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Machine learning (ML) algorithms have revolutionized the way we interpret data in astronomy, particle
physics, biology, and even economics, since they can remove biases due to a priori chosen models. Here
we apply a particular ML method, the genetic algorithms (GA), to cosmological data that describes the
background expansion of the Universe, namely the Pantheon Type Ia supernovae and the Hubble expansion
history HðzÞ datasets. We obtain model independent and nonparametric reconstructions of the luminosity
distance dLðzÞ and Hubble parameter HðzÞ without assuming any dark energy model or a flat Universe.
We then estimate the deceleration parameter qðzÞ, a measure of the acceleration of the Universe, and we
make a ∼4.5σ model independent detection of the accelerated expansion, but we also place constraints on
the transition redshift of the acceleration phase ðztr ¼ 0.662� 0.027Þ. We also find a deviation from
ΛCDM at high redshifts, albeit within the errors, hinting toward the recently alleged tension between the
SnIa/quasar data and the cosmological constant ΛCDMmodel at high redshifts (z≳ 1.5). Finally, we show
the GA can be used in complementary null tests of the ΛCDM via reconstructions of the Hubble parameter
and the luminosity distance.
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I. INTRODUCTION

Cosmology has reached a stage of near percent level
precision with a wide range of theoretical models that
describe rigorous and accurate measurements. However,
the explanation as to why the Universe is undergoing a
period of accelerated expansion still remains an open
question and the cause of this phenomenon is usually
attributed to a dark energy (DE) component [1]. The
standard cosmological model contains the cosmological
constant Λ and a cold dark matter component (ΛCDM) [2]
and is at the moment the best candidate to explain the
accelerated expansion of the Universe as it is in excellent
agreement with all of the current data [3].
However, there is a plethora of other models as well,

many of which are included in the pipelines of upcoming
surveys, such as Euclid [4]. These models range from
canonical scalar fields [5–7], scalar fields with a general-
ized kinetic terms [8,9] or a nonminimal couplings [10–12]
in addition to general relativity (GR), coupled DE models
[13], modifications of the Einstein-Hilbert action [14], the
Chaplygin gas [15] or extra dimensions [16]. For further
reviews see [4,17–23].
This huge landscape of DE models makes the interpre-

tation of the cosmological observations difficult as the

results, e.g., the value of the matter content of the Universe
Ωm0, depend on the particular model chosen. For example,
the Planck mission provides an accurate value for the
matter density parameter today Ωm0 ¼ 0.315� 0.007, see
Ref. [3], however this value is specific to the ΛCDMmodel
as it was obtained assuming the ΛCDM model to be the
correct theory, hence is model dependent. To remove biases
due to choosing an a priori defined model, it is important to
use reconstruction techniques and model independent
approaches, see for example, [24]. One such approach is
the use of machine learning (ML) methods, which has
already lead to many successes in cosmology [25]. ML
methods have been used to reduce the scatter in cluster
mass estimates [26], to distinguish between standard and
modified gravity theories from statistically similar weak
lensing maps [27], and have been found to be useful for the
next generation CMB experiments [28], N-body simula-
tions [29], cosmological parameters inference [30], dark
energy model comparison [31], supernova classification
[32], and strong lensing probes [33].
In this paper, we will apply a particular ML method, the

genetic algorithms (GA), which can be described as a
stochastic search approach. The GA have been used in
many disciplines ranging from astrophysics, e.g., to deter-
mine the photometric redshift [34], to find the optimum
parameters for cosmic ray injection and propagation [35],
to fit dusty galaxies [36], to perform galaxy classification
[37], in particle physics to constrain the MSSM [38,39] or
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resonances in Lambda reactions [40], but also in finance
[41,42] and biology [43]. More recently, they have
also been applied to cosmology for data reconstruction
[24,44–51]. One of the most effective use of these methods
is the reconstruction of null tests, i.e., pass/fail test made
of variables of a theory that should always be constant for
all values of the parameters, and can be used to test theories
in a model independent way.
In light of the near future experiments that will gather a

