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We study the dynamics of a spectator Higgs field which stochastically evolves during inflation onto near-
critical trajectories on the edge of a runaway instability. We show that its fluctuations do not produce
primordial black holes in sufficient abundance to be the dark matter, nor do they produce significant
second-order gravitational waves. First we show that the Higgs produces larger fluctuations on cosmic
microwave background scales than on primordial black hole (PBH) scales, itself a no go for a viable PBH
scenario. Then we track the superhorizon perturbations nonlinearly through reheating using the δN
formalism to show that they are not converted to large curvature fluctuations. Our conclusions hold
regardless of any fine-tuning of the Higgs field for both the Standard Model Higgs and Higgs potentials
modified to prevent unbounded runaway.
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I. INTRODUCTION

Bottom-up naturalness suggests that new physics should
appear at the TeV scale to stabilize the Higgs mass [1].
Unfortunately, no physics beyond the StandardModel (SM)
has yet been found by the LHC, nor haveweakly interacting
massive particles been found in dark matter direct detection
experiments.
If naturalness is abandoned as a guiding principle, then

there may be no new physics intervening before the Planck
scale. If this possibility is taken seriously, then the SM
exhibits the unusual property that the Higgs effective
potential turns over at large field values [2] and our
electroweak vacuum is metastable, with a lifetime longer
than the age of our Universe [3].
This near criticality of the Higgs has cosmological

consequences [4–7], and it may also be that cosmology
can help elucidate its origins and provide the solution to the
Higgs naturalness problem [8–10].
In particular, Ref. [11] proposed that Higgs criticality

could explain the existence of the dark matter within the
SM as primordial black holes (PBHs). Furthermore this
scenario provides a potential anthropic reason why the
Higgs should be near critical [12,13]. Here the Higgs field
is a spectator during inflation and not the inflaton itself if its
coupling to gravity is not large (see, e.g., [14–17]). Large
Higgs fluctuations are formed during inflation, and they are
potentially converted to large superhorizon curvature

perturbations after inflation due to Higgs criticality.
Once they reenter the horizon during radiation domination,
PBHs of horizon scale mass form from their gravitational
collapse (see Ref. [18] for a recent review) and in certain
specific mass ranges can comprise the entire dark matter
abundance [19,20].
To form PBHs in sufficient abundance to be the dark

matter, curvature perturbations must be amplified to ∼10−1

on small scales while not violating the ∼10−5 constraints on
cosmic microwave background (CMB) scales [21,22]. We
will focus in this paper on both these conditions and
carefully assess the viability of this scenario.
This paper is organized as follows: in Sec. II we provide

a general overview of the Higgs instability and the PBH
production mechanism; in Sec. III we compute the Higgs
power spectrum produced during inflation on all observa-
tionally relevant scales; in Sec. IV we track these Higgs
fluctuations nonlinearly through reheating to compute the
curvature fluctuations on which the PBH abundance
depends; and we summarize our results in Sec. V.
Throughout this paper, a prime denotes a derivative with

respect to the e-folds N, where N ¼ 0 marks the end of
inflation, and an overdot denotes a derivative with respect
to the conformal time η. We assume a spatially flat
background metric throughout and work in units in which
MPl ≡ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 1 unless otherwise specified.

II. HIGGS INSTABILITY MECHANISM

In this section, we review the general features of the
Higgs instability mechanism for producing PBH dark
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matter and the principles governing the spectrum of
perturbations it generates.
The Higgs field acts as a spectator during inflation,

which is driven by an inflaton field, but converts its
quantum fluctuations into curvature fluctuations once it
decays after inflation. If these quantum fluctuations are
amplified into large enough curvature fluctuations by the
Higgs instability, they will form PBHs when they reenter
the horizon in the radiation dominated epoch.
In particular, after inflation the spatial metric on a

uniform total energy density hypersurface,

gij ¼ a2e2ζδij; ð1Þ
possesses a curvature perturbation ζ that can be decom-
posed as

ζ ¼
�
1 −

ρ0h
ρ0tot

�
ζr þ

ρ0h
ρ0tot

ζh; ð2Þ

in linear theory. Here ζr is the curvature perturbation on
hypersurfaces of uniform energy density ρr of reheat
products from the inflaton, and ζh is the curvature pertur-
bation on hypersurfaces of uniform Higgs energy density
ρh. Here ρtot ≡ ρr þ ρh is the total energy density.
For this mechanism to succeed observationally, the

variance per logarithmic interval in k of the Fourier mode
function ζk,

Δ2
ζðkÞ≡ k3

2π2
jζkj2; ð3Þ

must be small on the large scales probed by anisotropies in
the CMB,

Δ2
ζðkCMBÞ ∼ 10−9; ð4Þ

while on small scales associated with primordial black
holes the power spectrum must reach

Δ2
ζðkPBHÞ ∼ 10−2; ð5Þ

so that enough regions are over the collapse threshold
ζc ∼ 1 to form PBHs in sufficient abundance to be the dark
matter [21,22]. Moreover, the large-scale modes should be
sourced predominantly by a single degree of freedom in
order to comply with isocurvature constraints from the
CMB. The working assumption for a successful model is
that inflaton perturbations lead to a ζ which dominates on
CMB scales while Higgs fluctuations produce one which
dominates on PBH scales. We use a superscript k to denote
relations that are exclusively in Fourier space as opposed to
real-space quantities or linear relations that apply to both.
Although the Higgs field h is a spectator during inflation,

the mechanism works by enhancing its impact on the total ζ
by exploiting the unstable, unbounded nature of the Higgs
potential VðhÞ at large field values h > hmax in the Standard

Model. In particular, the effective Higgs potential at field
values far larger than its electroweak vacuum expectation
value can be approximated as [6,12]

VðhÞ ¼ 1

4
λh4; ð6Þ

with λ ¼ λSM and

λSM ≃ −b ln
�

h2

h2max
ffiffiffi
e

p
�
; ð7Þ

where hmax is the location of the maximum of the Higgs
potential which separates the familiar metastable electro-
weak vacuum from the unstable region, and b controls the
flatness of the potential around the maximum. hmax and b
are computable given the parameters of the SM, and in this
work, we choose to fix them at representative values hmax ¼
4 × 1012 GeV and b ¼ 0.09=ð4πÞ2, corresponding to a top
quark mass Mt ≃ 172 GeV, following Refs. [11–13] to
facilitate comparisons. The Higgs instability exists for
Mt ≳ 171 GeV [8], which includes the range from the
most recent constraints by the Tevatron and the LHC [23–
26]. Here we have neglected an effective mass term for the
Higgs generically generated by a nonminimal Higgs
coupling to the Ricci scalar, since at the level expected
from quantum corrections it does not change the qualitative
features of the mechanism [12].
We show the potential just around its maximum in Fig. 1,

and across a wider range of scales in Fig. 2 on the unstable
side in order to illustrate the field values that will be crucial
to the Higgs instability phenomenology detailed in the
following sections. Specifically, for a representative choice
for the Hubble scale during inflation H ¼ 1012 GeV which
we employ throughout for illustration, the potential maxi-
mum is at

FIG. 1. Beyond the field value hmax, the Standard Model Higgs
effective potential turns over and decreases rapidly, with an
unbounded true vacuum of negative energy density. In the PBH
scenario, the spectator Higgs rolls down the unstable potential,
amplifying its stochastic field fluctuations.
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hmax ¼ 4H: ð8Þ

When h < hmax, the minimum corresponds to our familiar
electroweak vacuum, while for h > hmax, the potential
decreases and is unbounded from below.
On the unstable side of the potential, the Higgs at first

rolls slowly relative to the Hubble rate before accelerating
as it rolls down the instability. The location where the
Higgs’s roll in one e-fold becomes comparable to H=2π
defines the classical roll scale hcl, which we shall define
precisely in Sec. III. For our parameter choices, it lies at

hcl ≃ 8.3H: ð9Þ

At the scale kcl which crosses the horizon at Ncl ≡ NðhclÞ,
the power spectrum of ζh at horizon crossing becomes
order unity,

Δ2
ζh
ðkclÞ ∼ 1: ð10Þ

Our working assumption is that the classical-roll scale kcl
will be the one to produce primordial black holes,

kcl ¼ kPBH. We will show in Sec. III that this implies that
the Higgs is in fact on the unstable side of the potential
during all phases of inflation relevant for observation. In
particular, the CMB scales left the horizon during inflation
a few e-folds after our Hubble patch crossed the horizon,
which we will assume is 60 e-folds before the end of
inflation. At this time, the Higgs is on the unstable side of
the potential at

h60 ≃ 5.8H; ð11Þ

if we take the field value at the end of inflation to be

hend ≃ 1200H; ð12Þ

which we will see below is approximately the largest value
possible. This also leads to Ncl ∼ −20. If PBHs are
produced on that scale then they have a small massMPBH ≃
10−15 M⊙ at formation, and after mergers and accretion
could today lie in the region MPBH ≃ 10−12 M⊙ where all
the dark matter could be in the form of PBHs [19,20].
The Higgs continues to roll to larger field values until the

end of reheating when interactions with the thermal bath lift
the effective Higgs potential. If the Higgs lies within a
maximum rescuable distance hrescue,

hrescue ≃ 2400H; ð13Þ

which we compute in Sec. IV, then after inflation it rolls
safely back to the metastable electroweak vacuum, oscil-
lating in a roughly quadratic potential with a temperature-
dependent mass ∝ T ∝ 1=a until it decays to radiation on a
uniform Hubble surface.
The behavior of Higgs perturbations through reheating is

complicated. However, all relevant physical scales are at
this stage far outside the horizon. So long as a gradient
expansion holds, under which such perturbations can be
absorbed into an approximate Friedmann-Lemaître-
Robertson-Walker (FLRW) background for a local
observer, then the curvature field after horizon crossing
evolves locally, with no explicit scale dependence [27].
Therefore the Higgs contribution to the fully nonlinear
curvature field ζ on a uniform total density slice after the
Higgs decays is related to the curvature ζh on constant
Higgs slices on superhorizon scales during inflation by

ζjdecay ¼ RðζhÞ × ζhjinflation; ð14Þ

with all of the complicated physics of reheating absorbed
into a local remapping RðζhÞ. More generally, this local
remapping would also involve inflaton curvature fluctua-
tions but these are statistically independent and can be
calculated separately in the usual way. In linear theory, the
mapping becomes a simple rescaling factor

FIG. 2. Quartic coupling λ and e-folds N corresponding to the
Higgs field position h, with marked special values as computed in
Secs. III and IV: hmax, the maximum of the Higgs potential; h60,
its position 60 e-folds before the end of inflation; hcl, its classical
roll position; hend, its position at the end of inflation; hrescue,
beyond which the SM Higgs cannot be “rescued” by reheating so
that it rolls back and oscillates around the origin after inflation.
The beyond the SM (BSM) Higgs adds a coupled scalar of
suitable mass ms to eliminate the runaway instability.
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R≡ lim
ζh→0

RðζhÞ: ð15Þ

The power spectrum after Higgs decay is then related mode
by mode to the power spectrum during inflation in a scale-
independent fashion

Δ2
ζðkÞjdecay ¼ R2Δ2

ζh
ðkÞj

inflation
; ð16Þ

in which the number R encodes all of the details of
reheating.
It is therefore important to emphasize here that if the

Higgs instability mechanism is successful, such that Δ2
ζ ∼

10−2 on PBH scales after the Higgs decays, then in linear
theory R must reach at least 0.1 for the order unity Higgs
perturbations (10) to be converted to curvature perturba-
tions with the correct amplitude (5) to form sufficient PBHs
and the details of how this is achieved through reheating
and Higgs decay are irrelevant for the prediction of the
linear power spectrum on other scales. In particular, its
value on CMB scales depends solely on the inflationary
Δ2

