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An old question surrounding bouncing models concerns their stability under vector perturbations.
Considering perfect fluids or scalar fields, vector perturbations evolve kinematically as a−2, where a is the
scale factor. Consequently, a definite answer concerning the bounce stability depends on an arbitrary
constant, therefore, there is no definitive answer. In this paper, we consider a more general situation where
the primeval material medium is a nonideal fluid, and its shear viscosity is capable of producing torque
oscillations, which can create and dynamically sustain vector perturbations along cosmic evolution. In this
framework, it can be defined that vector perturbations have a quantum mechanical origin, coming from
quantum vacuum fluctuations in the far past of the bouncing model, as it is done with scalar and tensor
perturbations. Under this prescription, one can calculate their evolution during the whole history of the
bouncing model, and precisely infer the conditions under which they remain linear before the expanding
phase. It is shown that such linearity conditions impose constraints on the free parameters of bouncing
models, which are mild, although not trivial, allowing a large class of possibilities. Such conditions impose
that vector perturbations are also not observationally relevant in the expanding phase. The conclusion is that
bouncing models are generally stable under vector perturbations. As they are also stable under scalar and
tensor perturbations, we conclude that bouncing models are generally stable under perturbations originated
from quantum vacuum perturbations in the far past of their contracting phase.

DOI: 10.1103/PhysRevD.101.123519

I. INTRODUCTION

In standard hot big bang cosmology, classical primordial
perturbations around a homogeneous background would
never have been in causal contact and structure formation
cannot be explained. Cosmic inflation solves this problem
by generating primordial perturbations of quantum-
mechanical origin, which are later stretched by expansion
and explain the observed spectrum of perturbations [1].
However, in addition to the quantum production of per-
turbation modes from vacuum fluctuations, cosmic infla-
tion is preceded by an initial singularity, at which quantum

effects are expected to be relevant. Therefore, it is natural to
ask for a quantum description for both background and
perturbations.
A quantum treatment of the early Universe enables the

avoidance of the initial singularity. The absence of singu-
larities allows the connection of the present expanding
phase to a preceding contracting phase through a bounce
[2–13]. The bounce physics depends on the quantization
scheme. In the context of the Wheeler-DeWitt quantization
of minisuperspace models using the de Broglie-Bohm
quantum theory [14–16], the Bohmian evolution of the
scale factor is free of singularities: they describe universes
that contract classically from infinity, perform a quantum
bounce, and are subsequently ejected into an expanding
phase, where classical evolution, compatible with obser-
vations, is rapidly recovered [5–7,17].
The quantum theory of linear cosmological perturbations

can be extended to such backgrounds [18–23]. Primordial
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perturbations can naturally arise from quantum vacuum
fluctuations in the far past of the contracting phase, where
space-time is almost flat, and an adiabatic vacuum state can
be prescribed. These perturbations are amplified during
cosmic evolution, becoming the seeds of the large-scale
structures of the Universe in the expanding phase. As well
as in cosmic inflation, scalar and tensor perturbations of
quantummechanical origin can be shown to be almost scale
invariant if the contracting phase is dominated by a dust
fluid (maybe dark matter) at large scales. Furthermore,
it can be shown that they never leave the linear regime
up to the expanding phase, where they necessarily must
become nonlinear in order to develop structures in the
Universe [24–26].
In the references cited above, the matter content of the

models are described by perfect fluids or scalar fields. In
this case, vector perturbations, evolve like a−2, as usual,
where a is the scale factor. For big bang models with
inflation, it is expected that such primordial vector pertur-
bations become completely negligible after the inflationary
phase. However, bouncing models contain a contracting
phase, where these perturbations can increase, and one may
wonder whether they can become nonlinear and destroy the
homogeneity or the isotropy of the background while the
Universe reaches the bounce. If one keeps restricted to
perfect fluids and/or scalar fields, the vector modes do not
have scale dependent dynamics, and consequently, the
answer to this question will depend on an arbitrary
constant, hence all answers are possible. However, if we
enlarge the possibilities and consider the primeval material
medium as a nonideal fluid, the shear viscosity is capable of
producing torque oscillations, which can create and sustain
vector perturbations along cosmic evolution. Furthermore,
as for scalar and tensor perturbations, one can assume that
vector perturbations also have a quantum mechanical
origin, as described in Ref. [27]. For other approaches to
vector perturbations, see Refs. [28,29].
The aim of this paper is to apply the framework developed