vast amount of data, such as Euclid and LSST, it is
necessary to perform model independent tests to check
for possible tensions that could be due to systematics or
new physics. Specifically, null tests for ΛCDM have
already been applied to the cosmological constant model
[24,52,53], interacting DE models [54], the growth-rate
data [55], the cosmic curvature [56,57] and to probe the
scale-independence of the growth of structure in the linear
regime [58].
The structure of our paper is a follows. In Sec. II we

present the theoretical background of the GA approach we
use in our analysis, in Sec. III we present our reconstruc-
tions and the results on the deceleration parameter, the
transition redshift and the two null tests based on the
Hubble parameter and luminosity distance. Finally, in
Sec. IV summarize our results and present our conclusions.

II. THE GENETIC ALGORITHMS

Here we present the theoretical background of the
implementation of the GA in our analysis.
Machine learning is a subset of artificial intelligence that

aims to build mathematica models that describe a given set
of data. One particular class of ML methods are the genetic
algorithms (GA) which specialize in unsupervised sym-
bolic regression of data. This means that the GA can
reconstruct an analytic function that describes the data,
using one or more variables. The GA achieve this by
mimicking from biology the notion of evolution. In
particular, this is expressed via natural selection and the
genetic operations of crossover and mutation. Hence, a
group of candidate functions evolves over time under under
pressure from the stochastic operators of crossover, i.e., the
merging of two or more individuals that form an offspring,
and mutation, i.e., a random change in the genetic makeup
of an individual.
The “reproductive” success of a population, or in other

words its probability that it will produce offspring, is
usually taken to be proportional to its fitness, which
expresses how well every individual agrees with the data.
In our analysis, this is quantified via a usual χ2 statistic,
which we discuss in detail in Sec. III for the data we will
use. For more details on the GA and various applications to
cosmology see [45,46,51].
In this analysis we consider the Pantheon Type Ia

Supernovae (SnIa) and HðzÞ data sets, so in practice,
the procedure to reconstruct them, proceeds as follows.

First, we choose an orthogonal basis of functions, tradi-
tionally called the “grammar,” with which an initial
population of functions is constructed. These function
are randomly picked so that every member of the pop-
ulation codifies an initial guess for both the luminosity
distance dLðzÞ and the Hubble parameter HðzÞ. While this
choice for the grammar might seem crucial for the symbolic
regression, it has been shown in Ref. [51] that it only affects
the rate of convergence of the GA.
In this first step one may also impose any necessary

physical priors, for example, that the value of the Hubble
parameter today is Hðz ¼ 0Þ ¼ H0 or that the luminosity
distance at z ¼ 0 is zero, i.e., dLðz ¼ 0Þ ¼ 0. This step is
important as we want to avoid any unphysical functions
that could unnecessarily delay the convergence of our GA
code. We also demand that all functions reconstructed by
the GA are continuous and differentiable, without any
singularities in the redshift range covered by the data, so as
to avoid overfitting or any spurious reconstructions. These
are the only physical assumptions we do and we make no
assumption on any particular DE or modified gravity model
or even on the curvature of the Universe.
After the initial population has been constructed, the

fitness of each member is estimated by a χ2 statistic, using
as input the SnIa and HðzÞ data. Afterwards, using a
tournament selection, see Ref. [51] for more details, the
best-fitting functions in every generation are chosen and the
two stochastic operations of the crossover and the mutation
are applied. In order to ensure convergence this procedure
is then repeated hundreds of times and with various random
seeds, so as to properly explore the functional space.
The final output of the GA code is a couple of two

continuous and differentiable functions of the redshift z that
describe the Hubble parameter HðzÞ and the luminosity
distance dLðzÞ respectively. However, the GA on its own
does not provide any estimate of the errors of the
reconstructed functions, something which is necessary
for the statistical interpretation of the data. To do so, we
implement the path integral approach of Refs. [46,48],
where the errors are estimated by calculating analytically a
path integral over all functions that may be surveyed by the
GA. This error reconstruction method has been exhaus-
tively examined and compared against a bootstrap Monte-
Carlo by Ref. [46].
At this point it should be noted that while no assump-

