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We present a new approach to model the gravitational dynamics of large-scale structures. Instead of
solving the equations of motion up to a finite perturbative order or building phenomenological models, we
follow the evolution of the probability distribution of the displacement and velocity fields within an
approximation subspace. Keeping the exact equations of motion with their full nonlinearity, this provides a
nonperturbative scheme that goes beyond shell crossing. Focusing on the simplest case of a curl-free
Gaussian Ansatz for the displacement and velocity fields, we find that truncations of the power spectra on
nonlinear scales directly arise from the equations of motion. This leads to a truncated Zeldovich
approximation for the density power spectrum, but with a truncation that is not set a priori and with
different power spectra for the displacement and velocity fields. The positivity of their autopower spectra
also follows from the equations of motion. Although the density power spectrum is only recovered up to a
smooth drift on baryon acoustic oscillation (BAO) scales, the predicted density correlation function agrees
with numerical simulations within 2% from BAO scales down to 7h−1 Mpc at z ≥ 0.35, without any free
parameter. Thus, this parameter-free extension of the Zeldovich approximation is not competitive with
other schemes for the power spectrum, but it provides a good prediction for the correlation function.
However, the improvement over the standard Zeldovich approximation remains rather modest. This means
that including non-Gaussianities will be essential to significantly improve analytical predictions within this
general framework.
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I. INTRODUCTION

The large-scale structures that we observe in the current
Universe and at low redshifts, i.e., the cosmic web, its
filaments, galaxies, and clusters of galaxies, and Lyman-α
absorption clouds, have emerged from the amplification by
gravitational instability of small primordial perturbations.
In the standard inflation scenario, these were generated by
quantum fluctuations during the inflationary epoch. Next,
once these density perturbations reach the nonlinear regime
and form astrophysical objects such as galaxies or x-ray
clusters, baryonic physics comes into play through heating
and cooling processes, star formation, feedback from active
galactic nuclei (AGN), etc. Therefore, the measurements of
these large-scale structures provide key probes of the
primordial mechanisms generating the initial seeds of these
large-scale structures, of the underlying cosmological
model (e.g., the amount of dark matter and dark energy)
that affects the growth rate of the density fluctuations at all
redshifts, and of the astrophysical processes associated with
various objects (e.g., the bias of the tracers of the matter
density field). More specifically, the baryon acoustic
oscillations (BAOs) of the matter or galaxy power spectra,
which correspond to a peak at about 110h−1 Mpc in the
correlation functions, are a robust signature of the acoustic

oscillations in the baryon-photon fluid before recombina-
tion that are also seen in the cosmic microwave back-
ground [1]. This provides a standard ruler that is able to
constrain the low-redshift expansion of the Universe and
the standard Λ cold dark matter (Λ-CDM) cosmological
scenario [2]. Distortions of the images of background
galaxies by the fluctuations of the gravitational potential
along the lines of sight (weak gravitational lensing) also
probe the total matter density fluctuations and provide direct
constraints on the cosmological scenarios [3]. This has
provided the motivation for several galaxy surveys in the
last decades or the near future, such as theBaryonOscillation
Spectroscopic Survey [4], the WiggleZ Dark Energy Survey
[5], the Dark Energy Spectroscopic Instrument [6], Euclid
[7], or the Large Synoptic Survey Telescope [8].
The formation of these large-scale structures is often

studied with numerical simulations, which can tackle
highly nonlinear scales and also include various baryonic
effects, such as star formation and feedback from AGN, if
they include an hydrodynamic description for the gas in
addition to the N-body codes that are adequate for CDM.
However, it remains desirable to develop analytic or
semianalytic methods. On large scales, they provide effi-
cient tools that are more practical than numerical

PHYSICAL REVIEW D 101, 123524 (2020)

2470-0010=2020=101(12)=123524(27) 123524-1 © 2020 American Physical Society

https://orcid.org/0000-0002-5540-3320
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.123524&domain=pdf&date_stamp=2020-06-22
https://doi.org/10.1103/PhysRevD.101.123524
https://doi.org/10.1103/PhysRevD.101.123524
https://doi.org/10.1103/PhysRevD.101.123524
https://doi.org/10.1103/PhysRevD.101.123524


simulations to explore a large parameter space. On a
qualitative level, they also help to understand how different
parameters or alternative theories (e.g., models of dark
matter and dark energy or modified-gravity scenarios)
affect the cosmological structures.
The standard analytical approach to study gravitational

clustering in the late Universe is the standard perturbation
theory (SPT) [9,10]. There, one writes the equations of
motion in Eulerian space for the matter density and velocity
fields, ρðx; tÞ and vðx; tÞ, that is, the continuity and Euler
equations, supplemented by the Poisson equation for the
gravitational force. These equations being nonlinear (quad-
ratic), one writes a perturbative expansion in powers of the
primordial fluctuations and solves for the density and
velocity fields up to some finite order. One can also employ
various partial resummation schemes [11–14]. Finally,
assuming Gaussian initial conditions, one takes the
Gaussian average of products of these fields to compute
the density and velocity polyspectra or n-point correlations.
Going to second or third order in the linear power spectrum
PL improves the agreement with numerical simulations on
large scales, as compared with the linear theory. However,
the accuracy does not keep improving at higher orders and
this scheme cannot reach nonlinear scales, even if all
perturbative diagrams were resummed [15–18]. Indeed,
the Euler equation itself is only an approximation that
neglects shell crossing, where different streams coexist at a
given location and give rise to nonzero velocity dispersion
and vorticity [16,19,20].
A method to handle this problem is to explicitly consider

coarse-grained equations of motion [21]. Another recent
approach is the effective field theory (EFT) of large-scale
structures [22,23]. Following methods devised in other
fields where the equations of motion, or the Lagrangians,
are not exactly known, one derives low-energy effective
actions that are based on the symmetries of the problem, by
taking into account all possible operators up to some order
in a derivative expansion (for instance). For the cosmo-
logical dynamics, one considers a large-scale effective
theory, taking into account all operators up to some order
over the wave number k. In practice, this adds new
counterterms to the SPT diagrams, which should capture
the impact on large scales of small-scale nonperturbative
processes, like shell crossing. The coefficients of these new
terms cannot be derived and need to be fitted to numerical
simulations. However, once these parameters have been set
by fitting a few quantities, such as the power spectrum at a
given scale, once can compute other statistical quantities.
Thus, this framework remains predictive [24]. An advan-
tage of this approach is that it can also handle baryons and
biased tracers, such as galaxies, where indeed the equations
of motion are not explicitly known or too complex to be of
any use (e.g., one cannot include all astrophysical processes
associated with star formation) [25–27]. Then, an effective
approach is unavoidable. In practice, EFT schemes usually

assume a curl-free velocity field and neglect the generation
of vorticity by small-scale nonlinearities, so that they do not
include all possible nonlinear effects. But this is expected to
be a small effect on large scales and could be added to the
formalism.
On the other hand, if we only consider dark matter, that

is, if we neglect baryonic physics, the equations of motion
are exactly known and given by Newton’s (or Einstein’s)
gravity. Then, the traditional approach to handle shell
crossing is to work in Lagrangian space, where we follow
the trajectories of particles [28–37]. Then, the fundamental
object is the displacement field Ψðq; tÞ and nothing
peculiar appears at shell crossing. A disadvantage of this
method is that one eventually needs to compute the
statistics of the density field from the displacement field.
This is a highly nonlinear transformation that leads to
practical difficulties for many-point polyspectra or corre-
lation functions. An alternative to this Lagrangian route is
to go from the hydrodynamical equations, associated with
the density and velocity fields, to the Vlasov equation,
associated with the phase-space distribution fðx; v; tÞ. This
provides an exact Eulerian-space description of the gravita-
tional dynamics [38,39]. However, this leads to seven-
dimensional fields, which makes computations very heavy
and time consuming. Another recent alternative is to replace
the hydrodynamical equations by the Schrödinger equation,
which in some regime can provide an approximation to the
Vlasov equation [40,41].
Another level of distinction between the different ana-

lytical approaches is whether they work with the equations
of motion or directly with statistical quantities. The popular
methods above work at the level of the equations of motion.
There, one computes an approximation for ρðx; tÞ in terms
of the initial condition δL0ðxÞ, determined by the growing
mode of the linear density contrast. Next, statistical
quantities such as the power spectrum are obtained by
taking the Gaussian average over products of such non-
linear functionals. Another approach is to first write the
evolution equations satisfied by those statistical quantities
and next solve them with some approximation scheme
[42–44]. This typically leads to infinite series of equations
that relate n- and (nþ 1)-point correlation functions or
polyspectra, as in the Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy [45]. Alternatively, one can
work with the probability distribution functional of the
fields [46] or the generating functional of the correlation
functions [12,37,47]. An advantage of this approach is that
such statistical quantities satisfy symmetries (e.g., trans-
lation invariance) that are not obeyed by individual real-
izations of the random fields, which can simplify some
expressions. However, computations become cumbersome
when going beyond three-point correlations.
In this paper, we present a new approach to follow the

gravitational dynamics of large-scale structures. In contrast
with most previous schemes, we wish to build a scheme
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that is meaningful from large to small scales, hence going
beyond perturbative treatments, and does not introduce free
parameters that require fitting to numerical simulations. To
handle shell crossings, we adopt a Lagrangian framework
[in principle, we could also opt for the phase-space
distribution fðx; v; tÞ]. We also work at the level of the
probability distribution PðΨ; v; tÞ of the displacement and
velocity fields, instead of trying to solve the dynamics of
individual realizations. Then, we propose to follow the
progress of gravitational clustering by “projecting” the
dynamics onto a subspace of trial distributions P. This idea
is an extension of the standard procedure to estimate the
minimum of a nonlinear cost functional S½φðxÞ�. There, one
can expand φ over a finite basis, φ ¼ P

i aiψ i, which
defines a subspace of possible functions φ, and look for the
minimum of SðfaigÞ. However, instead of a minimization
problem, we use the equations of motion to follow the
evolution of PðΨ; v; tÞ within the lower-dimensional sub-
space of trial distributions fPgtrial.
In this article, we consider the simplest case of Gaussian

distributions fPgtrial, which are fully defined by the
displacement and velocity power spectra. Then, the evo-
lution of P is determined by the equations of motion for
these power spectra. As for the Eulerian-space BBGKY
hierarchy [45], this is not a closed system, because these
equations involve correlations with the gravitational force,
which is a nonlinear functional of the displacement field.
However, within the Gaussian Ansatz for P (or, more
generally, given the form of P within the approximate
subspace), we can exactly compute such correlations and
close the system. In other words, in contrast to most
approaches, we keep the exact equations of motion and only
perform the truncation, or approximation, at the level of the
distribution P. This provides a nonperturbative scheme that
can handle shell crossing and does not require parameters to
be fitted by numerical simulations. The equations of motion
themselves determine the parameters that enter the proba-
bility distribution P, here the displacement and velocity
power spectra. For the density field, this leads to a prediction
that coincides with the truncated Zeldovich approximation.
However, the truncation is not introduced by hand but arises
from the equations of motion. Also, in contrast with the
truncated Zeldovich approximation, the displacement and
velocity power spectra are different.
Thus, although the Gaussian case studied in detail in this

article is only a specific example of the more general
method outlined above, it is also of interest by itself as a
natural extension of the standard Zeldovich approximation
without adding any free parameter. (As seen in the main
sections, this is achieved by taking into account additional
constraints, derived from the equations of motion, that
uniquely determine the deviations from the usual Zeldovich
approximation within the Gaussian Ansatz.)
This paper is organized as follows. In Sec. II, we recall

the equations of motion for the displacement field and its

probability distribution, as well as the expression of the
gravitational force. In Sec. III, we give the evolution
equations of the displacement and velocity power spectra,
which provide constraints on the evolution of the distri-
bution P. Then, in Sec. IV, we present the simplest
Gaussian Ansatz for the distribution P and derive its
closure of the system of equations of motion. We briefly
compare our approach with other analytical schemes in
Sec. V. Then, in Sec. VI, we first present our numerical
computations for the case of self-similar dynamics, with
power-law linear power spectra in the Einstein–de Sitter
cosmology. We turn to the realistic Λ-CDM cosmology in
Sec. VII and conclude in Sec. VIII.