in Ref. [27] for vector perturbations to the quantum
bouncingmodels described above.A natural initial adiabatic
quantum vacuum state for the vector perturbations can
now be prescribed, which turns possible to evaluate the
evolution of vector perturbations without any arbitrariness.
Demanding that they stay linear during cosmic evaluation
imposes constraints on the free parameters of the back-
ground model. We will see that these constraints are mild,
although not trivial. Another important goal is to evaluate
whether such vector perturbations can provide some sig-
nature of the collapsing phase, seed large-scale cosmic
magnetic fields [30,31], and polarization of the cosmic
microwave background (CMB) spectrum [32].
The paper is organized as follows. In Sec. II, the

hydrodynamics of nonideal fluids in general relativity is
described. In Sec. III, we set up the theory of cosmological
perturbations for linear vector perturbations, taking into

account the effects of shear viscosity, which is responsible
for producing torque oscillations. Section IV introduces the
quantum bouncing model. The formalism described in
Sec. III is applied to it and the fundamental equations
describing the evolution of vector perturbations are
obtained. The consistency conditions for linearity are
analyzed in Sec. V. In Sec. VI, after imposing adiabatic
vacuum initial conditions for the vector perturbations, the
analytical results are obtained, which are then confronted
with more detailed numerical calculations. The constraints
on the background model parameters, coming from the
linearity conditions, are also obtained. Finally, in Sec. VII,
we draw some general conclusions about our results.

II. NONIDEAL FLUID

In cosmology, it is usual to consider only perfect fluids as
the matter content of the Universe. However, a realistic
model must take into account dissipative phenomena,
which are always present in the macroscopic description
of a system. Bulk and shear viscosity, besides heat flow, are
some examples of such dissipative processes. Applications
of bulk viscosity in cosmological models have a very
large amount of literature. These applications begun, to our
knowledge, with the seminal work by Murphy [33],
concerning the primordial universe, and it has been
extended to the study of the dark sector of the Universe
(see Ref. [34] and references therein). In the case of the
primordial Universe, they may lead to the avoidance of
the initial singularity; in the case of the dark sector of the
Universe, bulk viscosity effects may imply negative pres-
sure and contribute to the acceleration of the Universe.
Contrary to bulk viscosity, shear viscosity does not affect

isotropic and homogeneous backgrounds. However, at the
perturbative level, it has been shown that shear viscosity
can be as important—or even more so—as bulk viscosity.
These surprising results have been shown first in the
context of warm inflation [35,36] and then the late
Universe [37,38]. For the present Universe, dissipative
effects may cure some problems connected with the excess
of power in matter agglomeration at small scales, due to the
zero pressure of cold dark matter.
The extra piece of the energy-momentum tensor contain-

ing bulk and shear viscosity, as proposed in Refs. [39,40],
reads

ΔTμν ¼ 2λσμν þ ζuρ;ρðgμν − uμuνÞ;

σμν ≡ uðμ;νÞ − uðμuρuνÞ;ρ −
uρ;ρ
3

ðgμν − uμuνÞ: ð1Þ

In this expression, λ is the shear viscosity coefficient,
ζ the bulk viscosity coefficient, gμν the metric, “;” the
covariant derivative compatible with the metric, uμ is the
normal vector orthogonal to the spatial hypersurfaces, and
σμν the shear. Round brackets in the indices indicate
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symmetrization and we are working with a metric signature
ð1;−1;−1;−1Þ. The explicit form of λ and ζ, with their
dependence on the physical parameters, depends on the
physical system to be considered. This formulation is
noncausal, in the sense that equilibrium is achieved
instantaneously. In an isotropic and homogeneous cosmo-
logical background, these parameters normally depend
only on the energy density. However, this is not the case
when heat flux is present.
A causal formalism, taking into account a finite speed of

sound, has been implemented by Israel and Stewart [41].
The general expressions, including bulk and shear viscos-
ity, imply transport equations to compute the viscous
pressure. In Ref. [34], the causal formulation of bulk
viscosity has been investigated as a description of the dark
sector of the Universe. The more important challenge in
using the causal formulation is to have a suitable descrip-
tion of the relaxation time, and nonadiabatic sound speed.
Strictly speaking, this implies having a microscopic model
for the fluid content. In doing so, the hypothesis must be
made on the nature of the fluids composing the dark sector
of the primordial fields and matter in the Universe.
Alternatively, a phenomenological hypothesis can be
implemented. In Ref. [34] it has been shown that, in doing
so, the results are quite similar to those obtained using the
noncausal formalism. Based on these considerations, in
what follows we will restrict the analysis to the Eckart-
Landau formulation of dissipative phenomena, set down
by Eq. (1).
The total dissipative energy-momentum tensor can be

written as

ΔTμν ¼ TB
μν þ TS

μν: ð2Þ

The bulk viscosity term alone is given by

TB
μν ¼ ζuρ;ρðgμν − uμuνÞ; ð3Þ

depending essentially on the volume expansion given by
uρ;ρ. The trace part is given by