tions on a particular cosmological model, such as the
ΛCDMwere made, sometimes the data themselves may not
be completely model-independent. One such example is the
JLA SnIa compilation [59], for which one has to fit the
cosmological parameters at the same time with the light-
curve parameters, which are of astrophysical origin.
Another similar case is that of the Pantheon compilation
[60], for which some model dependence may still remain,
despite that the light-curve parameters have already been
integrated over. The reason for this is that the SnIa surveys
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have to take into account specific corrections regarding the
peculiar velocities, assuming linear theory and the ΛCDM
model [61]. Moreover, a fiducial background model is
typically assumed in order to derive the covariance matrix
of the data [60]. In our case we can safely assume that these
effects have a very small effect on the reconstruction
process as the best-fit is close to the ΛCDM model.
Finally, other non-parametric approaches to data re-

construction include the Gaussian processes (GP), which
are based on the assumption that the data is described by
a stochastic Gaussian process that can be mapped to a
cosmological function of interest. For recent applications
ofGP to cosmology see [62–65]. TheGP require the choice of
a kernel function and that of a fiducial model, usually taken to
be ΛCDM, although in Ref. [62] it is claimed that both of
these choices do not influence the reconstruction.On theother
hand, the GA require no prior assumptions, e.g., of a DE
model or a flat Universe, besides the choice of the grammar
which only affects the rate of convergence [51]. Qualitatively,
by comparing plots of the same reconstructed parameter we
find that both the GA and GP give similar errors, e.g., see the
reconstruction of HðzÞ in Fig. 2 of Ref. [64].

III. ANALYSIS AND RESULTS

A. The data

The null tests we will consider here are the OmðzÞ
statistic [52,53] and a new null test derived from the
luminosity distance, that we present here for the first time.
We thus propose applying ML methods, in particular the
GA, to fit to the Pantheon Type Ia supernovae (SnIa) data
compilation [60] and theHðzÞ data compilation of Ref. [66]
to obtain a model independent reconstruction of the
luminosity distance dLðzÞ and of the Hubble parameter
HðtÞ≡ _a

a, where aðtÞ is the scale factor in the Robertson-
Walker metric, and the dot stands for a derivative with
respect to the cosmic time t.
In our analysis we use 1048 data points in the range

z ∈ ½0; 2.26�, alongwith their covariances, from the Pantheon
set [60], and 36 points in the range z ∈ ½0; 2.34� from the
HðzÞ compilation, presented in Table I. On the other hand,
we make no assumptions for H0 and derive it directly from
the HðzÞ data, as we will see later on. Measurements of
the Hubble expansionHðzÞ data are performed either by the
differential age method or by the clustering of galaxies or
quasars. The former is possible due to the redshift drift of
distant objects over a decade or longer, since in GR theHðzÞ
can also be expressed via the rate of change of the redshift
HðzÞ ¼ − 1

1þz
dz
dt [67]. The latter is related to the clustering of

galaxies or quasars and it leads to measurements ofHðzÞ by
measuring the radial BAO peak [68].
The HðzÞ data measured via the differential age method

are obtained by following the differential evolution of
Dn4000, a spectral feature of very massive and passive
galaxies. The main source of systematics is the astrophysical

modeling of the stellar metallicity, namely via the M11 and
BC03 models discussed in Ref. [69]. However, by imple-
menting strict selection criteria it was shown in Ref. [69]
that it is possible to keep the systematics under control.
Furthermore, the HðzÞ data are independent of any cosmol-
ogy-based constraint, i.e., a fiducial cosmological model,
they are assumed to beuncorrelatedwith eachother and share
no correlations with the SnIa data [69].
Finally, for the likelihood for the HðzÞ data we use a

standard χ2, given by

χ2H ¼
XN
i¼1

�
Hi −HGAðziÞ

σi

�
2

; ð1Þ

TABLE I. The HðzÞ data used in our analysis (in units of
km s−1 Mpc−1). This compilation is partly based on those of
Refs. [69] and [70].

