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The cosmological phenomenology of gravity is typically studied in two limits: relativistic perturbation
theory (on large scales) and Newtonian gravity (required for smaller, nonlinear, scales). Traditional
approaches to model-independent modified gravity are based on perturbation theory, so do not apply on
nonlinear scales. Future surveys such as Euclid will produce significant data on both linear and nonlinear
scales, so a new approach is required to constrain model-independent modified gravity by simultaneously
using all of the data from these surveys. We use the higher order equations from the post-Friedmann
approach to derive a single set of “simple 1PF” (first post-Friedmann) equations that apply in both the small
scale and large scale limits, and we examine the required conditions for there to be no intermediate regime,
meaning that these simple equations are valid on all scales. We demonstrate how the simple 1PF equations
derived here can be used as a model-independent framework for modified gravity that applies on all
cosmological scales, and we present an algorithm for determining which modified gravity theories are
subsumed under this approach. This modified gravity framework provides a rigorous approach to
phenomenological N-body simulations, and paves the way to consistently using all of the data from
upcoming surveys to constrain modified gravity in a model-independent fashion.
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I. INTRODUCTION

The current cosmological paradigm, ΛCDM, contains
two hypothesized forms of matter: cold dark matter and
dark energy. The existing observational evidence for these
is solely gravitational in nature, so it is natural to consider
whether modified gravity could be responsible for these
observations. Furthermore, although general relativity (GR)
is well tested on smaller (Solar System) scales [1], it is less
well tested on cosmological scales. Thus, there has been
much interest in using cosmology to constrain alternative
gravity theories [2].
One of the problems with constraining modified gravity

theories is that the space of possible theories is vast. One
solution to this is to use model-independent parametriza-
tions [3–8], in order to constrain generic modifications to
general relativity. These parametrizations have been used in
many works to forecast results from future surveys and to
derive constraints from existing data, see [2,9] for reviews.
Gravitational calculations are typically carried out in two

regimes: on large scales using relativistic perturbation
theory (see e.g., [10]) and on small scales using the
Newtonian limit and N-body simulations (see e.g., [11]).
Nearly all of the existing parametrizations are built upon
cosmological perturbation theory. While this is accurate for

predictions on the largest scales in the Universe, it breaks
down on smaller scales where the density contrast is no
longer smaller than unity. The data from future surveys will
include a significant contribution from nonlinear scales
such as Euclid [12], LSST [13] and the SKA [14], so to
fully exploit these surveys for constraining modified
gravity we need to be able to parametrize modified gravity
on these scales.
The model-independent parametrizations can be used in

several ways. The functional forms of these parameters in
different theories can be used to evolve the perturbations in
specific theories of gravity, and thus easily and quickly
generate predictions for these theories, using common
machinery (typically Boltzmann codes). In addition, it
has been investigated how different functional forms
or values of the parameters relate to different classes of
theories, in order to constrain the maximum number of
theories with the minimal amount of calculation, such
as the expressions characterizing the Horndeski classes of
models (e.g., [15]). These parametrizations also allow for
generic phenomenological modifications to gravity to be
investigated, and thus for modified gravity to be inves-
tigated in a maximally model-independent way. In this way,
these parametrizations act as a strong null test of ΛCDM.
One particular way to proceed along these lines is to bin the
parameters into time and space dependent “pixels” that
are allowed to have arbitrary values, and then perform a*daniel.thomas-2@manchester.ac.uk
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principal component analysis to determine which combi-
nations are constrained by current data (e.g., [16]) and
future experiments (e.g., [17,18]). This approach has
several advantages, including acting as a potential check
on systematics [16], showing where the constraining power
of specific data combinations is, and requiring (almost) no
assumptions as to the nature of the modifications to gravity.
The forecasts [17,18] restrict themselves to linear scales,

as the parametrizations are not defined on nonlinear scales
and there is no theoretical justification for them on non-
linear scales. This significantly affects how useful these
surveys will be for constraining deviations from general
relativity. Conversely, works such as [16,19] (and others)
use the linear theory parametrizations to justify the struc-
ture of modifications on nonlinear scales; this is problem-
atic as it is not clear a priori what these parameters mean
and whether parametrizing gravity in this same way across
all scales is meaningful. We will resolve this issue in
this work.
The linear theory parametrizations have also been used

to inspire phenomenologically modified N-body simula-
tions [20–22] in an attempt to calculate model-independent
modified gravity predictions on nonlinear scales (see
[23,24] for some earlier phenomenological modifications
to N-body simulations). However, these works are lacking
in theoretical justification for the modifications, in terms of
when it is theoretically consistent and sufficient to para-
metrize the Poisson and slip equations on all scales, what
the parameters mean, and whether they map to any theories
of modified gravity. We will also address these issues in
this work.
One existing parametrization that is valid on nonlinear

scales is [25] (based on the work in [26]); however, it seems
to only apply to theories that fit into the parametrized post-
Newtonian (PPN) framework. It is not clear that many of
the currently popular cosmological models fit into this
approach, including theories with screening scales, such as
fðRÞ. Another recent development is [27], which para-
metrizes the gravitational equations based on detailed
spherical collapse calculations for known screening mech-
anisms. This has been implemented in N-body simulations,
but it seems to primarily interpolate between known
theories, in particular regions of theory space, preventing
it from achieving sufficient generality for comprehensive
null tests and definitive statements about modified gravity
from future surveys.
Here we use the post-Friedmann formalism [28–33] to

create a simple set of equations that apply on all cosmo-
logical scales and naturally incorporate both the Newtonian
and perturbative limits. A key step in developing this set of
equations is the absence of an intermediate scale, i.e., a
scale in the Universe in which neither of these limits apply,
which we discuss in detail. We will use this set of equations
to create a theoretically justified set of parametrized
Einstein equations that are valid on all cosmological scales,

including scales where the density contrast is arbitrar-
ily large.
We recap the Newtonian limit in cosmology and the

post-Friedmann formalism in Sec. II, before deriving our
equations in Sec. III. This is used as the basis of a
framework for modified gravity in Sec. IV. In Sec. V we
consider some of the practicalities of this framework,
including presenting an algorithm for determining whether
a given modified gravity theory fits into this framework. We
conclude in Sec. VI. Note that throughout, we use “all
cosmological scales” to mean all scales where a perturbed
Friedmann-Lemaître-Robertson-Walker (FLRW) metric
with weak fields is a reasonable description of the space-
time, and by “nonlinear scales” we mean scales of around
10Mpc and below, where the cosmological density contrast
δ becomes greater than 1.1 We use “structurally nonlinear”
to refer to terms that have the form “variable × variable,”
such as ρv⃗ or Φ2. This is to distinguish from terms such as
δ, which can be “nonlinear” in the sense of being arbitrarily
large but is not of structurally nonlinear form.