ζh
ðkÞ. This form is controlled by the Higgs potential itself

and by the evolution of the Hubble rate during inflation.
Therefore, the viability with respect to CMB anisotropies of
the PBH formation scenarios introduced in the literature
[11–13], which all assume mode evolution can be calcu-
lated linearly through reheating, can be assessed independ-
ently of the details of the reheating model.
On the other hand, we shall see that the nonlinear nature

of the Higgs instability plays an important role in the
mapping between ζh and ζ in Eq. (14). Here, though the
mapping remains local in that a given value of ζhðx⃗Þ at a
given position x⃗ is mapped onto a specific value of ζðx⃗Þ,
Fourier modes no longer evolve independently. Instead, we
will compute the mapping using the nonlinear δN formal-
ism. This mapping does depend on the specifics of how
inflation ends, but is independent of physical scale. CMB
scale fluctuations are in principle calculable from the
spatial field ζhðx⃗Þ determined by modes that froze out
during inflation.
To illustrate these concepts, we make a few simplifying

assumptions about how inflation and reheating proceed. We
show in Sec. III that the most optimistic case for the
scenario occurs when H is effectively constant through
inflation [see Eq. (44)]. Therefore rather than introducing a
specific inflaton potential we assume that inflation occurs
at a fixed H and ends after an appropriate number of
e-foldings. The constant Hubble scale during inflation H
and the position hend of the Higgs at the end of inflation
then together control the number of e-folds between the
classical-roll scale hcl and the end of inflation, and therefore
they control the physical scales on which PBHs are formed.
We then assume that at the end of inflation, the inflaton

decays instantly into radiation and that the Higgs later also
suddenly decays into radiation, as in the model proposed in

Ref. [11]. Maximizing R in linear theory requires that the
position of the Higgs at the end of inflation, hend, is as close
as possible to the maximum rescuable distance hrescue. This
criticality requirement motivates the various choices of
scale in Eqs. (8)–(12), following Ref. [11]. Once hend is set
in this way, the value H ¼ 1012 GeV is chosen to give a
certain mass scale to PBHs by fixing Ncl ∼ −20.
However, evolving the Higgs on the unstable side of its

potential during inflation is dangerous, and the required
proximity of hend to hrescue aggravates the situation beyond
linear theory. Due to quantum fluctuations of the Higgs
during inflation, there are regions in which the local Higgs
value at the end of inflation exceeds the background value,
overshoots hrescue, and cannot be restored by reheating to
the metastable electroweak vacuum created thermally. Such
vacuum decay bubbles, with infinitely growing jρhj,
expand even after the end of inflation and eventually
engulf our current horizon. These quantum fluctuations
occur independently in the e120 causally disconnected
regions at Ncl ∼ −20 which make up our current horizon,
and therefore avoiding the vacuum decay bubbles requires
extreme fine-tuning [12]. In Sec. IV D, we will cast this
fine-tuning in terms of a breakdown in linear theory at the
end of inflation, and we will show using the nonlinear δN
formalism that fine-tuning away the vacuum decay bubbles
directly tunes away the PBH abundance.
Vacuum decay bubbles can be avoided by stabilizing the

Higgs at some large field value between hend and hrescue. By
adding a singlet heavy scalar of mass ms with appropriate
couplings to the theory, a threshold effect can be exploited
to lift the Higgs effective potential during inflation and
induce a new true minimum at h ∼ms, preventing
unbounded runaway [13,28]. For the purposes of this
mechanism this Higgs potential beyond the Standard
Model can be modeled as

λBSM ≃ λSM þ δλ

2

�
1þ tanh

�
h −ms

δ

��
; ð17Þ

such that for h ≪ ms the potential is as in the SM, given in
Eq. (7), while for h ≫ ms the potential is increased by
δλðh4=4Þ. The step height δλ should be such that the Higgs
potential is stabilized, the step position ms should be close
to hrescue, and the step width δ sufficiently narrow to not
interfere with hend. In Fig. 2, we plot this potential with the
representative choices fδλ;ms;δg¼f0.02;2000H;100Hg.
While the BSM potential does not suffer from vacuum
decay bubbles, it still experiences a breakdown in linearity
at the end of inflation. We will therefore also use the
nonlinear δN formalism to compute the conversion of ζh to
ζ in this case.
Despite this difference at the end of inflation, the SM and

BSM potentials are identical until large field values and
thereforeΔ2

ζh
during inflation is the same in both potentials.

Fluctuations at this stage can be locally remapped onto Δ2
ζ .
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For a successful PBH model, this remapping must still
achieveΔ2

ζ ∼ 10−2 in both cases. We will therefore focus on
the SM potential until we begin discussing nonlinear effects
at the end of inflation in Sec. IV.

III. INFLATIONARY HIGGS SPECTRUM

In this section, we compute the power spectrum of the
Higgs fluctuations from their production inside the horizon
through to a common epoch when all modes relevant for
observation are superhorizon in scale.
In Sec. III A, we present the equation of motion for the

Higgs and describe the local competition between stochas-
tic kicks and classical roll which governs its evolution. In
Sec. III B, we argue that a well-defined background for the
Higgs exists during the inflationary epochs relevant for
observations, and that Higgs fluctuations during inflation
can be computed by linearizing around this background
mode by mode. In Sec. III C, we follow this procedure and
compute the Higgs power spectrum during inflation at all
scales relevant for observations, regarding the Higgs field
as a spectator and hence dropping metric perturbations. In
Appendix A, we show that our results are consistent with
the creation of our background by superhorizon stochastic
kicks. In Appendix B we discuss the role of metric
perturbations and nonadiabatic pressure in the evolution
of Higgs fluctuations.
Combined, these argumentswill show that during inflation

the Higgs power spectrum at CMB scales is larger than the
Higgs power spectrum at the primordial black hole scales

Δ2
ζh
ðkCMBÞ > Δ2

ζh
ðkPBHÞ: ð18Þ

After the conversion of these superhorizon Higgs fluc-
tuations during inflation into curvature fluctuations after
inflation through Eq. (14), this leads to

Δ2
ζðkCMBÞ > Δ2

ζðkPBHÞ; ð19Þ

in linear theory. Accounting for nonlinearity, we shall see
that a similar relation between the scales holds as long as
the mapping between the Higgs and curvature fluctuations
is local. Therefore the first conclusion of the present paper
is that in the Higgs vacuum instability scenario, a large
amplitude of the power spectrum on small scales generating
PBHs is ruled out by the CMB normalization. Conversely,
if one chooses a different set of parameters in this scenario
in order to satisfy the CMB normalization, one ends up
with a small-scale power spectrum of at most Oð10−9Þ
which fails to form PBHs.

A. Classical roll vs stochastic kicks

The equation of motion for the position- and time-
dependent Higgs field hðx⃗; NÞ is the Klein-Gordon equation

□hðx⃗; NÞ ¼ ∂V
∂h

����
hðx⃗;NÞ

≡ V;hjhðx⃗;NÞ; ð20Þ

where here and throughout we denote partial derivativeswith
comma subscripts for compactness.
An important scale in this equation is the classical-roll

scale hcl, defined as follows. Every e-fold, the potential
derivative leads hðx⃗; NÞ to roll by

Δh ≃ −
1

3H2
V;hjhðx⃗;NÞ: ð21Þ

Meanwhile, if one splits the field into a piece averaged on
scales larger than a fixed proper distance ∼1=H and small
scale modes which continually cross the averaging scale,
the small scale modes can be viewed as providing a local
stochastic noise term to the equation for the coarse-grained
superhorizon field [29,30]. The rms of this noise term for
each e-fold is

hΔh2i12 ≃ H
2π

: ð22Þ

In the language of perturbation theory, this is the per e-fold
rms of the free field fluctuation δh and leads to a stochastic
behavior of hðx⃗; NÞ. There are no subtleties involved in
using N as a time coordinate since the number of e-folds is
not a stochastic quantity so long as the Higgs remains a
spectator.
The location hcl in the potential where the roll contri-

bution and the stochastic contribution are equal,

−
1

3H2
V;hjhcl ¼

H
2π

; ð23Þ

defines the “classical-roll” scale hcl beyond which the
classical term dominates the evolution of hðx⃗; NÞ. We show
this scale in Fig. 2, where it lies at hcl ≃ 8.3H.
The classical-roll scale is important because in slow roll,

Higgs modes which cross the horizon when the background
satisfies Eq. (23) generically have a large power spectrum.
In particular, the Higgs power spectrum at the scale kcl
which crosses the horizon at Ncl ¼ NðhclÞ is order 1 at
horizon crossing,

Δ2
ζh
ðkclÞ ∼

hΔh2i
ðΔhÞ2 ∼ 1: ð24Þ

If these Higgs fluctuations are converted to large curvature
fluctuations, they can satisfy the requirements of Sec. II
such that kcl ¼ kPBH.

B. Background and linearization

We split hðx⃗; NÞ equation into a background and
perturbations
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hðx⃗; NÞ ¼ hðNÞ þ δhðx⃗; NÞ: ð25Þ

Here we define the background to be the part of the field
representing the spatial average over our Hubble patch.
Therefore at N ∼ −60, the spatial average for the pertur-
bation vanishes, hδhðx⃗;−60Þi ¼ 0. The fluctuations are
then generated by kicks from quantum fluctuations
at N > −60.
To evolve the Higgs field under Eq. (20) we need to

evaluate its position on the potential after N ¼ −60, as
established by its classical roll or quantum kicks. To do this,
we need to establish whether the perturbations δhðx⃗; NÞ are
linear around the background hðNÞ.
For the mechanism to work, there should be a well-

defined classical roll to the Higgs field at Ncl, and we can
linearize the Higgs fluctuations at that epoch as usual
[11,12]. Between −60≲ N ≲ Ncl, there is a competition
between the local stochastic kicks and the bulk classical
roll, and we need to check whether the kicks destabilize the
average field in our Hubble patch.
In linear theory, stochastic kicks at the same x⃗ but

subsequent times evolve independently from each other. In
particular, the potential term in the Klein-Gordon equation
controls their interactions. When the Higgs is a spectator
field, and we can expand this term around the homo-
geneous piece as

V;hjhðx⃗;NÞ ¼ V;hjhðNÞ þ δhðx⃗; NÞV;hhjhðNÞ þ… ð26Þ

where the ellipsis contains terms higher order in δhðx⃗; NÞ.
If we neglect the higher-order terms, then each subsequent
kick evolves as a free field and, as previously mentioned,
has rms H=2π at horizon crossing. The higher-order terms
then are suppressed relative to the linear term by

1

2

V;hhh

V;hh

ffiffiffiffiffiffiffiffiffiffiffi
hδh2i

q
≃
1

2

V;hhh

V;hh

H
2π

; ð27Þ

in which we approximate all modes by their value at
horizon crossing, which is appropriate while both the
inflaton and the Higgs fields are slowly rolling. We plot
this quantity for the Standard Model Higgs potential in
Fig. 3 and show that it is less than 1 at all scales in the
unstable region.
Therefore, the distance traveled due to stochastic kicks

between N ¼ −60 and Ncl accumulates as a random walk.
For Ncl ¼ −20, they therefore lead to a displacement

jΔhjstochastic ¼
H
2π

×
ffiffiffiffiffi
40

p
≃H: ð28Þ

This is significantly less than the distance between the
classical-roll scale hcl ¼ 8.3H and the maximum of the
potential hmax ¼ 4H. This means that stochastic kicks do
not, over 40 e-folds, kick our horizon into the other side of

the potential. Therefore our whole Hubble volume was on
the unstable side of the potential when it crossed the
inflationary horizon at N ¼ −60.
Moreover, the total displacement from stochastic kicks