II. EQUATIONS OF MOTION

A. Lagrangian displacement field

In a Lagrangian framework, we describe the dynamics
by following the comoving trajectories xðq; tÞ of the
particles, labeled by their initial comoving position q.
As usual, it is convenient to introduce the displacement
Ψðq; tÞ so that the positions at time t read

xðq; tÞ ¼ qþΨðq; tÞ: ð1Þ
Then, standard Lagrangian perturbation theory aims at
computing the trajectories xðq; tÞ as a perturbative expan-
sion over powers of the displacement Ψ [29,31–33]. In the
expanding Universe, the equation of motion of the gravi-
tational dynamics reads

Ψ̈þ 2H _Ψ ¼ −
∇xΦ
a2

; ð2Þ

where the dot denotes the partial derivative with respect to
time, aðtÞ is the scale factor, H ¼ _a=a is the Hubble
expansion rate, and Φ is the gravitational potential.
Because we work with comoving coordinates, the back-
ground expansion has been subtracted and Φ is only
sourced by the density perturbations ρ − ρ̄, where ρ̄ is
the background density. Thus, Φ is given by the Poisson
equation

∇2
xΦ ¼ a24πGðρ − ρ̄Þ; ð3Þ

where G is Newton’s constant, and its explicit expression is
often written as

Φðx; tÞ ¼ −a2G
Z

dx0 ρðx0Þ − ρ̄

jx0 − xj : ð4Þ

The background counterterm also corresponds to the well-
known Jeans “swindle,” which regularizes the infrared
divergence of the gravitational force due to an infinite
homogeneous background. As pointed out in [48–50], a
more satisfactory expression is obtained by introducing a
screening of the gravitational interaction with distance,
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Φðx; tÞ ¼ −a2G
Z

dx0ρðx0Þ e
−μjx0−xj

jx0 − xj ; ð5Þ

and taking the limit μ → 0 at the end of the computations.
Indeed, an homogeneous background gives a finite constant
contribution to the potentialΦ, which does not contribute to
the gravitational force F ¼ −∇xΦ. This corresponds to the
screened Poisson equation,

∇2
xΦ − μ2Φ ¼ a24πGρ: ð6Þ

Solving this equation in Fourier space, we obtain at once

Φðx; tÞ ¼ −a24πG
Z

dx0dk
ð2πÞ3 eik·ðx−x0Þ

1

k2 þ μ2
ρðx0Þ: ð7Þ

This is simply Eq. (5) with the Fourier representation of the
screened gravitational interaction.
A difficulty that one often encounters in Lagrangian

perturbation theory is that the gravitational force ∇xΦ in
the equation of motion (2) is naturally written in Eulerian
space x, as in the Poisson equation (3) or the expression (5).
Then, in the course of the perturbative computation, one
may switch back and forth from Eulerian to Lagrangian
space. In the standard Lagrangian perturbation theory
[29,31–33], one takes the divergence of the equation of
motion (2) with respect to x, so as to use the Poisson
equation to eliminate the gravitational potential in favor of
the density. The latter is obtained from the conservation of
matter as ρ=ρ̄ ¼ j detð∂q=∂xÞj. This leads to a nonlinear
equation in Ψ, of cubic order in three dimensions [51]. It is
often supplemented by the requirement of a curl-free
Eulerian velocity field. This latter step is valid at all orders
of Eulerian perturbation theory, but it is not exact because
shell crossing generates a nonzero vorticity [19,20].
In this paper, we follow a different approach, as we do

not take the divergence of the equation of motion (2).
Instead, as in [37] we directly obtain the gravitational force
from the explicit expression (7) of the gravitational poten-
tial in terms of the density field. Indeed, mass conservation
allows us to derive a simple expression that only involves
the Lagrangian trajectories. Before shell crossing we have
ρðxÞdx ¼ ρ̄dq, while after shell crossing we need to sum
over all streams. In both cases, the gravitational potential
(7) is simply written as

Φðx; tÞ ¼ −a24πGρ̄
Z

dq0dk
ð2πÞ3 eik·½x−xðq0;tÞ�

1

k2 þ μ2
: ð8Þ

Thus, instead of counting the mass in Eulerian space with
the density field, we simply count the particles, labeled by
the initial position q0.
In the linear regime over the displacement field Ψ or the

density perturbation δ ¼ ðρ − ρ̄Þ=ρ̄, denoted by the sub-
script L, the linear growing mode is the curl-free displace-
ment given in Fourier space by

ΨLðk; tÞ ¼
ik
k2

δLðk; tÞ; δLðk; tÞ ¼ DþðtÞδL0ðkÞ: ð9Þ

The linear growing mode DþðtÞ is given by

D̈þ þ 2H _Dþ ¼ 4πGρ̄Dþ; ð10Þ
and at early times in the matter era we have
DþðtÞ ∝ aðtÞ ∝ t2=3. It is convenient to use η ¼ lnDþðtÞ
as the time coordinate. Then, the equation ofmotion (2) reads

∂2Ψ
∂η2 þ

�
3Ωm

2f2
− 1

� ∂Ψ
∂η ¼ 3Ωm

2f2
F; ð11Þ

where we introduced the linear growth rate fðtÞ,

fðtÞ ¼ d lnDþ
d lna

¼
_Dþ

HDþ
; ð12Þ

and the gravitational force Fðq; ηÞ on the particle q reads

Fðq; ηÞ ¼
Z

dq0dk
ð2πÞ3 eik·½xðqÞ−xðq0Þ�

ik
k2 þ μ2

: ð13Þ

As compared with the expression in [37], we have added the
regularization factor μ2. In this fashion, the equation of
motion (11) is fully written in terms of the Lagrangian-space
displacement field, at the price of a strong nonlinearity as the
exponential generates terms at all orders in powers ofΨ. All
the cosmological dependence is captured by the factors
Ωm=f2. This factor remains close to unity at all redshifts and
it is often approximated by unity in perturbative computa-
tions. This approximate symmetry can actually be used to
derive approximate consistency relations that go beyond
low-order perturbation theory [52,53].

B. Linear displacement field

We can check that the linear growing mode (9) is a
solution of the linearized equation derived from Eq. (11).
At linear order, the force reads

FLðqÞ ¼
Z

dq0dk
ð2πÞ3 eik·ðq−q0Þ½1þ ik · ðΨL −Ψ 0

LÞ�
ik

k2 þ μ2
:

ð14Þ

The terms 1þ ik ·ΨL, which do not depend on q0, give a
vanishing contribution as the integral over q0 gives a Dirac
factor δDðkÞ. (Thus, we explicitly see how the background
contribution vanishes thanks to the screening beyond
distance 1=μ.) Substituting the linear expression (9) gives

FLðqÞ ¼
Z

dq0dkdk0

ð2πÞ3 eik·ðq−q0Þþik0·q0 k · k0

k02
δLðk0Þ ik

k2 þ μ2
:

ð15Þ
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The integration over q0 gives the Dirac factor δDðk0 − kÞ,
and the integration over k0 gives

FLðqÞ ¼
Z

dkeik·q
ik

k2 þ μ2
δLðkÞ: ð16Þ

Then, for μ → 0 we obtain FLðqÞ → ΨLðqÞ and we can see
that ΨL is solution of Eq. (11), as ΨLðq; ηÞ ¼ eηΨL0ðqÞ
and ∂ΨL=∂η ¼ ΨL.

C. Probability distribution

The second-order differential equation of motion (11)
can be written as a system of two first-order differential
equations if we introduce the velocity field v,

vðq; ηÞ≡ ∂Ψ
∂η : ð17Þ

This gives the coupled first-order system

∂Ψ
∂η ¼ v; ð18Þ

∂v
∂η þ

�
3Ωm

2f2
− 1

�
v ¼ 3Ωm

2f2
F½Ψ�; ð19Þ

where we made explicit that F is a functional of Ψ.
The probability distribution functional PðΨ; v; ηÞ of the

displacements and velocities obeys the continuity equation
(see also [46] for the Eulerian-space probability distribution)

∂P
∂η þ

Z
dq

�
δ

δΨðqÞ
�∂Ψ
∂η P

�
þ δ

δvðqÞ
�∂v
∂ηP

��
¼ 0: ð20Þ

As for the usual Liouville equation, it describes the con-
servation of probability in phase space, here the functional
space fΨ; vg. Substituting the dynamical equations (18) and
(19), we obtain a closed evolution equation for PðΨ; v; ηÞ.
The advantage of the evolution equation (20) is that it does
not require keeping track of past history. In contrast,
perturbative approaches based on the equation of motion
(2), or its Eulerian counterparts for the density and velocity
fields, generate an increasingly large number of integrations
over past times as onegoes tohigher orders. Indeed, eachnew
order involves one more integration over the time-dependent
Green’s function associated with the linearized equation of
motion. To bypass this complication, we can attempt to solve
directly the equation (20) for the distribution P: from the
(approximate) knowledge of P at a given time η we can
derive the distribution at the next time step ηþ Δη, without
needing the cross-correlations with earlier times. This is
actually what numerical simulations do, advancing particles
over one time step from their current positions and velocities.
In practice, we do not expect to find the exact solution of

the nonlinear functional equation (20). One possibility is to

look for a perturbative expansion ofP around the Gaussian,
which describes the linear regime. This is the method
investigated in [46] for the probability distribution of the
density and velocity fields in the Eulerian framework. In
contrast, the main idea of this paper is to apply a non-
perturbative method, by considering trial distributions and
using the dynamical equation (20) to derive constraints that
fully determine the free parameters of such Ansätze. The
hope is that by considering a sequence of increasingly
detailed and versatile Ansätze, each one satisfying the
equation of motion (20) to the “best possible accuracy”
within its class, we converge to the true distribution P. This
is similar to a standard minimization problem, where we
look for the absolute minimum of a nonlinear cost func-
tional S½φðxÞ�. One method is to expand the function φðxÞ
over a basis of orthonormal functions ψ i, φ ¼ P

i aiψ i,
which is truncated at some order N, and to minimize the
associated cost function SðfaigÞ. If the basis fψ ig is well
chosen, in favorable cases the sequence of approximations
fφNg will converge to the exact minimum.
However, our problem is more complex than this

minimization problem, as we do not have a uniquely
defined cost functional S. Thus, within a given class of
trial distributions P, it is not obvious how we select the
“best” choice. Our approach will be to use the evolution
equation (20) to derive a set of constraints satisfied by P,
choosing the simplest ones that we can build. Then, we
determine P from a self-consistency condition, by requir-
ing it satisfies this set of constraints. As we increase the
complexity and versatility of P, hence its number of free
parameters, we can take into account an increasing number
of constraints. For instance, if we intend to characterize the
probability distribution by its moments, we can obtain from
the evolution equation (20) an expression for the time
derivative of each moment. Then, truncating at a finite
order N, as in the Edgeworth expansion of a probability
distribution around the Gaussian, we can determine the
moments or cumulants up to order N from these N
constraint equations. Here, we can see the ambiguity
associated with this method. Although it is more natural
to use the constraints derived from the time derivative of the
moments of order one to N, to determine a distribution
parametrized by its N first moments, in principle, we could
have chosen the constraints derived from the time deriva-
tive of the moments of order p to p − 1þ N, for any p, or
any other set of N constraints. The true distribution satisfies
an infinite number of constraints, e.g., for all higher-order
cumulants, and we can expect to improve the accuracy of
our trial distributions by including an increasing number of
constraints.

D. Density power spectrum

Assuming we have obtained the statistics of the dis-
placement fieldΨ, we can obtain the statistics of the density
field, as for the well-known Zeldovich approximation [28].
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Indeed, as for Eq. (8), integrals over the density field in
Eulerian space can be written as integrals over Lagrangian
space, and we have

δðkÞ ¼
Z

dx
ð2πÞ3 e

−ik·xδðxÞ ð21Þ

¼
Z

dq
ð2πÞ3 ðe

−ik·xðqÞ − e−ik·qÞ: ð22Þ

Defining the density power spectrum as

hδðk1Þδðk2Þi ¼ δDðk1 þ k2ÞPðk1Þ; ð23Þ

this gives for k > 0 [54,55]

PðkÞ ¼
Z

dq
ð2πÞ3 he

ik·½xðqÞ−xð0Þ�i: ð24Þ

This expression is exact, so that, in principle, no further
approximation is needed to go from the displacement field
Ψ to the density field. However, if Ψ is not Gaussian, the
average in Eq. (24) may be difficult to compute. In
particular, it involves the moments of Ψ at all orders.

III. CONSTRAINT EQUATIONS

As explained in the previous section, because we cannot
fully solve Eq. (20) for the evolution of the probability
distribution PðΨ; v; ηÞ, the approach we propose in this
paper is to use the more limited information associated with
constraint equations that are consequences of this evolution
equation. The hope is that this reduction can make the
problem tractable while retaining enough information to
strongly constrain the final approximation. As we shall see
in the next section, because we consider in this paper a
Gaussian Ansatz for the probability distribution PðΨ; v; ηÞ,
constraints associated with the displacement and velocity
power spectra will be sufficient for our purpose. More
precisely, let us define the divergences in Lagrangian space
χ and θ of the displacement and velocity fields,

χðq; ηÞ ¼ −∇q ·Ψ; θðq; ηÞ ¼ −∇q · v: ð25Þ

Then, taking the divergence of the equations of motion (18)
and (19), we obtain

∂χ
∂η ¼ θ; ð26Þ

∂θ
∂η þ

�
3Ωm

2f2
− 1

�
θ ¼ 3Ωm

2f2
ζ; ð27Þ

where we introduced the divergence of the force in
Lagrangian space,

ζðq; ηÞ ¼ −∇q · F: ð28Þ

From the equation of motion (26), we obtain for the time
derivative of the equal-times product

∂
∂η hχ1χ2i ¼ hθ1χ2 þ χ1θ2i; ð29Þ

where χi ¼ χðqi; ηÞ. This gives for the equal-times power
spectrum Pχχðk; ηÞ

∂Pχχ

∂η ¼ 2Pχθ: ð30Þ

In the same fashion, from Eqs. (26) and (27) we obtain

∂Pχθ

∂η ¼ Pθθ þ
�
1 −

3Ωm

2f2

�
Pχθ þ

3Ωm

2f2
Pχζ ð31Þ

and

∂Pθθ

∂η ¼
�
2 −

3Ωm

f2

�
Pθθ þ

3Ωm

f2
Pθζ: ð32Þ

All equations written so far are exact. Of course, the
problem is that the system (30)–(32) is not closed, as it
involves the force cross-power spectra Pχζ and Pθζ.
In the linear regime, we have seen from Eq. (16) that

FL ¼ ΨL. Therefore, ζL ¼ χL and we have

PLχχ ¼PLχθ ¼PLχζ ¼PLθθ ¼PLθζ ¼PLζζ ¼ e2ηPL0ðkÞ;
ð33Þ

and we can check that this is a solution of the system
(30)–(32).
In the nonlinear regime, to be able to use the system

(30)–(32) we also need to express Pχζ and Pθζ in terms of
fPχχ ; Pχθ; Pθθg. This is the point where our approximation
scheme enters, as described in Sec. IV below for the case of
a curl-free Gaussian Ansatz.
As noticed in the previous section, there is some freedom

in the choice of the constraint equations, and instead of
considering these two-point statistics, we could have
chosen the constraints associated with the time derivatives
of higher-order moments hχnθmi or more intricate nonlinear
functionals. The constraints (30)–(32) have the advantage of
simplicity and seem more natural to constrain a Gaussian
Ansatz, such as the one presented in Sec. IV below.