II. THE NEWTONIAN LIMIT IN COSMOLOGY
AND THE POST-FRIEDMANN FORMALISM

We will take the “Newtonian approximation” to be
shorthand for the quasistatic (i.e., not evolving quickly
in time, and therefore relatively down-weighting time
derivatives and terms that are relevant on horizon scales),
weak field and low velocity regime; these are the physical
conditions typically associated with a 1

c expansion. The
Newtonian limit is the leading order equations under these
approximations.
The Newtonian approximation is a good approximation

for a ΛCDM universe (see e.g., [30,34–38]), both on linear
scales and on smaller scales where the density contrast can
become greater than unity. This is important because
Newtonian N-body simulations are a standard tool for
cosmology. Recently, work has begun to investigate the
Newtonian limit in cosmology more thoroughly and build
towards more complete general relativistic simulations of
our universe, see e.g., [30,37–39].
One of these approaches is the post-Friedmann formal-

ism [28]. First proposed in [28,29], the post-Friedmann
formalism consists of a post-Newtonian type expansion of
the Einstein equations in powers of the speed of light c,
altered compared to a “Solar-System” type expansion in
order to apply to a FLRW cosmology. It is thus equivalent
to taking a weak-field, low-velocity, quasistatic expansion
of the Einstein field equations. This approximation works
well for ΛCDM cosmologies (see e.g., [30,39] for calcu-
lations of the leading order corrections to this limit from
N-body simulations, where these corrections are shown to
be small).

1Note that nonlinear behavior in the velocity field manifests on
larger scales than in the density field.
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The starting point for the formalism is the perturbed
FLRW metric, which is considered in Poisson gauge (see
Sec. II C) and expanded up to order c−5,

g00 ¼ −
�
1 −

2UN

c2
þ 1

c4
ð2U2

N − 4UPÞ
�
; ð2:1Þ

g0i ¼ −
aBN

i

c3
−
aBP

i

c5
; ð2:2Þ

gij ¼ a2
��

1þ 2VN

c2
þ 1

c4
ð2V2

N þ 4VPÞ
�
δij þ

hij
c4

�
: ð2:3Þ

Here, the two scalar potentials have each been split
into their leading order (Newtonian) (UN , VN) and post-
Friedmann (UP, VP) components. The gauge freedom is
chosen such that the vector potential appears in the 0i part
of the metric, and this has also been split up into BN

i and BP
i .

The three-vectors BN
i and BP

i are both divergenceless,
BN
i;i ¼ 0 and BP

i;i ¼ 0. In addition, the tensor perturbation
hij is transverse and trace-free, hii ¼ h;iij ¼ 0.
As is common for post-Newtonian type expansions, the

terms of order c−2 and c−3 are considered to be leading
order and the terms of order c−4 and c−5 are considered to
be next-to-leading order. A factor of c−1 is attached to time
derivatives. The matter content is taken to be pressureless
dust, the four-velocity of which is used to construct the
energy-momentum tensor, which is also expanded in
powers of c (see [28] for details). The parameters describ-
ing the pressureless dust fluid are the background density ρ̄,
the density contrast δ, and the peculiar velocity vi. The
assumption of pressureless dust applies to all of the results
of this manuscript; in a universe dominated by radiation,
the framework developed here will not apply.2

A. Leading order equations

The leading order (c−2) equations from the post-
Friedmann formalism correspond to the standard equations
used in a Newtonian cosmology,

dδ
dt

þ vi;i
a
ð1þ δÞ ¼ 0; ð2:4Þ

dvi
dt

þ _a
a
vi ¼

1

a
UN;i; ð2:5Þ

1

c2a2
∇2VN ¼ −

4πG
c2

ρ̄δ; ð2:6Þ

2

c2a2
∇2ðVN −UNÞ ¼ 0: ð2:7Þ

Note that the time derivative in these equations is the
convective derivative (dA=dt ¼ ∂A=∂tþ viA;i=a, for any
quantity A).
A major advantage of the post-Friedmann formalism is

that equations beyond those of standard Newtonian cos-
mology can be derived. In particular, there is also a
constraint equation for the vector potential that is present
at the c−3 order,

1

c3
∇2BN

i ¼ −
16πGρ̄a2

c3
½ð1þ δÞvi�jv; ð2:8Þ

where “jv” denotes the pure vector, i.e., divergence-free,
component of the field. This vector potential is required in
the metric for the consistency of the Einstein equations in
the Newtonian limit [28,42], and it represents the leading
order correction to Newtonian cosmology. It has been
measured from N-body simulations [30,32] and found
to be small, which provides a quantitative check of the
Newtonian approximation, and thus the use of Newtonian
N-body simulations, for GRþ ΛCDM cosmology. The
smallness of this vector potential will be important later on.

B. Higher order equations

The post-Friedmann approach can be used to construct
higher order equations, beyond the set of leading order
equations in the previous section. Keeping terms up to 1

c4

order results in the first post-Friedmann order (“1PF”)
equations, which describe structure formation on all scales
(Sec. VIII in [28]) and include terms that are higher order in
the 1

c expansion, and terms that are structurally nonlinear. In
addition, no terms have been removed due to any quasi-
static type approximation. See [28] for full details of the
relevant equations and notational conventions; here we
present the equations with the background subtracted. The
00 Einstein equation is given by

−
1

c2
1

3a2
∇2VN þ 1

c4

�
_a
a
_VN þ

�
_a
a

�
2

UN þ 1

3a2
∇2V2

N −
5

6a2
VN;iVN

;i−
2

3a2
∇2VP

�
¼ 1

c2
4πG
3

ρ̄δþ 1

c4
4πG
3

ρ̄ð1þδÞv2; ð2:9Þ

2However, an effective pressure caused by shell crossing (i.e., the breakdown of single streaming) is not a problem, as this would be
higher order and structurally nonlinear (∼v2) [40,41], so would not contribute to the simple 1PF equations derived in Sec. III.

COSMOLOGICAL GRAVITY ON ALL SCALES: SIMPLE … PHYS. REV. D 101, 123517 (2020)

123517-3



and the trace of the space-space Einstein equation is

−
1

c2

�
2

a2
∇2ðVN − UNÞ

�
þ 1

c4

�
−

4

a2
∇2ðVP −UPÞ −

2

a2
UN;kUN

;k −
1

a2
VN;kVN

;k þ 2

a2
UN;kVN

;k

þ 4

a2
VN∇2ðVN −UNÞ þ 6

�
_a
a
ð _UN þ 3 _VNÞ þ 2

ä
a
UN þ

�
_a
a

�
2

UN þ V̈N

��
¼ −

8πG
c4

ρ̄ð1þ δÞv2: ð2:10Þ

For reference, we present the conservation equations and 0i
Einstein equation in the Appendix A.
Crucially, we note that the density contrast in these

equations is not required to be small. These equations
contain both the complete scalar and vector parts of linear
cosmological perturbation theory, as well as containing a
well-defined Newtonian limit that describes the growth of
structure in a FLRWuniverse on subhorizon scales whether
or not the density contrast is large. Both of these limits are
derived explicitly in [28].

C. A note on gauges

The Poisson gauge is a generalization of the Newtonian
gauge that gauge fixes the vector perturbations, so is a
natural choice for the post-Friedmann approach. Moreover,
as shown recently by [43], this is one of the few gauges that
can be realized without the requirement of a small density
contrast. For simplicity and clarity, we present all of our
results in this gauge, although we note that our modified
Poisson equation [Eq. (3.16); see later] contains the gauge-
invariant density contrast. We leave to future work a full
investigation of the impact of gauge choice (and conversion
between gauges) on the equations presented here.

