show

¢
o etVKer/a 5=0, v, = ——=@,
¢ =k’
3\/KC agp
K, = — y a, = —q@, = —0,
y aq @ % @ X Xk \/I_((p

(73)
so the general solutions in Eq. (69) remain valid for L = 1.

C. k=0 mode (L.=0)

Equation (64) shows that besides d¢ and ¢, the variable x
is also gauge invariant. Equation (65) gives

5 5 Kc?
w) (1 + 3¢3)0pde = (1 + 3c¢3) ey o,
0

80 = 4nG(1 +
(74)
with the solution

00 x eEVATG(14w)(1+3c3)eot — pE+/(143c5)Ket/ag (75)

This mode is exponentially unstable for ¢z > —1/3. All
surviving variables satisfy the same equation as d¢ in
Eq. (74). For relatively growing modes we have

¢ x €+ (1+3¢ )Kc!/ao o= —3(1 +W)(ps
k=-3\/(1+3)K—p. a =33y, o=
ap
1+3¢2 L+3¢
=T\ T ¥ Ao = Ao\ T 76)

Thus, the general solutions in Eq. (69) remain valid for
L = 0. Since « is gauge invariant, we do not have variables
like v,, a, and y, which display divergent behavior
in Eq. (69).

D. Stability of the static background

By directly perturbing the background equations to
the linear order, with a = ag+ da, ¢ =9+ ¢ and
p = po + Op, the first two in Eq. (8) give

od 4dnG 36
oa _ _4rG (5Q+_P>,

ag 3 c?
4rG Kc? da
——60=——5—, thus,
3 Clo ap
K 2
5 = (14 3¢2) =5 6a, (77)
agp

with the solution [Eq. (225) in [29]]:

Sa x 50 e:t\/(1+3c§)Kct/a0‘ (78)

Thus, the static background is exponentially unstable for
2> —1/3.

The behavior of J¢ happens to coincide with the
homogeneous perturbation mode in Eq. (75). We note,
however, that in our proper perturbation of Einstein
equations with the results in Eq. (76), even for the
homogeneous mode, besides Jg;;, the quantity gy is
excited in the ZSG (dgy; = 0), and both 6gy, and 6gy;
are excited in the CG. By perturbing the background metric
with a = ag + éa we effectively have a = da/ay = ¢
which differs from our result in the ZSG with a = —¢,
and in the CG with @ = 3c2¢. Thus, despite a coincidence
in dg, perturbing the Friedmann equation alone [35] is a
hand-waving procedure. The correct way is to perturb the
original Einstein equations, as we did in Sec. IV C; see
Sec. 5.7 in [29].

E. Einstein static background with scalar field
In the Einstein static background, we set ¢, =0 but
do £ 0 [71: if ¢y = 0 we have w = —1, 5o = 0 = 5p and
the case becomes trivial. From Eq. (33) we have V , =0
and so V = V. Thus, we have

1. 1.
Q0 = 545(2) + Vo, Do = 54’% - Vo, (79)

for the background, and

.. 1 .
80 = dp = dod — doa. (0o + po)v = AL (80)

5~ S350 = dols + ) (51)

for the perturbation. Equations (55) and (56) for the

background and Eqgs. (57)—(63) for the perturbation remain

valid with the fluid quantities replaced as above.
Equations (55) and (56) give

872G 872G ¢ Ly ) = 5 é
—3 Qo = 3 0 o] = a(z) 3
47G(0o + 3po) = 872G (¢ — Vo) = A,
. K
47G(0p + po) = 4nG = 2 (82)

0

a. In the presence of A, we have

K 14w A H? po PE-2V
= 0 020 (83)
0

= =—= , W=E—=-——,
143w 242V, Q 52V

thus, for K >0 and A >0 we have ¢ >V, and
—-1/3<w< 1.
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b. In the absence of A, we have

. K 1
¢(2):V0:47L_Ga%v WZ—g. (84)
As we have 6p = 6 the rest of the analyses made for the
fluid case remains valid with ¢? = §p /8¢ = 1; notice that,
as we have V , = 0 for the background, see Eqs. (33) and
(34), this is true independently of the scalar field potential.
Thus, all L > 2 modes are stable, but L = 0 and 1 modes
are unstable, as in the fluid case. The equation of motion in
Eq. (81) is consistent with Eqs. (62) and (63), and ¢ is
determined by 6¢ = aori)ov.