IV. CURL-FREE GAUSSIAN ANSATZ

A. Definition of the Ansatz

To illustrate the method proposed in this paper, we
consider the simplest Ansatz for the probability distribution
P: the curl-free Gaussian displacement field. Thus, we
generalize the linear solution (9) by writing
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ΨðkÞ ¼ ik
k2

χðkÞ; vðkÞ ¼ ik
k2

θðkÞ; ð34Þ

where χ and θ are the displacement and velocity diver-
gences defined in Eq. (25), and we take χ and θ to be
Gaussian scalar fields with zero mean.
Then, the power spectra Pχχðk; ηÞ, Pχθðk; ηÞ, and

Pθθðk; ηÞ fully define the Gaussian probability distribution
PðΨ; v; ηÞ. This Ansatz goes beyond the linear regime in
two manners: First, the power spectrum Pχχ can be different
from the linear density power spectrum. Second, the spectra
Pχχðk; ηÞ, Pχθðk; ηÞ, and Pθθðk; ηÞ can be different from one
another. This means that this Ansatz is also more general
than the Zeldovich approximation.
Let us briefly discuss this zero-mean Gaussian Ansatz.

From the conservation of matter, the displacementΨ and its
divergence χ are related to the density contrast by

1þ δ ¼ ρ

ρ̄
¼

���� det
�∂q
∂x

����� ¼
���� det

�∂x
∂q

�����
−1
; ð35Þ

which also reads as

1þ δ ¼
���� det

�
1þ ∂Ψ

∂q
�����

−1
: ð36Þ

In multistreaming regions, we need to sum over the
different streams. In the linear regime, we can expand
the determinant and obtain at linear order

δL ¼ −Tr
�∂ΨL

∂q
�

¼ −∇q ·ΨL ¼ χL; ð37Þ

and we recover δL ¼ χL at linear order. On the other hand,
in a one-dimensional system, we would have

1D∶ δ ¼
X
streams

���� ∂x∂q
����
−1

− 1 ¼
X
streams

1

j1 − χj − 1: ð38Þ

As gravitational clustering develops, most particles fall
inside virialized halos or nonlinear structures such as
filaments. Then, the density contrast δðqÞ evaluated in
Lagrangian space is increasingly large and the statistical
average, weighted by the number of particles, is dominated
by these high-density regions. Therefore, the Lagrangian-
space mean hδiq becomes large and positive, whereas the
Eulerian-space mean hδix ¼ 0 always remains zero
because of mass conservation. Then, from the close relation
between the density and the displacement divergence χ in
the linear regime and in the 1D case, one may wonder
whether χðqÞ should also develop a nonzero mean in the
nonlinear regime. However, one can see from the definition
(25) that this is not the case. Indeed, approximating the
derivative by a finite-difference ratio,

χðqÞ ≃ −
X3
i¼1

Ψiðqþ ϵeiÞ −ΨiðqÞ
ϵ

; ð39Þ

where ei are the three unit vectors that form the Cartesian
basis of the 3D Lagrangian space, we directly obtain hχi ¼
0 from hΨii ¼ 0. As this is valid for any ϵ, it also holds in
the limit ϵ → 0 for the derivative (25). This property can be
more easily understood in the 1D case, where

1D∶
∂x
∂q ¼ 1þ ∂Ψ

∂q ¼ 1 − χ: ð40Þ

For instance, let us consider the adhesion model [56],
where particles do not cross but stick together after
collisions to form halos of zero size and infinite density.
Then, over the Lagrangian interval Δq associated with a
halo of mass ρ̄Δq, the particles have the same Eulerian
coordinate xðqÞ ¼ xi, given by the position of the halo.
Hence, they have ψ ¼ xi − −q, ∂Ψ∂q ¼ −1 and χ ¼ 1, which
gives back an infinite density in agreement with (38). Thus,
χ does not diverge as halo densities grow, but its typical
value in Lagrangian space, as measured, for instance, by the
median of its probability distribution, becomes nonzero and
close to −1 in the 1D adhesion model. Nevertheless, its
mean remains zero because as we move from one halo at x1
to the next one at x2 the displacement field jumps from
ψ ¼ x1 − q to ψ ¼ x2 − q. Such sudden jumps correspond
to very large negative values of χ (to −∞ in this adhesion
model). These rare but very large negative values compen-
sate the typical values at χ ≃ 1, so that the mean remains
zero, hχiq ¼ 0. This can also be understood by integrating
(40) over a large interval Δq,

1

Δq

Z
Δq

0

dqχ ¼ 1 −
Z

dq
Δq

∂x
∂q ¼ 1 −

xðΔqÞ − xð0Þ
Δq

: ð41Þ

If on large scales the relative fluctuations decay fast
enough, that is, jxðΔqÞ − xð0Þj − Δq grows more slowly
than Δq (typically it remains finite and of the order of the
size of the largest nonlinear structures), for large Δq we
obtain zero from the last equality in (41). By ergodicity, the
vanishing of the spatial average (41) also means that the
statistical average vanishes, hχiq ¼ 0. Thus, hχiq ¼ 0 is
related to the conservation of volume. Even though
particles do not remain homogeneously distributed and
gather in high-density halos among large voids, their
typical displacement is finite at any time (of the order of
the nonlinear scale) and particles initially separated by a
distance Δq much greater than the linear scale are still
separated by a distance Δx ≃ Δq in Eulerian space. This
discussion also shows that a more realistic model than the
Gaussian distribution for χ would be a highly skewed
distribution on small nonlinear scales, with still a zero mean
but an extended tail to negative values and a peak at finite
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positive values that contains most of the probabilistic
weight. However, in this exploratory paper, we focus on
the Gaussian model.
Clearly, this GaussianAnsatz allows us to close the system

(30)–(32), because by its definition all statistical properties of
the fields Ψ and v are determined by the power spectra
fPχχ ; Pχθ; Pθθg. Then, the correlations hχζi and hθζi are also
fully determined by these three power spectra, because the
gravitational force is fully determined by the positions of the
particles. Note that the divergence of the force ζ is not
Gaussian, as it is a nonlinear functional of the displacement,
but within our Gaussian Ansatz we only need the two-point
spectra Pχζ and Pθζ to close the system. Then, once we have
expressedPχζ andPθζ in terms of fPχχ ; Pχθ; Pθθg, we obtain
a closed system that fully determines the evolution of the
power spectra fPχχ ; Pχθ; Pθθg, given their initial conditions
set by the linear regime (9),

η → −∞∶ Pχχ ¼ Pχθ ¼ Pθθ ¼ e2ηPL0ðkÞ: ð42Þ

B. Force-displacement and force-velocity
cross-power spectra

1. Damping factor λðkÞ
To close the system (30)–(32) and compute the time

evolution of the power spectra, hence of the Gaussian
distribution P, we need to compute the force-displacement
and force-velocity spectra Pχζ and Pθζ. To avoid the
problems associated with the homogeneous background
and to focus on the divergence ζ of the force, it is
convenient to consider the quantity

CχζðQÞ ¼ −hχðq1Þ
Z
jq2−q1j¼Q

dS2n2 · Fðq2Þi: ð43Þ

The integral is the flux of the force through the sphere of
radiusQ, around the point q1 in Lagrangian space. Here n2

is the outward normal vector to the sphere S2. Using the
divergence theorem and Eq. (28), it only depends on the
divergence ζ of the force and is written

CχζðQÞ ¼
Z
jq2−q1j≤Q

dq2hχðq1Þζðq2Þi: ð44Þ

Going to Fourier space, we obtain

CχζðQÞ ¼ ð4πÞ2Q2

Z
∞

0

dkkPχζðkÞj1ðkQÞ; ð45Þ

which is a simple Hankel transform of the power spectrum
Pχζ. Then, to derive Pχζ we only need to compute CχζðQÞ
from its definition (43), using the explicit expression (13)
of the gravitational force. This reads

CχζðQÞ ¼ −iQ2

Z
dΩ2

Z
dq0dk0

ð2πÞ3
n2 · k0

k02 þ μ2

× hχðq1Þeik0·½xðq2Þ−xðq0Þ�i; ð46Þ

where q2 ¼ q1 þQn2. Using the general property that if φ
and Φ are Gaussian fields of zero mean we have

hφeΦi ¼ hφΦiehΦ2i=2; ð47Þ
we obtain

CχζðQÞ ¼ Q2

Z
dΩ2

Z
dq0dk0

ð2πÞ3
n2 · k0

k02 þ μ2
eik

0·ðq2−q0Þ

× hχðq1Þ½k0 · ðΨðq2Þ −Ψðq0ÞÞ�i
× e−h½k0·ðΨðq2Þ−Ψðq0ÞÞ�2i=2: ð48Þ

Going to Fourier space, we obtain from Eq. (34)

hχðq1ÞΨðq2Þi ¼ −i
Z

dk1

k1

k21
eik1·ðq1−q2ÞPχχðk1Þ; ð49Þ

and

1

2
h½k0 · ðΨðq2Þ −Ψðq1ÞÞ�2i

¼
Z

dk00Pχχðk00Þ

×

�
k0 · k00

k002

�
2

½1 − cosðk00 · ðq2 − q1ÞÞ�: ð50Þ

With the change of variable q0 ¼ q2 − q, this gives

CχζðQÞ ¼ iQ2

Z
dΩ2

Z
dqdk0dk1

ð2πÞ3
n2 · k0

k02 þ μ2
k0 · k1

k21

× Pχχðk1Þe−
R

dk00Pχχðk00Þ½1−cosðk00·qÞ�ðk0·k00Þ2=k004

× eik
0·q−iQn2·k1ðeik1·q − 1Þ: ð51Þ

Using the property
Z

dΩðn · k2ÞeiQn·k1 ¼ i4π
k2 · k1

k1
j1ðk1QÞ; ð52Þ

where j1ðzÞ is the first-order spherical Bessel function, the
integration over Ω2 gives

CχζðQÞ ¼ 4πQ2

Z
dqdk0dk1

ð2πÞ3
ðk0 · k1Þ2

ðk02 þ μ2Þk31
Pχχðk1Þ

× j1ðk1QÞe−
R

dk00Pχχðk00Þ½1−cosðk00·qÞ�ðk0·k00Þ2=k004

× eik
0·qðeik1·q − 1Þ: ð53Þ

The integral over the angles of q and k0 leaves a quantity
that no longer depends on the direction of k1. Therefore,
the comparison with Eq. (45) directly gives
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PχζðkÞ ¼ PχχðkÞλðkÞ; ð54Þ

with

λðkÞ ¼
Z

dqdk0

ð2πÞ3
ðk0 · kÞ2

ðk02 þ μ2Þk2 e
ik0·qðeik·q − 1Þ

× e−
R

dk00Pχχðk00Þ½1−cosðk00·qÞ�ðk0·k00Þ2=k004 : ð55Þ

Defining the quantities αðqÞ and βðqÞ by

αðqÞ ¼ 4π

3

Z
∞

0

dkPχχðkÞ½1 − j0ðkqÞ − j2ðkqÞ�; ð56Þ

βðqÞ ¼ 4π

Z
∞

0

dkPχχðkÞj2ðkqÞ; ð57Þ

we have

Z
dk00Pχχðk00Þ

ðk · k00Þ2
k004

½1 − cosðk00 · qÞ�

¼ αðqÞk2 þ βðqÞk2
�
k · q
kq

�
2

; ð58Þ

and λðkÞ also reads as

λðkÞ ¼
Z

dqdk0

ð2πÞ3
ðk0 · kÞ2

ðk02 þ μ2Þk2 e
ik0·qðeik·q − 1Þ

× e−αðqÞk02−βðqÞk02ðk0·qÞ2=ðk0qÞ2 : ð59Þ

The computation of the force-velocity power spectrum
Pθζ is obtained in the same fashion by considering the
correlation CθζðQÞ, where we replace χ in Eq. (43) by θ. As
in Eq. (54), this gives

PθζðkÞ ¼ PθχðkÞλðkÞ; ð60Þ

with the same factor λðkÞ.
Thus, λðkÞ plays the role of a damping factor, which will

lessen the positive correlation between the force and the
displacement and velocity fields, as compared with the
linear theory where λL ¼ 1.

2. Absence of infrared divergences

We note that λ only depends on the relative displace-
ments, as was expected from the expression (13) of the
gravitational force, which only depends on relative dis-
tances. This is because we work in a Lagrangian approach
and only consider equal-times statistics (associated with the
probability distribution P). Then, uniform displacements
and velocities have no effect on the divergences χ ¼ −∇q ·
Ψ and θ ¼ −∇q · v. This ensures that spurious infrared
divergences or large infrared contributions, which arise in
Eulerian approaches and then need special care [57–60], do

not appear at all in our approach. This can be seen in
Eq. (55) through the fact that the argument of the last
exponential is not the one-point displacement variance,
given by

α∞ ¼ 4π

3

Z
∞

0

dkPχχðkÞ ¼
1

3
hjΨð0Þj2i

¼ lim
q→∞

1

6
hjΨðqÞ −Ψð0Þj2i; ð61Þ

such that

Z
dk00Pχχðk00Þ

ðk · k00Þ2
k004

¼ α∞k2: ð62Þ

In contrast, Eq. (55) depends on the two-point relative
displacement variance over Lagrangian distance q, asso-
ciated with the factor 1 − cosðk00 · qÞ. This factor damps the
contribution of long wavelengths and regularizes the infra-
red divergences that can appear in Eulerian or different-
times approaches.

3. Behavior of the variances αðqÞ and βðqÞ
We shall see below that we obtain a displacement power

spectrum PχχðkÞ that decays faster than k−3 at large k. This
implies the small-scale behaviors

q → 0∶ α ¼ α0q2 þ…; β ¼ β0q2 þ…; ð63Þ

where the dots stand for higher-order terms in q and we
have

α0 ¼
β0
2
¼ 2π

15

Z
∞

0

dkk2PχχðkÞ > 0: ð64Þ

At large scales we have

q → ∞∶ α → α∞; β → 0; ð65Þ

provided PχχðkÞ increases more slowly than 1=k at low k.