(28) is less than the amount the background field rolls in
these 40 e-folds as we shall now see. For a homogeneous
field hðNÞ, Eq. (20) becomes

h00 þ ð3 − ϵHÞh0 þ
V;h

H2
¼ 0; ð29Þ

where ϵH ¼ −H0=H is the first Hubble slow-roll parameter,
which is zero during the exact de Sitter inflation in our
fiducial model.
The initial conditions h60 and h060 for this equation

should be such that the Higgs reaches the desired field
position hend at the end of inflation close enough to hrescue
such that R is maximized. With one constraint and two
initial values, a range of h060 and h60 can lead to
hðN ¼ 0Þ ¼ hend. Assuming attractor initial conditions
for the Higgs, we choose

h060 ¼ −
1

ð3 − ϵHÞH2
V;hjh60 ; ð30Þ

making the initial field position given by Eq. (11)
h60 ≃ 5.8H, when hend is set by Eq. (12).
Therefore the classical roll from −60 to Ncl is

jΔhjroll ¼ jh60 − hclj ¼ 2.5H; ð31Þ

which is significantly larger than the stochastic displace-
ment (28) but is nonetheless safely on the unstable side of
the potential. This occurs despite the fact that each
stochastic kick is larger than the per e-fold roll because

FIG. 3. Interaction strength for modes of the typical horizon
crossing amplitude H=2π from (27). Since it is far less than 1 at
the relevant scales h60 and hcl, modes evolve independently and
the cumulative background roll (31) dominates over the stochas-
tic displacement (28). Linear perturbation theory holds until δh
grows much larger than H=2π, near hend (see Sec. IV D).
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the roll is coherent across our Hubble volume while the
kicks are random.
Therefore we have a consistent picture where if we begin

with an average field in our horizon volume around
h60 ∼ 5.8H, then our local background will reach hcl at
N ∼ −20, unspoiled by stochastic kicks. Between these
scales perturbations are linear, thanks to Fig. 3, and
subdominant over the background roll. Our background
will then continue to roll to hend, where the Higgs will be
uplifted. We plot this background in the lower panel of
Fig. 2. In Appendix A we show that this picture is
consistent with the creation of our background from
superhorizon stochastic fluctuations.
We can now use this background to solve for δhmode by

mode during inflation for all relevant observational scales
as in linear theory. This linearization depends on ignoring
the interaction of Higgs fluctuations rather than the full
machinery of linear perturbation theory for the metric and
the matter, and in particular its validity does not assume
jζhj ≪ 1. Higgs nonlinearities become important in the last
e-fold of inflation and beyond as the field fluctuations are
amplified by the Higgs instability. Such nonlinear effects
will affect the superhorizon CMB and PBH modes equally
as we shall show in Sec. IV.

C. Higgs power spectrum

The linearized Klein-Gordon equation for the Fourier
mode δhkðNÞ of δhðx⃗; NÞ in spatially flat gauge is

�
d2

dη2
þ 2

_a
a
d
dη

þ k2
�
δhk þ a2δVk

;h ≃ 0; ð32Þ

where δVk
;h ¼ V;hhδhk during inflation. Here we have

dropped metric perturbations, which are suppressed when
the Higgs is a spectator; we restore these in Appendix B for
completeness [see Eq. (B4)].
The Klein-Gordon equation can then be conveniently

expressed in terms of the auxiliary variable uk ≡ aδhk,

ük þ
�
k2 −

ä
a
þ a2V;hh

�
uk ¼ 0; ð33Þ

which holds at all orders of background and Higgs slow-
roll parameters. To order Oðϵ2HÞ andOðϵHηHÞ, where ηH is
the second Hubble roll parameter (see, e.g., Ref. [31]), but
fully general in terms of the Higgs roll, we can write

ük þ
�
k2 −

̈z
z

�
uk ¼ 0; ð34Þ

where

z≡H _h: ð35Þ
This equation, of the Mukhanov-Sasaki type, is conven-
iently solved in the variable s≡ ηend − η, the positive

decreasing conformal time to the end of inflation (see,
e.g., Refs. [32,33]).
First, let us focus on the evolution in the superhorizon

regime. In that limit, the analytic solution for the
Mukhanov-Sasaki equation (34) is given by

uk

z
¼ c0 þ c1

Z
dη
z2

; ð36Þ

where c0 and c1 are constants. So long as the second mode
is decaying, we therefore have that on superhorizon scales

δhk

h0
¼ c0H2 þOðϵH; ηHÞ: ð37Þ

In linear theory, the curvature perturbation on uniform
Higgs density slices is obtained by gauge transformation as

ζkh ¼ −
δρkh
ρ0h

≃ −
δhk

h0
; ð38Þ

where first the approximate equality indicates that when the
Higgs is slowly rolling, uniform Higgs density and uniform
Higgs field slicing coincide to order ϵH (see Appendix B).
More generally ζh is defined as the change in e-folds from a
spatially flat surface to a constant density Higgs surface.
This linear approximation holds so long as ρ00h=ρ

0
h
2δρh ≪ 1,

as it is here [see Eq. (61)].
Using the superhorizon evolution equation (37), we

therefore have that if H evolves during inflation, the
curvature on uniform Higgs density slices is not conserved
on superhorizon scales and in particular decays according to

ζkh
0

ζkh
¼ −2ϵH; ð39Þ

at leading order in ϵH. This estimate of superhorizon
evolution assumes only background slow roll.
This superhorizon evolution is due to a pressure pertur-

bation on uniform density slices for the Higgs, in other
words a nonadiabatic pressure, induced because the uni-
form Higgs density slicing is not a uniform Hubble slicing
when ϵH ≠ 0. We study this phenomenon in detail in
Appendix B. Conversely, if H is constant, then the fact
that the Higgs field evolves onto an attractor solution
implies that nonadiabatic stress vanishes thereafter and ζh
is conserved nonlinearly. In this case, much like single-field
slow-roll inflation, the Higgs field supplies the only clock
and field perturbations are equivalent to changing that clock
on the background trajectory.
Next, let us focus on the evolution from subhorizon

scales to the superhorizon regime. This evolution can be
tracked by solving the Mukhanov-Sasaki equation (34)
with Bunch-Davies initial conditions deep inside the
horizon
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ukðsÞ ¼ 1ffiffiffiffiffi
2k

p
�
1þ i

ks

�
eiks: ð40Þ

For analytic estimates, we can assume slow-roll evolution
of z, in which case we can take the de Sitter mode function
(40) to the superhorizon limit, and find that each field
fluctuation crosses the horizon with amplitude

δhk ≃
iHffiffiffiffiffiffiffi
2k3

p ; ð41Þ

and the field fluctuation power spectrum at that time is

Δ2
δhðkÞ ¼

k3

2π2
jδhkj2 ≃

�
H
2π

�
2

: ð42Þ

Using the gauge transformation equation (38) with the field
fluctuation equation (41) and the field velocity from the
slow-roll solution of Eq. (29), the curvature perturbation on
uniform Higgs density hypersurfaces at horizon crossing is

ζkhðηkÞ ≃ −
iHffiffiffiffiffiffiffi
2k3

p 1

h0

����
ηk

≃ −
iHffiffiffiffiffiffiffi
2k3

p ð3 − ϵHÞH2

−V;h

����
ηk

: ð43Þ

To lowest order in Higgs and background slow roll ηk is
chosen to be the epoch of horizon crossing kηk ¼ 1, but to
next order can be optimized to kηk ¼ exp ½7=3 − ln 2 − γE�,
with γE the Euler-Mascheroni constant [32,33].
We can now estimate the relative amplitude of Δ2

ζh
on

CMB and PBH scales. Choosing some comparison time η�
once both scales have exited the horizon but far enough
from the end of inflation that slow-roll parameters are still
small, we have

Δ2
ζh
ðkCMBÞ

Δ2
ζh
ðkPBHÞ

����
η�

≃
�
HPBH

HCMB

�
4 k3CMBjζkCMB

h j2ηk
k3PBHjζkPBHh j2ηk

≃
�
HCMB

HPBH

�
2
�
V;hjPBH
V;hjCMB

�
2

; ð44Þ

where we have used at horizon crossing the Higgs slow-roll
expression (43) and outside the horizon the Hubble slow-
roll expression (37). Thus in the generic situation where H
is decreasing and the Higgs rolls downhill, we find that
Δ2

ζh
ðkCMBÞ=Δ2

ζh
ðkPBHÞ > 1. The most optimistic case for

the scenario is therefore the one whereH is strictly constant
between the CMB and PBH scales, and it still results
in Δ2

ζh
ðkCMBÞ=Δ2

ζh
ðkPBHÞ > 1.

We show in Fig. 4 the Higgs power spectrum computed
by solving the Mukhanov-Sasaki equation exactly in the
optimistic case where H is constant between CMB and
classical-roll scales, evaluated at the convenient time η�

when all relevant modes have crossed the horizon. We
compare this exact solution to the slow-roll expression (43)
with the optimized freeze-out epoch. For decreasing H, the
ratio Δ2

ζh
ðkCMBÞ=Δ2

ζh
ðkPBHÞ would be larger than the one

estimated from Fig. 4.
These Higgs fluctuations at η� will be converted to total

curvature fluctuations after Higgs decay by the factor
RðζhÞ2 which we discuss in Sec. IV. The key is that this
mapping affects all mode contributions to ζh uniformly. For
example in linear theory R is a constant whose value must
be ∼0.1 for successful PBH formation at kPBH.
Equation (44) determines the total curvature power relative
to this scale. In particular, the power spectrum at CMB
scales is an order of magnitude larger than the power
spectrum at the classical-roll scale. It is simply a feature of
the Higgs potential that the field slope increases as the
Higgs goes farther into the unstable region, and therefore
that the Higgs fluctuation shrinks as k increases. Thus, a
model with Δ2

ζh
ðkCMBÞ=Δ2

ζh
ðkPBHÞ > 1 that forms PBHs at

kPBH will necessarily violate CMB constraints.
The results of this section hold equally for the SM and

BSM potentials. The difference between the two potentials
enters only into RðζhÞ, which converts these results into the
final curvature perturbation after Higgs decay. More gen-
erally as long as this mapping depends only on field
amplitude and not on k explicitly, PBHs cannot be formed
from theHiggs instabilitywithout violatingCMBconstraints.
In summary, we have shown that during inflation

Δ2
ζh
ðkCMBÞ > Δ2

ζh
ðkPBHÞ: ð45Þ

As we argued in Sec. II, the conversion of the inflationary
ζh to the final ζ depends only on the amplitude of ζh and

FIG. 4. The Higgs power spectrum during inflation computed
as described in Sec. III C on a uniform Higgs energy density slice
by exact solution of the Mukhanov-Sasaki equation (34) (solid
blue line) and by the optimized slow-roll approximation (43)
(dashed red line), at some time η� after the relevant modes have
crossed the horizon in the optimistic scenario whereH is constant
until η�. The Higgs power spectrum is larger on CMB scales than
on the classical-roll scales.
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thus all the information about reheating can be encoded in a
scale-independent function RðζhÞ.
This means that in linear theory, where R is a constant, if

primordial black holes are produced on small scales then on
large scales

Δ2
ζðkCMBÞ > Δ2

ζðkPBHÞ ≳ 10−2; ð46Þ

which is incompatible with measurements of the CMB.
Nonlinearly, when CMB and PBH modes cannot be

tracked independently through the final e-folding of infla-
tion and reheating, the Δ2

ζh
ðkÞ results in this section provide

the superhorizon initial conditions which can be mapped to
the final ζ. Given that this local mapping RðζhÞ does not
distinguish between Higgs fluctuations of different physi-
cal scales, we will argue in Sec. IV that even nonlinearly,
Higgs induced curvature fluctuations on CMB scales will
be larger than those on PBH scales.
We now study in Sec. IV the specific values taken by the

conversion function RðζhÞ itself. This will allow us to
determine whether or not the Higgs fluctuations computed
here can be transferred into large enough curvature pertur-
bations to form PBHs, regardless of the compatibility with
the CMB. Moreover, given that we have produced large
Higgs fluctuations on CMB scales, this will allow us to
determine under which conditions Higgs criticality is incom-
patible with the small curvature fluctuations observed in
the CMB.