III. SIMPLE GRAVITATIONAL EQUATIONS ON
ALL SCALES

Although the 1PF equations are quite complicated, there
is a simpler version of them that still contains all of the

required information for the two limits (perturbation theory
and Newtonian cosmology). In this section we will derive
these “simple 1PF” equations and comment on the con-
ditions required for their validity. The resulting equations
are not just a curiosity: in Sec. IV we will use them to create
a simple parametrized framework for modified gravity,
such that the same parametrization applies on all cosmo-
logical scales.
We start from the 1PF equations from [28], and we will

use the “resummed” potentials as defined in that work

ψP ¼ −VN −
2

c2
VP; ð3:1Þ

ϕP ¼ −UN −
2

c2
UP; ð3:2Þ

ω⃗P ¼ B⃗N þ 2

c2
B⃗P: ð3:3Þ

We rewrite the 1PF equations in terms of these resummed
potentials (neglecting terms of order c−6 and higher),
and combine all of the “structurally nonlinear” (see
Introduction) terms that are higher order in 1

c into a single
schematic term, denoted [nonlinear terms]. The time-time
component of the 1PF field equations gives

1

c2
1

3a2
∇2ψP −

1

c4

�
_a
a
_ψP þ

�
_a
a

�
2

ϕP

�
þ 1

c4
½nonlinear terms� ¼ 1

c2
4πG
3

ρ̄δ; ð3:4Þ

where the “nonlinear terms” includes both matter and metric variables; only their nonlinear structure is important for our
purposes here. The time-space component of the equations can be expressed in similar fashion

1

c3

�
−

1

2a2
∇2ωPi

�
−

1

c3

�
2
_a
a
ϕP;i þ 2 _ψP;i

�
þ 1

c5
½nonlinear terms� ¼ 1

c3
8πGaρvi −

1

c5
8πGρ̄aωPi: ð3:5Þ

We want to consider the scalar and pure vector parts of this equation separately, so we take the divergence to yield

−
1

c3

�
2
_a
a
∇2ϕP þ 2∇2 _ψP

�
þ 1

c5
½nonlinear terms� ¼ 1

c3
8πGaðρviÞ;i; ð3:6Þ

for the scalar part of the equation. We write the vector part of this equation by removing the terms that are purely a
divergence, leaving
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−
1

2c3a2
∇2ωPi þ

1

c5
½nonlinear terms�jv ¼

�
1

c3
8πGaρvi

�
jv −

1

c5
8πGρ̄aωPi: ð3:7Þ

We will also require the space-space component of the 1PF field equations

1

c2

�
2

a2
∇2∇2ðψP − ϕPÞ

�
þ 1

c4
½nonlinear terms� ¼ 0: ð3:8Þ

Finally, we have the Euler and continuity equations

dvi
dt

þ _a
a
vi −

ϕP;i

a
þ 1

c2
½nonlinear terms� ¼ 1

c2
1

a
d
dt

ðaωPiÞ; ð3:9Þ

dδ
dt

þ vi;i
a
ð1þ δÞ − 3

c2
dψP

dt
þ 1

c2
½nonlinear terms� ¼ 0: ð3:10Þ

Focusing initially on the time-time and space-space equations, we now switch to Fourier space (a tilde “Ã” denotes
quantities in Fourier space), in order to replace the derivatives and pull out the required structure of the scalar equations,

−
1

c2
1

3a2
k2ψ̃P −

1

c4

�
_a
a
_̃ψP þ

�
_a
a

�
2

ϕ̃P

�
þ 1

c4
½ gnonlinear terms� ¼ 1

c2
4πG
3

ρ̄ δ̃; ð3:11Þ

1

c3

�
_a
a
ϕ̃P þ _̃ψP

�
þ 1

c5
½ gnonlinear terms� ¼ 1

c3
4πG
k2

ρ̄ gð½1þ δ�viÞ;i; ð3:12Þ

1

c2

�
2

a2
k4ðψ̃P − ϕ̃PÞ

�
þ 1

c4
½ gnonlinear terms� ¼ 0: ð3:13Þ

We then substitute for the time derivatives in the time-time equation to arrive at two constraint equations,

−
1

c2
k2ψ̃P þ 1

c4
½nonlinear terms� ¼ 1

c2
4πGa2ρ̄ δ̃þ 1

c4
3a2

_a
a
4πG
k2

ρ̄ θ̃; ð3:14Þ

1

c2

�
2

a2
k4ðψ̃P − ϕ̃PÞ

�
þ 1

c4
½nonlinear terms� ¼ 0: ð3:15Þ

We remind the reader that the density contrast is not
required to be small in these equations, hence these
equations describe gravitational interactions on all scales.
Note that when doing the substitution, the structurally

nonlinear parts of the gð½1þ δ�viÞ;i term have been moved
into the “nonlinear” terms, and we have defined θ ¼ vi;i.
To proceed further, we note that the terms denoted

[nonlinear terms] will vanish in both the small scale
(Newtonian) limit, and the large scale (linear limit),
because in the former case these terms are higher order
in the c−1 expansion, and in the latter case because these
terms are nonlinear. This leaves us with the following
equations:

1

c2
k2ψ̃P ¼ −

1

c2
4πGa2ρ̄ δ̃−

1

c4
3a2

_a
a
4πG
k2

ρ̄ θ̃; ð3:16aÞ

1

c2

�
2

a2
k4ðψ̃P − ϕ̃PÞ

�
¼ 0; ð3:16bÞ

which are valid both on nonlinear scales where the density
contrast is large, and on larger scales where the Newtonian
limit (in particular the quasistatic approximation) is not
valid. The structure of these equations is familiar: they
follow the same structure as the standard linear perturbation
equations, except that the potentials are the resummed
potentials, and the density contrast is not required to be
small. As is usual with such equations, the latter of these
equations can of course be replaced with the equation
ψ̃P ¼ ϕ̃P. We can combine these equations with the
divergence-free part of the 1PF 0i equation, and the 1PF
Euler and continuity equations,3 from all of which the
structurally nonlinear terms have also been dropped,
yielding

3In a slight abuse of notation, we will leave the continuity and
Euler equations in real space, as this is the form they are typically
seen in the Newtonian limit and N-body simulations.
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1

2c3a2
k2ω̃Pi ¼

�
1

c3
8πGafρvi

�
jv −

1

c5
8πGρ̄aω̃Pi; ð3:17Þ

dvi
dt

þ _a
a
vi −

ϕP;i

a
¼ 1

c2
1

a
d
dt

ðaωPiÞ; ð3:18Þ

dδ
dt

þ vi;i
a
ð1þ δÞ − 3

c2
dψP

dt
¼ 0: ð3:19Þ

At linear order in perturbation theory, the scalars, vectors
and tensors decouple from each other (e.g., [44]).
Moreover, the vectors and tensors can be treated as higher
order as long as (as is the case in ΛCDM) no matter sources
that actively generate linear vector and tensor perturbations
(such as topological defects [45]) are present. Since the
vector potential term in the Euler equation is also higher
order in the 1

c expansion, this suggests that this term can also
be dropped in both of these two limits. This decouples the
evolution of the scalar, vector and tensor components of the
metric. It was shown in [30,32] that the vector potential is
negligibly small on all scales in ΛCDM, which justifies this
choice. We now concentrate solely on the four equations
containing only scalar variables, which we will refer to as
the simple 1PF equations,

1

c2
k2ψ̃P ¼ −

1

c2
4πGa2ρ̄ δ̃−

1

c4
3a2

_a
a
4πG
k2

ρ̄ θ̃; ð3:20aÞ

ψ̃P ¼ ϕ̃P; ð3:20bÞ

dvi
dt

þ _a
a
vi −

ϕP;i

a
¼ 0; ð3:20cÞ

dδ
dt

þ vi;i
a
ð1þ δÞ − 3

c2
dψP

dt
¼ 0: ð3:20dÞ

These four equations give a complete (leading order)
description of structure formation in both the Newtonian
and perturbative limits, for any cosmology where the
Newtonian limit applies and there are no linear sources
of the vector and tensor in perturbation theory. If the vector
potential is also small enough to not affect light bending
significantly at the level of our current observations [31]
(which is a more stringent constraint than just being small
enough for the Newtonian approximation to be good), then
the scalar potential evolution described by these equations
is sufficient to describe all large scale structure observables,
including weak lensing, in these two limits.
However, the real power of these simple equations is that

they are of much more general validity than just the large
and small scale limits: In a realisticΛCDM-like cosmology,
these equations are actually valid on all cosmological
scales. This is because, if the Newtonian limit is a good
description of the Universe on all nonlinear scales, and the
gravitational dynamics are suitably “quasistatic” on linear
scales well within the horizon (both of which known to be

true in aΛCDM universe) there is no “intermediate regime”
in which the nonlinear terms that we have discarded are
important for structure formation. In other words, the two
limits actually overlap, and thus the simple 1PF equations
describe structure formation on all cosmological scales. We
will now expand on this intermediate regime and its
absence in ΛCDM.