z HðzÞ σH References

0.07 69.0 19.6 [71]
0.09 69.0 12.0 [72]
0.12 68.6 26.2 [71]
0.17 83.0 8.0 [72]
0.179 75.0 4.0 [73]
0.199 75.0 5.0 [73]
0.2 72.9 29.6 [71]
0.27 77.0 14.0 [72]
0.28 88.8 36.6 [71]
0.35 82.7 8.4 [74]
0.352 83.0 14.0 [73]
0.3802 83.0 13.5 [69]
0.4 95.0 17.0 [72]
0.4004 77.0 10.2 [69]
0.4247 87.1 11.2 [69]
0.44 82.6 7.8 [75]
0.44497 92.8 12.9 [69]
0.4783 80.9 9.0 [69]

z HðzÞ σH References

0.48 97.0 62.0 [72]
0.57 96.8 3.4 [76]
0.593 104.0 13.0 [73]
0.60 87.9 6.1 [75]
0.68 92.0 8.0 [73]
0.73 97.3 7.0 [75]
0.781 105.0 12.0 [73]
0.875 125.0 17.0 [73]
0.88 90.0 40.0 [72]
0.9 117.0 23.0 [72]
1.037 154.0 20.0 [73]
1.3 168.0 17.0 [72]
1.363 160.0 33.6 [77]
1.43 177.0 18.0 [72]
1.53 140.0 14.0 [72]
1.75 202.0 40.0 [72]
1.965 186.5 50.4 [77]
2.34 222.0 7.0 [78]
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while for the SnIa data we use the expressions found in
Appendix C of Ref. [79]. Note that in our analysis we use
the two data sets in the following manner: we use the HðzÞ
data for the deceleration parameter qðzÞ and the OmH null
test, while for the OmdL null test we will use the SnIa data.

B. The reconstructions

We reconstruct the Hubble parameter by applying the
GA to the HðzÞ data, while the value of the Hubble
parameter H0 was derived through minimizing the χ2

analytically as the χ2 is quadratic in H0, see Ref. [80].
For the SnIa, due to the degeneracy between the absolute
magnitude M and the Hubble parameter H0, we used the
value extracted from the HðzÞ data, given below. In both
cases, no assumptions such as a flat Universe or a specific
DE model were made, hence our results are almost
completely model independent.
Note that sometimes the data are themselves model

dependent, with an infamous example being the SnIa,
as one must optimize parameters in the lightcurve function
simultaneously with those of the assumed model.
Furthermore, a covariance matrix is typically inferred based
on an assumed background model, usually ΛCDM.
However, since in our case the best-fit is close to
ΛCDM and the errors are much larger than the effects
of the model-bias in the covariance, we can safely assume
for now that these effects have a minimal effect to the
minimization.
In order to make sure we are not biasing our analysis due

to the specific value of the random seed we have performed
several simulations with different random seed numbers.
We have also demanded that all functions, along with their
derivatives, are continuous and have no singularities in the
range covered by the data. As an example, the genetic
evolution of several different initializations of the GA code
with different seed random numbers for the SnIa data as a
function of the generation number can be seen in Fig. 1. In
most cases, the GA has converged very quickly in the
evolutionary history and in the majority of cases, the
obtained χ2 is smaller than that of the ΛCDM model.
Following this approach and taking into account the

constraints mentioned earlier, we find the best-fit GA
functions to be

H0 ¼ ð69.27� 12.00Þ km=s=Mpc; ð2Þ

HðzÞ ¼ H0ð1þ zð0.652þ 0.228z − 0.017z3Þ2Þ; ð3Þ

dLðzÞ ¼
c
H0

zð1þ zð−0.054z − 0.146e0.347z þ 0.999Þ2Þ;

ð4Þ

where c is the speed of light and the constraint on H0 was
derived directly from the HðzÞ data. The best-fit χ2 for the

GA and ΛCDMmodels are given in Table II, while plots of
the Hubble parameter and the distance modulus μðzÞ ¼
5 log10 ðdLðzÞ=MpcÞ þ 25 versus ΛCDM and the data are
given in Fig. 2. The agreement with the best-fit ΛCDM
model ðΩm0 ¼ 0.299� 0.022Þ for the distance modulus
μðzÞ is at a subpercent level with ΛCDM until z ∼ 1.5,
but then it deviates similarly, albeit within the errors, to
the reconstruction of Refs. [81,82] that used SnIa and
quasar data.
In order to make sure that the observed deviation from