IV. CURVATURE FLUCTUATIONS
FROM REHEATING

We now track the curvature perturbations ζh on uniform
Higgs density slices during inflation, computed in Sec. III,
through the end of inflation, reheating, and Higgs decay to
compute the final curvature perturbations ζ on uniform total
density hypersurfaces relevant for PBH formation.
In Sec. IVA, we discuss how the Higgs evolves near the

end of inflation and present the basic features of the
instantaneous reheating model proposed by Ref. [11].
In Sec. IV B, we discuss how to use the nonlinear δN

formalism to convert ζh to ζ for any local reheating
scenario, and we discuss jump conditions which much
be satisfied during instantaneous reheating. We also present
linearized δN formulas which yield results corresponding
to those of linear perturbation theory, allowing an important
cross-check of the computation.
In Sec. IV C, we follow the assumption of Refs. [11–

13,34] that linear theory holds through reheating and we
compute explicitly the conversion of the inflationary ζh to
the final ζ. We show that energy conservation at reheating,
neglected in previous works, prevents the model from
achieving the required R ¼ 0.1 for both the SM and BSM
potentials and thus PBH are not produced in sufficient
quantities to be the dark matter in linear theory.

In Sec. IV D we show that linear theory is in fact violated
at the end of inflation and we explicitly compute the full
nonlinear conversion RðζhÞ for the SM and BSM Higgs
effective potentials. We show that PBHs in sufficient
abundance to be the dark matter are never formed,
second-order gravitational waves are suppressed, and only
for a special class of criticality scenarios can observable
perturbations be produced on CMB scales.

A. Instantaneous reheating

As theHiggs travels farther and farther on the unstable side
of the SM potential, it rolls faster and faster and if inflation
never ended its energydensitywoulddiverge in finite time. In
Fig. 5, we show this ρh during this last phase of the instability
as a function of the number of e-folds. Of course inflation
does end and for our chosen example this occurs at N ¼ 0
and a field value hend in the background. In this case, N > 0
then shows how theHiggs energywould continue to evolve if
inflation did not end atN ¼ 0. This range aroundN ¼ 0will
also be useful when we consider perturbations that can be
ahead of or behind the background value.
As we can see, the fiducial position of the background

SM Higgs we have chosen is near critical. Its energy is
increasing rapidly and if inflation lasts much longer it will
gain sufficient energy such that it is no longer a spectator.
On this edge, the background Higgs field experiences the
same evolution in the SM and BSM cases by construction
(see Fig. 5).
Once inflation ends, the process of reheating transfers

the inflaton’s energy to radiation. The Higgs then no longer
evolves in vacuum and the Klein-Gordon equation becomes

FIG. 5. The (negative) Higgs energy density evolution during
inflation, with H ¼ const. N ¼ 0 corresponds to the end of
inflation for the background, and N > 0 shows how the Higgs
energy would evolve in local regions in advance of the back-
ground. The SM Higgs (dashed blue line) at N ¼ 0 is close to
saturating the rescue condition (53) (blue star). The BSM Higgs
(solid red line) hits a wall during inflation and therefore is always
rescued. Due to the Higgs attractor behavior, the exact value of
ζð0þÞ for any given local shift δN ¼ ζh can be read off
using Eq. (59).
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□h ¼ VT
;h; ð47Þ

where VT is the thermal effective potential in a bath of
temperature T [6],

VT ¼ V þ 1

2
M2

Th
2e−h=2πT; M2

T ≃ 0.12T2: ð48Þ

If reheating is instantaneous, as proposed by Ref. [11],
then the total energy is conserved across it,

ðρϕ þ ρhÞð0−Þ ¼ ðρr þ ρhÞð0þÞ: ð49Þ

The division of the total energy density after inflation
into a radiation piece ρr and a thermal component to the
Higgs ρh is somewhat arbitrary. Since to leading order in
ρh=ρtot, the curvature perturbation after the Higgs has
decayed depends only on the conservation of the total
energy, for convenience we choose to define ρr as a
separately conserved thermal piece obeying the equation
of motion

ρ0r ¼ −4ρr; ð50Þ
and the thermal bath temperature T is then

T ¼
�
30ρr
π2g�

�
1=4

; ð51Þ

where g� ¼ 106.75 is the number of degrees of freedom in
the Standard Model. Conservation of the total stress energy
along with the Higgs equation of motion (47) then imply
that the separately conserved Higgs energy is

ρh ≡ 1

2

_h2

a2
þ VT: ð52Þ

Changes in VT as the Higgs rolls down the effective
potential then provide kinetic energy for the field as if it
were a true potential energy.
Since 3H2ð0−Þ ¼ ðρϕ þ ρhÞð0−Þ, neglecting the Higgs’s

energy density contribution to H during inflation but
including it after entails a dynamically negligible
Oðρh=ρϕÞ ∼Oðρh=3H2Þ discontinuity in the Hubble rate
at the end of inflation Hend (see Fig. 5). On the other hand,
strict energy conservation (49) at reheating is important
because we will evaluate perturbations on constant density
surfaces.
After reheating, the thermal effective potential in

Eq. (47) will rescue the Higgs from the unbounded SM
minimum so long as

Max½h� < hrescue; ð53Þ

where Max½h� is the maximum displacement of the Higgs
field and hrescue is the peak of the thermal potential VT . Due

to the nonzero kinetic energy of the Higgs at the end of
inflation, Max½h� is larger than the field displacement at the
end of inflation hend. We mark the maximal point which
saturates this bound with a star in Fig. 5.
Neglecting the exponential term, we find that the peak of

the uplifted potential at reheating is

hð0Þrescue ¼ MTffiffiffiffiffiffiffiffiffiffi
jλSMj

p ; ð54Þ

a solution which can be iterated to account for the
exponential term, yielding

hð1Þrescue ¼ hð0Þrescuee−h
ð0Þ
rescue=4πT ∼ 1.6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HendMPl

p
; ð55Þ

where we have used jλj ∼ 0.007 and which with Hend ¼
1012 GeV evaluates to ∼2500H. The value of the uplifted
Higgs potential at this approximate maximum is

VTðhð1ÞrescueÞ ∼ 0.02H2
endM

2
Pl: ð56Þ

These scalings are in good agreement with the exact

calculation for hð0Þrescue=4πT ≪ 1 and they serve to highlight
the dependence of the results with parameter choices. For
our fiducial parameter set, the exact calculation yields
hrescue ≃ 2400Hend, VTðhrescueÞ ≃ 0.02H2

endM
2
Pl.

If the Higgs is rescued, then it oscillates in its uplifted
temperature-dependent potential, redshifting as radiation
on the cycle average up to corrections from the non-
quadratic components of its potential, until it decays on the
e-fold timescale on constant Hubble surfaces. The rescue
point is therefore relevant even for the BSM potential. In
our example shown in Fig. 5, we set the ms barrier close to
hrescue to maximize the instability while ensuring that the
field returns to the electroweak vacuum after reheating.
We now describe in Sec. IV B how to track perturbations

through the end of inflation and this instantaneous reheat-
ing epoch.

B. Nonlinear curvature evolution

The PBH abundance depends on the probability that the
local horizon-averaged density field exceeds some collapse
threshold δc. We approximate this by the Gaussian prob-
ability that the curvature on uniform total density slices ζ
lies above some threshold ζc. We therefore need to compute
ζ after the Higgs decays.
Nonlinearly in the Higgs field perturbations, the trans-

formation of the curvature on uniform Higgs density slicing
during inflation ζh to the curvature on uniform total density
slicing after inflation ζ can be performed in the δN
formalism [35–38], which allows us to evolve superhorizon
perturbations by counting the number of e-folds of expan-
sion from an initial flat slice at some convenient initial time
Ni to a uniform total density slice at a final time N,
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ζðN; x⃗Þ ¼ N ðραðNi; x⃗Þ; ρtotðNÞÞ − N̄ ðρ̄αðNiÞ; ρtotðNÞÞ;
ð57Þ

where N is the local number of e-folds of expansion from
the initial flat hypersurface atNi on which any fields α have
energy densities ραðNi; x⃗Þ ¼ ρ̄αðNiÞ þ δραðNi; x⃗Þ to a final
surface of uniform total density ρtotðNÞ, and N̄ is the
corresponding expansion of the unperturbed universe.
Using the separate universe assumption, N can be com-
puted in terms of background FLRW equations for a
universe with the labeled energy contents.
If we chose Ni to be some time during inflation when we

know the superhorizon density fluctuation δρh (or ζh) from
our computation in Sec. III, then since we are considering
only perturbations sourced by the Higgs we can make the
inflaton density at Ni implicit and keep only the depend-
ence on the initial δρh. We will perform this fully general
calculation in Sec. IV D.
To understand these results, it is also useful to have a

simple analytic approximation for the impact of reheating
given conditions just before reheating. In this case we can
set the initial time just after reheating at Ni ¼ 0þ. The
Higgs energy density is a small component of the total
energy budget, and therefore to leading order in ζ we can
evaluate the δN formula assuming that ρtot ∝ a−4 to find

ζð0þ; x⃗Þ ≃ 1

4
ln

�
ρtotð0þ; x⃗Þ
ρ̄totð0þÞ

�

≃
ρtotð0þ; x⃗Þ − ρ̄totð0þÞ

12H2
end

: ð58Þ

Conservation of energy at reheating (49) then implies the
N ¼ 0 jump condition

ζð0þ; x⃗Þ ¼ ρhð0−; x⃗Þ − ρ̄hð0−Þ
12H2

end

: ð59Þ

Note that this condition applies to nonlinear Higgs
density fluctuations jðρh − ρ̄hÞ=ρ̄hj ≫ 1 so long as
jðρh − ρ̄hÞ=ρ̄totj ≪ 1.
We can see from Eq. (59) that the postinflationary energy

partitioning chosen in Eq. (49) does not enter into the total
curvature just after reheating. Instead, ζð0þ; x⃗Þ is deter-
mined solely by energy conservation.
We can further simplify this condition by noting that to

the extent that H is constant during inflation, which we
have shown by Eq. (44) is the most optimistic scenario for
PBH production, the shift in e-folds to a constant Higgs
energy density δNh ¼ ζh is conserved nonlinearly.1

Therefore ρhð0−; x⃗Þ ¼ ρ̄hð−δNhÞ, with this Higgs density
computed as though inflation did not end at N ¼ 0 as in

Fig. 5. We can therefore read off ζð0þ; x⃗Þ for a given ζh
from ρ̄hðNÞ as

ζð0þ; x⃗Þ ¼ ρ̄hð−ζhÞ − ρ̄hð0−Þ
12H2

����
inf
; ð60Þ

where jinf denotes this convention of evaluating the back-
ground as if inflation never ends.
Before using these nonlinear formulas (57) and (60) in

Sec. IV D, we will in Sec. IV C perform the calculation
using linear perturbation theory. To validate the linear
theory calculations, below we derive linear approximations
to the δN formulas.
The full δN formula (57) can be linearized in δρhi ≡

δρhðNi; x⃗Þ to obtain

ζ ≃
∂N ðρhi ; ρtotÞ

∂ρhi
δρhi ≃ −

∂N ðρhi ; ρtotÞ
∂ρhi

ρ0hiζhi ; ð61Þ

where ρhi and the ρ0hi are the Higgs density and its
derivative at Ni and ζhi is the Higgs curvature at that time.
Likewise, a linear Taylor expansion of the jump condition
(60) is given by

ζð0þ; x⃗Þ ≃ −ζhð0−Þ ×
ρ̄0hð0−Þ
12H2

: ð62Þ

The ratio −ρ0hð0−Þ=12H2 is the rescaling factor Rð0þÞ if H
is constant through to the end of inflation.
As we shall see below, these linear δN formulas provide

an important point of contact between the nonlinear δN and
linear perturbation theory approaches.