4. Behavior of the damping factor λðkÞ
Linear regime.—At early times, the amplitude of the

power spectrum Pχχ and of the displacement variances α
and β vanish. Then, the last exponential in Eq. (59) goes to
unity and the integration over q gives λ ¼ 1,

α → 0; β → 0∶ λ → 1: ð66Þ

Thus, we recover the linear regime with Pχζ ¼ Pχχ and
Pθζ ¼ Pθχ .
Large scales.—The limit of large scales corresponds to

k → 0. This is not equivalent to the limit Pχχ → 0. For
instance, SPT corresponds to expansions over powers of
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PLðkÞ [10], which corresponds to the limit PL → 0,
whereas EFT approaches [22,23] consider the limit
k → 0. This can include nonperturbative terms, such as
PLðkÞ k2

k2NL
e−1=σ

2

, where kNL is the wave number that marks

the transition to the nonlinear regime and σ2 is a displace-
ment variance such as α and β. These terms do not scale as
integer powers of PL and are beyond the reach of standard
perturbative expansions because of the exponential. They
arise from shell crossing and the factor e−1=σ

2

describes the
probability of shell crossing or gravitational collapse for
Gaussian initial conditions. (In EFT approaches, the non-
perturbative factor is not derived but obtained from fits to
numerical simulations and inserted as a coefficient of
higher derivative operators in the effective Lagrangian or
equations of motion.) Nevertheless, as seen in Appendix A,
we recover the linear regime in the large-scale limit

k → 0∶ λ → 1: ð67Þ
This means that, as usual, the linear regime and the large-
scale limit coincide at leading order.
Small scales.—As seen in Appendix A, we have the

small-scale behavior

k → ∞∶ λðkÞ ∼ λ∞ lnðkÞ; ð68Þ

with

λ∞ ¼ −
e−1=ð12α0Þ

6
ffiffiffiffiffiffi
3π

p
α3=20

: ð69Þ

Thus, in the nonlinear regime, the damping factor λ
decreases below unity and actually goes to −∞. This will
give rise to a strong deviation of the power spectrum PχχðkÞ
from the linear power spectrum PLðkÞ. The nonperturbative
reach of our approach appears clearly in Eq. (69) through
the nonperturbative exponential factor, which vanishes at
all orders of perturbation theory in powers of PL.

C. Density power spectrum

With the Gaussian Ansatz (34), we can compute the
density power spectrum (24) exactly as for the Zeldovich
approximation [28]. Indeed, although the displacement
field ΨðqÞ is no longer given by linear theory, it is still
Gaussian within this approximation and the statistical
average in Eq. (24) is again straightforward. Using
Eq. (50), we obtain for k > 0

PðkÞ ¼
Z

dq
ð2πÞ3 e

ik·q−
R

dk0Pχχðk0Þ½1−cosðk0·qÞ�ðk·k0Þ2=k04 : ð70Þ

This is the same expression as for the Zeldovich power
spectrum, except that the linear power spectrum PLðkÞ in
the exponent is replaced by the nonlinear power spectrum
PχχðkÞ. With the notations of Eq. (58), this also reads as

PðkÞ ¼
Z

dq
ð2πÞ3 e

ikqμ−αðqÞk2−βðqÞk2μ2 ; ð71Þ

where μ ¼ ðk · qÞ=ðkqÞ is the cosine of the angle between
k and q. We can integrate over angles to obtain [54,61]

PðkÞ ¼
Z

dq
2π2

q2e−ðαþβÞk2 X∞
l¼0

�
2βk
q

�
l
jlðkqÞ: ð72Þ

We describe in Appendix B our numerical method to
compute the power spectrum (71).
The power spectrum associated with the standard

Zeldovich approximation [28] is also given by Eqs. (70)
and (71), where we replace the nonlinear power Pχχ and
variances fα; βg by their linear values [54,55,61],

PZðkÞ ¼
Z

dq
ð2πÞ3 e

ikqμ−αLðqÞk2−βLðqÞk2μ2 : ð73Þ

In particular, the same numerical methods can be used for
our model (71) and for the Zeldovich power spectrum (73).

V. COMPARISON WITH SOME OTHER
APPROACHES

In comparison with previous studies, this work is to
some extent a continuation of [62], where we developed a
Lagrangian-space Ansatz designed to go beyond perturba-
tion theory. That model matched SPT up to one-loop order
on large scales and a halo model [63] on small scales, by
combining various elements. It included some parameters
fitted to numerical simulations (e.g., the halo mass function
and the halo profiles) to recover at high k a halo model
defined a priori. In contrast, in the approach presented in
this paper, we do not enforce any specific behavior on
either large or small scales and we have no free parameters.
Our method is also related to [37], as it is based on a

Lagrangian approach, in order to go beyond shell crossing,
and on statistical quantities instead of individual realiza-
tions of the fields. However, [37] considered the generating
functional Z½j� of correlation functions, which is then
expanded up to some finite order. This means that the
equation of motion, which enters the action, is also
expanded and approximated up to some order. In addition,
[37] introduced by hand an auxiliary truncation of the linear
power spectrum, to separate the modes that are kept in the
Gaussian part and in the expanded part. In contrast, in this
paper we work with the probability distribution functional
PðΨ; v; tÞ (in practice, it is defined by the power spectra in
the Gaussian case) and we do not expand the equations of
motion, which are exactly taken into account at the full
nonlinear level (but we only include a few of them, among
the infinite number of constraints obeyed by the n-point
correlations). Also, we do not introduce a truncation of the
linear power spectrum of the displacement field. It arises
from the equations of motion themselves.
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Our work is also related to [46,57], as it is based on the
evolution with time of the distribution functional P of the
fields. However, [46] considered the probability distribu-
tion Pðδ; θÞ of the Eulerian density and velocity divergence
fields, whereas we consider the probability distribution of
the Lagrangian displacement field. Then, they assume a
curl-free velocity field, based on the Euler equation, which
breaks down beyond shell crossing. They also perform an
expansion of the probability distribution PðθÞ, written

under the form e−
P

n
Γnθ

n
, by expanding over the non-

Gaussian terms n ≥ 3. In particular, the Gaussian part is
given by Γ2 ¼ 1=PLðkÞ and the nonlinearity of the gravi-
tational dynamics is captured by the higher orders Γn,
n ≥ 3. In a fashion somewhat similar to SPT, these higher-
order vertices are obtained from recursion relations that
follow from the evolution equation of PðθÞ. The spirit of
the approach proposed in this paper is quite different in this
respect. Instead of capturing the nonlinearities of the
dynamics by adding higher-order terms, such as higher
powers in PL in SPT or higher-order vertices Γn, the
nonlinearity is already partly taken into account in the
Gaussian part of the probability distribution, as the dis-
placement and velocity power spectra get modified from
the linear prediction. Following the analogy with the
minimization problem of a cost functional S½φðxÞ�, dis-
cussed in the Introduction and in Sec. II C, our strategy is
not to estimate the minimum φmin by expanding φ around
the known minimum φ0 of a simpler cost functional S0, in
powers of S − S0. Instead, we look for the exact minimum
in a simpler subspace of fφg. For instance, if φ0ðxÞ ¼
a0ðx − b0Þ2 is quadratic, the strategy at lowest order is
simply to let free the parabola parameters a0 and b0 and
find their new values fa; bg that minimize the new func-
tional S. Clearly, this allows one to reach minima that are
very far from the initial guess φ0 and obtain nonperturba-
tive results. In practice, this means that we avoid explicit
perturbative expansions.
Thus, we emphasize that the result (54) and (55) is

nonperturbative. Indeed, we do not expand on the displace-
ments Ψ, which are not assumed to be small. Within the
Gaussian Ansatz for the probability distribution P, we
perform the exact computation of the displacement-force
correlation hχζi, using the exact expression (13) of the
gravitational force. Thus, our approach follows a strategy
that is quite different from usual perturbative methods. We
do not expand the equations of motion either, which are
kept at a fully nonlinear level as in (30)–(32), but we only
include the lowest-order ones. Then, the approximation
scheme, or truncation, occurs instead at the level of the trial
distribution P.
For the simplest Gaussian Ansatz considered in this

paper, this program is easy to complete, as exact compu-
tations are easily performed for Gaussian fields. However,
for higher orders, that is, for more complex Ansätze that go
beyond the Gaussian, this may represent a much more

difficult task. Indeed, to fulfil the nonperturbative promise
of this approach, we would need again to compute exactly
quantities such as hΨFi. This may prove much more
difficult for non-Gaussian probability distributions and
represent a drawback of this approach.
In terms of the density field, Eq. (70) coincides with a

truncated Zeldovich approximation [64]. However, in our
case the truncation is not set a priori with a cutoff that
follows from an educated guess or a fit to numerical
simulation. Instead, the cutoff λðkÞ is generated by the
equations of motion themselves and there are no free
parameters to be fitted to simulations. This represents a
significant improvement over most previous analytical
approaches, which either fail to regularize small-scale
divergences (such as SPT) or introduce counterterms with
an amplitude that must be measured in simulations (such as
EFT methods).
As in EFT methods [22,23], the ultraviolet divergences,

or artificially large contributions, associated with the
continuous rise of the linear density fluctuations on small
scales, are tamed. In EFT this is done by introducing
counterterms to the SPT diagrammatic computations,
which arise from new operators in the Lagrangian or the
equations of motion. The latter are expected to describe the
effects of multistreaming that are not included in the
hydrodynamical equations of motion. They are obtained
from systematic large-scale expansions, but with free
coefficients that must be fitted to numerical simulations.
In our approach, as we shall see in the next sections, the
displacement linear power spectrum is damped at high k by
the factor λðkÞ in Eq. (54). As in the truncated Zeldovich
approximation [64], this removes ultraviolet divergences
and provides an implicit regularization. For instance, we
shall see that in Sec. VI C 1 that, even when the standard
Zeldovich power spectrum does not exist, because of such
ultraviolet divergences, our approach remains well defined.
In contrast with EFT methods, this does not involve free
parameters and new operators, and this self-regularization
directly follows from the equations of motion.

VI. SELF-SIMILAR DYNAMICS

A. Differential equations for power spectra

To illustrate our approach, we consider in this section the
simpler case of the Einstein–de Sitter cosmology, Ωm ¼ 1,
whereDðtÞ ¼ aðtÞ, and the initial linear power spectrum is a
power law,

PLðkÞ ∝ kn: ð74Þ

Then, because Newtonian gravity is scale free, it is well
known that the dynamics are self-similar [65] and statistics
no longer depend on time once they are expressed in units of
the nonlinearwave numberkNLðtÞ thatmarks the transition to
the nonlinear regime. Defining, for instance, kNLðηÞ by
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4πk3NLPLðkNL; ηÞ ¼ 1; ð75Þ

the linear power spectrum can be written as

PLðk; ηÞ ¼
e2η

4πk30

�
k
k0

�
n
¼ 1

4πk3NL

�
k
kNL

�
n
; ð76Þ

where k0 defines the normalization of the linear power
spectrum and kNLðηÞ is given by

kNLðηÞ ¼ k0e−2η=ðnþ3Þ: ð77Þ

Then, all power spectra have the self-similar form

Pðk;ηÞ¼ 1

4πk3
D
�

k
kNLðηÞ

�
¼ 1

4πk3
D
�
k
k0
e2η=ðnþ3Þ

�
; ð78Þ

with the scaling function D that only depends on the ratio
k=kNL. In the linear regime,wehaveDLðxÞ ¼ xnþ3. The self-
similar evolution (78) implies the relation

∂P
∂η ¼ 2

nþ 3

�
k
∂P
∂k þ 3P

�
: ð79Þ

This exact relation allows us to replace time derivatives of
statistical quantities by spatial derivatives. Using also
Ω=f2 ¼ 1 in the Einstein–de Sitter cosmology, Eqs. (30)–
(32) simplify as

2

nþ 3

�∂Pχχ

∂ ln kþ 3Pχχ

�
¼ 2Pχθ; ð80Þ

2

nþ 3

�∂Pχθ

∂ ln kþ 3Pχθ

�
¼ Pθθ −

1

2
Pχθ þ

3

2
Pχζ; ð81Þ

2

nþ 3

�∂Pθθ

∂ ln kþ 3Pθθ

�
¼ −Pθθ þ 3Pθζ: ð82Þ

Introducing the 3D power Δ2ðk; ηÞ per logarithmic interval
of wave number by

Δ2ðk; ηÞ ¼ 4πk3Pðk; ηÞ ¼ D
�

k
kNL

�
; ð83Þ

and the wave number scaling coordinate u,

u ¼ ðnþ 3Þ ln
�

k
kNL

�
; ð84Þ

the system (80)–(82) writes

D0
χχ ¼ Dχθ; ð85Þ

D0
χθ ¼ −

1

4
Dχθ þ

1

2
Dθθ þ

3

4
Dχζ; ð86Þ

D0
θθ ¼ −

1

2
Dθθ þ

3

2
Dθζ; ð87Þ

where the prime denotes the derivativewith respect to u. The
linear regime corresponds to all D⋆⋆ identical with

DLðuÞ ¼ eu: ð88Þ

Thanks to the self-similarity (78), the system of partial
differential equations (30)–(32) has been transformed into
a system of ordinary differential equations. These equations
are exact but require the force cross-power spectra Pχζ and
Pθζ to form a closed system.