A. The intermediate regime

In this section we discuss the intermediate regime
between the two limits usually used in cosmology, namely
perturbation theory (large scales) and the Newtonian limit
(small scales). The intermediate regime refers to any scales
where both nonlinearity and higher order 1

c effects are
important for the gravitational equations, and thus the
gravitational equations from neither limit apply. In
ΛCDM, the lack of an intermediate regime is due to a
combination of similarities between the equations in the
two limits (including the decoupling of scalar, vector and
tensor perturbations), the ability to ignore some terms in the
perturbative equations on subhorizon but linear scales, and
the validity of the Newtonian approximation on all non-
linear scales. This lack of an intermediate regime means
that the simple 1PF equations apply on all cosmological
scales in ΛCDM, which will also be important when using
them as the basis of a parametrization of modified gravity
in Sec. IV.
First, let us consider the similarities between the two

limits. Both limits are weak field4 regimes, and therefore
the metric perturbations appear linearly in both limits. This
manifests in the fact that the “resummed” potentials, which
appear linearly in the simple 1PF equations, describe all of
the relevant metric degrees in the two limits. If the
Newtonian equations (for example) were a constraint
equation for Φ2 and Ψ2, then there would be no simple
correspondence between the two limits. For there to be no
intermediate regime on linear scales, the similarity between
the scalar equations needs to be even more precise. There
need to be no linear terms in the Newtonian equations that
are not present in the linear perturbation equations. In
addition, the terms that are present in the linear limit but not
in the linearized Newtonian limit need to be negligible
below a certain scale ðk�Þ−1 where perturbation theory is
still valid, i.e., ðk�Þ−1 > ðkNLÞ−1, where kNL is the scale on
which perturbations become nonlinear. In GR, these terms
correspond to the time derivative of the metric potential in
the continuity equation and the contribution of the velocity
to the gauge-invariant density contrast. It is well known that
this is the case in a ΛCDM cosmology and that the

4It is known that in a ΛCDM cosmology the perturbations to
the metric are small [36,38], except in the vicinity of black holes
and other such objects, which is a negligible fraction of the spatial
volume.
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linearized Newtonian limit equations match the scalar
subhorizon perturbation equations in a dust cosmology.
Tensor-type potentials do not appear at leading order in

either limit, but the vector potential is more complicated. In
both limits it does not influence the scalar dynamics, which
is another key similarity between the two limits. In
principle, it is still present in the metric in the
Newtonian limit and could influence observables.
However, it has been shown [31] that the vector potential
in ΛCDM is too small to influence observables at the level
of upcoming surveys; if this were not the case then the
simple 1PF equations would need to be supplemented by
the additional equation for the vector potential in order to
be a complete description of the quantities required for
cosmological large scale structure observables, such as
light deflection.
That there is no intermediate regime on linear scales is

implicit in the use of cosmological N-body simulations, and
the known results that the output of these simulations
matches that of perturbation theory on linear subhorizon
scales [34]. At this stage, there is just one check left to
determine the lack of an intermediate regime, which is that
the Newtonian approximation holds up to the nonlinear
scale, i.e., that none of the terms in the 1PF equations that
are higher order in the 1

c expansion contribute on scales
smaller than kNL. This has been tested using the smallness
of the induced vector potential,5 showing that the
Newtonian approximation does indeed hold [30,32,39].
Thus we can see that there is no intermediate regime where
the gravitational dynamics require inclusion of terms that
are both structurally nonlinear, and higher order in the 1

c
expansion (a similar conclusion is reached differently
in [38]).
The importance of the smallness of the vector potential to

the validity of the Newtonian approximation, and restric-
tion of the gravitational equations to dealing with scalars
only, is why the vector potential will play an important
diagnostic role when determining whether a particular
modified gravity theory is contained within the approach
presented in Sec. IV.

B. The simple 1PF equations and N-body simulations

The simple 1PF equations are a generalization of the
usual Newtonian cosmological equations, so it is interest-
ing to consider what the effect might be of implementing
these equations in N-body simulations in lieu of the usual
Newtonian equations. Comparing the simple 1PF equations
to the standard Newtonian equations, there are two key
differences: the time derivative of the potential in the
continuity equation, and use of the gauge invariant density
contrast in the Poisson equation. The requirements during
the derivation that the Newtonian limit is good, and that
there is no intermediate regime, means that implementing
these equations instead of the standard N-body equations
will make little difference except near the horizon scale
where the 1

c expansion breaks, and therefore will not be
relevant for most of the applications of N-body simulations.
Since these equations reduce to the standard perturbation
theory equations on large scales, then any differences
between the simple 1PF and standard N-body equations
on subhorizon scales would already have been seen on
linear scales in the simulation, in contrast to what is found
(e.g., [34]). This result will also apply to the modified
gravity parametrization (see later). However, we expect that
on scales toward the horizon, the simple 1PF equations
would affect the results from N-body simulations. For
example, it might be expected that the matter power
spectrum in the simulation on the largest scales, which
is known to be sensitive to the gauge choice, might now
match that calculated in the Poisson gauge. We leave a full
investigation of these issues to future work.

IV. SIMPLE MODIFIED GRAVITY EQUATIONS
ON ALL SCALES

The full 1PF equations govern gravitational structure
formation on all scales: they do not require either limit to be
specified, and they do not require the density contrast to be
small. As such, these equations can be used as the basis of a
framework to describe modified gravitational dynamics on
all scales, for modified gravity theories where the
Newtonian approximation is a good description of the
small scale (nonlinear) dynamics. A possible version of
how these modified gravity equations might look is

1
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�
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�
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4πG
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Bða; x⃗Þρ̄ð1þ δÞv2 ð4:1aÞ

5Note that the vector potential can be small enough for the Newtonian approximation to be valid and still large enough that it must be
considered for observables. Therefore the test described above for the vector potential to be ignored for all observables [31] is a stricter
requirement on the size of the vector potential than that required here for the Newtonian limit to be valid.
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where A; B;C;D; E; F are time and space dependent
parameters that represent the effects of the modified
gravity. We note that we are not presenting this as an
optimal, rigorous or well-motivated parametrization of
these equations. It is merely intended to be a schematic
representation of how such a set of equations might look.
Considering the complexity of the equations (4.1), it is
unclear how useful such a parametrization would be.