C. Linear conversion

We now follow the assumption of Refs. [11–13,34] that
linear theory holds through reheating, and we show that
under this assumption primordial black holes cannot be the
dark matter.
While Higgs field values h and δh and their derivatives h0

and δh0 are all continuous through reheating, the Higgs
potential and its slope change instantaneously when the
Higgs potential is uplifted. Therefore the Higgs energy
density (52), its derivative

ρ0h ¼ −3
_h2

a2
− VT

;TT; ð63Þ

and its perturbation

δρh ¼
1

a2
_hδ _hþ VT

;hδhþ VT
;TδT ð64Þ

are not continuous with their values at N ¼ 0−. δT here is
any perturbation in the bath temperature correlated with the
Higgs, which we shall see is generically induced at

1If H evolves, the leading-order effect will be simply to shrink
the Higgs δNh.
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reheating. For simplicity, we have omitted here a contri-
bution to the perturbed energy density coming from the
metric lapse perturbation, which we restore in Appendix B
[see Eq. (B35)]. Its relative contribution is negligible.
The jump in ρ0h

Δ½ρ0h� ¼ −VT
;TT; ð65Þ

and in the energy density perturbation

Δ½δρh� ¼ δhðVT
;h − V;hÞ þ VT

;TδT; ð66Þ

imply that the curvature perturbation (38) on constant
Higgs energy density slices is discontinuous at reheating.
This instantaneous change in ζh is due to an instantaneous
source in the conservation equation from the interaction of
the Higgs with the thermal bath.
However, the instantaneous increase in the Higgs energy

density perturbation δρh does not come for free.
Conservation of energy, which we imposed at the level
of the background in Eq. (49), also holds locally. It implies
that the increase in the Higgs energy density is counter-
balanced by an induced perturbation in the radiation field

δρrð0þÞ ¼ −Δ½δρh�; ð67Þ

and therefore that the Higgs and radiation energy densities
after uplift are nearly canceling. In other words, the uplift
creates a Higgs-radiation isocurvature fluctuation rather
than a net curvature fluctuation. To the extent that the Higgs
fluctuation then redshifts like radiation, the isocurvature
mode does not subsequently contribute to the curvature
fluctuation.
The conserved curvature on uniform radiation density

slices which corresponds to this induced radiation pertur-
bation is

ζr ¼ −
δρr
ρ0r

¼ δT
T

; ð68Þ

and solving for the radiation perturbation (67) using the
jump in Higgs energy (66) and Eq. (68), we find

δρrð0þÞ ¼ −δhðVT
;h − V;hÞ

�
1 − VT

;T
T
ρ0r

�
−1
: ð69Þ

This induced radiation perturbation comes from the direct
interaction of the Higgs with the radiation during the
thermal uplift. It is distinct from radiation perturbations
corresponding to intrinsic inflaton fluctuations, which are
uncorrelated and can be computed separately, or to inflaton
perturbations produced by the gravitational influence
of the Higgs perturbations during inflation discussed in
Appendix B, which are suppressed.

This radiation perturbation was omitted in Refs. [11–
13,34], though in fact its role in conserving total energy has
a large impact on the final curvature perturbation ζ. In
particular, on a constant total density surface, the curvature
perturbation is given by Eq. (2), reproduced here for
convenience,

ζ ¼
�
1 −

ρ0h
ρ0tot

�
ζr þ

ρ0h
ρ0tot

ζh: ð70Þ

Immediately after the uplift of the Higgs potential, ζ
therefore satisfies

ζð0þÞ ¼ ζhð0−Þ ×
ρ0hð0−Þ
ρ0totð0þÞ

≃ −ζhð0−Þ ×
ρ0hð0−Þ
12H2

end

; ð71Þ

by virtue of Eq. (67). This equation is nothing but the linear
jump condition (62), this time derived from linear pertur-
bation theory rather than the δN formalism.
To evolve ζðNÞ from its value at ζð0þÞ, we must solve

for the Higgs perturbations after uplift. Again the most
important aspect of this calculation is energy conservation.
Energy conservation guarantees that the cancellation
responsible for the suppression in the starting value
ζð0þÞ is maintained on a timescale short compared to an
e-fold.
Although during inflation we assumed the Higgs is a

spectator, after potential uplift we jointly solve the Higgs
background equation (29), now with V → VT , and the
radiation background equation (50), with the Hubble rate
determined by the Friedmann equation. For the perturba-
tions we solve the linearized Klein-Gordon equation (32)
for the Higgs, now with a perturbed potential

δVTk
;h ¼ VT

;hhδh
k þ VT

;hTδT
k; ð72Þ

which accounts for the effect of temperature perturbations.
Again the metric terms are negligible and we exploit here
that ζr is constant to avoid solving perturbation equations
for the radiation component; we shall show that both are
good approximations in Appendix B.
To quantify the importance of the induced radiation

perturbation (67), we chose hend such that the postinfla-
tionary Higgs contribution to the total Δ2

ζðkPBHÞ is ∼ð0.1Þ2.
This is the calculation performed in the literature which
suggests that primordial black holes can be formed at the
classical-roll scale. We then add the induced radiation
contribution and see how Δζ is affected.
We show these numerical results in Fig. 6. Here we plot

ΔζðkPBHÞ with a phase convention φ such that the analo-
gous superhorizon Higgs fluctuation
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Δζh ≡ eiφ
ffiffiffiffiffiffiffi
Δ2

ζh

q
ð73Þ

is negative real during inflation. Note that Δζh changes sign
at the potential uplift and becomes positive real. After
inflation, ΔζðkPBHÞ oscillates between negative and pos-
itive values but stays real.
It is immediately clear from Fig. 6 that the induced

radiation perturbation δρr suppresses the amplitude of the
total curvature ζ by orders of magnitude, making it much
more difficult to achieve the required R ¼ 0.1 in this
model. For the fiducial background, which was claimed
to produce R ¼ 0.1, by taking into account δρr we instead
have Rð0þÞ ≃ 3 × 10−4.
In Fig. 7, we validate our calculation of ΔζðkPBHÞ by also

computing ζ from the linearized δN equation (61). The δN
result relies solely on the behavior of the background

equations and thus is an independent check on the rather
involved perturbation theory calculations. The δN result
agrees closely with our perturbation theory calculation and
confirms that the induced radiation perturbation is crucial in
this mechanism. This test would fail if the radiation com-
pensation in Eq. (69) were omitted as in Refs. [11–13,34].
ζ is not conserved after reheating, and in particular it

oscillates due to the changing nonadiabatic pressure
induced as the Higgs oscillates. Even though oscillations
in δρh are relatively small, the initial near cancellation
between δρh and δρr make them prominent in ζ. Moreover,
deviations of the Higgs potential from a simple quadratic
with a temperature-dependent mass make these oscillations
grow in time. We discuss these effects in detail in
Appendix B. So long as the Higgs decay time, generally
of order an e-fold, is larger than the oscillation timescale, it
is the cycle-averaged ζ that matters. Because of the initial
outgoing trajectory of the Higgs, the instantaneous value of
jζj at N ¼ 0þ is always larger than the cycle average of the
first oscillations.
To the extent that the cycle-averaged Higgs energy

redshifts as radiation, the cycle-averaged value of ζ will
be conserved. However, the nonquadratic terms in the
Higgs potential also cause deviation from this behavior
which leads the near cancellation between the Higgs and
radiation energy densities gradually to break down.
In particular, Higgs perturbations redshift slightly slower

than radiation on the cycle average,2

hδρkhi ∝ a−4−3Δw; ð75Þ

with Δw≡ hwi − 1=3 ∼ −0.004. Therefore the cancella-
tion between the radiation piece and the Higgs piece
gradually becomes undone,

ζk ¼ −
δρkr þ δρkh

ρ0tot
∼ −

δρkr þ δρkh
ρ0r

¼ ζkr þ
δρkh
4ρr

; ð76Þ

and hζki grows gradually.
Once the Higgs piece dominates, the cycle average

becomes

hζkiðNÞ ∼ −
3

4

δρkhð0þÞ
ρrð0þÞ

Δw × N ∼ 10−3N: ð77Þ

Thus the curvature grows to Oð10−1Þ only on a timescale

FIG. 6. The curvature perturbation on uniform total energy
slices computed in linear perturbation theory with and without
inclusion of radiation perturbations required by energy conser-
vation at reheating. These induced perturbations suppress the
cycle-averaged curvature by several orders of magnitude (see
Sec. IV C).

FIG. 7. The linear perturbation theory calculation including
induced radiation fluctuations agrees well with the linearized δN
result based on Eq. (61), validating our result that energy
conservation suppresses curvature fluctuations (see Sec. IV C).

2The rate at which Higgs perturbations redshift (75) is different
from the rate at which the background Higgs redshifts,

hρhi ∝ a−4−3Δw̄; ð74Þ
with Δw̄ ∼ −0.002. This means that there is also internal non-
adiabatic stress in the Higgs field itself and so the cycle-averaged
ζkh would also evolve.
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ΔN ∼ 100 e-folds: ð78Þ

The Higgs must decay to radiation well before this, and
therefore the curvature perturbations cannot become large
enough in this scenario to form PBHs.
Note that the details of the postreheating evolution and in

particular the decancellation rate derived here do depend on
the radiation-Higgs split in (49) through the temperature
dependence of the thermal potential (48). However, con-
servation of total energy on the timescale of Higgs
oscillations imposes that the total curvature can grow only
on the e-fold timescale, and only due to deviations in the
redshifting rate of the different components. Therefore the
qualitative result that this growth will take many e-folds is
robust to our specific implementation here.
In summary, under the assumption that linear theory is

valid through reheating, the Higgs instability mechanism
falls far short of being able to form PBHs as the dark matter.
Models that were previously thought to achieve the
required R ¼ 0.1 in fact produce R≲ 10−3 once the
radiation density perturbations required by energy con-
servation at reheating are properly accounted for.

D. Nonlinear conversion

In Sec. IV C, we computed curvature fluctuations
assuming that the Higgs perturbations remain linear
through reheating. In fact, the Higgs instability induces a
breakdown of linear theory when the background position
of the Standard Model Higgs at the end of inflation hend is
close to the maximum rescue scale hrescue.
This breakdown can be seen immediately from Fig. 5.

With δN ¼ ζh ∼�1, a typical outwardly perturbed region of
the Standard Model Higgs field crosses hrescue during
inflation, gains exceedingly large negative energy, and will
inevitably backreact on the background trajectory. Reheating
will be disrupted, the perturbed Higgs will not be rescued
from the unbounded vacuum, and our Universe will be
destroyed. Even for smaller δN which do not crosshrescue, the
perturbedHiggs energy density is notwell represented by the
linear Taylor expansion (62) around the background value
due to the extremely rapid evolution of ρh.
In terms of field interactions, linear theory itself also

reveals its own breakdown. At the end of inflation,
an order unity ζh leads to a rms Higgs fluctuation of
roughly

δhend ≃ h0end ≃ −
1

3H2
λh3end; ð79Þ

where we have used the Higgs slow-roll approxi-
mation throughout. With hend ∼ 103H and jλj ∼ 10−2 we
have

δhend ≃ 107H; ð80Þ

which as we have seen is orders of magnitude larger than
the distance between hend ≃ 1200H and hrescue ≃ 2400H.
Moreover, the potential interaction ratio (27) is

1

2
δh

V;hhh

V;hh
≃
δh
4h

≃ 104 ≫ 1; ð81Þ

and thus field fluctuations interact. Nevertheless, this
breakdown has no effect on our previous computation of
Δ2

ζh
during inflation since ζh is conserved nonlinearly so

long as H ∼ const.
Though it was not phrased in terms of a breakdown of

linear theory, Ref. [12] noted that the Standard Model
Higgs is generally not rescued in this scenario. It was
argued in Ref. [13] that the background hend can be placed
near hrescue while multiverse and anthropic considerations
justify tuning the local Higgs field at the end of inflation
such that Max½hðx⃗Þ� < hrescue everywhere. However,
tuning δhðx⃗Þ at the end of inflation is equivalent to
tuning δN ¼ ζh to be small at the end of inflation and
so it directly tunes away the ability to form PBHs as we
shall now show.
In Fig. 8 we show ζð0þÞ as a function of ζh as computed

using the nonlinear δN formalism using Eq. (60) and Fig. 5.
Linear theory holds for small enough inflationary
jζhj≲ 10−3, but breaks down for perturbations of the
typical amplitude produced during inflation.
Large inward perturbations away from the instability,

shown on the left-hand side of Fig. 8, saturate to a constant
ζð0þÞ that is independent of ζh. These uphill kicks produce
a local Higgs energy density at N ¼ 0− that has a much
smaller magnitude than its background value as can be seen
in Fig. 5. Using Eq. (59), the left-hand side saturation can
therefore be written as