B. Curl-free Gaussian Ansatz

Within the curl-free Gaussian Ansatz presented in
Sec. IV, we can close the system (85)–(87) thanks to
Eqs. (54) and (60). This gives

D0
χχ ¼ Dχθ; ð89Þ

D0
χθ ¼

3

4
λDχχ −

1

4
Dχθ þ

1

2
Dθθ; ð90Þ

D0
θθ ¼

3

2
λDχθ −

1

2
Dθθ: ð91Þ

By combining these three equations, we can eliminate Dχθ

and Dθθ to obtain a third-order linear equation over Dχχ,

D000
χχ þ

3

4
D00

χχ þ
�
1

8
−
3λ

2

�
D0

χχ −
�
3λ

8
þ3λ0

4

�
Dχχ ¼ 0: ð92Þ

The general solution of this equation is [66]

DχχðuÞ ¼ e−u=4½c1y1ðuÞ2 þ c2y1ðuÞy2ðuÞ þ c3y2ðuÞ2�;
ð93Þ

where ci are constants and yiðuÞ are two independent
solutions of the second-order linear differential equation

y00 −
24λþ 1

64
y ¼ 0: ð94Þ

On large scales, that is, for large negative u, we have λ ¼ 1

and the two independent solutions are y1 ¼ e5u=8 and
y2 ¼ e−5u=8. The matching to the linear regime (88) implies
c2 ¼ c3 ¼ 0 in Eq. (93). Therefore, we obtain

DχχðuÞ ¼ e−u=4yðuÞ2 ≥ 0; ð95Þ

where yðuÞ is the solution of Eq. (94) with the boundary
condition at large negative u

u → −∞∶ yðuÞ ¼ e5u=8: ð96Þ
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On small scales, that is, for u → ∞, we have from Eq. (68)
λ ∼ −jλ∞ju=ðnþ 3Þ. This gives the asymptotic behavior

u → ∞∶ yðuÞ ¼ c1Aið−γ∞uÞ þ c2Bið−γ∞uÞ; ð97Þ

where AiðxÞ and BiðxÞ are the Airy functions of the first
and second kind, ci are constants and γ∞ is given by

γ∞ ¼
�

3jλ∞j
8ðnþ 3Þ

�
1=3

: ð98Þ

From the asymptotic behaviors of the Airy functions, we
obtain

k ≫ kNL∶ Δ2
χχðk; ηÞ ∼

�
k
kNL

�
−ðnþ3Þ=4

× ½lnðk=kNLÞ�−1=2½c1 sinψ þ c2 cosψ �2; ð99Þ

where ci are constants and ψðk; ηÞ is given at leading
order by

ψðk; ηÞ ∼
ffiffiffiffiffiffiffiffiffi
jλ∞j
6

r
ðnþ 3Þ½lnðk=kNLÞ�3=2: ð100Þ

From Eqs. (89) and (90) and Eq. (95) we obtain for the
other power spectra

DχθðuÞ ¼ e−u=4
�
−
y2

4
þ 2yy0

�
; ð101Þ

DθθðuÞ ¼ e−u=4
�
y
4
− 2y0

�
2

≥ 0: ð102Þ

Omitting the sine and cosine factors, this gives the small-
scale behaviors

k ≫ kNL∶Δ2
χθðk; ηÞ ∼

�
k
kNL

�
−ðnþ3Þ=4

; ð103Þ

Δ2
θθðk; ηÞ ∼

�
k
kNL

�
−ðnþ3Þ=4

½lnðk=kNLÞ�1=2: ð104Þ

Thus, at leading order the three logarithmic power spectra
decay as Δ2��ðkÞ ∝ k−ðnþ3Þ=4, and the power spectra decays
faster than k−3, as P��ðkÞ ∝ k−3−ðnþ3Þ=4. This leads to the
universal behavior (63), independent of the exponent n of
the linear power spectrum.
A remarkable feature of the solutions (95), (103), and

(104) is that the autopower spectra Δ2
χχ and Δ2

θθ are always
positive, whereas the cross-power spectrumΔ2

χθ can change
sign. By definition, autopower spectra must be positive, but
this property is often violated in approximation schemes,
such as perturbative expansions. Indeed, terms of succes-
sive orders can become increasingly large with alternating

signs on nonlinear scales, and the sign of the prediction
depends on the truncation order if the series has not
converged yet.
In our approach, even though we performed the simplest

Gaussian approximation in Sec. IV, the autopower spectra
Δ2

χχ andΔ2
θθ are always positive. This was not obvious from

the differential system (80)–(82) and was not explicitly
enforced by additional constraints. This could signal the
robustness of our approach. It may follow from the fact that
we keep track of the exact equations of motion (80)–(82),
and that the cross-power spectra Pχζ and Pθζ are exactly
computed from an Ansatz that is always physical, albeit
different from the true particle distribution (we did not
obtain the exact solution of the gravitational dynamics).
Indeed, the Gaussian Ansatz of Sec. IV corresponds to a
physical distribution of particles and velocities so that force
cross-power spectra derived in this manner do not hide any
inconsistencies. (This is not the case for approaches that
start directly at the level of the correlation functions, where
it is not always known whether there exists a distribution of
particles that provides a physical realization of the Ansatz
used for the density correlations. Then, this Ansatz may
contain some inconsistencies, that may be harmful or not,
depending on the quantities and regimes of interest.)
However, even though we have a physical Ansatz at each
time, we do not follow the exact dynamics. Therefore, there
is no guarantee that our integration of (80)–(82) avoids all
inconsistencies. Nevertheless, this approach is clearly a
step in the direction toward self-consistency and it appears
to be sufficient to ensure positivity of displacement and
velocity autopower spectra.

C. Numerical computation

To obtain the power spectraD��ðuÞ, we need to solve the
differential equation (94), where λðuÞ depends on DχχðuÞ
through Eq. (59). This gives a nonlinear system of
equations, which we solve by an iterative procedure.
Starting with an initial guess for DχχðuÞ, which converges
to the linear regime (88) for u ≪ −1 and decays as e−u=4 for
u ≫ 1, we compute from Eq. (59) the damping factor λðuÞ.
The expressions that we use in practice for the numerical
computations are given in Appendix A. Then, we obtain
yðuÞ from Eq. (94), and the power spectra from (95), (101),
and (102). Next, we repeat the procedure, computing λ, y,
andD�� from this new power spectrumDχχ . We iterate until
the damping factor λ and the power spectra have converged.
Finally, from the displacement power spectrum Pχχ we
obtain the density power spectrum PðkÞ from Eq. (70). Our
numerical procedure is described in Appendix B.
We normalize the linear power spectra by kNL ¼ 1,

kNL ¼ 1∶ PLðkÞ ¼
kn

4π
: ð105Þ

This also means that the Lagrangian scale qNL that marks
the transition to the nonlinear regime is of order unity. We
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have noticed in Sec. IV B 3 that the variances fα; βg show
the universal behavior (63) at small q, because the non-
linear power spectrum PχχðkÞ decays faster than k−3 from
Eq. (99). At large separation q, the displacement variances
(56) and (57) are governed by the low-k part of the power
spectrum PχχðkÞ, which converges to the linear power
spectrum PLðkÞ. This gives

q ≫ qNL∶ βðqÞ ∝ q−ðnþ1Þ for − 3 < n < 1; ð106Þ

and

αðqÞ ∝ q−ðnþ1Þ → ∞ for − 3 < n < −1;

αðqÞ → α∞ for − 1 < n < 1: ð107Þ

1. Self-similar case with n = 0

We first consider for illustration the case n ¼ 0. We show
in Fig. 1 the variances αðqÞ and βðqÞ defined by the final
nonlinear power spectrum PχχðkÞ, once the iterative pro-
cedure explained above has converged. We recover the
small-scale quadratic behavior (63) and the large-scale
behavior (106) and (107), with a transition at qNL ∼ 1.
We display in Fig. 2 the damping factor λðkÞ of Eq. (59).

For the numerical computation, we use the expressions
given in Appendix A. In agreement with Eqs. (67) and (68),
at low k it goes to unity, while at high k it goes to −∞ as
− lnðkÞ. The transition occurs around kNL ¼ 1.
We show in Fig. 3 the displacement and velocity

logarithmic power spectra Δ2
χχ , Δ2

χθ, and Δ2
θθ from

Eqs. (95), (101), and (102). At low k, all power spectra
converge to the linear power spectrum Δ2

LðkÞ ¼ k3 for the
normalization (105). The cross-power spectrum Δ2

χθ

changes sign and we show its absolute value. The power
spectraΔ2

χχ andΔ2
θθ are always positive, despite their spikes

to small but nonzero values. This means that, in the
oscillating factor, as in Eq. (99), one of the coefficients
ci is significantly greater than the other, so that Δ2

χχ almost
reaches zero as sin2 ψ or cos2 ψ. Thus, within decaying
envelopes, yðuÞ oscillates as cosðψ − ψ0Þ, where ψ0 is a
constant and ψ was defined in Eq. (104), while y0ðuÞ
oscillates in quadrature as sinðψ − ψ0Þ. This implies that,
within decaying envelopes, Δ2

χχ ∝ y2 ∝ cos2ðψ − ψ0Þ and
Δ2

θθ ∝ y02 ∝ sin2ðψ − ψ0Þ oscillate in quadrature. Since
y0 ≫ y, we have Δ2

χθ ∝ yy0 and it oscillates twice as fast
as sinðψ − ψ0Þ. We can check these phase differences in
Fig. 3. The envelope of these power spectra decays as k−3=4

at high k, in agreement with Eqs. (99), (103), and (104).
We show in Fig. 4 the nonlinear density power spectrum

Δ2 from Eq. (71), as well as the linear power spectrum
Δ2

L ¼ k3. Our numerical computation is described in
Appendix B 1. Note that this case n ¼ 0 corresponds to
a linear power spectrum with a lot of power on small scales.

Then, the linear variance αLðqÞ defined by Eq. (56) where
we replace PχχðkÞ by PLðkÞ is infinite. This implies that the
Zeldovich power spectrum (73) does not exist. Indeed, the
standard Zeldovich approximation does not modify
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FIG. 1. Variances αðqÞ and βðqÞ defined by the nonlinear power
spectrum PχχðkÞ in the power-law case n ¼ 0.
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FIG. 2. Damping factor λðkÞ for the power-law case n ¼ 0.
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FIG. 3. Displacement and velocity logarithmic power spectra
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χχ , jΔ2
χθj, and Δ2

θθ for the initial power-law case n ¼ 0.
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the linear displacement field and does not cure small-scale
divergences that are already present in the linear theory.
More generally, the Zeldovich power spectrum (73) only
exists for −3 < n < −1 [55,61], where there is no small-
scale divergence. This is often cured by using a truncated
Zeldovich approximation [64], where the initial linear
power spectrum is truncated beyond kNL so that αLðqÞ is
finite and one can compute a Zeldovich power spectrum
(73). This requires introducing an ad hoc cutoff parameter,
which may be fitted to numerical simulations.
Our approach leads to a density power spectrum that

coincides with such a truncated Zeldovich approximation,
but the cutoff is not introduced by hand. It is obtained from
the equations of motion, as explained in the previous
sections, through the computation of the damping factor
λðkÞ and its impact on the nonlinear displacement power
spectrum Pχχ . Another difference from the truncated
Zeldovich approximation is that we obtain different results
for the velocity power spectra Pχθ and Pθθ.
As for the truncated Zeldovich approximations with a

strong enough cutoff, the logarithmic density power spec-
trum Δ2ðkÞ shows a constant asymptote at high k, of order
unity. This is because Δ2

χχ decreases at high k, as found in
Eq. (99). This avoids that spurious power on nonlinear
scales for the displacement field completely erases small-
scale structures and the density power spectrum, as found in
the standard (nontruncated) Zeldovich approximation,
where Δ2

ZðkÞ typically decreases at high k. For this case
n ¼ 0 we note, however, that the nonlinear density power
spectrum is below the linear power spectrum on mildly
nonlinear scales. This is due to the saturation at Δ2 ∼ 1 in
the nonlinear regime, whereas the linear power spectrum
Δ2

L ∝ k3 shows a very steep rise with k for these initial
conditions that show a lot of power on small scales. This
agrees with the fact that the damping factor λðkÞ shown in
Fig. 2 is everywhere below unity.
Thus, our approach provides a significant improvement

over the standard Zeldovich approximation. This suggests

that the general spirit of our method goes in the right
direction: letting the power spectra of the displacement and
velocity fields free, instead of setting them equal to the
linear power spectrum, and obtaining their values from
constraints derived from the equations of motion gives a
better description of the system. However, our Gaussian
Ansatz cannot give the continuing increase of Δ2ðkÞ on
nonlinear scales, typically associated with the “1-halo”
term in halo models [62,63] and the formation of high-
density virialized halos. It is likely that this would require
going beyond the Gaussian and taking into account higher-
order correlations (at least three-point correlations).