Moreover, motivated by the derivation of the simple 1PF
equations in the previous section, the fact that ΛCDM
seems to be a reasonable model given our observations, and
the lack of an intermediate regime in ΛCDM, we note that
such a parametrization is likely to be overkill.
Instead, we will perform the same process as was

performed in Sec. III to write the parametrized gravitational
1PF equations as

1

c2
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c4
½parametrized nonlinear terms� ¼ −

1

c2
4πGa2ρ̄αða; k⃗Þ

�
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�
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ψ̃P ¼ βða; k⃗Þϕ̃P þ 1

c4
½parametrized nonlinear terms�; ð4:3Þ

1

2c3a2
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�
jv −

1
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8πGϵða; k⃗Þρ̄aω̃Pi: ð4:4Þ

Here, we have switched to Fourier space and αða; k⃗Þ,
βða; k⃗Þ, γða; k⃗Þ and ϵða; k⃗Þ are time- and space-dependent
functions that we do not expect to necessarily have simple
functional forms in general. As before, the schematic terms
representing the higher-order structurally nonlinear terms
are hiding the majority of the complexity in these equa-
tions, except that they now contain additional complexity
due to the extra modified gravity parameters that must
necessarily be present. We now neglect these terms as in
Sec. III, leaving us with

1

c2
k2ψ̃P ¼ −

1

c2
4πGa2ρ̄αða; k⃗Þ

�
δ̃þ _a

a
3

c2k2
θ̃

�
ð4:5Þ

ψ̃P ¼ βða; k⃗Þϕ̃P ð4:6Þ

1

2c3a2
k2ω̃Pi¼

�
1
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8πGaγða;k⃗Þ ˜ρvi

�
jv−

1

c5
8πGϵða;k⃗Þρ̄aω̃Pi:

ð4:7Þ

This is equivalent to a parametrization of the gravitational
equations in the simple 1PF equations derived in Sec. III,
and should be used in conjunction with the Euler and
continuity equations derived there [see Eqs. (3.20)]. Before
continuing we note that, as before, the scalar, vector and
tensor sectors are decoupled. In particular, the only effect of
the vector potential will be on photon trajectories, not on
the evolution of structure in the Universe. We can thus drop
the vector equation as before, and work with just the scalar
potentials. We comment further on this in Sec. VA.
These parametrized equations describe the leading order

gravitational dynamics in both the Newtonian and linearly
perturbed limits: the equations in each limit have the same
structure and contain the same parameters, therefore con-
sistent calculations can be carried out in the two limits. The
only difference is that in the linear limit, the right-hand side
of the parametrized Poisson equation corresponds to the
gauge invariant linear density contrast, as expected in the
Poisson gauge, and in the Newtonian limit the right-hand
side reduces to the standard Newtonian density.
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More importantly, for modified gravity cosmologies
where there is no intermediate regime (as is the case for
ΛCDM), we can go further and apply these equations on all
cosmological scales, thereby having parametrized modified
gravity equations where the parameters are meaningful on
all scales. This means that the same parameters can be
constrained using data that combines linear and nonlinear
scales; this is the first time that such an approach has been
shown to be valid.
For the sake of clarity, we recap the argument used to

derive these equations. The starting point is the full 1PF
equations, which describe structure formation on all scales
and do not require the density contrast to be small, thus they
are the natural choice for a parametrized set of equations to
describe modified gravity on all scales. We rewrite these
equations into a form that separates the terms that dominate
in the large and small scale limits from the additional terms
that are required in an intermediate regime, and parametrize
the resulting equations. We then neglect the additional
terms; crucially, the same pair of parameters describe the
modified gravity effects in the two limits. Then we note that
in a modified gravity cosmology with no intermediate
regime, these simple parametrized equations describe the
modified gravitational dynamics on all scales.

A. A convenient rewriting of the
parametrized equations

Much investigation has been done into different choices
of how to parametrize gravitational equations with this
structure, and the relative merits of the different choices
[2,9]. As long as the system of equations has a constraint
equation for one of the potentials, and an algebraic closure
relation for the other, there are multiple choices that suffice.
From here onwards we will work with the alternative
parameters

1

c2
k2ϕ̃P ¼ −

1

c2
4πGa2ρ̄Geffða; k⃗Þ

�
δ̃þ _a

a
3

c2k2
θ̃

�
; ð4:8aÞ

ψ̃P ¼ ηða; k⃗Þϕ̃P: ð4:8bÞ

The advantage of this choice is that it is ϕP that governs
the trajectories of massive particles, as can be seen from the
1PF Euler equation above. As a result, onlyGeff needs to be
implemented into the evolution of the N-body code; the
effects of η can all be included during postprocessing steps.
Therefore, these equations define the optimal way to
include modified gravity parameters in N-body simula-
tions. Indeed, some theories have zero “slip” (e.g., [46]),
meaning that η ¼ 1, making these theories particularly easy
to simulate in this approach. Another advantage of modi-
fied gravity simulations based on this framework is that
there are no equations to solve for the additional fields, and
thus the N-body simulations should take a similar amount
of time as ΛCDM simulations. Note that, as discussed

previously, only the leading order (in terms of 1
c) parts of

these equations need to be implemented to model theories
that have a good Newtonian limit and no intermediate
regime. These two equations replace the first two equations
in (3.20), and we refer to the resulting set of equations as
the “parametrized simple 1PF” (PS1PF) equations.
The Geff and η parameters will reduce to the functional

forms already known for modified gravity theories on large
scales, because the perturbative limit of the PS1PF equa-
tions reduces to the known linear theory parametrization.
Any complicated behavior on small scales of additional
fields that may be present is hidden in these functions, thus
the time and space dependencies are not expected to reduce
to simple functional forms on small scales. Since our
parametrization reduces to that in [5] on superhorizon
scales, this parametrization satisfies the superhorizon con-
sistency condition [8,47], as long asGeff and η tend towards
finite, scale-independent functions on large scales.
For convenience (because many cosmological observ-

ables are computed in Fourier space), and to connect to the
linear theory parametrizations, we have defined our modi-
fied gravity parameters in Fourier space. In principle it is
always possible to convert between parameters defined in
Fourier space and in real space, and indeed when there is no
scale dependence the conversion will be trivial. However,
in the general scale-dependent case, converting between the
parameters becomes nontrivial because of the required
convolutions.
An important consequence of these equations is that they

justify the use of phenomenological modified gravity N-
body simulations, i.e., simulations based on a parametrized
Poisson equation, rather than on the equations of motion
derived in a specific theory. The process used to arrive at
these equations can be reversed to elucidate the conditions
required for a parametrization of the Poisson and slip
equations to be a sensible and sufficient description of the
gravitational dynamics; see Sec. VA. Under the phenom-
enological approach, the consequences of different forms
forGeff and η can be explored using N-body simulations for
these values; we discuss a few possibilities for these forms
in Sec. V C, including the possibility of binning Geff and η
into time and space dependent “pixels” that can be
independently varied and constrained. Note that this does
not justify the use of existing Halofit [48] and similar
ΛCDM semianalytic fitting formulas for modified
gravity cosmologies: N-body simulations still need to be
employed.