TB ¼ 3ζuρ;ρ: ð4Þ

The shear viscosity term alone is given by

TS
μν ¼ 2λσμν: ð5Þ

This term is zero for an isotropic expansion, as we can
expect from a shear process. Naturally, the trace of the shear
energy-momentum tensor is zero:

TS ¼ 0: ð6Þ

Let us make a final remark concerning the Hamiltonian
and Lagrangian formulations of gravitational systems in the

presence of dissipative phenomena. The construction of the
energy-momentum tensor including dissipative process
involves thermodynamical arguments. Since, from the pure
mechanical and macroscopic point of view, a dissipative
process implies nonconservation of the mechanical energy,
with mechanical energy dissipating through heat, the
construction of a Lagrangian and Hamiltonian for dissipa-
tive systems is not always possible. In some cases, this
difficulty can be overcome using the Rayleigh dissipative
function [42], which can be done only when the dissipative
process depends on the velocity, like in the air resistance
phenomena. Indeed, in this case, it is possible to modify the
Lagrange equations as

d
dt

∂L
∂ _q −

∂L
∂q ¼ Fð _qÞ: ð7Þ

In general, however, it is not possible to define the
Lagrangian of dissipative systems just by introducing such
dissipative functions. Fortunately, a full Hamiltonian/
Lagrangian formulation of the problem we are investigating
in the present article is not necessary, since we are only
interested in the linear perturbative level, in which a
straightforward Hamiltonian can be defined, as will be
seen in the sequel.

III. COSMOLOGICAL
VECTOR PERTURBATIONS

We want to investigate the behavior of small deviations
of a given background cosmology. The geometry of
spacetime is then given by

gμν ¼ gð0Þμν þ hμν; ð8Þ

where gð0Þμν is assumed to be the Friedmann-Robertson-
Walker metric with a flat spatial section. We will work in
the synchronous gauge, where h0μ ¼ 0 and, once our
interest is in vector perturbations, we can write

hij ¼ a2ð∂jFi þ ∂iFjÞ; ð9Þ

with a being the background scale factor and Fi is an
arbitrary vector field satisfying ∂iFi ¼ 0. Latin indices run
from 1 to 3, indicating spatial components. The perturbed
line element is then written as

ds2 ¼ aðηÞ2½dη2 − ðδij − ∂jFi − ∂iFjÞdxidxj�; ð10Þ

where η is the conformal time. Substituting this into
Einstein’s tensor and keeping first order terms only, one
obtains

G0
0 ¼

3a02

a4
ð11Þ
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G0
i ¼ −

∇2F0
i

2a2
ð12Þ

Gi
j ¼ −

�
3a02

a4
−
2a00

a3

�
δij

þ
�∂iF00

j

2a2
þ ∂jFi00

2a2
þ a0∂iF0

j

a3
þ a0∂jFi0

a3

�
; ð13Þ

where the symbol 0 indicates derivatives with respect to
the conformal time η, and ∇2 ¼ ∂i∂i the spatial conformal
Laplacian.
The total energy-momentum tensor is written as

Tμν ¼ ðρþ pÞuμuν − pgμν þ TS
μν; ð14Þ

where ρ is the fluid energy density, p its pressure, uμ is the
four velocity, and Tμν

S is the shear viscosity component of
the fluid, given in Eq. (5). At the background level the four
velocity is given by uμ ¼ ð1=aÞδ0μ, while its perturbation is
described by a vector function, i.e., δuμ ¼ ð1=aÞvjδjμ.
Considering only vector perturbations, the components
of the total energy-momentum tensor read

T0
0 ¼ ρ; ð15Þ

T0
i ¼ −ðρþ pÞvi; ð16Þ

Ti
j ¼ −pδij þ

λ

a
ð∂ivj þ ∂jvi − ∂iF0

j − ∂jFi0Þ: ð17Þ

With the expressions (13)–(17) of the Einstein and
energy-momentum tensors, the field equations can be
directly obtained. The background dynamics will be given
by the usual Friedmann equations. The linear perturbations
Fi and vi can be decomposed in terms of eigenfunctions of
the three-dimensional Laplace’s operator,Qi, satisfying the
equations

∇2Qi ¼ −k2Qi; ∂iQi ¼ 0: ð18Þ

We then write

Fi ¼ FðηÞQi and vi ¼ vðηÞQi: ð19Þ

Note that there are two linearly independent vector fields
satisfying Eq. (18). In practice this means that once
quantized, we would have the equivalent to two uncoupled
scalar quantum fields. Nonetheless, since we consider
isotropic vacuum states, both modes have equally defined
vacuum states. In practice, we account for these two modes
by multiplying the vector power spectrum by a factor of 2.