2. Self-similar case with n = − 2

In the case n ¼ −2, the initial density and displacement
fields show a lot of power on large scales. Then, the
variance of the linear displacement difference over sepa-
ration q grows linearly with q, in agreement with Eqs. (106)
and (107). With the normalization (105), we obtain

αLðqÞ ¼ βLðqÞ ¼
π

16
q; ð108Þ

while αL∞ is infinite. This infrared divergence also applies
to the nonlinear displacement field, whose power spectrum
converges to the linear power spectrum at low k. Thus,
we have

q≫ qNL∶ αðqÞ¼ π

16
qþ…; βðqÞ¼ π

16
qþ…; ð109Þ

where the dots stand for subleading terms, and α∞ ¼ þ∞.
We can check the asymptotic behaviors (63) and (109)
in Fig. 5.
The damping factor λðkÞ again goes to unity at low k and

to −∞ as − lnðkÞ at high k, as seen in Fig. 6. The
comparison with Fig. 2 shows that the amplitude of λðkÞ
at fixed wave number k is greater for n ¼ −2 than for
n ¼ 0, in the nonlinear regime. Nevertheless, the decay and

10-2

10-1

100

101

 0.1  1  10  100

Δ2 (k
)

k

n=0

Δ2
L

Δ2

FIG. 4. Density logarithmic power spectrum Δ2ðkÞ. We show
the linear power Δ2

L (dashed line) and the nonlinear power Δ2

(solid line).
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FIG. 5. Variances αðqÞ and βðqÞ defined by the nonlinear power
spectrum PχχðkÞ in the power-law case n ¼ −2.
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the oscillation rate of the displacement and velocity power
spectraΔ2

χχ ,Δ2
χθ, andΔ2

θθ are slower than for the case n ¼ 0

in terms of wave number, as seen in Fig. 7. This agrees with
the fact that these logarithmic power spectra now decrease
as k−1=4 instead of k−3=4, as shown by Eqs. (99), (103), and
(104). We can also see that λðkÞ now grows slightly above
unity at k ∼ 0.2 before its decreases in the highly nonlinear
regime. This means that, in contrast to the case n ¼ 0, there
is now a small amplification of structure formation as
compared with the linear theory on the weakly nonlinear
scale k ∼ 0.2.
We show in Fig. 8 the nonlinear density power spectrum

Δ2 from Eq. (71), as well as the linear predictionΔ2
L and the

Zeldovich power spectrum Δ2
Z. Indeed, because the linear

variances αLðqÞ and βLðqÞ are now finite, the standard
Zeldovich power spectrum (without truncation) exists. In
fact, for this power-law case n ¼ −2, it is possible to
compute analytically the Zeldovich power spectrum (73).
For the normalization (105), this gives [61]

PZðkÞ ¼
256

πk2

�
4

ð64þ π2k2Þ2 þ
3πkð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64þ π2k2

p
− 8Þ

ð64þ π2k2Þ5=2

×
ArcTanðπk=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128þ π2k2 − 16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64þ π2k2

pp
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

128þ π2k2 − 16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64þ π2k2

pp

þ 3πkð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64þ π2k2

p
þ 8Þ

ð64þ π2k2Þ5=2

×
ArcTanðπk=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128þ π2k2 þ 16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64þ π2k2

pp
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

128þ π2k2 þ 16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64þ π2k2

pp
	
;

ð110Þ

with the asymptotic behaviors

k → 0∶ PZðkÞ ¼
1

4πk2
þ 3π

256k
þ…; ð111Þ

k → ∞∶ PZðkÞ ¼
128ð8þ 3πÞ

π5k6
−
4096ð32þ 15πÞ

π7k8
þ…

ð112Þ

We describe in Appendix B 2 our numerical computation of
the nonlinear density power spectrum (71). Again, we
recover the universal plateau at high k of the nonlinear
logarithmic power spectrum Δ2, due to the decay of the
displacement logarithmic power spectrum Δ2

χχ within our
Gaussian Ansatz. In contrast, the nontruncated Zeldovich
power spectrum decays as Δ2

ZðkÞ ∝ k−3, because of the
artificially large power on small scales in the linear
displacement field. Thus, our approach improves over
the nontruncated Zeldovich approximation. It also
improves over the truncated Zeldovich approximation, as
there is no need to introduce an ad hoc truncation with free
parameters. In agreement with the slight increase above
unity of the damping factor λðkÞ at k ∼ 0.2, and in contrast
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FIG. 6. Damping factor λðkÞ for the power-law case n ¼ −2.
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with the case n ¼ 0, we now find that the nonlinear power
spectrum Δ2 rises above the linear prediction on weakly
nonlinear scales, k≲ 1. This feature is also seen in the
standard Zeldovich approximation (111). This is slightly
more apparent in the case of our nonlinear power spectrum
Δ2 because it asymptotes to a constant value at high k
instead of decreasing as k−3. The comparison with the case
n ¼ 0 shows that such detailed features depend on the
shape of the initial linear power spectrum. This is consistent
with the fact that, within SPT, the one-loop correction to the
density power spectrum is positive for n ≲ −1.4 and
negative for n ≳ −1.4 [67–69].

VII. Λ-CDM COSMOLOGY

A. Integration of the curl-free Gaussian Ansatz

We now consider the realistic case of the Λ-CDM
cosmology with a linear CDM power spectrum that is
not a power law. Then, we must go back to the system of
partial differential equations (30)–(32). With the curl-free
Gaussian Ansatz presented in Sec. IV, this reads

∂Δ2
χχ

∂η ¼ 2Δ2
χθ; ð113Þ

∂Δ2
χθ

∂η ¼ 3Ωm

2f2
λΔ2

χχ þ
�
1 −

3Ωm

2f2

�
Δ2

χθ þ Δ2
θθ; ð114Þ

∂Δ2
θθ

∂η ¼ 3Ωm

f2
λΔ2

χθ þ
�
2 −

3Ωm

f2

�
Δ2

θθ; ð115Þ

where we introduced the logarithmic power Δ2ðk; ηÞ as in
(83). For the self-similar cases studied in Sec. VI, we
reduced the problem to the set of one-dimensional scaling
functions D��ðuÞ and we could solve the associated system
of ordinary differential equations. In the general case
(113)–(115), thanks to the factorizations (54) and (60),
we again obtain a system of ordinary differential equations.
Indeed, different wave numbers k decouple, once we
consider λðk; ηÞ as an external control function, and we
can now solve over the time η at fixed k. We can again
eliminate Δ2

χθ and Δ2
θθ to obtain the third-order linear

equation

∂3Δ2
χχ

∂η3 þ
�
9Ωm

2f2
− 3

� ∂2Δ2
χχ

∂η2 þ
�
2þ ∂

∂η
�
3Ωm

2f2

�

−
6Ωm

f2
ð1þ λÞ þ 9Ω2

m

2f4

� ∂Δ2
χχ

∂η þ
�
−

∂
∂η

�
3Ωm

f2
λ

�

þ 6Ωm

f2
λ −

9Ω2
m

f4
λ

�
Δ2

χχ ¼ 0: ð116Þ

Again, the general solution of this ordinary differential
equation over η, at fixed k, is [66]

Δ2
χχðk; ηÞ ¼ c1y1ðηÞ2 þ c2y1ðηÞy2ðηÞ þ c3y2ðηÞ2; ð117Þ

where ci are integration constants that depend on k, and
yiðηÞ are two independent solutions of the second-order
linear differential equation

y00 þ
�
3Ωm

2f2
− 1

�
y0 −

3Ωm

2f2
λy ¼ 0; ð118Þ

where the prime denotes the derivative with respect to η.
Because λðk; ηÞ depends on both k and η, the functions
yiðηÞ also depend on k, understood here as a parameter. At
early times, in the matter-dominated era, we must recover
the linear regime,

η → −∞∶ Δ2
Lðk; ηÞ ¼ e2ηΔ2

L0ðkÞ: ð119Þ

In this regime, we also have Ωm=f2 → 1 and λ → 1, which
gives the two solutions y1 ∝ eη and y2 ∝ e−3η=2. Therefore,
the matching to the linear regime at early times gives c2 ¼
c3 ¼ 0 and we obtain

Δ2
χχðk; ηÞ ¼ yðηÞ2Δ2

L0ðkÞ ≥ 0; ð120Þ

where yðηÞ is the solution of Eq. (118) with the boundary
condition at large negative η,

η → −∞∶ yðηÞ ¼ eη: ð121Þ

This gives for the other power spectra

Δ2
χθðk;ηÞ¼yy0Δ2

L0ðkÞ; Δ2
θθðk;ηÞ¼y02Δ2

L0ðkÞ≥0: ð122Þ

Over a limited range of wave numbers and times, the
dynamics can be approximated by a self-similar evolution
with an effective index n. Then, from Eq. (77) and λ ∼
−jλ∞j lnðk=kNLÞ we obtain λ ∼ −jλ∞j2η=ðnþ 3Þ. This
gives yðηÞ ∼ e−η=4½Aið−ηÞ þ Bið−ηÞ�, where we omit
numerical factors in the bracket and in the argument of
the Airy functions. This gives

η ≫ ηNL∶ Δ2
χχðk; ηÞ ∼ e−η=2½Aið−ηÞ þ Bið−ηÞ�2; ð123Þ

where ηNLðkÞ is the time that marks the entry of the wave
number k into the nonlinear regime. At leading order, this
gives for all logarithmic power spectra

η ≫ ηNL∶ Δ2��ðk; ηÞ ∼ e−η=2; ð124Þ

which agrees with Eqs. (99), (103), and (104), using
Eq. (77). Since this nonlinear decay with time does not
depend on the index n, it should be quite robust and a good
approximation for the Λ-CDM cosmology, with a smooth
initial power spectrum. In a similar fashion, the power
spectra should decay with wave number as
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k ≫ kNL∶ Δ2��ðk; ηÞ ∼ k−ðnþ3Þ=4; ð125Þ

where n is the local effective exponent of the linear power
spectrum.
Remarkably, Eqs. (120) and (122) show that the pos-

itivity of the autopower spectra Δ2
χχ and Δ2

θθ is still ensured
in the general case for any cosmology and initial power
spectrum. As noticed in Sec. IV, such positivity constraints
are not respected in most perturbative schemes or approxi-
mation methods. This is related to the nonperturbative
character of our approach, which does not truncate the
equations of motion. Moreover, the approximation needed
to close our system, entering at the level of the force cross-
power spectra, is computed in an exact manner from a
physical Gaussian Ansatz. That is, although the Gaussian
distribution of particles is only an approximate Ansatz, the
force cross-power spectra associated with this distribution
are exactly computed and as such satisfy all physical
requirements associated with the constraint that they can
be derived from a physical state (e.g., with positive matter
density, conservation of matter, etc.).
In fact, the solutions (120) and (122) do not directly rely

on the Gaussian Ansatz, but on the equality of the damping
factors associated with the cross-power spectra of both the
displacement and the velocity with the force. Thus, defin-
ing λχζðk; ηÞ and λθζðk; ηÞ by the ratios

λχζðk; ηÞ≡ Pχζ

Pχχ
; λθζðk; ηÞ≡ Pθζ

Pθχ
; ð126Þ

the solutions (120) and (122) hold as long as λχζ ¼ λθζ, and
we denote λ their common value. This equality may remain
a good approximation beyond the Gaussian Ansatz and we
have seen that it ensures the positivity of the autopower
spectra Δ2

χχ and Δ2
θθ. However, for the exact non-Gaussian

dynamics, we generically expect λχζ and λθζ to differ in the
nonlinear regime. Unfortunately, we could not find an
explicit solution of the system (113)–(115) when λχζ ≠ λθζ.
In that case, the requirements Δ2

χχ ≥ 0 and Δ2
θθ ≥ 0 may

provide some constraints on the pair fλχζ; λθζg. However, it
is not obvious whether this can be written in a simple
explicit form.

B. Numerical computation

As for the self-similar case studied in Sec. VI C, we
compute the solution of Eqs. (113)–(115) by an iterative
scheme. We start with an initial guess for the power
spectrum Δ2

χχðk; ηÞ, which is equal to the linear power
spectrum in the linear regime where Δ2

L ≤ 1, and decays,
for instance, as 1=k at higher wave numbers. This is stored
as an initial guess on a 2D grid in fk; ηg. Then, we compute
the variances αðq; ηÞ and βðq; ηÞ from Eqs. (56) and (57).
This gives the damping factor λðk; ηÞ from Eq. (59), using
again the numerical method described in Appendix A.

Next, we compute the functions yðηÞ, for all grid points k,
from Eq. (118). This provides the updated nonlinear
displacement and velocity power spectra Δ2

χχ , Δ2
χθ, and

Δ2
θθ through Eqs. (120) and (122). Next, we repeat the

procedure, computing fα; β; λg from the new Δ2
χχ and next

the new spectra Δ2��. We iterate until convergence. Finally,
from the displacement power spectrum Pχχ we obtain the
density power spectrum PðkÞ from Eq. (70), using again the
numerical method described in Appendix B 1. We do not
make the approximation Ω=f2 ≃ 1 that is often used in
analytical studies and we exactly integrate Eq. (118)
over time.
We show the variances αðqÞ and βðqÞ at redshifts z ¼ 0,

1, and 2 in Fig. 9. Again, we have the quadratic behavior
(63) on small scales. At large distances, the displacement
variances are governed by the low-k part of the displace-
ment power spectrum, which converges to the linear power
spectrum with PLðkÞ ∝ kn and n ≃ 0.96 for the Λ-CDM
cosmology. In this respect, we are in the same class of
initial conditions as for the self-similar case with n ¼ 0;
αðqÞ goes to a finite value α∞, whereas βðqÞ decreases as
q−ðnþ1Þ, as in Eqs. (106) and (107). The small change in the
shape of the functions αðqÞ and βðqÞ with redshift is due to
the fact that the Λ-CDM linear power spectrum is curved,
with the local slope ranging from n ≃ 0.96 at low k to n ≃
−3 at high k. In particular, the infinite-separation variance
α∞ of Eq. (61) is governed by the scale k−1, where the local
exponent is n ¼ −1. This is significantly larger than the
scale kNL associated with the nonlinear transition of the
matter density power spectrum. Thus, in contrast with
the self-similar case n ¼ 0, α∞ can be significantly greater
than 1=k2NL, especially at high z. In contrast with some
Eulerian-space perturbative schemes, this is not a problem
for our approach as it only depends on relative displace-
ments, as seen in Eq. (70), and it is independent of the value
of α∞. This is clear from the fact that our approach can also
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102
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FIG. 9. Variances αðqÞ and βðqÞ defined by the nonlinear power
spectrum PχχðkÞ for the Λ-CDM cosmology. We show the results
at redshifts z ¼ 0 (lines without symbols), z ¼ 1 (triangles), and
z ¼ 2 (squares).
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be applied to the self-similar case n ¼ −2, where α∞ is
infinite (see Sec. VI C 2 and Appendix B 2).
We display in Fig. 10 the damping factor λðkÞ at redshifts

z ¼ 0, 1, and 2. Again, it goes to unity at low k and to −∞
as − lnðkÞ at high k. At high redshift z ¼ 2, where the
effective exponent on weakly nonlinear scales is n ≃ −2,
we distinguish a small excursion above unity for λðkÞ

around k ∼ 0.3h Mpc−1, in agreement with the self-similar
case n ¼ −2 shown in Fig. 6. At low redshift z ¼ 0, where
n ≃ −1.5, λðkÞ remains below unity. This agrees with the
behavior found for the self-similar case n ¼ 0 shown
in Fig. 2.
We show the displacement and velocity power spectra in

Fig. 11. In agreement with the analysis in Sec. VII A, on
nonlinear scales the power spectra Δ2