ΛCDM is not affected by the choice of the particular
dataset, we removed the last two points at high redshifts (at
z ¼ 1.914 and z ¼ 2.26) of the Pantheon SnIa compilation
in order to test the robustness of our results. We found that
the GA fit is actually unaffected, with the χ2 values being
respectively χ2 ¼ 1033.2 for the ΛCDM and χ2 ¼ 1032.94
for the GA best-fit, where the latter in this case was found
to be

dLðzÞ ¼
c
H0

zð1þ zð0.871 − 0.131z − 0.001z4Þ2Þ: ð5Þ

Specifically, we find that for the original dataset the
difference of the distance moduli at z ¼ 2.305 is μGA−
μΛCDM ¼ −0.200284, while after removing the last two
points we have μGA − μΛCDM ¼ −0.246619. In order to
verify that our analysis is indeed robust, we extended it by
repeated removing two random points, at any redshift this

1 5 10 50 100 500 1000
500

1000

5000

1 104

5 104

1 105

N

2
N

2 102 5 1021030

1035

1040

1045

N

2
N

FIG. 1. The genetic evolution of several different initializations
of the GA code with different seed random numbers for the SnIa
data as a function of the generation number. In most cases the GA
has converged very quickly in the evolutionary history and
reaches a lower χ2 than ΛCDM does.

TABLE II. The χ2 for ΛCDM and GA using the Pantheon SnIa
and HðzÞ data.

SnIa HðzÞ
χ2ΛCDM 1034.73 19.476
χ2GA 1034.30 17.683
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time, and then ran the reduced data set over the GA
pipeline. In all cases we found that the behavior of the GA
best-fit remains unchanged.
Therefore, since the residuals in the reduced dataset are

clearly consistent with the ones of the complete set, as
shown in the right panel of Fig. 2, we are confident our
analysis is robust and is not affected by the choice of the
specific dataset. Thus, having determined the functional
forms ofHðzÞ and the luminosity distance, we can now use
them to place model independent tests on the background
expansion of the Universe and reconstruct null tests of the
ΛCDM model.
The most critical parameter in determining whether the

Universe is accelerating or not, is the deceleration param-
eter which is given by

qðzÞ ¼ −
äa
_a2

¼ −1þ ð1þ zÞH
0ðzÞ

HðzÞ ; ð6Þ

where dots stand for derivatives with respect to the cosmic
time t, while primes for derivatives with respect to the
redshift z, where aðtÞ ¼ 1

1þz. The advantage of this param-
eter over the DE equation of state wðzÞ is that the former
only requires the knowledge of HðzÞ and not that of
cosmological parameters such as Ωm0 [24].
For the Universe to accelerate today, we require (due to

historical reasons) thatq0 < 0, e.g., for theΛCDMmodel we
have q0;ΛCDM ¼ −1þ 3Ωm0=2 ≃ −0.528� 0.011 for the
Planck best-fit Ωm0 ¼ 0.315 [3] and q0;ΛCDM ¼ −0.613�
0.043 for the ΛCDM best-fit to the HðzÞ data of
Ωm0 ¼ 0.258� 0.029. Using the GA reconstruction of the
Hubble parameter given by Eq. (3) we can calculate the
deceleration parameter given by Eq. (6) and the result is
given in Fig. 3. The present value of the deceleration
parameter is found to be q0≡qðz¼0Þ¼−0.575�0.132,
a ∼4.5σ detection of the accelerated expansion of the
Universe in a model-independent way.