Simplifying expressions with the following definitions,

hðηÞ ¼ −kFðηÞ; ð20Þ

ωðηÞ ¼ −aðηÞ2ðρþ pÞvðηÞ; ð21Þ

χðηÞ ¼ λðηÞaðηÞk2½F0ðηÞ − vðηÞ�; ð22Þ

Einstein’s equations can be recast as

−
kh0

2
¼ κω; ð23Þ

ω0 þ 2a0

a
ωþ χ ¼ 0; ð24Þ

where κ ¼ 8πl2p is the gravitational coupling constant, with
lp being the Planck length. Equations (23) and (24) lead to

h00 þ 2
a0

a
h0 ¼ 2κ

k
χ: ð25Þ

Note that, without shear viscosity, λðηÞ ¼ 0, which implies
that χ ¼ 0, and we get h0 ∝ 1=a2, as usual.
From its definition, ωðηÞ can be understood as angular

momentum. Following Ref. [27], in the limit of flat space-
time, Eq. (25) represents Newton’s second law in its
angular version: torque is the rate of change of angular
momentum. Hence, the χ function can be interpreted as
torque force in the viscous fluid. As usual, we can take it to
be proportional to the angular displacement of a given
element of the fluid,

χðηÞ ¼ k2b2θðηÞ ð26Þ

where ω ¼ θ0, and b2 ¼ v2t =c2, with vt being the torsional
velocity of sound. Note that originally we had 3 free
functions, fF; v; λg, or equivalently fh;ω; χg, and only 2
dynamical equations. Thus, imposing (26) yields an extra
condition which closes the system.
Equations (23) and (24) can now be decoupled, yielding

h00 þ 2a0

a
h0 þ k2b2h ¼ 0; ð27Þ

which can also be written as

μ00 þ
�
k2b2 −

a00

a

�
μ ¼ 0; ð28Þ

with μ ¼ ah ¼ −akF.
Equation (27) [or Eq. (28)] describes the dynamical

evolution of linear vector perturbations due to torque oscil-
lations in the primordial fluid. These equations have the same
form as the dynamical equations for tensor perturbations
(primordial gravitational waves). The difference is that here
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the constant b can vary between 0 and 1, while for
gravitational waves b ¼ 1.

IV. VECTOR PERTURBATIONS
IN BOUNCING MODELS

The Wheeler-DeWitt quantization of minisuperspace
models using the de Broglie-Bohm quantum theory intro-
duces quantum corrections in the Friedmann equations
which are able to remove the classical initial singularity of
the standard cosmological model. For a general review on
this subject, see Ref [17]. In the present paper, we will
consider a particular bouncing solution which contains a
dark matter and radiation fluids, see Ref. [43] for its
quantum origin, and Ref. [44] for its connection to the
observable Universe. The scale factor is obtained as a
Bohmian trajectory, and it reads

YðηsÞ≡ aðηsÞ
a0

¼ Ωm0

4
η2s þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

x2b
þΩr0η

2
s

s
; ð29Þ

where a0 is scale factor today, Ωm0 and Ωr0 are the usual
dimensionless densities of presureless matter and radiation,
respectively, and xb ¼ a0=ab, which arises as an integration
constant after solving the equation for the Bohmian
trajectories and with ab being the value of the scale factor
at the bounce. We are using the dimensionless conformal
time variable, appropriated to numerical integrations,
namely ηs¼ða0=RH0

Þη, where RH0
¼1=H0 is the Hubble

radius today. The scale factor in Eq. (29) describes a
universe dominated by dust in the far past. As the universe
contracts, radiation eventually dominates over dust and
near the bounce quantum effects become relevant. The
quantum bounce happens, and it is followed by another
radiation and dust phases, which fits the standard cosmo-
logical model before nucleosynthesis.
The parameter xb can be constrained by imposing that

the curvature scale at the bounce, Lb, should be at least a
few orders of magnitude bigger than the Planck length. This
is because the quantum gravity approach we are using, the
Wheeler-DeWitt quantization, must be understood as an
approximation of a more involved theory of quantum
gravity, which should be valid only at scales not so close
to the Planck length. One has that