V. THE TAUB CONSTRAINT

Losic and Unruh [8] state in their conclusions that “the
requirement that the second order Einstein constraint

equations be integrable demands that any inhomogenous
linear mode perturbations of the Einstein static universe
must be accompanied by the homogenous linear mode
with comparable amplitude.” In order for a solution of the
linearized equation to be a proper solution of the exact
equation, it should satisfy a constraint to the second order.
We may call it the Taub constraint [36]. Here we evaluate
the Taub constraint based on a timelike Killing vector in an
Einstein static background. The Taub constraint is derived
in Appendix B considering the general background metric,
see Eqs. (B9) and (B15). Our result confirms Losic and
Unruh’s above conclusion, but only for ¢ = 0, whereas
they were claiming it was true for arbitrary c2.

A. Spherical harmonic expansion

When we consider the spherical background geometry
we need harmonics in spherical geometry. We expand

‘

n—1
9(t.7,0,9) = (NQK: 1.0, 8) = Y Puen(DQuen(t:0.0) = D D> @ew (1) Y2 (0, ),

n,m

Puem (1) = / 0(1.2.0. D)L, ()Y (0. )7 x.

n=12,... £=0 m=—

where I1,,,(y) is an associated Legendre function with proper normalization [29]:

.
[) Hm’ (Z)Hn’f (Z) SinZ)(d)( = 5nn’ ’

Using the spatial metric in Eq. (7) it is convenient to have

Yy = 1, Yoo = sin’y, Vg = sin’ysin6;
%, = —sinycosy, r by = — siny cos ysin®6,
cos cos @
F<7>f¢ = — ){, r £¢ =——, or O otherwise.
siny sin @

For n = 1 and 2 the harmonic functions Q are

1
Q=1 = Qioo = Jon’

We have Q; =0 for n =1, and Q —y;;Q for n =2.

=

Using n = L + 1, thus k> = n?> — 1 = L(L + 2), we have

an ()() -

Ol,—> = Q200 + Q21-1 + Q210 + Q211 =

(85)
nfn++1) 1 o p
P . 86
C(n-¢) +fsing n—1/2 (cosy) (86)
1
=1, 00 — , PP — :
4 4 sin’y 4 sin’ysin’@
cosy :
rw 59 = ng r® Z¢ = —sinfcos b,
(87)
2
£ [cos y + siny(cos @ — 2isinf@sing)].  (88)
/3

0(t.X) =@t 0.4) = > D oran O ()Y (0. ),

L=0,1,... £=0 m=-¢
Ap(t,%) = = (" = 1)@upn (O, Y2 = = L(L + 2)@1 (DT Y7 (89)

nt,m

L.Z.m
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It is convenient to have

/§02\/J7d3x = Z ‘(pnfmlz’

L.¢m

/¢'i40,i\/7d3x =- / PAp\rdx = L(L +2)|ppenl*.