B. The Newtonian approximation and intermediate
regime in modified gravity

The nature of the Newtonian approximation in modified
gravity theories is important if the parametrization of the
simple 1PF equations is to apply to any “real” theories.
Moreover, the equations are at their most powerful for
modified gravity theories that (like ΛCDM) have no
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intermediate regime. Here we examinewhat is known about
modified gravity theories in these regards, and how it
justifies the choice to use this approximation in building the
parametrization.
The starting point of the majority of modified gravity

cosmologies is to assume a weak field metric as in ΛCDM,
and it is usual to consider no linear-order sources of vector
and tensor perturbations. In addition, most of the currently
popular theories are driven by the search for dark energy
[2], and assume that cold dark matter is still the dominant
matter component of the universe. Cold dark matter is still
nonrelativistic in these modified gravity scenarios and the
velocities will still be small, suggesting that the Newtonian
approximation will be good in these cosmologies.
However, few detailed examinations of the Newtonian

approximation in modified gravity have been performed on
nonlinear scales. N-body simulations have been run for
several specific modified gravity theories, including f(R)
and DGP (see e.g., [49] and references therein) and
Galileon theories [50,51]. In the usual quasistatic and
weak-field approach used to derive the equations used in
cosmological N-body simulations, several assumptions are
made. The density is taken to be the only quantity in the
stress-energy tensor that contributes to the Einstein equa-
tions, and the nonscalar elements of the metric are ignored.
These assumptions amount to implicitly performing a 1

c
expansion, although it is usually not discussed in such
terms; without this expansion, there is no reason to neglect
the nonscalar parts of the metric when the density contrast
is allowed to become arbitrarily large.
As a result of the implicit 1c expansion, we note a couple

of subtleties that are not normally considered, and which
are relevant to the framework developed here. First, the
expansion needs to be performed consistently for theories
with dimensionful coupling constants, which means under-
standing the power of 1

c that should be applied to the
coupling. We will discuss this in more detail in the context
of the cubic Galileon in Sec. V B 2. Second, for the
majority of theories for which N-body simulations have
been run, there remain two untested assumptions: that the
Newtonian limit is valid on all nonlinear scales, and that
only the scalar potentials contribute to the bending of light.
The exception to this is Hu-Sawicki fðRÞ gravity [52],
where these assumptions have been explicitly checked
[33,53]. In the former of these, the post-Friedmann for-
malism was applied to fðRÞ gravity, providing an alter-
native justification for the equations used in N-body
simulations and additionally deriving the equation for
the leading order correction, the vector potential. This
potential was measured from fðRÞ N-body simulations and
found to be similarly negligible as in ΛCDM, showing that
the Newtonian approximation is good on all nonlinear
scales for this theory, and that even on nonlinear scales only
scalar gravitational potentials are important.

The work [27], which parametrizes the Poisson equation
in a way that generalizes the behavior seen in N-body
simulations for specific theories, is implicitly built upon the
same assumptions such as the absence of relevant vector
and tensor perturbations, and the lack of an intermediate
regime. The derivation of the simple 1PF equations and the
lack of intermediate regime described above for ΛCDM
show that the choice to parametrize the Poisson equation in
[27] is valid for theories that fit into the framework
considered here. In this sense, the parametrization in
[27] is a subset of the framework considered here, and
can be used to guide functional forms of the PS1PF
equations (see Sec. V C 2) for theories with screening
mechanisms.
One important area that has been investigated in detail is

the quasistatic approximation (QSA) [54–61], which cor-
responds to a subhorizon approximation and treating time
derivatives of the metric and extra field perturbations as
small compared to their spatial derivatives [56,62],

j _Xj ≤ HX; ð4:9aÞ

j∇2Xj ≫ H2X or k2 ≫ H2; ð4:9bÞ

where X represents either the metric or field perturbations.
Typically it is found to be valid on scales that are smaller
than the sound horizon of the dark energy perturbations
[59], but more interestingly it is found in [55,56] that the
QSA is best in theories that are close to ΛCDM behavior at
the background level. There have also been several inves-
tigations of the QSA in N-body simulations, see e.g.,
[49,63–65]. This is an important consistency test of the
simulations, and it is a partial test of the Newtonian
approximation in N-body simulations because it tests some
of the approximations of the 1

c expansion (corresponding to
the relative down-weighting of time derivatives).
The QSA is important as it is generally equivalent to

neglecting the terms in the linear perturbation equations
that are not present in the Newtonian limit, therefore
showing that the QSA is valid is a key part of showing
that there is no intermediate regime. This connection can be
understood as follows. Newtonian theory is acausal, so it
can only resemble GR in a “local inertial frame” or “causal
region” where the system can be considered to be slowly
varying (i.e., close to static) and in casual contact. This is
part of the physical meaning of the 1

c expansion. In GR, in a
matter dominated universe, the “local inertial frame” is set
by the Hubble horizon (and the speed of light/gravity c), so
it is expected that in this regime the Newtonian approxi-
mation could be a good description. The Newtonian
approximation is therefore naturally associated with the
quasistatic conditions [Eqs. (4.9)] applied to the metric
perturbations. Put differently, the terms that are removed by
the quasistatic conditions are ones that would not be
expected to be present in Newtonian theory. In modified
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gravity theories, there is an analogous local inertial frame or
causal region set by the sound speed of the dark energy
perturbations, within which the QSA is valid because the
system can be considered to be slowly varying on these
scales [59]. Therefore, within this region, the terms that can
be neglected are those that would not be present in a
“Newtonian-like” approximation to the modified gravity
theory. As a result, the existence of an intermediate regime
on linear scales is unlikely for theories where the QSA is
valid on scales larger than kNL.
We can reverse the argument from [56] for theories that

are not close to ΛCDM behavior. For these theories, the
quasistatic approximation does not hold on linear subhor-
izon scales, so we expect that the Newtonian approximation
is less likely to be valid. In particular, this means that there
is more likely to be an intermediate regime and that the
vector and tensor components of the metric are likely to be
sourced.
The combination of all these results suggest that the

Newtonian approximation is a sensible choice for examin-
ing modified gravities that appear observationally similar to
ΛCDM, and that we should expect the majority of popular
modified gravity theories to fit into this framework. In
Sec. VA we make this more concrete and present an
algorithm for determining whether a particular theory fits
into this framework. The results discussed here for Hu-
Sawicki fðRÞ show that this theory does fit into the
framework of the PS1PF equations.

C. Background cosmology

The framework developed here focuses purely on the
inhomogeneities and their evolution, and assumes a ΛCDM
expansion history. This choice has been made for both
observational and theoretical reasons.
Although it is possible to rule out some modified gravity

theories using the background expansion history, many
modified gravity theories can be designed to mimic the
ΛCDM expansion history (e.g., [52]). In addition, it has
been found that the quasistatic approximation (which is an
indicator of whether a theory fits into this framework) is
typically better for theories with a ΛCDM-like expansion
history [56].
Moreover, the background expansion is well under-

stood theoretically and, as measurements of the expan-
sion history become more precise, modified gravity
theories that make meaningful modifications to the
background will be ruled out (or ΛCDM will be).
Conversely, the inhomogeneities in the Universe contain
a much greater amount of information, and permit a
much greater spectrum of possible behaviors that are
currently much less understood. In particular, future
surveys such as Euclid will deliver large data volumes
on the inhomogeneities in the Universe on nonlinear
scales.

V. USING AND APPLYING THE MODIFIED
GRAVITY FRAMEWORK

The discussion so far has focused on the derivation of the
simplified 1PF equations in standard gravity, and using
them as the basis of a framework to describe modified
gravity. In this section we delve further into the practical-
ities of using the framework presented here. We present an
algorithm for determining whether a given theory fits into
the framework proposed here, and we apply the post-
Friedmann formalism to some example theories in order to
illustrate the algorithm with respect to these theories.
Finally, we consider some possible functional forms for
the parameters.