ζinSMð0þÞ ¼
−ρ̄hð0−Þ
12H2

≃þ1.4 × 10−6; ð82Þ

which we show as a horizontal dashed line on the left-hand
side in Fig. 8.
Outward perturbations of the SM Higgs toward the

instability, shown on the right-hand side of Fig. 8, are
enhanced relative to linear theory. This is because the
amplitude of the energy density of the Higgs shown in
Fig. 5 grows much faster than expected from a linear
approximation. The largest outward perturbations that
satisfy the rescue condition (53) produce a curvature

ζoutSMð0þÞ ¼
ρhðhrescueÞ − ρ̄hð0−Þ

12H2
≃ −2.7 × 10−6: ð83Þ

Despite the enhancement of the Higgs perturbation
relative to linear theory, ζoutSM evolves after inflation much
like the linear theory ζ computed in Sec. IV C. The cycle
average of ζoutSMðNÞ is smaller than ζoutSMð0þÞ. So long as the
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Higgs redshifts like radiation after inflation, this value is
then conserved. Nonlinear evolution does not change the
conclusion of linear theory on PBHs with the SM potential.
So far in this nonlinear calculation we have kept the

background trajectory of the Higgs fixed. We might wonder
whether a different background Higgs trajectory, at fixed
H, can achieve a larger value for the saturating ζ. Moving
the background away from the instability suppresses
ρ̄hð0−Þ, and so the largest curvature perturbation which
can be produced in the SM, maximized over the choice of
background trajectory, is

ζmax
SM ð0þÞ ¼ ζoutSMð0þÞ − ζinSMð0þÞ ≃ −4.1 × 10−6; ð84Þ

which is still insufficient to form PBHs. Therefore since ζ is
uniquely determined by ζh in this way, anthropically tuning
away ζhðx⃗Þ or setting it to the edge of rescuability forbids
the Standard Model Higgs from forming PBHs in sufficient
abundance to be the dark matter.
Reference [13] proposed that the mechanism could

function with a BSM potential derived from the addition

of a massive scalar as detailed in Sec. II. The massive scalar
adds a wall in the potential between the field value where
the background Higgs ends inflation hend and the maximum
rescuable point hrescue, preventing the local Higgs from
reaching parts of the potential from which it cannot be
rescued by thermal uplift at reheating.
When CMB and PBH modes cross the horizon, the BSM

potential behaves like the SM potential and as we have seen
in Sec. III this means that it generates larger inflationary ζh
perturbations on CMB scales than on PBH scales. In
addition, so long as the background trajectory never
encounters the wall, this model behaves like the SM in
linear theory and yields R ≪ 0.1 as shown in Sec. IV C.
However, whereas typical regions with outward field

fluctuations were not rescued in the SM, in the BSM case
such regions oscillate in a new minimum of the potential
during inflation and then can be safely rescued at reheating.
To evolve fluctuations through this highly nonlinear

process, we again use the nonlinear δN formalism
described in Sec. IV B, just as in the Standard Model case,
and the BSM results for ζð0þÞ are also shown in Fig. 8. We
compute results using the representative parameter set for
the BSM scalar described in Sec. II, and we will later show
how our results scale with different choices of model
parameters.
Inward perturbations of the BSM Higgs act just like

inward perturbations in the SM and thus again lead to the
same saturation

ζinBSMð0þÞ ¼ ζinSMð0þÞ ≃þ1.4 × 10−6: ð85Þ

Large outward Higgs perturbations hit the BSM potential
wall, become trapped in the new minimum at h ∼ms, lose
their kinetic energy, and end inflation with a potential
dominated Higgs with energy Vmin. This leads to a
saturating curvature

ζoutBSMð0þÞ ¼
Vmin − ρ̄hð0−Þ

12H2
end

≃ −2.4 × 10−4; ð86Þ

which we show with a horizontal dashed line on the right-
hand side in Fig. 8. This value is still too small to form
enough PBHs to be the dark matter.
For perturbations which do not fully saturate this limit,

ζð0þÞ has a stepped behavior and Rð0þÞ an oscillatory one
as depicted in Fig. 8. These features correspond to the
energy density oscillations for the BSM Higgs seen in
Fig. 5, induced because the Higgs has large oscillations
around the potential minimum before settling on the e-fold
timescale. Note that the approximate equality of the linear
theory Rð0þÞ and the nonlinear Rð0þÞ corresponding to
jζhj ≃ 0.1 is a coincidence: changes to the background
position change the linear theory Rð0þÞ while leaving
Rð0þÞ on this brief plateau fixed.

FIG. 8. The nonlinear mapping of the inflationary ζh to the
postreheating ζð0þÞ ¼ RðζhÞj0þζh. Fluctuations outward, toward
the instability, correspond to−ζh > 0. The horizontal axis scale is
linear between�10−4 and logarithmic elsewhere. R deviates from
the linear theory value ≃3 × 10−4 for fluctuations larger than
about �10−3. The horizontal dashed lines indicate analytic
saturation values (85) and (86). For the SM Higgs, the maximal
ζ satisfying the rescue condition (53) is marked with a star. For
the BSM Higgs, ζ saturates to a maximum. Neither value is large
enough to form PBHs.
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Once more we might wonder if a different choice of
background trajectory could enhance the saturation value,
but in fact the maximum over background trajectories can
again be computed as

ζmax
BSMð0þÞ ¼ ζoutBSMð0þÞ − ζinBSMð0þÞ ≃ ζoutBSMð0þÞ; ð87Þ

and therefore PBHs cannot be formed for our fiducial BSM
potential no matter the position of the background or the
size of initial fluctuation.
Note that so far we have only computed ζð0þÞ for BSM.

We should check whether ζ evolves significantly after
N ¼ 0þ. We do so again with the δN formalism, using the
full Eq. (57). Since inward fluctuations lead to a negligible
ζð0þÞ, we can select a typical outward field fluctuation with
ζhðx⃗Þ ¼ ΔζhðkPBHÞ ≃ −1 as an example.
We show this case in Fig. 9. As expected from Fig. 8, the

nonlinearly evolved ζ is small, comparable in amplitude to
the linear ζð0þÞ but not in its evolution. In fact ζ evolves
negligibly after N ¼ 0þ and we can robustly conclude that
PBHs are generically not formed nonlinearly in this case.
This lack of nonlinear evolution can be explained by the

difference in the impact of uplift on the perturbations. In
linear theory the small amplitude of ζ resulted from large
cancellations between the Higgs and radiation perturba-
tions due to energy conservation and the large impact of
uplift. Nonlinearly the impact of uplift is much smaller,
bounded by the BSM modification, and so the Higgs
energy density fluctuations after reheating are no longer
as dominated by the uplift contribution. In particular,

ρhð0þ; x⃗Þ − ρ̄hð0þÞ
ρhð0−; x⃗Þ − ρ̄hð0−Þ

≪
δρhð0þÞ
δρhð0−Þ

����
linear

; ð88Þ

where the right-hand side is in linear theory. Therefore the
cancellation with radiation is less dramatic than in linear

theory. As discussed in Sec. IV C, the cancellation and
subsequent decancellation are responsible for the linear
theory oscillations and slow secular drift (77), and therefore
all these effects are suppressed in the nonlinear case. For
the same reason, the details of the split of the total energy
density into Higgs and radiation pieces are also less
important for the nonlinear curvature. Our nonlinear results
therefore essentially depend only on energy conservation
during reheating.
Finally, the fiducial BSM potential used to compute the

results of Fig. 8 was constructed according to the speci-
fications of Ref. [13]: it uplifts the Standard Model
potential somewhere between hend and hrescue. We might
wonder whether PBHs could be formed by optimizing the
position of the uplift so that it as close as possible to hrescue,
maximizing the criticality of the scenario.
The maximum position of ms will be just before

hrescue. This leads to a maximum curvature for this entire
scenario of

Max½ζmax
BSM� ¼

VðhrescueÞ
12H2

end

: ð89Þ

Using the approximate maximum rescuable field value (55)
and λ ¼ λSM ∼ −0.007, we have

Vðhð1ÞrescueÞ ¼ 1

4
λSMðhð1ÞrescueÞ4 ¼ −0.012H2

end; ð90Þ

which yields

ζmax
BSM ≃ −1.0 × 10−3; ð91Þ

which depends on H only through the logarithmic evolu-
tion of λSM evaluated at hrescue. This estimate is in good
agreement with the computation using the exact value of
hrescue which yields ζmax

BSM ¼ −8.2 × 10−4.
Therefore no matter the size of inflationary Higgs

perturbations, the position of the background Higgs, the
SM or BSM nature of the Higgs potential, the position of
the BSM wall, or the Hubble rate, this mechanism does not
produce perturbations large enough to form PBHs in
sufficient abundance to be the dark matter.
Moreover, the largest possible curvature perturbations

produced by this model, Eq. (91), are so small that the
second-order gravitational waves predicted by Ref. [34]
will be undetectable with LISA.
We can also ask what happens to CMB scale fluctuations

nonlinearly in this model. We showed in Sec. III that during
inflation Δ2

ζh
ðkCMBÞ > Δ2

ζh
ðkPBHÞ. In Fig. 10, we show the

effect of the highly nonlinear local transformation of ζh to ζ
shown for the BSM potential in Fig. 8 on a cartoon
realization of the curvature field on a constant Higgs
density surface during inflation.

FIG. 9. Curvature evolution after reheating. The BSM non-
linear δN result for the local ζðx⃗Þ, from an example inflationary
ζhðx⃗Þ ¼ ΔζhðkPBHÞ, is compared to the linear theory approxima-
tion ΔζðkPBHÞ of Fig. 7. The nonlinear evolution of ζ after
reheating is too small to form PBHs (see Sec. IV D).
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For visualization purposes, we have generated two
modes apart by a factor of only 20 in scale rather than
the ∼35 e-folds which separate the CMB and PBH modes.
We see that fluctuations on the long-wavelength scales
cause a saturation of the short-wavelength fluctuations, and
therefore fully nonlinearly we have that perturbations are
larger on long wavelengths than on small wavelengths in
this model as long as this is true of the inflationary ζh itself.
Therefore if the reheating scenario is changed somehow to
achieve large PBH scale fluctuations, the CMB scale
fluctuations will still be larger than PBH modes unless
the functional form of the transformation shown in Fig. 8 is
radically altered.
Beyond the specific motivation of PBH dark matter

formation, we can now return to the question of whether
Higgs instability is compatible with the small curvature
fluctuations observed in the CMB.
For the SM Higgs, suppressing ζoutSM requires placing the

background hend far from hrescue. Specifically, since the
typical CMB scale perturbation has jζhj ∼ 5, hend should be
moved at least ∼5 e-folds backward along its trajectory.
For the BSM potential, with the scalar mass set near

hrescue to ensure that no regions ever fall into the unrescu-
able region, there are two situations which are compatible
with the CMB and one which is not.
If hend does not approach hrescue, then we return to the

linear theory, Standard Model result, where Higgs fluctua-
tions on CMB scales do not lead to large curvature
fluctuations since ρh=H2 decreases sharply in Fig. 5 and
predicts ζ through Eq. (60).
Conversely, if the Higgs travels far down the unstable

region early in inflation, the Higgs becomes uniform in the
potential well during inflation and thus leads to no

curvature perturbations after inflation. In this region as
well the Higgs instability is compatible with the CMB.
It is only in the region of parameter space near our

fiducial model, where the background Higgs hend
approaches but does not reach the minimum induced by
the BSM massive scalar near hrescue, that Higgs fluctuations
on CMB scales can be converted to curvature fluctuations
which are large enough to disturb the CMB.
To avoid this possibility completely, one should set the

massms of the scalar field to be slightly smaller than hrescue.
In particular to achieve jζj≲ 10−5, using Eqs. (89) and (91),
one requires

ms

hrescue
≲
�

1

100

�1
4 ≲ 1

3
: ð92Þ

In summary, it is only a special class of Higgs criticality
scenarios where the parameters are arranged so that the
regions of the Universe fluctuate near the edge of rescuable
instability which would be testable in the CMB and even
that class cannot form PBHs as the majority of the dark
matter, nor generate second-order gravitational waves at an
amplitude detectable with LISA.