L.Am

/ Vel d3x = / PA(A +2K)pfyd*x = Z (L? +2L = 2)L(L + 2)K?|@pm|*. (90)

L.m

B. The Taub constraint in two gauges

Complete solutions are presented in Eq. (69); ¢ and § are gauge invariant and solutions in the UEG are not valid. Using
the mode expansion in Eq. (89), the solutions can be written as

¢ = Z PrLem(OL Y] = Z VI LN elRe=n) gy, (10)TT Y
L.C.m L.¢m

5Lfm = (1 + W)(L + 3)(L - l)goLfm;

1= (L+3)(L—-1)c
U;(Lfm:_c\/ ( Ig( )

C
KyLem = _3\/[1 - (L + 3)(L - I)C?}Ka_o{pbfmv

1= (L+3)(L—1)c
K

PrLems XyLem = —@PLtms XoLem = aO\/ PLems

KoLem = (L + 3)(L - 1)\/[1 - (L + 3)(L - 1)C%]Ka£0(pom’ XpLem = _C?(L + 3)(L - 1)§0L£m- (91)

We have shown that these solutions are valid for all L values. For the L = 0 mode, the temporal dependence of all variables
is eV IH3c)Ket/a and so is unstable for ¢ > —1/3. For the L = 1 mode the temporal dependence of all variables

becomes o eVEe!/%_ and so is unstable, independently of ¢2. For ¢2 > 1/5 all modes with L > 2 become stable as presented
in Eq. (68) [7,29,33,34].
Now, we can evaluate the Taub constraint in Eq. (B17) using Eq. (B20) and the linear solutions in Eq. (91). In the ZSG

and the CG, respectively, we have

[

L
Trzsa= Y, > > [TL2+14L —15— (2L + 4L = 3)(L + 3)(L — 1)c3|K|prenl* = 0. (92)

L=0.1,... £=0 m=-¢

L 4
TCG =
L=0,1,... £=0 m=-¢

The Taub constraint apparently depends on the gauge
condition. Taub constraint on the ZSG applies to the linear
solutions in the ZSG, and likewise for the CG. We have
T, >0and 7,_, <0 in both gauges.

For ¢2 =0, in both gauges we have 7;5; >0 and
Ti—o <0, thus the Taub constraint demands that the
homogeneous perturbation (. = 0 mode) should be excited
as long as we have nonvanishing inhomogeneous pertur-
bation; the solutions in Eq. (91) show that for ¢? = 0, all

perturbations are unstable proportional to eVKet/ay inde-
pendently of L.

Similarly, in the ZSG, for ¢ > 41/65 wehave 7, _; > 0
while all contributions from the other modes are pure
negative. Thus, in this case, the L = 1 mode should be
excited as long as we have any other perturbation mode in

>3 BQL2+4L - 5) = (L +3)X(L = 12|K|ppenl* = 0. (93)

the ZSG. Concerning the L = 1 mode, a similar conclusion
does not follow in the CG, as we need ¢ < 1.

VI. DISCUSSION

We have shown that the lowest two (L = 0 and 1) per-
turbation modes in closed universes are not fictitious
perturbations, see Secs. II and III. However, the case is
more subtle than normally considered as we often have
linearization stability issues in a closed space with the
Killing symmetry. The Einstein static model is such a
closed space with a timelike Killing vector. The Taub
constraint provides a constraint on quadratic combinations
of linear order variables for linearization stability to hold.
We have derived the Taub constraint in general background
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metric in Appendix B; these are Egs. (B9) and (B15) for
general background, and Egs. (B16) and (B17) for cos-
mological background. We have evaluated the Taub con-
straint in the Einstein static model with a timelike Killing
vector, see Secs. IV and V. The results are presented in
Egs. (92) and (93) for two fundamental gauge conditions
available in the Einstein static model with pressure. The
result can be compared with other works as follows.

According to Losic and Unruh [8] 71, should be pure
positive; they ignored the L = 1 mode as a gauge mode.
But in such a case the Taub constraint demands the
presence of the L = 0 mode which is negative. Although
Losic and Unruh have claimed this is the case for general
2, Bgs. (92) and (93) show that this is true only for ¢Z = 0
in both the ZSG and the CG. The gauge condition adopted
by Losic and Unruh, and whether they were using the same
fluid as ours are unclear to us.

For ¢2 > 1/5 we have that the L > 2 modes are stable,
while L = 0 and 1 modes are unstable. Although Losic and
Unruh have stated that the perturbation should accompany
the unstable L = 0 mode, our result does not confirm the
case at least in our two gauge conditions; it is true only for
¢2 =0 and in this case all modes are unstable.