Lb ≡ 1ffiffiffiffi
R

p
����
ηs¼0

¼
ffiffiffiffiffiffiffiffi
a3

6a00

r ����
ηs¼0

; ð30Þ

where R is the Ricci scalar. Using values of H0 ¼
70 km s−1 Mpc−1 and Ωr0 ≈ 8 × 10−5, one can find the
upper bound xb < 1031. Moreover, the bounce should take
place at energy scales higher than the beginning of
nucleosynthesis, which implies xb ≫ 1011. Hence, one gets

1011 ≪ xb < 1031: ð31Þ

Concerning the vector perturbations, taking into account
the quantum formalism, we are interested in the evolution
of the normal modes hk’s coming from the expansion in
terms of creation and annihilation operators, which satisfy
the equation of motion (27), i.e.,

h00k þ
2a0

a
h0k þ k2b2hk ¼ 0: ð32Þ

The Hamiltonian yielding this dynamical equation reads

H ¼ Π2
k

2m
þmν2h2k

2
; ð33Þ

where m ∝ a2 and ν ¼ kb. The constant of proportionality
in the “mass” m can be inferred from the kinetic term of
vector perturbations coming from the Einstein-Hilbert
action. This is true since the Poisson algebra (and con-
sequently the operator algebra) is defined by the kinetic
term. It is given by (see Ref. [18], where it is also shown
that the quantum effects leading to the bounce affect the
perturbations only through the substitution of the classical
scale factor by the Bohmian one)

S ¼
Z

d4x
a2

16πl2p

h02

2
; ð34Þ

where we are using natural units ℏ ¼ c ¼ 1 and η has
dimensions of length. Hence m ¼ a2=ð16πl2pÞ.
Prescribing adiabatic vacuum initial conditions in the far

past of the bouncing model yields, see Ref. [45],

jhkj ¼
1ffiffiffiffiffiffiffiffiffi
2mν

p ¼ 4lp
ffiffiffi
π

p

a
ffiffiffiffiffiffiffiffi
2kb

p ; ð35Þ

with hk having physical dimensions of length3=2, as it
should be.
We now introduce new dimensionless variables, com-

patible with the expression (29):

ks¼
kRH0

a0
; jhks j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a30

16πl2pRH0

s
jhkj ¼

1

Y
ffiffiffiffiffiffiffiffiffiffi
2ksb

p ; ð36Þ

where ks is the wave number in Hubble radius units. This
expression accounts for the adiabatic initial condition and
must be evaluated where the adiabatic approximation is
valid. The dynamical equation for the dimensionless
normal modes preserves the form of Eqs. (27) and (28),

h00ks þ
2Y 0

Y
h0ks þ ν2shks ¼ 0; ð37Þ

μ00ks þ ðν2s − VÞμks ¼ 0; ð38Þ
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where μks ¼ Yhks , we have defined an effective wave
vector νs ¼ ksb, V ¼ Y 00=Y is the potential, and the upper
prime now denotes a derivative with respect to ηs.

V. CONSISTENCY CONDITIONS

In this section we will determine the general conditions
under which cosmological vector perturbations remain
negligible with respect to the background structure.
We start by considering the perturbations in the metric

structure. From the line element (10), one has that

j2∂ðiFjÞj ≪ jδijj: ð39Þ

Considering a unitary spatial vector field Uα, we can
construct appropriated scalar quantities from the condition
above. In fact, one can see that

UiUj∂ðiFjÞ ¼ −
h
k
UiUj∂ðiQjÞ; ð40Þ

after invoking the definitions (18) and (20). Note that,
UiUj∂ðiQjÞ is proportional to k cosϕ cosψ , where ϕ and ψ
are the angles between the vector Ui and the vectors ki and
Qi, respectively. As we noted before, Fi must be expanded

in terms of two linearly independent eigenfunctions, Qð1Þ
i

andQð2Þ
i ; however, here it would only affect our results by a

factor of 2. Since at this stage we are only interested in the
order of magnitude, it is safe to ignore this detail in the
present analysis. Thus, it is immediate to see that
jUiUj∂ðiQjÞj≲ jkj. This leads to the scalar condition,

jhj ≪ 1: ð41Þ

As the perturbation is quantized, the above condition
implies that the mean value of the operator ĥ2 should be
less than unity, yielding

hh2i ¼ 1

ð2πÞ3
Z

kmax

kmin

jhkj2d3k ≪ 1; ð42Þ

where kmin and kmax are the ultraviolet and infrared limits,
which we will discuss further. Introducing the dimension-
less variables defined in Eq. (36), one gets