χχ and Δ2
θθ oscillate in

quadrature, whereas Δ2
χθ oscillates twice faster. Their

envelope decays as ∼k−ðnþ3Þ=4. Again, the evolution with
redshift can be understood from the change of the effective
exponent n at the scales that are turning nonlinear. At high
redshift z ¼ 2, where n ≃ −2, we recover a slow decay with
a large oscillation period over wave number, while at low
redshift z ¼ 0, where n ≃ −1.5, we obtain a stronger decay
and faster oscillations. This agrees with Eqs. (99) and (100)
and with the comparison of Figs. 3 and 7.
We compare in Fig. 12 the nonlinear matter density

power spectrum Δ2 with the linear prediction Δ2
L and the

Zeldovich power spectrum Δ2
Z. Again, we find that Δ2

roughly follows Δ2
Z on weakly nonlinear scales and next

asymptotes to a constant Δ2 ∼ 1 at high k, whereas Δ2
Z
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FIG. 10. Damping factor λðkÞ for the Λ-CDM cosmology, at
redshifts z ¼ 0 (lines without symbols), z ¼ 1 (triangles), and
z ¼ 2 (squares).
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FIG. 11. Displacement and velocity logarithmic power spectra
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χχ , jΔ2
χθj, and Δ2

θθ for the Λ-CDM cosmology.
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FIG. 12. Density logarithmic power spectrum Δ2ðkÞ for the
Λ-CDM cosmology. We show the linear power spectrum Δ2

L
(dashed line), our nonlinear power spectrum Δ2 (solid line), and
the Zeldovich power spectrum Δ2

Z (dot-dashed line).
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decays as k−3. As for the other statistics, the detailed
behavior with redshift reflects the change of the effective
index n. At z ¼ 2, we find that both Δ2 and Δ2

Z rise above
the linear power spectrum Δ2

L on weakly nonlinear scales,
k ∼ 2h Mpc−1, whereas at z ¼ 0 they remain below Δ2

L.
This agrees with the comparison of Figs. 4 and 8.

C. Comparison with numerical simulations

1. Matter density power spectrum

Finally, we compare the predictions of our curl-free
Gaussian Ansatz with numerical simulations of the large-
scale matter density field in the Λ-CDM cosmology, which
were presented in [14,70]. Since our Gaussian model
cannot describe highly nonlinear scales, as explained in
the previous sections, we focus on large quasilinear scales
associated with the baryon acoustic peak. We show the
matter density power spectrum in Fig. 13. To distinguish
more clearly the baryon acoustic oscillations and the
different models, we plot in the upper panels the ratio of
the density power spectra by a reference no-wiggle linear
power spectrum that does not contain baryon acoustic

oscillations. In the lower panels, we directly plot the
relative deviation from the numerical simulations.
As we can see in the upper panels of Fig. 13, our result

PðkÞ is similar to the standard Zeldovich approximation on
these large scales. This agrees with the results of Fig. 12
and the fact that on such large scales the effective truncation
of the displacement power spectrum on nonlinear scales
does not have a great impact. Thus, the damping of the
oscillations at higher k, as compared with the linear power
spectrum, is similar in both models. However, in agreement
with the results of previous sections, the amplitude of the
power spectrum given by our model is somewhat larger
than for the standard Zeldovich approximation. Thus, the
modification of the displacement field on nonlinear scales
only leads to a broadband change to the density power
spectrum on BAO scales. In agreement with Fig. 12, our
power spectrum remains below the linear theory up to
k ≤ 0.3h=Mpc at z ¼ 0.35, while it raises above the linear
theory at k ≃ 0.2h=Mpc at z ¼ 2. In terms of the absolute
value of the density power spectrum, our model is not
competitive with other approaches that can reach percent-
level accuracy on these scales, as shown, for instance, by
the comparison with the Lagrangian model PLagðkÞ
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FIG. 13. (Upper) Matter density power spectrum divided by a reference no-wiggle linear power spectrum, at redshifts z ¼ 0.35 and
z ¼ 2. We show the predictions of linear theory PL (blue dashed line), our nonlinear model P (black solid line), the standard Zeldovich
approximation PZ (red dot-dashed line), a Lagrangian model PLag (green dotted line), and the numerical simulations (black crosses).
(Lower) Relative deviation of these density power spectra from the numerical simulations. The error bars centered on zero are the
numerical simulations statistical error bars.
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developed in [62]. Indeed, this older model is correct up to
one-loop order, while matching the halo model on highly
nonlinear scales, which ensures a reasonably good accu-
racy. In contrast, as for the standard Zeldovich approxi-
mation, the Gaussian model presented in this paper does
not match with SPTat one-loop order. This is due to the use
of our Gaussian Ansatz. To ensure a correct one-loop order,
we should extend this Gaussian Ansatz and include three-
point correlations. This would, in turn, involve additional
constraint equations to the system (113)–(115), associated
with the evolution of the bispectrum. We leave such an
extension to future works.
The lower panels of Fig. 13 show more clearly that,

while the relative deviations from the numerical simula-
tions are of the same order of magnitude for the linear
theory, our model, and the Zeldovich approximation, the
oscillations found for the linear prediction disappear for
both our model and the Zeldovich approximation. This is
because nonlinear mode couplings damp the initial baryon
acoustic oscillations. Therefore, relative to the flatter non-
linear result (given by the numerical simulations), the linear
power spectrum shows oscillations at high k. In contrast,
the nonlinear damping of the oscillations is well recovered
by our model and the Zeldovich approximation, so that the
relative deviation is flat. This suggests that both our model
and the Zeldovich approximation could be efficiently used
to study the BAO features of the density power spectrum.
One simply needs to extract the oscillations from the data
(e.g., through a high-pass filter), as in [60,71], or to add to
the analytical predictions a smooth low-order polynomial,
with one or two free parameters, that describes the smooth
drift of the amplitude.

2. Matter density correlation function

We next consider the matter density correlation function
in Figs. 14 and 15 for the same models and redshifts. It is
computed from the power spectra by integrating

ξðxÞ ¼ 4π

Z
∞

0

dkk2PðkÞj0ðkxÞ: ð127Þ

As seen in Fig. 14, on large scales all curves converge to the
linear theory. Whereas the Zeldovich approximation gives a
constant correlation at low x, because its power spectrum
decays faster than k−3 at high k, our model gives a
logarithmic growth at low x, because its power spectrum
decays as k−3 at high k. However, neither model nor the
Zeldovich approximation can describe highly nonlinear
scales associated with virialized halos. In particular, these
methods are not competitive as compared with the
Lagrangian model of [62].
We focus on the BAO peak in the upper panels of Fig. 15,

while in the lower panels we show the relative deviations
with respect to numerical simulations, from weakly non-
linear scales up to the BAO scales. The growth of all

relative deviations and of the simulation error bars at x≳
120h−1 Mpc is due to the fact that the correlation function
vanishes at x ∼ 130h−1 Mpc. Because analytical predic-
tions and numerical simulations do not recover the exact
position of this zero crossing, the relative deviation
diverges at this point, but this is not a good measure of
the validity of approximation schemes.
We recover the fact that the Zeldovich approximation

provides a great improvement over the linear prediction for
the BAO peak [18,34,72]. Its accuracy is better than 3%
accuracy on these scales and redshifts. Our Gaussian model
gives similar results, with an improved accuracy below 2%
on BAO scales, 70 < x < 120h−1 Mpc. It actually fares
slightly better than the Lagrangian model of [62], which,
however, gave a much better prediction for the power
spectrum in Fig. 13. In agreement with the discussion
above, this means that the information associated with the
position and shape of the baryon acoustic peak in the
correlation function is related to the frequency and damping
of the baryon acoustic oscillations in the power spectrum
and is mostly independent of any additional smooth drift.
This agrees with the results of Noda et al. [60], who also
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FIG. 14. Matter density correlation function at redshifts z ¼ 3
and z ¼ 0.35. As in Fig. 13, we show the predictions of linear
theory ξL (blue dashed line), our nonlinear model ξ (black solid
line), the standard Zeldovich approximation ξZ (red dot-dashed
line), a Lagrangian model ξLag (green dotted line), and the
numerical simulations (black crosses).
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find that the BAO oscillatory features of the power spectrum
are mostly governed by the long-range displacements (infra-
red effects), which are automatically taken into account by
Lagrangian approaches, while the broadband shape is
affected by small-scale processes (see also [18,73]).
Thus, our model provides the BAO peak of the density

correlation function to better than 2%, without any free
parameter. Its accuracy is actually the same as that of the
numerical simulations. On smaller scales, the Lagrangian
model of [62] is usually more accurate, but we find that our
model agrees with the numerical simulations to better than
2% down to 7h−1 Mpc, at z ≥ 0.35. This level of accuracy
is better than most other approaches. Eulerian perturbation
schemes, like SPT or EFT, do not give a well-defined
correlation function because they predict a power spectrum
that grows artificially fast at high k. Lagrangian approaches
that go beyond the Zeldovich approximation by including
higher-order cumulants, such as convolution Lagrangian
perturbation theory, do not significantly improve over the
Zeldovich approximation and can become worse below
30h−1 Mpc [34].
The better agreement with the configuration-space cor-

relation function ξðxÞ than with the matter power spectrum

PðkÞ shows that the former is a more robust statistics in the
nonlinear regime [18,74]. Indeed, in contrast with linear
scales, where different Fourier modes are uncorrelated, we
can expect nonlinear processes that are local in space to
generate weaker correlations between different scales in
configuration space than in Fourier space. Then, the power
spectrum being the Fourier transform of the correlation
function, it receives contributions from the correlation
function at all scales. The model presented in this paper
is also more naturally suited to configuration-space sta-
tistics as it is based on the displacement field, hence on a
Lagrangian approach, where we follow particle trajectories
in spacetime. Indeed, as for the Zeldovich approximation
and its extensions to low-order cumulants, it is known that
Lagrangian-space formulations are rather efficient for the
two-point correlation functions [18,33,34,72].
In Lagrangian approaches that go beyond the Zeldovich

approximation by taking into account higher-order cumu-
lants and are exact up to one or two-loop order, it has been
found that higher orders can actually worsen the agreement
with simulations on intermediate scales and BAO scales at
low redshifts [34,72]. This is partly due to the fact that,
within such Lagrangian approaches, as in the standard
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FIG. 15. (Upper) Matter density correlation function at redshifts z ¼ 0.35 and z ¼ 2. As in Fig. 13, we show the predictions of linear
theory ξL (blue dashed line), our nonlinear model ξ (black solid line), the standard Zeldovich approximation ξZ (red dot-dashed line), a
Lagrangian model ξLag (green dotted line), and the numerical simulations (black crosses). (Lower) Relative deviation of these density
correlation functions from the numerical simulations. The error bars centered on zero are the numerical simulations statistical error bars.
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Zeldovich approximation, particles do not remain trapped
inside nonlinear density fluctuations. This free streaming
erases small-scale structures and leads to an underestimate
of the matter density fluctuations. Adding higher orders in a
perturbative manner does not solve this issue and can
actually worsen the problem, as the amplitude of the
displacement field is further increased on small scales.
The systematic better agreement obtained by our approach
is due to the effective truncation of the displacement power
spectrum at high k. As for the truncated Zeldovich
approximation, this partly cures the erasing of nonlinear
structures and provides a better model for the large-scale
density field [64].

VIII. CONCLUSION

In this paper, we have presented a new approach to
model the gravitational dynamics of large-scale structures.
The aim is to avoid introducing free parameters, which
need to be fitted to numerical simulations, and to go beyond
perturbation theory. To do so, we work within a Lagrangian
framework. This allows us to use the exact equations of
motion, which remain valid beyond shell crossing, if we
neglect baryonic effects. Then, we propose to use these
equations of motion as constraints on the evolution of the
probability distribution functional PðΨ; vÞ of the displace-
ment and velocity fields. Thus, the approximation only
enters at the level of the description of this distribution P.
In this article, we focus on a Gaussian Ansatz, but, in

principle, we could consider more complex distributions
PðΨ; vÞ, which would involve additional parameters in
addition to the power spectra (e.g., low-order cumulants).
As the Ansatz used for P becomes more complex, one
increases the number of constraints derived from the
equations of motion of the particles, so as to fully determine
P (e.g., the evolution equations of low-order correlation
functions). In this fashion, one can hope to systematically
increase the accuracy of the predictions. However, the
complexity beyond the Gaussian case may prove difficult
for practical computations. We leave this investigation for
future works.
This Gaussian Ansatz is also of interest by itself,

independent of the more general framework outlined above,
as it is a simple extension of the Zeldovich approximation
that does not require any new free parameter.
Already at the Gaussian level forPðΨ; vÞ, we have found

that this approach leads to interesting results. Because we
use exact equations of motion (in fact, a subset of the
infinite sequence that determines the exact probability
distribution), we go beyond perturbation theory. Then,
the displacement-field power spectrum becomes damped
on nonlinear scales, with a truncation that is not put by hand
but arises from the dynamics. In particular, the damping
factor λ∞ ∼ e−1=ð12α0Þ is nonperturbative and shows the
characteristic exponential factor associated with the prob-
ability to form nonlinear structures (for Gaussian initial

conditions). Moreover, in contrast with the Zeldovich
approximation, the displacement and velocity power spec-
tra are different.
An interesting feature is that the autopower spectra are

automatically positive, as they should be, while cross-power
spectra can change sign. This positivity property is not put by
hand and appears naturally in our framework,while it is often
broken in perturbative schemes. This nice behavior is likely
related to the fact that, at each time, the probability
distribution P is well defined and all quantities are exactly
computed from this distribution. Thus, they follow from
physical particle distributions. This ensures that they do not
lead to theoretical inconsistencies (such as negative matter
densities or inconsistent higher-order correlations).
We find that, both for self-similar dynamics and the

realistic Λ-CDM cosmology, the equations of motion for
the displacement and velocity power spectra can be
integrated in terms of basic functions yðk; ηÞ that describe
the amount of damping. This reduction provides explicit
expressions that ensure the positivity discussed above and
also simplifies the computations.
Already at this Gaussian level, this approach improves