A. Algorithm for modified gravity theories

We begin by recapping the properties of ΛCDM eluci-
dated earlier that result in there being no intermediate
regime, and thus that the simple 1PF equations apply on all
scales:

(i) A weak field metric is appropriate on all cosmo-
logical scales.

(ii) There are no sources of vector and tensor perturba-
tions in linear perturbation theory.

(iii) The linearized Newtonian scalar equations have no
terms that do not appear in linear perturbation
theory.

(iv) There is a scale 1
k�
> 1

kNL
, below which the terms that

are present in linear perturbation theory, but not
present in the linearized Newtonian scalar equations,
are negligible.

(v) The Newtonian approximation is valid on all non-
linear scales.

For any theory where all of these criteria are met, the two
limits will be valid, only scalar variables need to be evolved
to compute cosmological structure formation, and there will
be no intermediate regime. This means that the simple 1PF
equations for the scalar sector can be utilized on all scales.
If in addition the following extra criterion is satisfied,

(i) the effect of the vector potential (e.g., on photon
trajectories) is negligible for upcoming large scale
structure observations,

then the additional constraint equation for the vector
potential is not required, and Eqs. (3.20) are a complete
description of the variables required for computing large
scale structure observables.
The post-Friedmann vector potential is a key diag-

nostic here. Not only does it check the validity of the
Newtonian approximation on all nonlinear scales, but it is
required to be small for the scalar gravitational potentials
to be the only relevant gravitational degrees of freedom
for structure formation. Therefore its smallness directly
relates to the nonexistence of an intermediate regime. It is
also the quantity that needs to be calculated for the extra
criterion.
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We now use these criteria, the post-Friedmann vector
potential, and the work carried out for fðRÞ in [33] to build
an algorithm to determine whether a given theory fits under
the assumptions and approximations behind the paramet-
rization of the simple 1PF equations in Sec. IV.
Algorithm.
(1) Check that a weak field metric is appropriate on all

cosmological scales.
(2) Derive the linear perturbation equations and check

that there are no sources of vector and tensor
perturbations.

(3) Derive the equations in the Newtonian limit using
the post-Friedmann approach.

(4) Check for the existence of a scale 1
k�
> 1

kNL
, below

which the only terms that contribute significantly
in the linear perturbation equations are the same
terms that are present in the linearized Newtonian
equations (for most theories this will be equivalent to
testing the QSA).

(5) Derive the equation for the post-Friedmann vector
potential in the modified gravity theory, use it to
calculate the vector potential from N-body simula-
tions, and check that this is small enough for the
Newtonian approximation to be valid on all
nonlinear scales.6

The extra criterion above for the effect of the vector
potential can be tested easily from step 5:
(6) Determine if the effect of the vector potential on

photon trajectories is negligible for upcoming large
scale structure observations; a reasonable rule of
thumb for this is to compare the E-mode of cosmic
shear from the vector potential to that generated by
higher order deflections by the scalar [31,66].

Parts 1–4 of this algorithm can be applied without the
investment of running N-body simulations, as a minimal
plausibility test of whether a given theory is likely to be
covered by this approach. Indeed, these steps have been
checked already for many popular modified gravity models
(see Sec. IV B). Steps 5–6 provide a more rigorous and
detailed test.
Note that steps 5–6 are valuable in and of themselves for

modified gravity theories, irrespective of determining
whether a particular theory fits into the modified gravity
framework described here: they test the validity of the
Newtonian approximation on all nonlinear scales, and test
that only the scalar potentials contribute significantly to
cosmological observables such as the bending of light.
These are untested assumptions in the majority of modified
gravity theories for which N-body simulations have been
run. A further benefit of running N-body simulations for a

specific theory as part of this algorithm is that they can be
used to determine the full Geff and η functions for that
theory as a function of time and scale, by extracting the two
sides of Eqs. (4.8) at different snapshots, and taking the
ratio. Note that this requires outputting the gravitational
potentials at each snapshot, in addition to the particle
position and velocity data that is the typical output of the
simulations.
In comparison to other approaches such as [25], the full

procedure to determine whether a particular theory is
covered by this approach is somewhat more laborious.7

However, the trade-off is that the approach here does not
a priori exclude any areas of theory space (known or
otherwise), or rely on extrapolating from known theories
and screening mechanisms. Instead, the restrictions in
theory space are based on the phenomenology of the
theories; we expect the approach here to apply to any
theories that can describe a ΛCDM-like universe and are
thus not already ruled observationally. As a result, a null
detection of the parameters in this approach would be a
stronger and more definitive constraint on modified gravity
effects.
From the arguments considered here, we can envisage

modified gravity theories that would not be described by
the parametrized simple 1PF equations, for example, a
theory that generates vector or tensor perturbations at first
order, perhaps due to having an additional vector8 or tensor
field. Alternatively, a theory such as the massive gravity
theory in [68] might not fit into this framework, as it was
pointed out in [69] that the small sound speed is likely to
cause problems for the QSA.

B. Post-Friedmann scalar-tensor theories and
applying the algorithm

A substantial number of the modified gravity theories
under investigation are scalar-tensor theories (see e.g., [2]),
where an additional scalar field ϕ is included in the action.
This includes fðRÞ gravity, which has already been shown
to fit into this framework. In this section we apply the post-
Friedmann formalism to several more scalar-tensor theo-
ries, in preparation for examining them in terms of our
algorithm. We will particularly be interested in the post-
Friedmann equation for the vector potential. Note that
throughout this section we work in the Jordan frame.

6To some extent, “how small is small enough?” is an arbitrary
question. To be in line with claims about 1% precision cosmol-
ogy, we propose the conservative requirement Pωða; kÞ <
10−4PΦða; kÞ for all a, k.

7For a specific model, this test should ideally be done with
N-body simulations that solve the equations of motion fully
(rather than which use a parametrized approach). However, once
a specific theory has been tested, and it is known how to
reproduce it using the parametrized approach, future simulations
can be run using the parametrized approach in order to achieve
the gains in simplicity and speed mentioned earlier.

8Although this probably needs to be a truly divergenceless
vector field, rather than a theory like generalized Einstein-Aether
[67], where due to the timelike constraint the vector field
primarily contributes a scalar mode.
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Before examining any theories in detail, we first consider
what result we might expect. In the fðRÞ case, the
constraint equation for the vector potential is the same
as in GR; the (inhomogeneous) additional scalar field does
not enter. The vector potential still has a different value in
fðRÞ because the scalar field causes the density and
velocity fields to evolve differently. This result is not
surprising: if the scalar field only enters the leading order
Einstein equations linearly, then no matter what derivatives
are applied to it, a divergence-free quantity cannot be
created, and thus the divergence-free part of the G0i
Einstein equation will not contain the scalar field. The
scalar fields in these theories typically behave like the
scalar metric potentials in the presence of nonrelativistic
matter, so it is usual to expand them in powers of c as (see
e.g., [1,70])

ϕ ¼ ϕ0ðtÞ
�
1þ 1

c2
ϕ1ðx⃗; tÞ þ

1

c4
ϕ2ðx⃗; tÞ þ � � �

�
; ð5:1Þ

where ϕ0 is the background cosmological value of the field.
Note that due to the weak field approximation, the leading
order inhomogeneous part of the scalar field is assigned
order c−2, as was done in the post-Friedmann expansion for
fðRÞ [33]. Assuming an expansion of this form, the
inhomogeneous scalar field can only appear linearly in
the leading order Einstein equations, and thus we expect the
constraint equation for the vector potential to have the same
form as in GR, except for a possible rescaling of G by the
background field.
There is a possible loophole in this argument, which is

that the scalar field could contain a dimensionful coupling
constant that is assigned a positive power of c in the
expansion. A theory with such a coupling can have leading
order terms that are structurally nonlinear in the inhomo-
geneous quantities, and thus contribute a divergence-free
term to the 0i equation despite only having scalars present
in the theory. We will discuss this case in more detail below
when applying the post-Friedmann approach to the cubic
Galileon.