V. CONCLUSIONS

We have definitively shown that the dark matter is not
composed exclusively of primordial black holes produced
by the collapse of density perturbations generated by a
spectator Higgs field during inflation.
While a spectatorHiggs field evolving on the unstable side

of its potential can generate large Higgs fluctuations on PBH
scales, even larger Higgs fluctuations are produced on CMB
scales. This result is obtained using linear perturbation theory
during inflation, whichwe show holds even though theCMB
modes cross the horizon at an epoch when the Higgs’s per
e-fold classical roll is smaller than its per e-fold stochastic
motion, because the stochasticmotion is incoherent and does
not backreact on the Higgs background.
Inflation ends well after all relevant modes have crossed

the horizon, and when reheating occurs the Higgs potential
is uplifted by the interaction between the Higgs and the
thermal bath. If the Higgs is rescued from the unstable
region by this thermal uplift then the Higgs redshifts as, and
eventually decays to, radiation. The CMB and PBH modes
are superhorizon at these epochs and evolve in the same
way through these processes. Therefore if the Higgs
fluctuations are converted into sufficiently large curvature
perturbations such that enough PBHs were produced to
explain the dark matter, CMB constraints would necessarily
be violated.
In fact though, a sufficient abundance of PBHs is never

produced and CMB constraints are only violated in cases of
near criticality. We first showed that this is true under the
assumption that linear theory holds through reheating,

FIG. 10. The real-space postinflationary curvature field ζ (red
line) produced by the nonlinear transformation of the inflationary
ζh (blue line). Perturbations on small scales are suppressed when
they occur where the long-wavelength λL mode has saturated the
curvature field, and therefore CMB scale perturbations are larger
than PBH scale perturbations fully nonlinearly in this mechanism
(see Sec. IV D).
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where we correct an error in local energy conservation
made in the literature.
We then showed that linear theory is violated because the

model requires the Higgs to be as close as possible to the
maximum value beyond which it cannot be rescued at
reheating. This criticality condition leads typical perturba-
tions to evolve nonlinearly, and using the nonlinear δN
formalism we also show that the Standard Model Higgs,
regardless of fine-tuning or anthropic arguments, can never
produce enough PBHs to be the dark matter. Modifying the
Higgs potential at large field values can eliminate fine-
tuning or anthropic issues, but cannot enhance curvature
perturbations significantly enough to explain the dark
matter.
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APPENDIX A: FORMATION OF INFLATIONARY
BACKGROUND BY SUPERHORIZON

STOCHASTIC MODES

In Sec. III B we showed that the Higgs field fluctuations
are linearizable around a slow-roll background when all
observationally relevant scales crossed the inflationary
horizon. In Sec. III C, we used that background to compute
Higgs fluctuations during inflation. Here, we will show that
such a background can be produced in the stochastic
inflation formalism, and that such a scenario yields results
consistent to those of Sec. III C.
In the stochastic picture, our background on the unstable

side of the potential is formed by Higgs fluctuations which
crossed the horizon before N ∼ −60. At horizon crossing,
each such fluctuation has an amplitude

δh ≃
H
2π

; ðA1Þ

and a velocity

δh0 ≃
H
2π

: ðA2Þ

Our background was formed when a cumulative series of
such stochastic kicks pushed our Hubble patch to the

unstable side of the barrier. We can reabsorb these early
stochastic kicks into a background field that is spatially
homogeneous on our Hubble patch, while subsequent
stochastic kicks lead to spatial perturbations on smaller
scales which we addressed in Sec. III.
When absorbed into a FLRW background in our Hubble

volume, a large-scale stochastic kick to the Higgs imparts a
velocity

Δv ¼ H
2π

; ðA3Þ

where v≡ dh=dN. The background then obeys the equa-
tion of motion (29) and when the potential derivative term
is negligible the velocity decays according to

d ln v
dN

¼ −3: ðA4Þ

However, the velocity of a superhorizon mode in the
absence of classical roll can be deduced from the de
Sitter mode function (40), which yields

d ln δh0

dN
¼ −2: ðA5Þ

The difference between these decay rates is a breaking of
the separate universe condition. If we reabsorb the super-
horizon stochastic kicks into a new FLRW background we
make a small error.
Nonetheless, the superhorizon velocity decay is expo-

nential and the field velocity is rapidly dominated
by classical roll. Only kicks which occurred just prior to
N ∼ −60 contribute to the velocity of our background. The
cumulative stochastic kicks therefore impart to our back-
ground an initial velocity

h060 ∼
H
2π

; ðA6Þ

where ∼ indicates a multiplicative factor of order unity. As
described in Sec. III B, kicks after N ¼ −60 do not back-
react on the background and we treat those as linear
perturbations. Therefore after h60 the initial velocity decays
until it becomes less important than the potential deriva-
tive term and our background has reached the attractor
solution.
The numerical solution of the FLRW background equa-

tion (29) with the initial condition equation (A6) shows that
the initial position of the field should be shifted by

Δh60 ∼ 0.04H ðA7Þ

away from the instability in order to achieve the same hend as
in the attractor initial velocity case. Therefore, the non-
attractor initial velocity (A6) has little impact on the position
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of our background. This is because the nonattractor phase
lasts just a small fraction of an e-fold, which can be seen as
follows. At h60, the Higgs potential slope is

−
1

3H2
V;hjh60 ∼

1

3
×

H
2π

; ðA8Þ

which means that from Eq. (A4) the initial velocity for the
FLRW background becomes less than the potential slope in
ðln 3Þ=3 ≃ 0.4 e-folds. If we had used the correct super-
horizon velocity decay equation (A5), then we would have
found that the initial velocity decays in ðln 3Þ=2 ≃ 0.5
e-folds. Therefore this error is not important for small-scale
modes that crossed the horizon after this epoch if we assume
that the background in our Hubble volume is established by
stochastic kicks.

APPENDIX B: SUPERHORIZON CURVATURE
EVOLUTION

In this Appendix, we discuss how and why curvature
perturbations can evolve on superhorizon scales both
during and after inflation in this scenario.
Local conservation of the stress energy of a noninteract-

ing fluid I

∇μTI
μν ¼ 0 ðB1Þ

yields at the perturbation level a continuity equation and a
Navier-Stokes equation. For our purposes, I here will either
denote the Higgs fluid or the total fluid, during or after
inflation.
The continuity equation on a surface of uniform energy

density of I leads to a conservation equation for the
curvature perturbation ζI on that surface. On superhorizon
scales, the conservation equation takes the simple form

ζI
0 ¼ −

δpNA
I

ρI þ pI
; ðB2Þ

where pI is the fluid pressure, ρI is the energy density, and
δpNA

I is the nonadiabatic pressure of the fluid (see, e.g.,
Ref. [39] for notation). The nonadiabatic pressure is the
pressure perturbation on a surface of uniform density of I.
The nonadiabatic pressure on the right-hand side of the

superhorizon conservation equation (B2) can be computed
either by directly studying local variations in pressure on a
uniform density surface or by subtracting the adiabatic
pressure through

δpNA
I ¼ δpI −

_pI

_ρI
δρI; ðB3Þ

where δpI and δρI are the pressure and density perturba-
tions of the fluid I in any gauge. The appearance of
nonadiabatic pressure is associated with having multiple

degrees of freedom or clocks so that the local density no
longer uniquely defines the local pressure. For example for
a scalar field, if the kinetic energy were not uniquely
specified by the potential energy, i.e., the field position,
then there is nonadiabatic stress. Likewise if I is a
composite of two systems with differing equations of state
then ρI does not uniquely define pI . We shall see that both
mechanisms are operative for the Higgs instability
calculation.
Meanwhile the left-hand side of the superhorizon con-

servation equation (B2), ζ0I can be computed by taking a
derivative of the curvature perturbation computed in the δN
approach (see Sec. IV B for an overview of δN), or by
taking a derivative of the curvature perturbation obtained
by transformation from the spatially flat gauge. For the
Higgs, the Fourier mode of the flat gauge field perturbation
satisfies the Klein-Gordon equation

�
d2

dη2
þ 2

_a
a
d
dη

þ k2
�
δhk þ a2δVk

;h

¼ ð _A − kBÞ _h − 2a2AV;h: ðB4Þ

The terms appearing on right-hand side of the Klein-
Gordon equation (B4) involve the k modes A of the lapse
perturbation and B of the scalar shift perturbation, in the
spatially flat gauge, which we neglected in Eq. (32). These
terms take different forms during and after inflation and we
shall provide them shortly. We drop their k superscripts for
compactness.
These different approaches allow us to better understand

why the curvature evolves on superhorizon scales during
inflation, at reheating, and after inflation, and they enable
us to check our calculations for self-consistency, including
that of various metric and field terms which will appear.

1. During inflation

During inflation, the Higgs has energy density

ρh ¼
1

2

_h2

a2
þ V; ðB5Þ

and pressure

ph ¼
1

2

_h2

a2
− V: ðB6Þ

In the flat gauge, the Fourier mode of the Higgs density
perturbation is

δρkh ¼
1

a2
ð _h _δhk − _h2AÞ þ V;hδhk; ðB7Þ

and the pressure perturbation is
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δpk
h ¼

1

a2
ð _h _δhk − _h2AÞ − V;hδhk: ðB8Þ

The metric terms in these equations and in the Klein-
Gordon equation (B4) satisfy the momentum constraint and
Hamiltonian (Poisson) constraint equations

_a
a
A ¼ 1

2
_hδhk þ 1

2
_ϕδϕk;

_a
a
kB ¼ 1

2
a2ðδρkh þ δρkϕÞ þ 3

�
_a
a

�
2

A: ðB9Þ

The Klein-Gordon equation (B4) then becomes

�
d2

dη2
þ 2

_a
a
d
dη

þ k2
�
δhk þ a2δVk

;h

¼ δhk
1

a2
d
dη

�
a3

_a
_h2
�
þ δϕk 1

a2
d
dη

�
a3

_a
_h _ϕ

�
: ðB10Þ

The metric terms contain contributions from the Higgs
perturbations themselves as well as inflaton perturbations
induced by the metric perturbations in the analogous Klein-
Gordon equation for the inflaton. Intrinsic inflaton fluctua-
tions should not be included here since they are uncorre-
lated with the Higgs and computed separately.
We have verified numerically that including these metric

terms on the right-hand side of the Klein-Gordon
equation (B10), including accounting for the induced
inflaton perturbations, has no significant effect on the
solution for δhk or δρkh, which justifies our treatment in
Sec. III C. This can be analytically seen as follows.
Given that the Klein-Gordon source to the field velocity

is the potential slope, we can estimate

h0 ∼ −c
V;h

3H2
; ðB11Þ

where c ¼ 1 for Higgs slow roll and an order unity factor
otherwise. Assuming that the fields in the background
evolve on the Hubble time or slower, the rhs of Eq. (B10)
can then be estimated as

�
d2

dη2
þ 2

_a
a
d
dη

þ k2
�
δhk þ a2δVk

;h

≃ δhk
c2a6

_a2
V2
;h − δϕkc

a3

_a
V;h

_ϕ: ðB12Þ

The δhk metric term on the rhs can be compared to the
nominal δVk

;h ¼ δhkV;hh term on the left-hand side. Using
the analytic form for the Higgs potential, V ¼ λh4=4, with λ
only logarithmically varying, shows that the metric δhk

term is suppressed relative to the nominal term as

c2V2
;h

3H2V;hh
≃
c2

9

λh4

H2
¼ 4c2

9

V
H2

≪ 1; ðB13Þ

where the last inequality follows because the Higgs is a
spectator during inflation.
The second metric term, proportional to δϕk, is further

suppressed relative to the δhk metric term because δϕk is
sourced by the Higgs metric term itself. In particular,
solving the inflaton Klein-Gordon equation with the Higgs
metric source we find