over the standard Zeldovich approximation. It generates a
self-truncation at high k, so that we obtain a finite
prediction even when the standard Zeldovich approxima-
tion does not exist, as for linear power spectra with a lot of
power at high k, PLðkÞ ∝ kn with n ≥ −1. It also improves
over the truncated Zeldovich approximation as the trunca-
tion is not put by hand and does not need to be fitted to
simulations. In a sense, this method obtains the best
Gaussian approximation to the gravitational dynamics, as
selected by the equations of motion.
We have first discussed the predictions obtained for self-

similar dynamics, to understand how the exponent n of the
linear power spectrum affects the results. Then, we have
considered the realistic Λ-CDM cosmology. There, the
qualitative features can be understood from the change with
redshift of the effective exponent n. The comparison with
numerical simulations shows that our results are probably
not competitive with other methods for the density power
spectrum on BAO scales, because of the failure to faithfully
recover the smooth amplification of the nonlinear power
spectrum. However, the damping of the BAOs is well
recovered and the method could be useful if one is able to
extract the oscillatory pattern from the data, in the spirit of
[60,71]. Alternatively, one can add a couple of free
nuisance parameters to the model to take care of this
smooth component. The agreement with simulations is
much better for the configuration-space correlation func-
tion. This is expected, as we use a Lagrangian approach and
the Zeldovich approximation is already known to signifi-
cantly improve over linear theory for these statistics. Our
prediction improves somewhat further over the Zeldovich
approximation and we obtain an accuracy to better than 2%
from BAO scales down to 7h−1 Mpc at z ≥ 0.35. Although
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some other methods may prove more accurate, the fact that
there is no free parameter to be marginalized over could
make this approach competitive in terms of constraining
power on cosmological scenarios. We leave such an
investigation for future works.
Thus, at this stage, the quantitative and practical results

of this model are rather modest. However, it was worth
performing a detailed investigation to check the power of
this Gaussian Ansatz, because it is both the simplest
realization of the more general method based on the
evolution of the distribution PðΨ; vÞ and a natural param-
eter-free extension of the Zeldovich approximation. In
particular, it is one of the few parameter-free and non-
perturbative analytic schemes that have been developed so
far, another one being the adhesion model [56] (although
one could consider its effective viscosity as a free parameter
that is simply set to zero). In few other approaches does the
self-damping of initial small-scale power appear from the
dynamics without being introduced by hand, through
explicit truncation or counterterms. Works in this direction
are [37], where there is an explicit truncation scheme but its
parameter is internally calibrated from the behavior of the
one-loop correction, or [75], where an effective viscosity is
explicitly added but may be estimated from the power on
nonlinear scales. Our approach does not involve such
explicit modifications.
As explained above, the automatic positivity of auto-

power spectra is also an encouraging sign. Unfortunately, to
go beyond these somewhat academic points and to provide
useful quantitative predictions, the results obtained in this
paper show that it will be necessary to go beyond the
Gaussian Ansatz. For instance, we noticed that on small
scales the probability distribution of the displacement
divergence χ should be strongly skewed, with a high peak
at finite positive values and a long tail toward negative
values. However, taking into account these features may be
a very difficult task. One possibility would be to include a
few low-order cumulants, such as the bispectrum, or to add
higher-order terms in the probability distribution itself. An
alternative would be to consider nonlinear functionals of
Gaussian fields. We plan to investigate such issues in future
studies.
At a time when numerical simulations are increasingly

efficient, analytic methods face strong challenges.
Nevertheless, they may still provide useful insight (as
shown by the better understanding of the damping of the
BAO peak by works in the last 15 years) and also help
understand the outcomes of less-studied alternative cos-
mologies (e.g., different models of dark matter or dark
energy, or modified-gravity scenarios) that have not been
studied in detail by simulations yet. In particular, scale-
dependent linear growing modes do not bring additional
complications to this formalism. Our model may also
provide estimates of the magnitude of the counterterms
introduced in Eulerian EFT schemes, as it computes non-
perturbative corrections.

A natural extension of this work would be to consider
redshift-space statistics. This will be addressed in a future
paper. Another generalization would be to model the large-
scale fluctuations of the intergalactic medium associated
with the Lyman-α forest. Indeed, they correspond to weakly
nonlinear fields that could be within the reach of analytic
methods. However, this would require additional parame-
ters, associated, for instance, with the effective equation of
state of the gas and its temperature. We plan to investigate
this issue in future works.
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APPENDIX A: EXPRESSIONS OF λðkÞ FOR
NUMERICAL COMPUTATIONS

For numerical computations, it is convenient to decom-
pose the last exponential in Eq. (59) over its large-q part
and the remainder as

λðkÞ ¼ λ0ðkÞ þ λ1ðkÞ; ðA1Þ

with

λ0ðkÞ¼
Z

dqdk0

ð2πÞ3
ðk0 ·kÞ2

ðk02þμ2Þk2 ðe
ik·q−1Þeik0·q−α∞k02 ðA2Þ

and

λ1ðkÞ ¼
Z

dqdk0

ð2πÞ3
ðk0 · kÞ2
k02k2

ðeik·q − 1Þeik0·q

× ½e−αðqÞk02−βðqÞk02ðk0·qÞ2=ðk0qÞ2 − e−α∞k02 �: ðA3Þ

In Eq. (A3) we have already taken the limit μ → 0, as it is
regular thanks to the vanishing of the last bracket for
k0 → 0. The integration over q gives at once for λ0

λ0ðkÞ ¼ e−α∞k2 ; ðA4Þ

where we took the limit μ → 0 at the end. For λ1, it is
convenient to take the angular average of the expression
(A3) over the direction Ω of k, taking advantage of the fact
that λ1ðkÞ does not depend on Ω. Using the property

Z
dΩ
4π

ðn · k2Þ2eik1n·q ¼ k22
3

�
j0ðk1qÞ þ j2ðk1qÞ

×

�
1 − 3

�
k2 · q
k2q

�
2
��

ðA5Þ

and integrating next over the angles of q and k0, we obtain
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λ1ðkÞ ¼
2

3π

Z
∞

0

dqdk0q2k02
Z

1

0

du cosðk0quÞ

× ½j0ðkqÞ þ j2ðkqÞð1 − 3u2Þ − 1�
× ½e−αk02−βk02u2 − e−α∞k02 �: ðA6Þ

Using the property [76]

Z
∞

0

dx cosðaxÞx2e−p2x2 ¼ ffiffiffi
π

p 2p2 − a2

8p5
e−a

2=ð4p2Þ; ðA7Þ

the integration over k0 yields

λ1ðkÞ ¼
1

12
ffiffiffi
π

p
Z

∞

0

dqq2
Z

1

0

du½j0ðkqÞ − 1þ j2ðkqÞ

× ð1 − 3u2Þ�
�
2αþ ð2β − q2Þu2
ðαþ βu2Þ5=2 e−q

2u2=½4ðαþβu2Þ�

−
2α∞ − q2u2

α5=2∞
e−q

2u2=ð4α∞Þ
	
: ðA8Þ

Changing variable from u to t ¼ q2u2=½4ðαþ βu2Þ�, we
can integrate over t most factors and we obtain

λ1ðkÞ¼
Z

∞

0

dq

�
j0ðkqÞ−1

6
ffiffiffi
π

p q2
�
e−q

2=½4ðαþβÞ�

α
ffiffiffiffiffiffiffiffiffiffi
αþβ

p −
e−q

2=ð4α∞Þ

α3=2∞

�

þj2ðkqÞ
�
2

q
Erf

�
q

2
ffiffiffiffiffiffiffiffiffiffi
αþβ

p
�
−
2

q
Erf

�
q

2
ffiffiffiffiffiffi
α∞

p
�

−
2e−q

2=½4ðαþβÞ�ffiffiffi
π

p ffiffiffiffiffiffiffiffiffiffi
αþβ

p
�
1þ ð2α−βÞq2

12αðαþβÞ
�
þ2e−q

2=ð4α∞Þffiffiffi
π

p ffiffiffiffiffiffi
α∞

p

×

�
1þ q2

6α∞

�
−

8βffiffiffi
π

p
q

Z
q2=½4ðαþβÞ�

0

dt
ð1−2tÞt3=2e−t

q2−4βt

�	
;

ðA9Þ

where ErfðxÞ ¼ 2ffiffi
π

p
R
x
0 dxe

−x2 is the error function. This can

also be written in terms of the complementary error
function, ErfcðxÞ ¼ 1 − ErfðxÞ ¼ 2ffiffi

π
p

R∞
x dxe−x

2

, as

λ1ðkÞ¼
Z

∞

0

dq

�
j0ðkqÞ−1

6
ffiffiffi
π

p q2
�
e−q

2=½4ðαþβÞ�

α
ffiffiffiffiffiffiffiffiffiffi
αþβ

p −
e−q

2=ð4α∞Þ

α3=2∞

�

þj2ðkqÞ
�
−
2

q
Erfc

�
q

2
ffiffiffiffiffiffiffiffiffiffi
αþβ

p
�
þ2

q
Erfc

�
q

2
ffiffiffiffiffiffi
α∞

p
�

−
2e−q

2=½4ðαþβÞ�ffiffiffi
π

p ffiffiffiffiffiffiffiffiffiffi
αþβ

p
�
1þ ð2α−βÞq2

12αðαþβÞ
�
þ2e−q

2=ð4α∞Þffiffiffi
π

p ffiffiffiffiffiffi
α∞

p

×

�
1þ q2

6α∞

�
−

8βffiffiffi
π

p
q

Z
q2=½4ðαþβÞ�

0

dt
ð1−2tÞt3=2e−t

q2−4βt

�	
:

ðA10Þ

From Eq. (A10), we can see that λ1ðkÞ ∝ k2 at low k, while
Eq. (A4) gives λ0 → 1. This gives the large-scale limit (67).
At large k, λ0ðkÞ vanishes while the factors in Eq. (A9)

associated with ½j0ðkqÞ − 1�, paired with the second term in
the following bracket, or with j2ðkqÞ go to a constant.
Then, Eq. (A9) is dominated by the factor ½j0ðkqÞ − 1�
associated with the first term in the following bracket.
Using the small-scale behaviors (63), we obtain Eq. (68).
For linear density fields with a lot of power on large

scales, where PLðkÞ grows at least as fast as 1=k for k → 0,
the variance α∞ is infinite. This occurs for the self-similar
case n ¼ −2 studied in Sec. VI C 2. Then, we still perform
the decomposition (A1) but α∞ is now an arbitrary
parameter that we take of order 1=k2NL. Indeed, the
decomposition (A1) is only used for numerical convenience
and the result λ ¼ λ0 þ λ1 does not depend on the choice of
α∞. We checked that our numerical result does not change
as we vary α∞ over 2 orders of magnitude. Then, all
expressions above still apply.

APPENDIX B: NUMERICAL COMPUTATION OF
THE DENSITY POWER SPECTRUM

1. Case where α∞ is finite

Following [16], for the numerical computation of the
density power spectrum (70), it is convenient to also use the
expression obtained by expanding the oscillating part of
the exponent in Eq. (70) [77]. Using the one-point variance
α∞ introduced in Eq. (61), this gives

PðkÞ ¼ e−α∞k2
Z

dq
ð2πÞ3 e

ik·q
X∞
n¼0

1

n!

×
�Z

dk0Pχχðk0Þ
ðk · k0Þ2

k04
eik

0·q
�
n

: ðB1Þ

In particular, the zeroth-order term vanishes for k ≠ 0 and
the linear and quadratic terms give

PðkÞ ¼ e−α∞k2 ½PχχðkÞ þ P22ðkÞ þ…�; ðB2Þ

where the dots stand for terms that are cubic or higher
powers in PχχðkÞ and

P22ðkÞ ¼
Z

dk1dk2δDðk1 þ k2 − kÞPχχðk1ÞPχχðk2Þ

×
ðk1 · kÞ2ðk2 · kÞ2

2k41k
4
2

: ðB3Þ

Then, we subtract the two terms of Eq. (B2) from the
expansion (72) to obtain
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PðkÞ¼e−α∞k2 ½PχχþP22�þe−α∞k2
Z

dq
2π2

q2

×

�
eðα∞−α−βÞk2X∞

l¼0

�
2βk
q

�
l
jlðkqÞ

−
�
1þðα∞−α−βÞk2þ1

2
ðα∞−α−βÞ2k4

�
j0ðkqÞ

− ½1þðα∞−α−βÞk2�2βk
q

j1ðkqÞ−
�
2βk
q

�
2

j2ðkqÞ
	
:

ðB4Þ

This ensures that the integral over q is regular and shows a
fast convergence at large q.
Here we assumed that α∞ is finite. In particular, β → 0

for q → ∞, so that higher orders in l in the series in
Eq. (B4) are strongly suppressed. This corresponds to the
power spectrum n ¼ 0, in the self-similar case studied in
Sec. VI C 1, and to the Λ-CDM cosmology studied in
Sec. VII.

2. Case n= − 2 where α∞ is infinite

When α∞ is infinite, as for the case n ¼ −2 studied in
Sec. VI C 2, we modify the approach leading to Eq. (B4).

Instead of subtracting a term e−α∞k2 ½Pχχ þ P22� from
expression (71), we simply subtract the Zeldovich power
spectrum (73), which has the same form except that the
nonlinear variances α and β are replaced by the linear-
theory variances αL and βL. For n ¼ −2, they are given by
Eq. (108). Thus, we write

PðkÞ ¼ PZðkÞ þ
Z

dq
2π2

q2
Z

1

0

dμ cosðkqμÞ½e−ðαþβμ2Þk2

− e−πð1þμ2Þk2q=16�: ðB5Þ

Integrating over the angle cosine μ as for Eq. (72), we
obtain

PðkÞ ¼ PZðkÞ þ
Z

dq
2π2

q2
X∞
l¼0

jlðkqÞ
�
e−ðαþβÞk2

�
2βk
q

�
l

− e−πk
2q=8

�
πk
8

�
l
�
: ðB6Þ

This again ensures fast numerical computations. The
Zeldovich power spectrum part PZðkÞ is easily computed
from the analytical expression (110).
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