Studying a conformal variation Gibbons [33,34] con-
cluded that 75, > 0,7, =0and 7| _, < O for ¢? = 0.
Although we expressed Gibbons’s result using 7, his
method is based on second-order variation of entropy
and the exact relation to our method is unclear. The
conformal variation, &g,, = ¢g,,, implies a@ = ¢ and
¥ = 01n our notation, and this differs from the ZSG where
a = —¢ and y = 0. The conformal variation is not available
in a proper perturbation theory.

The presence of stable perturbation modes with L > 2
for ¢2 > 1/5 has suggested the Einstein static model with
pressure might be a potential evolutionary stage in the early
universe, before inflation without singularity [7,37]. An
Einstein static phase supported by a massless scalar field
belongs to this case with ¢2 = 1, see below Eq. (84).
Although it has been suggested that the excitation of L > 2
modes should accompany the homogeneous (L = 0) mode
[8], which is always unstable, our result shows that this
applies only for ¢2 = 0. For ¢2 > 1/5, the Taub constraint
in two gauge conditions in Egs. (92) and (93) shows that it
is not necessary to accompany L = 0 and/or L = 1 modes,
both of which are unstable; for ¢2 = 1/5, we can show that
the L = 0 mode is negative, the L = 1 to 3 modes are
positive and the L >4 modes are negative again in the
7ZSG, whereas the L = 0 mode is negative; the L = 1-4
modes are positive and the L > 5 modes are negative again

in the CG. As both the L = 0 and L = 1 modes are unstable
even for ¢2 > 1/5, these two modes must be suppressed to
have a stable Einstein static stage. How to avoid exciting
these lowest two modes for a successful realization is a
question yet to be answered.

Previously the L =0 and 1 (thus n = 1 and 2) modes
were generally regarded as fictitious, thus largely ignored
in the literature, see [38—40]. The physical nature of these
two modes with newly restored honor in this paper implies
that one needs to properly take into account of these two
modes in the future cosmological calculation of closed
Friedmann world model. These include the full sky galaxy
correlation function and power spectrum (see [41,42] in flat
background), the CMB (cosmic microwave background
radiation) anisotropy power spectra (see [43,44] for con-
tributions of monopole and dipole in flat background), and
others like the luminosity distance and redshift (see [45,46]
in flat background). Recent measurement of cosmological
parameters shows a tendency of favoring slightly positive
curvature [47-52].

Although he missed the opportunity to predict the
dynamic universe, Einstein’s legacy of establishing modern
cosmology over 100 years ago by introducing the cosmo-
logical principle and the enigmatic cosmological constant
may yet be extended by his choice of the spherical
geometry with closed topology [31].
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APPENDIX A: EXACT SOLUTIONS
FOR A ZERO-PRESSURE FLUID

Here, we present a complete set of exact solutions
including the cases of k> =0 and 3K. We consider a
zero-pressure fluid (p = 0 = 6p, I1 = 0) with the cosmo-
logical constant and the background curvature. Relatively
decaying solutions are absorbed in the lower bound of
integration, and g(x) is the remnant gauge mode in the SG.
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APPENDIX B: TAUB CONSTRAINT

Einstein’s equations are

1. Derivation

- - 1_ ., - 87G ~
Eab = Rab _EgabR +A§ab _ = T — 0.