δϕk ∼ δhkh0ϕ0; ðB14Þ

and therefore in the Higgs Klein-Gordon equation the
inflaton metric term becomes suppressed relative to the
Higgs one by a factor

ϕ02 ∼ ϵH ≲ 1: ðB15Þ

Therefore all metric terms in the Klein-Gordon
equation (B10) for the Higgs can be neglected when the
Higgs is a spectator. This justifies the approximated Klein-
Gordon equation (32) and the subsequent analysis based on
it. As shown in Sec. III C, the curvature perturbation on
uniform Higgs density (UHD) surfaces during inflation
then obeys Eq. (39), i.e.,

ζkh
0

ζkh
¼ −2ϵH; ðB16Þ

on superhorizon scales at leading order in the Hubble slow-
roll parameter ϵH. This superhorizon evolution is important
for the estimation (44) of the relative amplitude of Δ2

ζh
on

CMB and PBH scales.
We can alternately derive the superhorizon evolution

(B16) by using the nonadiabatic pressure relation (B3) or
by using the δN formalism (61). Let us first focus on the
nonadiabatic pressure. On a UHD surface, the Higgs
energy density fluctuation vanishes

δðρhÞUHD ≡ 0 ¼ 1

2
δðH2h02ÞUHD þ V;hδðhÞUHD; ðB17Þ

where we have again assumed metric perturbations are
negligible. The nonadiabatic pressure (B3) is then

δpNA
h ≡ δðphÞUHD ¼ 1

2
δðH2h02ÞUHD − V;hδðhÞUHD

¼ δðH2h02ÞUHD: ðB18Þ

Plugging this nonadiabatic pressure into the superhorizon
conservation equation for ζh (B2) we have

ζ0h ¼ −
δðH2h02ÞUHD

H2h02
: ðB19Þ
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When the Higgs is slowly rolling, we can use (B11) with
c ¼ 1, i.e.,

h0 ≃ −
V;h

3H2
; ðB20Þ

and on uniform Higgs field slicing, the Higgs energy
density varies only if H itself varies. Conversely, ignoring
such higher-order corrections in δ lnH (see below), we see
that on UHD surfaces V;h is uniform and

ζ0h ¼ 2δðlnHÞUHD: ðB21Þ

Even though the Higgs is a spectator field, H varies on the
UHD slice because of shifts in the number of e-folds
induced by the gauge transformation from spatially flat
slicing δN ¼ ζh. We therefore can obtain the desired result

ζ0h
ζh

¼ 2
δ lnH
δN

¼ −2ϵH: ðB22Þ

Using the same logic, we can check our assumption that
uniform Higgs field (UHF) and UHD curvatures coincide
to leading order. Since

δðρÞUHF ¼
1

2
δðH2h02ÞUHF ¼ −

ϵH
3
ρ0hðζhÞUHF ðB23Þ

and the gauge transformation between UHF and UHD
involves an e-fold shift of δðρhÞUHF=ρ0h, we obtain

ðζhÞUHD ≃ ðζhÞUHF
�
1þ ϵH

3

�
: ðB24Þ

We therefore use UHF and UHD interchangeably during
inflation.
Finally, notice that these explanations make use of δN as

computed from gauge transformations. We can instead
compute it directly in the δN formalism using the position-
dependent number of e-folds N hðhi; hÞ to a UHF slice
through the UHF equivalent of Eq. (61),

ζh ¼
∂N hðhi; hÞ

∂hi δhi: ðB25Þ

To find N hðhi; hÞ, we can exploit that the local Higgs
evolves along the attractor according to Eq. (B20), and
because the Higgs is a spectator the Hubble rate has no
dependence on the Higgs. Working to linear order in the
number of e-foldsN − Ni, we expand the denominator 3H2

and we have

h0ðN; x⃗Þ ≃ −V;hjhðx⃗Þ
1

3H2
i ð1 − 2ϵHðN − NiÞÞ

; ðB26Þ

whereHi ≡HðNiÞ. For analytic purposes, we approximate
the potential as VðhÞ ¼ 1

4
λh4, with λ only logarithmically

dependent on h, solving this equation with hðNi; x⃗Þ ¼ hi to
find

N − Ni ¼
1

2ϵH

�
1 − e

−
3H2

i
ϵH

λ ð 1

h2
− 1

h2
i
Þ�

: ðB27Þ

This is the number of e-folds that takes to get from
some hi at time Ni to a field value h, and thus we have
computed

N − Ni ¼ N hðhi; hÞ: ðB28Þ

Taking a partial derivative with respect to hi to get the linear
ζh, we thus have

ζh ¼ δhi ×
3H2

h3i λ
e
−

3H2
i
ϵH
λ ð 1

h2
− 1

h2
i
Þ
: ðB29Þ

To obtain ζ0h we take a derivative with respect to the final
surface h and find

ζh
0

ζh
¼ h0

∂ ln ζh
∂h ¼ −2ϵH; ðB30Þ

at leading order in ϵH. h0 here is evaluated on the back-
ground. This gives a third way of understanding the
superhorizon evolution (B16).
We therefore have a consistent picture where the behav-

ior of the flat gauge perturbations, the nonadiabatic
pressure, and the δN formalism all consistently show that
ζh evolves and decays outside the horizon as H evolves
during inflation because a uniform Higgs slice is not a
uniform Hubble slice.

2. At reheating

At reheating, ζh is instantaneously boosted and changes
sign. This is due to an instantaneous source in the
conservation equation for the Higgs stress energy due to
the direct interaction between radiation and the Higgs,
rather than a nonadiabatic pressure. The sign change in
ζh ¼ −δρh=ρ0h at reheating occurs because a positive δh
fluctuation corresponds to a negative δρh fluctuation before
uplift but a positive one after [see Eq. (64)]. Note that in a
realistic inflation model where H varies smoothly, ζ would
be continuous at reheating.

3. After reheating

After reheating, the background Higgs Klein-Gordon
equation (29) and our choice of separating out the thermal
contributions into a separately conserved ρr and ρh leads to
the definition

PRIMORDIAL BLACK HOLES AS DARK MATTER THROUGH … PHYS. REV. D 101, 123523 (2020)

123523-21



ρh ≡ 1

2

_h2

a2
þ VT; ðB31Þ

which implies

ρ0h ¼ −3
_h2

a2
− VT

;TT; ðB32Þ

since the thermal bath redshifts as T ∝ a−1 to leading order
in ρh=ρtot. This last term in the right-hand side of (B32) was
omitted in Refs. [11,12].
This separation is equivalent to assuming that the non-

thermal displacement of the Higgs field from inflation
oscillates in the effective potential at constant temperature
and entropy on timescales short compared with the expan-
sion. However, as emphasized in the main text, our
conclusions follow from total energy conservation, which
holds independently of this split.
Local energy conservation implies the continuity

equation

ρ0h þ 3ðρh þ ph;effÞ ¼ 0; ðB33Þ

and by comparison to Eq. (B32), we define the effective
pressure for the Higgs as

ph;eff ¼
1

2

_h2

a2
− VT þ VT

;T
T
3
: ðB34Þ

This relation reflects the fact that the effective potential
represents thermal components which redshift with the
expansion like radiation.
Likewise the Higgs perturbations carry terms associated

with the redshifting of the radiation bath. The flat gauge
energy density perturbation is

δρkh ¼
1

a2
ð _hδ _hk − _h2AÞ þ VT

;hδh
k þ VT

;TδT
k; ðB35Þ

and the flat gauge effective pressure perturbation is

δpk
h;eff ¼

1

a2
ð _hδ _hk − _h2AÞ − VT

;hδh
k −

2

3
VT
;TδT

k

þ 1

3
ðVT

;TTTδT
k þ VT

;hTTδh
kÞ; ðB36Þ

where again the new terms involve the temperature
derivatives of VT . The lapse perturbation A is related to
the total momentum density by the Einstein constraint
equation

A ¼ 1

2

aH
k

ρtot þ ptot

H2
ðvtot − BÞ; ðB37Þ

where the total momentum density,

ðρtot þ ptotÞðvtot − BÞ ¼ k
a2

_hδhk þ 4

3
ρrðvr − BÞ; ðB38Þ

satisfies momentum conservation

�
d
dN

þ 4

�
ðρtot þ ptotÞðvtot − BÞ

¼ k
aH

½δpk
tot þ ðρtot þ ptotÞA�; ðB39Þ

with δpk
tot ¼ δpk

h;eff þ δpk
r and

δpk
r ¼

δρkr
3

¼ 4

3
ζkr ρr: ðB40Þ

The shift B is then determined from the lapse using the
trace-free Einstein equation

B0 þ 2B ¼ −
k
aH

A; ðB41Þ

from which we can also see that the expansion shear
−ðk=aHÞB is negligible for k=aH ≪ 1 which is required
for the δN construction of curvature fluctuations to hold
[27,40]. Therefore the initial value for A satisfies the
Hamiltonian constraint

A ¼ −
1

6

δρktot
H2

þ 1

3

k
aH

B ≃ −
1

6

δρktot
H2

; ðB42Þ

for k=aH ≪ 1.
We then solve the linearized Klein-Gordon equation (B4)

with Eq. (72) and the total momentum and metric equa-
tions above.
Note that this construction assumes any momentum

exchange between the Higgs and radiation fields implied
by the Klein-Gordon equation cancel to conserve the total
momentum. While this exchange itself may not be fully
accounted for by the additional effective potential terms,
above the horizon all momentum terms are negligible in
their impact on energy density fluctuations and

δρ0h þ 3ðδρh þ δph;effÞ ≃ 0 ðB43Þ

to leading order in k=aH. Similarly, though we do not
explicitly solve the analogous radiation continuity equation
since we assume ζkr is constant, we have validated that
assumption by checking that its momentum source is
negligible above the horizon. Moreover, we have also
checked numerically that the lapse and shift perturbations
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have no significant impact on the evolution of δhk or on the
final ζ for superhorizon modes. This calculation validates
the assumptions in the main text.
After solving the Higgs background and perturbation

equations, as shown in Sec. IV C, we find that the curva-
ture perturbation ζ evolves outside the horizon after
inflation, as shown in Figs. 6–9. This occurs due to a
nonadiabatic pressure on a surface of uniform total energy
density ρtot,

δpNA;k
tot ¼ δpk

tot −
_ptot

_ρtot
δρktot; ðB44Þ

where all quantities are sums of the Higgs and radiation
components.
In Sec. IV C, we saw that ζ oscillates within each Higgs

cycle. The total density perturbation has predominantly
canceling components while the adiabatic sound speed
_ptot=_ρtot oscillates only fractionally around 1=3. The

nonadiabatic pressure is then dominated by the pressure
perturbations on the flat slice, with an oscillatory contri-
bution from the Higgs, explaining the oscillation in ζ. The
oscillations in ζ increase in amplitude over time, because of
the small anharmonic terms in the potential. Note that
curvature oscillations should appear in other related con-
texts, e.g., the curvaton scenario [41], though they are
usually averaged over.
Likewise on the cycle average, at first order the radiation

pressure perturbation cancels the Higgs pressure perturba-
tion and ζ is constant. However, there is a secular drift to ζ
induced by a small noncanceling piece to the cycle-
averaged total pressure perturbation. This piece decays
as ðρtot þ ptotÞ, inducing a constant secular contribution to
ζ0 and therefore the small linear drift in ζ which we
discussed in Sec. IV C. This is the usual entropy fluctuation
mechanism to convert isocurvature to curvature fluctua-
tions through a change in the equation of state of the
components [41,42], applied here to the Higgs field.
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