hh2i ¼ 8

π

l2p
R2
H0

Z
ks;max

ks;min

dksk2s jhks j2 ≪ 1: ð43Þ

We now investigate the role of vector perturbations
in Einstein’s equations. Vector perturbations affect the
dynamical Einstein’s equation through the time derivative
of the extrinsic curvature Ki

j, which contains a background
and a first order part

∂tKi
j ¼ ∂tHδi

j −
Hδσi

j

3
þ…; ð44Þ

where t is cosmic time, H is the Hubble function, and the
shear tensor reads

δσij ¼ Kij −
gabKab

3
gij; ð45Þ

which is null in the background. Hence, from Eq. (44) one
gets the second condition (see Ref. [24]),

jδσijj ≪
���� ∂tHδi

j

3H

����: ð46Þ

Using the line element (10) and the decomposition (19),
one sees that

δσij ¼ −
a∂ηh

k
∂ðiQjÞ: ð47Þ

Multiplying, as before, condition (46) by Ui in order to
construct a consistency scalar relation, one gets,���� 3H∂th

∂tH

���� ≪ 1 ⇒

����
ffiffiffi
ρ

p ∂ηhffiffiffiffiffiffi
6π

p
lpðρþ pÞ

���� ≪ 1: ð48Þ

In order to obtain the second form of condition (48), we
have used the classical Friedmann equation. Note, however,
that quantum effects are important at the background level
near the bounce, hence these two forms of the condition are
not always equivalent. As the quantum corrections do not
modify the matter equation of state relating the pressure and
the energy density, p ¼ wρ, and their functional relation
with the scale factor, the second form is the one which is
valid at all times, including the bounce.
The quantum version of the classical condition (48) reads

hð∂ηhÞ2i ≪
6πl2pðρþ pÞ2

ρ
: ð49Þ

Using the dimensionless variables, and the power spectrum
of vector perturbations

PvðksÞ ¼
ks
2π2

jhks 0j2; ð50Þ

the final form of the second condition reads

4πY2l2p
Ωr0R2

H0

Z
ks;max

ks;min

dksksPvðksÞ ≪ 1: ð51Þ

Equations (43) and (51) are the main results of this
section. They are quite general, valid for many theoretical
models beyond the one considered here.
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The cosmological model we are considering in this work
has two additional free parameters: xb, related with the size
of the bounce, and b, the torsional velocity of the sound.
The domain of xb is given in Eq. (31), while 0 < b < 1.
The consistency conditions (43) and (51) will impose
further constraints on these parameters, which will be
obtained in the following section.

VI. RESULTS

In this section we analyze the propagation equation of
the quantum vector modes given in (37) and/or (38), with
the scale factor (29). We will start by doing analytical
calculations, which will be confirmed by the numerical
results. From now on, we will omit the subindex s to the
redefined variables discussed in the previous sections.
Working with the current values Ωr0 ∼ 10−4 and

Ωm0 ∼ 0.274, Eq. (29) becomes

Y ¼ 6.85 × 10−2η2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

x2b
þ η2

104

s
: ð52Þ

The production of vector perturbations depends on the
influence of the potential V over the effective wave number
ν in Eq. (38) of perturbation modes. In different conformal
times, the potential will behave according with the dom-
inant phase at that epoch. Far from the bounce, dust is the
dominant component, when jηj ≫ 0.15 and the potential
assumes the form

V ≈
2

η2
for jηj ≫ 0.15: ð53Þ

For small values of the conformal time, radiation begins
to dominate. This phase is divided in two parts. The first
one is when the quantum effects are still subdominants,
resulting in

V ≈
13.7
η

for
9

x2=3b

≪ η ≪ 0.15: ð54Þ

After that, quantum effects become important and one has

V ≈
104

x2bη
4

for
102

x1b
< jηj < 9

x2=3b

: ð55Þ

For even smaller values of jηj the quantum effects are
completely dominant during the bounce phase, with

V ≈
x2b
104

for 0 ≤ jηj < 102

xb
: ð56Þ

As mentioned in Sec. IV, we will prescribe adiabatic
vacuum initial conditions, given in Eq. (35). In terms of μ
they read

μini ¼
e−iνηffiffiffiffiffi
2ν

p ; ð57Þ

which should be imposed at the asymptotic past, far from
the bounce, where dust dominates. Taking into account (53)
and the initial condition above, the solution of (38) in the
dust phase is recast to be