To second order in perturbation, the metric tensor and its inverse are

Gab = Gap + hab’ gab = gab — hab + l’l?th,

123527-14

(B1)

(B2)



PERTURBATIONS AND LINEARIZATION STABILITY OF ... PHYS. REV. D 101, 123527 (2020)

where A, includes the second order and its indices are raised and lowered using the background metric g,;, and its inverse
metric ¢*”. The connection is

. 1 . 1
FZc = cm + 5 (hZ:c + htcz:b - hbc.a) - Ehad(hbdtc + hcd:b - hbc:d)’ (B3)

where a colon indicates the covariant derivative using the background metric g,;,. The curvatures are

Ryeq = R%%ea + 1 + Ml g = Mota’™® g = 1 (hepifag) + Befa: (pre) = Poja: (eyel)
1

+ E(hf::[d +hy sy = hoa ) (B = By = Beje™)

- 1 . 1
Rab = Rab + E(hfz:bc + hlc):ac - hah‘cc - h:ah) - Ehce(hea:bc + heb:ac - hec:ab - hab:ec)

1 . X 1 1 .
+ Z(hZ:b +hy. = hap ) (he —2hE..) + Zh°d:ahcd:b + Ehfz'd(hbc:d — hpg:e) = Rap + RE, + RY,
R =R- habRab + hab:ab - h:aa + hgthRab + hab(_hfz:cb + habzcc - hg;bc + h,a:b)

1 . 1
- hab:bhgic + hab:bh,a - Zh'ah,a + Zhab;c(:shab:c - 2hac:b) =R+ RL + RQ’ (B4)

where i = h¢ and we have A, = % (Agp — Ape)- The indices L and Q indicate the linear and quadratic parts, respectively.
The quadratic part includes the terms with quadratic combination of two first (linear) order terms. The linear part can be

decomposed into the first-order and second-order perturbations, like Rﬁb = REllb) + be); for example, to the second order,

we have hy, = h'}) + h?) = hL
The background and first-order Einstein equation give E*” = 0 and E()* = 0. The equation to the second order can be
arranged as

~ | 1 87G 8nG
ELab = RLab _ 5gabRL + hah <2R _ A) _ 71'4 TLab — _EQub = 7174 [ab’ (BS)
Cc c
with
&nG 1 . . . L, .. b .. | R :
7[,(1’7 — E],lcd(hz.bd + hlz.ad _ hcd.ab _ hub:cd) _Z(hca.b + hcb.a _ hab.c)(hw _ Zh?d) _thd.ahcd.b

1. : . . .
= AR g = ) By W g = B = D) = W RYRy = 2R R])

1 . 1. . .
+ Egah |:hghedRcd - th(hg:de + hf‘:ed - hcd.ee - h,c:d) - thhc =+ h-ch?:d - hcd:dhf':e

1 . 1 . 1 87G
+ o (Bhege —2hde;c)] SRR+ B = 1) + B <5R —A) += T (B6)

This was presented by Taub in Eq. (3.5) of [36] for the Minkowski background. Here we consider a general background
metric g,

From E®,, =0, we have E%., = 0 = E(V% ., and E?., = 0. Thus EX?., = 0, and we have E2%., =0 = 1%,
For a Killing vector &,, where &,.;, + &,., =0, we have

0= (V=9r"%) .. = (V=91""&}) o (B7)

thus [see Eq. (4.7) of [36]]

0= / (/=G10E,) .. d*x = / gt do, = / G n (BS)
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with n, the timelike normal (n; = 0) four vector. Therefore,
we define

87G
= / =g Eydx = / V=gEL ¢, dBx = 0,
c

(B9)

and call this the Taub constraint. In the presence of the
Killing vectors in the background metric g,,, Fischer,
Marsden and Moncrief [9,10] have proved the violation
of this condition as the criterion of linearization instability
for the vacuum case. Similar results hold for Einstein field
equations coupled with matter fields such as scalar fields,
electromagnetic fields and Yang-Mills fields [11,53,54].

2. ADM constraint formulation

Evaluation of Eq. (B9) with Eq. (B6) needs complicated
algebra. There is a simpler formulation using the constraint
equations. The ADM (Arnowitt-Deser-Misner) energy
and momentum constraint equations can be written as
[Eq. (3.14) in [55]],

y 162G
£ = KUK; — K> = RW + 2 E+2A =0, (BI0)
C
i ij i 872G
&=K;-Kl -/ =0 (B11)

The indices and the covariant derivatives (||) in the ADM
notation are based on the ADM metric h;; = g;;. From
Eq. (B1), we can show

Ni

FOO — "
4AN4

2N?