We can also estimate the value of the transition redshift,
i.e., the redshift where the deceleration parameter changes
sign, see Refs [83–88] for a list of recent estimates. From
the GA reconstruction we find that ztr ¼ 0.662� 0.027,
while for the ΛCDM the latter is equal to ztr;ΛCDM ¼
−1þ 21=3ðΩ−1

m0 − 1Þ1=3 ¼ 0.632� 0.018 for Planck and
ztr;ΛCDM ¼ 0.791� 0.091 for the HðzÞ ΛCDM best-fit.
While the precision of these measurements seems worse
than that ofΛCDM, in our case we have made very minimal
assumptions and have not assumed any DE model.

C. The null tests

Next we focus on the reconstruction of the null tests
for the ΛCDM model. The first null test we will consider is
the OmðzÞ statistic of Ref. [52], which only requires
knowledge of the Hubble parameter HðzÞ and allows us
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FIG. 2. Left: The HðzÞ data compilation along with the ΛCDM best-fit (dashed line) and the GA best-fit (solid black line). Right: The
difference between the GA best-ft distance modulus of the Pantheon SnIa data (black line) and that of the ΛCDM model (dashed line).
The Pantheon SnIa data are shown as gray points in the background.
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FIG. 3. The deceleration parameter given by Eq. (6) as re-
constructed by using Eq. (3). The shaded region corresponds to
the 1σ errors, while the transition redshift ztr corresponds to the
point where qðzÞ crosses zero.
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to discriminate ΛCDM from other DE models, see
Refs [24]. It is defined as1

OmHðzÞ≡HðzÞ2=H2
0 − 1

ð1þ zÞ3 − 1
: ð7Þ

Here we also present a different, but at the same time
complementary, null test of the ΛCDM by extracting the
matter density Ωm0 from the luminosity distance instead
of the Hubble parameter. To do this, we use the Lagrange
inversion theorem which states that given an analytic
function, we can estimate the Taylor series expansion of
the inverse function, i.e., given the function y ¼ fðxÞ,
where f is analytic at a point p and f0ðpÞ ≠ 0 the theorem
allows us to solve the equation for x and write it as a power
series x ¼ gðyÞ, see [89].
We now apply the Lagrange inversion theorem to the

luminosity distance dLðz;Ωm0Þ and from now on we will
restrict ourselves at late times, when DE dominates over the
other components, such as radiation and neutrinos. Then,
the analytical expression of the luminosity distance for the
ΛCDM model, assuming a flat Universe but neglecting
radiation and neutrinos, is given by

dLðz;Ωm0Þ ¼
c
H0

ð1þ zÞ
Z

z

0

1

HðxÞ dx

¼ c
H0

2ð1þ zÞffiffiffiffiffiffiffiffiffi
Ωm0

p
�

2F1

�
1

6
;
1

2
;
7

6
;
Ωm0 − 1

Ωm0

�

− 2F1ð16 ; 12 ; 76 ; Ωm0−1
Ωm0ð1þzÞ3Þffiffiffiffiffiffiffiffiffiffiffi

1þ z
p

�
: ð8Þ

To derive the OmdLðzÞ test we first do a series expansion on
Eq. (8) aroundΩm0 ¼ 1 and keep the first 10 terms in order

to obtain a reliable unbiased estimation and avoid theo-
retical systematic errors. Then, we apply the Lagrange
inversion theorem to invert the series and to write the matter
densityΩm0 as a function of the luminosity distance dL, i.e.,
OmdL ¼ OmdLðz; dLÞ. For example, the first two terms of
the expansion are

OmdLða; dLÞ ¼ 1 −
7aðH0

c dL − 2−2
ffiffi
a

p
a Þ

6þ ffiffiffi
a

p ða3 − 7Þ þ � � � ; ð9Þ

where the scale factor a is related to the redshift z as
a ¼ 1

1þz. This null test has the main advantage that it does
not require taking derivatives of the data as we use the
luminosity distance directly.
The reconstruction of both null tests of theΛCDMmodel