μkðηÞ ¼ −
ffiffiffiffiffi
πη

p
2

H−3=2ðνηÞ; ð58Þ

with Hn being the Hankel function of type one. In the
region where νη ≪ 1, but still in the dust phase, where
Y ∝ η2, we can expand formally the solution above in
powers of ν. The Hankel function is a combination of two
Bessel functions (J3=2 and J−3=2) and each Bessel function
can be expanded in terms of a power law times a power
series in its argument squared. Consequently, when
expanding (58), we have two distinct power series, each
multiplying a different power law. In terms of hk, they read

hk ¼
μk
Y

≈ ν3=2½A1 þOðν2Þ� þ ν−3=2
�
A2

η3
þOðν2Þ

�
; ð59Þ

where A1 and A2 are constants.
The Hamiltonian leading to Eq. (37),

H ¼ Π2
k

2Y2
þ Y2ν2h2k

2
; ð60Þ

yields the canonical equations

h0k ¼
Πk

Y2
; Π0

k ¼ −Y2ν2hk: ð61Þ

For small values of ν, these equations can be solved in an
iterative manner, reproducing the power series discussed
above, with the leading order giving

hk ¼ C1ðνÞ½1þOðν2Þ� þ C2ðνÞ
�Z

dη
Y2

þOðν2Þ
�
; ð62Þ

Πk ¼ C2ðνÞ½1þOðν2Þ� þ C1ðνÞ
�
−
Z

Y2ν2dηþOðν4Þ
�
:

ð63Þ

Specifying for the dust case (Y ∼ η2), the matching between
(62) and (59) gives the ν dependence of the C’s constants
above, namely C1 ∝ ν3=2 and C2 ∝ ν−3=2.
The evolution of these perturbations is exactly the same

as tensor perturbations. Therefore, their power spectrum
and spectral index are already known (see, for instance,
Ref. [18]) and they satisfy the relation
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ν3jhkj2 ∝ νnT with nT ¼ 12w
1þ 3w

; ð64Þ

wherew ¼ p=ρ is the equation of state parameter of the fluid
which is dominating the background when the mode is
crossing the potential, ν2 ≈ V. In the case of dust domina-
tion, w ¼ 0, with Y ∝ η2, ηT ¼ 0, one gets the growing
modes when the Universe is contracting,

hk ∝
ν−3=2

η3
; Πk ∝ ν−3=2: ð65Þ

When afterwards radiation dominates the background evo-
lution, Y ∝ η, one gets

hk ∝
ν−3=2

η
; Πk ∝ ν−3=2: ð66Þ

On the other hand, if the mode crosses the potential already
in the radiation domination phase of the contraction, one has
ηT ¼ 2 and Y ∝ η, yielding

hkðηÞ ∝
ν−1=2

η
; Πk ∝ ν−1=2: ð67Þ

During the bounce, the potential is almost constant and
nothing happens.
In the expanding phase, the growing mode of hk

becomes a decaying mode and hk saturates up to returning
to the oscillatory phase, when ν2 > V. In the case of Πk,
there is a ν2 growing mode correction which eventually
dominates the constant mode, and Πk grows up to the
oscillatory regime, either with a k1=2 spectrum in the case of
dust entrance, or k3=2 for radiation entrance. The behaviors
obtained in (65), (66), and (67), can be verified through the
numerical results presented in Fig. 1, as well as the
conclusions relative to the expanding phase.
The behavior of the power spectrum can be directly

inferred considering Eqs. (50) and (62). When the modes
cross the potential in the dust dominated phase, one has

Pv ∝
ν−2

η8
; ð68Þ

and when they cross in the radiation era, one gets

Pv ∝
1

η4
: ð69Þ

These behaviors can also be verified numerically in Fig. 2.
As it can be seen from Figs. 1 and 2, the most critical

region for conditions (43) and (51) to be satisfied is during
the bounce, where the vector perturbations amplitudes
reach their maximum value. Let us then evaluate these

conditions at the bounce. We first need to know how these
quantities are scaled with xb, b, and k when η ¼ 0.
The scalings of b and k of both hk and Pv are embedded

in relations (65)–(69). In the case of xb, note that hk grows
as 1=jηj up to the bouncing phase, which begins in
η ¼ −102=xb [cf. Eq. (56)]. Hence, jhkj ∝ xb. For the Pv
scaling, note that it can be written as

Pv ¼
Π2

kk
Y4

: ð70Þ

FIG. 1. Amplitudes of hk and Πk when the crossing of the
potential occurs in two different phases. The relation (65) is
verified for ks equal to 10 and 103, when the modes cross the
potential during the dust phase. For the higher values of ks, 106,
and 109, the crossing occurs during the radiation phase, satisfying
relation (67). The scale factor is also shown in the figure to a
better distinction of each phase of evolution. The values used for
the free parameters are xb ¼ 5 × 1029 and b ¼ 10−3.