&, Eof':%ewr . (B12)

To the second order, we have

EOO — E(O)OO 4 ELOO 4 EQ00 EOi — ELOi 4 EQO0i.
E0 = g00 4 g0 4 £00 E=¢gli4 g2, (B13)

As we have E0% = = £ for the background, and
EMW0 — 0 = g0 and MY = 0 = £1)7 for the first-order
perturbation, the quadratic parts become

EQ00 — _ #gQO,

. 1 )
0i __ i
T BV = €% (BI4)

Using this Eq. (B9) gives for the Taub constraint

N
_/‘/h(())N(O)(f()EQOO+§iEQ0i)d3x
:/\/h(0> <_ 1

2N

£, + gngi) &x,  (B15)

where we used /=g = N(OVA(). This is an alternative
presentation of the Taub constraint to Eq. (B9) which needs
only the energy and momentum constraint equations.

In the cosmological background, the Taub constraint
derived in Eq. (B15) yields

T = / Vrat (EECY + & EXN P x

= / Jra (— i £, EQ0 + 5,-5@‘> &x,  (B16)

where y is the determinant of y;;. The Friedmann metric has
six spacelike Killing vectors [56]. Einstein’s static model
has an additional timelike Killing vector with £* = &f. We
will consider the Taub constraint based on this timelike
Killing vector. Using &, = —8%, Eq. (B16) gives

7= / =Gy EQ P
1
:—ag/\/77EQOOd3x:§a%/\/)7€QOd3x. (B17)

Thus, for evaluation of the Taub constraint in our case, we
only need the energy constraint equation to second order.

3. The energy constraint equation to second order

The fully nonlinear and exact perturbation equations in
the presence of background curvature were presented in
[57]; the equations are derived by taking a spatial gauge
y = 0 in the metric in Eq. (4) and replacing af; and —v ; by
xi; and wv;, respectively, now including the vector-type
perturbation as well. The ADM energy constraint equation
gives [Eq. (3.2) in [57]]

£0 6 e 87G _ N Kc? Ac? N 4 "
=—— - - — Hk
c? 3 ¢ a*(1+2p) 3 c?
4Ap 2 ’ 162G (. p )
e £z -1
+a2(1 +2§0)2 3C2K + 62 <Q+ C2> (7 )
6¢lip; o
-t L RIKI B18
(1 1 2gy TN (BI3)

with y the Lorentz factor, and N the lapse function, where
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1 X
= N=aN =ay/1 +2a+ 52—,
r 1 - vkvk a2(1—|—2(p)
A (1+2¢)
L 1 1 .. 1. . 4 1 . . 1. .
Kkl =— ) _yili(y,. ) = Syl Zioli(y.. Y — S
Ji a4N2(1 +2§0)2 {2)( ()(z\j +)(j\l) 3)( \l)( lj 1+2€0 |:2}(()0 ()(l|} +)(j|t) 3)( |t)( @

2 S |
— = A vivdp . +=vivig.p. )L, B19
05200 ()mfp 0+ 3xx qo,lco,])} (B19)
To second order, we have
6 872G Kc*  Ac? 4 A+ 3K
goz—z(Hz—TQ—F?—T)+?<4EG(SQ+HK+CZ 5 (p)
162G p\vv 2 , 2. . L[ . |
t—2 (Q +?> R L B¢l + 4028 +3K)g] ta [5)( UCZIRID) kv aral
= £00 4 £L0 4 £00, (B20)
For the scalar perturbation, we have v; = —v; and y; = y ;. The evaluation of the Taub constraint in Eq. (B17) using

Eq. (B20) in a couple of gauge conditions in Einstein’s static model is presented in Sec. V.
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