is shown in Fig. 4, in the left panel for the OmH and the
right panel for the OmdL respectively. We find that both null
tests are in agreement with ΛCDM at the 1σ level. While
the errors of the distance modulus μðzÞ and the OmdL test,
shown in Figs. 2 and 4 respectively, seem somewhat larger
compared to those in Refs. [24,46], the latter used the
Union 2.1 set but did not include the systematic errors, thus
underestimating the errors regions. On the other hand, the
Pantheon compilation both statistical and systematic errors
are included in the publicly available data.2 As a result,
even though the Pantheon set has roughly twice as many
points than the Union 2.1, the inclusion of the systematic
errors of the Pantheon in the analysis, brings the error
estimates for μðzÞ and OmdL to the same level as those in
Refs. [24,46].
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FIG. 4. The reconstruction of the OmHðzÞ (left) and OmdLðzÞ (right) statistics respectively, along with the 1σ errors (gray regions).
Both cases are consistent with the ΛCDM model (dashed line).

1We use the notation OmH with the subscript H to discriminate
this null test from the one we will introduce later on and which is
based on the luminosity distance dLðzÞ.

2The systematic errors are included in the “sys_full_long.txt”
file, which is publicly available from the Pantheon GitHub page
https://github.com/dscolnic/Pantheon. For the SnIa likelihood in
our analysis, we use the free and publicly available code written
by one of the authors, see https://members.ift.uam-csic.es/
savvas.nesseris/codes.html.
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IV. CONCLUSIONS

In summary, MLmethods are revolutionizing the way we
interpret data since they can help to remove biases due to
choosing a priori a specific defined model. This is more
important than ever as the endeavor to explain the accel-
erated expansion of the Universe has led to a plethora of
DE models, which make the interpretation of the data
difficult as the results are model dependent. This can lead to
model bias, thus affecting the conclusions drawn about
fundamental physics.
We have shown that applying the GA to the SnIa and

HðzÞ data can be used to reconstruct the expansion history
of the Universe and help determine the current deceleration
parameter and transition redshift in a model independent
fashion. The datasets we use are the Pantheon Type Ia
Supernovae compilation of Ref. [60] and theHðzÞ based on
the differential age method and the clustering of galaxies or
quasars by Moresco et al. (shown in Table I of Ref. [66]),
both being state-of-the-art at the moment. Given that we
only have one realization of “real” data at the moment, one
could possibly use mock datasets to test the GA approach
as a reconstruction method. This however, has already been
done, see for example, [46,47]. By considering subsamples
of the Pantheon dataset at high redshifts we also confirmed
that our results are robust.
We also find a ∼4.5σ detection of the accelerated

expansion, contrary to recent claims by Ref. [90,91], where
the authors claimed that there is little to no evidence for
acceleration. The main differences between our work and
that of Ref. [90], is that in the latter the authors used the
(now outdated) Joint Lightcurve Analysis (JLA) catalogue
by Ref. [59], while here we use the much more recent
Pantheon sample by Ref. [60]. The Pantheon sample was
created by analyzing together recent observations of SnIa
from the Pan-STARRS1 survey and from other previously
available low redshift subsamples from other surveys, in

order to create a uniform dataset that would have the same
quality cuts and systematics.
Besides the choice of the SnIa data, our paper and that of

Ref. [90], also differ in the fact that while our approach is
completely nonparametric andmodel-independent, Ref. [90]
assumes Gaussian priors for the absolute magnitude M,
the stretch x and the color c, as seen in Eq. (4) in their paper,
eachwith a meanvalue and a standard deviation. Then, these
six new parameters are fitted along with the cosmological
parameters.However, aswas pointed out in [92], the observed
distributions of these parameters are far from redshift-
independent, thus biasing their results.
Furthermore, ourmethodhas several advantages compared

to other methods found in the literature like the GP. In
particular, while the GP requires the choice of a kernel
function and a fiducial model, usually taken to be a Gaussian
andΛCDM respectively, our approach assumes neither and is
completely theory agnostic. Also, compared to the approach
of Ref. [90], our approach is completely nonparametric.
In summary, we showed how the GA can be used to

reconstruct complementary null tests of the ΛCDM model
via reconstructions of both the Hubble parameter and the
luminosity distance and we found that both are consistent
with ΛCDM within the errors.

Numerical Analysis Files.—The numerical codes used by
the authors in this paper will be released upon publication
at [93], but also at the GitHub repositories [94] and [95].
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