FIG. 2. Behavior of the power spectrum Pv for distinct values
of ks. For the two lowest values of ks, 1 and 103, the vector modes
are crossing the potential during dust domination phase and
relation (68) is observed. The highest ks values, 106 and 109,
show the scale independence of Pv for modes crossing the
potential during the radiation phase, in agreement with (69). The
two vertical lines mark the nucleosynthesis and recombination
era, while the As plot shows the approximated primordial
amplitude for scalar modes. The values used for the free
parameters are xb ¼ 5 × 1029 and b ¼ 10−3.
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AsΠk is a constant in the contraction, this constant depends
only on ν, and Y ∝ 1=xb, hence, Pv ∝ x4b. These results can
also be verified numerically, yielding:

(i) Modes crossing the potential at matter domination
phase:

hk ≃
102xb
ν3=2

; Pv ≃ 10−124
x4b
bν2

: ð71Þ

(ii) Modes crossing the potential at radiation domination
phase:

hkðηÞ ≃
xb
ν1=2

; Pv ≃ 10−126
x4b
b
: ð72Þ

Note there is always an extra b in Pv due to its definition,
which is proportional to a k factor [cf. Eq. (50)].
We can now perform the integrations in the consistency

relations (43) and (51). Let us begin with condition (43).
The modes crossing the potential region during the dust
phase have νc ∼

ffiffiffi
2

p
=ηc, where the index c refers to

“crossing.” Since the dust domination era ends when
η ∼ 0.15, we than split each integral in two parts, divided
by

ffiffiffi
2

p
=0.15 ≈ 10. Thus, (43) yields

8

π

l2p
R2
H0
b3

Z
νmax

νmin

jhkj2ν2dν

¼ 8

π

l2px2b
R2
H0
b3

�
102 ln 10 − ln νmin þ

ðν2max − 102Þ
2

�
: ð73Þ

The solution presents an infrared and an ultraviolet diver-
gence. The infrared divergence is logarithmic. As the number
in front of the integral is very small, even assuming the
minimum value of b (b > 10−26, as we will see in the
end of this section) leads to an infrared cutoff Linfrared ≈
expð1024ÞRH0

, which is beyond any imaginable physical
scale. In the case of the ultraviolet divergence, we use as νmax
the value of the maximum of the potential V, which happens
at the bounce, sincemodeswith ν beyond this valuewill only
oscillate without being enhanced. Thus, from (56), one has
νmax ¼ x2b=10

4. Taking only the dominant term, the consis-
tency condition (43) becomes

4

104π

l2px4b
R2
H0
b3

≪ 1: ð74Þ

For the second condition, given in (51), the procedure is
the same. However it will result in a much less restrictive
constraint, as one can infer from the small values of Pv at
the bounce, hence it is irrelevant.
Expression (74) reduces to

x4b
b3

≪ 10126: ð75Þ

Using the limits on xb given in Eq. (31)], and 0 < b < 1,
the region in parameter space where vector perturbations

remain controlled in such bouncing models are shown in
Fig. 3. Note that the minimum value allowed for b is
b ≈ 10−26.

VII. CONCLUSIONS

In this paper we set up the conditions under which linear
vector perturbations remain controlled along the evolution of
a general homogeneous and isotropic cosmological model.
We considered a nonideal fluid, and its shear viscosity is
capable of producing torque oscillations, which can create
and dynamically sustain vector perturbations along cosmic
evolution. In this framework, vector perturbations can be
quantized. The resulting conditions (43) and (51) apply to
any cosmological model ruled by Einstein’s equations, and
some particular quantum minisuperspace models.
One important application of the established conditions

is to investigate whether bouncing models are stable under
vector perturbations. In the case of a well-known quantum
bounce, which fit cosmological observations at the back-
ground and linear perturbation level, it was shown that
there is a large range of parameters in which the model is
stable. However, as vector perturbations reach their largest
values around the bounce itself, and as they decay after-
wards, it seems to be impossible to detect their fingerprints
in cosmological observations. Hence, vector perturbations,
as modeled here, cannot be used to distinguish this
particular bouncing model from inflationary models.
As bouncing models have already been shown to be

stable under linear scalar and tensor perturbations, the
present result indicates that bouncing models are stable
under general linear perturbations as long as initially the

FIG. 3. Region of stability in parameter space for the bouncing
models considered. The colored area represents the values of b
and xb which satisfies the consistency conditions, following
Eq. (75).
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only departure from a homogeneous and isotropic geom-
etry arises from quantum fluctuations.
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