1. Post-Friedmann Brans-Dicke

The prototypical scalar-tensor theory is Brans-Dicke
theory [71], where the modified action is

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR −

w
ϕ
ð∇ϕÞ2

�
þ Sm; ð5:2Þ

where Sm denotes the matter action and ð∇ϕÞ2 ¼
gμν∇μϕ∇νϕ. For simplicity (and because it is true for
the Galileon case), we will take w to be a constant, and not a
function of ϕ. This choice does not change the equation for
the vector potential that we will derive. The Einstein
equations and scalar field equation are given by

ϕGμν −∇μ∇νϕþ gμν□ϕ −
w
ϕ
∇μϕ∇νϕþ w

2ϕ
gμνð∇ϕÞ2

¼ 8πG
c4

Tμν; ð5:3Þ

ð3þ 2wÞ□ϕ ¼ 8πG
c4

T: ð5:4Þ

We now expand these equations according to the post-
Friedmann description, see [28] for the components of the
Einstein and stress-energy tensors, and we expand the
scalar field as in Eq. (5.1). Taking terms up to order c−3, and
subtracting off the background (homogeneous) terms, the
equations become

1

c2
∇2VN ¼ 4πG

ϕ0c2
a2ρ̄δþ 1

2c2
∇2ϕ1; ð5:5Þ

1

c2
∇2ðVN −UNÞ ¼

1

2c2
∇2ϕ1; ð5:6Þ

1

c3
∇2BN

i ¼ −
16πGρ̄a2

ϕ0c3
½ð1þ δÞvi�jv; ð5:7Þ

1

c2
ð3þ 2wÞ∇2ϕ1 ¼

8πG
ϕ0c2

ρ̄δ: ð5:8Þ

The structure of these equations match those obtained in
PPN. As anticipated above, the constraint equation for the
vector potential is the same as in GR, except for a rescaling
of G by the background field ϕ0.

2. Post-Friedmann cubic Galileon

We now consider the cubic Galileon as an example of a
more complicated scalar-tensor theory. Following [70], we
define Y ¼ − 1

2
ð∇ϕÞ2 and write the action as

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

16πG

�
Rϕ−

w
ϕ
ð∇ϕÞ2−α3

4

Y□ϕ

ϕ3

�
: ð5:9Þ

The Einstein and scalar field equations are give by

ϕGμν −∇μ∇νϕþ gμν□ϕ −
w
ϕ
∇μϕ∇νϕþ w

2ϕ
gμνð∇ϕÞ2 þ α3

4

�
gμν

Y□ϕ

2ϕ3
−
Y∇ðμ∇νÞϕ

ϕ3
þ□ϕ∇μϕ∇νϕ

2ϕ3

�
¼ 8πG

c4
Tμν ð5:10Þ
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ð2wþ 3Þ□ϕþ α3
4ϕ2

�
18Y2

ϕ2
þ 5∇μϕ∇μY

ϕ
−∇μϕ∇μ□ϕ −□Y − ð□ϕÞ2 − Y□ϕ

ϕ

�
¼ 8πG

c4
T; ð5:11Þ

where as expected these equations differ from the Brans-
Dicke equations due to the new terms involving the
dimensionful coupling α3. We will proceed by applying
the post-Friedmann approach as before, but first let us
consider what the lowest order contributions to each
equation are from the new terms. The leading order
contributions to the different components of the Einstein
equations are

ð00Þ∶ α3
_ϕ2
0∇2ϕ1

16a2c4ϕ2
0

; ð5:12aÞ

ð0iÞ∶ α3 _ϕ0

8c5ϕ2
0

�
_a
a
_ϕ0ϕ1;i − _ϕ0ϕ1;0i − ϕ̈0ϕ1;i þ

ϕ0ϕ1;i∇2ϕ1

a2

�
;

ð5:12bÞ

ðijÞ∶ α3 _ϕ
2
0

8c4ϕ2
0

�
δij∇2ϕ1

2
− ϕ1;ij

�
: ð5:12cÞ

The scalar field equation has many more terms at leading
order; here we just note that they have order 1

c4, and
schematically include terms such as ð∇2ϕ1Þ2. See
Appendix B for the full set of leading order post-
Friedmann equations.
We now consider the issue of which power of 1c should be

assigned to α3. In [70], detailed consideration was given to
assigning orders to α3; the majority of the insight developed
there will apply here, so we will just note a couple of key
points in order to proceed:

(i) The leading order behavior of the metric is New-
tonian, even deep inside the Vainshtein region.

(ii) The 1
c order of α3 essentially comes from specifying

that the leading order terms contribute to the leading
order scalar field equation.

(iii) The 1
c order of α3 is independent of whether one is

dealing with the “standard” or “dual” formulation,
and which Vainshtein limit is being considered. As a
result, the leading order gravitational and scalar field
equations in the 1

c expansion are the same in the
different Vainshtein limits.9

Following this logic for the post-Friedmann case consid-
ered here, we assign an order c2 to α3. This agrees with the
order assigned in the PPNV case, as might be expected: it
would be strange if this parameter required a different order

in the two expansions, because the PPNVexpansion should
result from taking the “no cosmological evolution” limit of
the post-Friedmann equations (and then expanding with
respect to the Vainshtein radius). Since α3 ¼ Mp

Λ3 (see [70]),
this is the same order that would be anticipated usingM2

p ∼
1
c4 (as appears in front of the stress-energy tensor in the
Einstein field equations), which makes sense as we are not
expanding in the Λ scale. The same consideration of the
power of Mp comprising α yields the correct 1

c order for
both the quartic and quintic Galileons as well. Thus the
assignment of c2 to α3 appears to be a consistent and robust
choice.
Using this order for α3, the

1
c4 terms in the scalar equation

all contribute at the same order as the Brans-Dicke terms,
by design, matching the result from [70]. In addition, the
leading order additions to the gravitational equations
elucidated in Eqs. (5.12) will also contribute to the leading
order gravitational equations. This last result is different to
the PPNV case, and arises due to the cosmological
evolution of the background value of the field. Of course,
if this evolution is slow, we would expect the standard
Brans-Dicke term to dominate.
This might seem like an unnecessarily laborious process,

just to select the leading order terms. However, we note that
in the PPNV case, the dimension of the coupling is
important because it shows that at leading order there is
no contribution to the gravitational equations beyond those
of Brans-Dicke theory [70,72]. In that case, just taking the
leading order Galileon terms (as decided by applying the
weak field and quasistatic approximations with no consid-
eration for the order of α3) would result in the wrong
equations. Deriving the equations in the consistent manner
described here allows us to be sure of whether these terms
should be present at leading order. In the FLRW situation
considered here, unlike the Minkowski situation that is the
basis of the PPNVapproach, the background scalar field is
time dependent, which is why we obtain a different result to
the PPNV case. If it were constant, there would be no
Galileon terms contributing to the Einstein equations
beyond the usual Brans-Dicke terms. Note that there is
no such issue for the case of fðRÞ gravity, because there is
no new dimensionful coupling constant in the action, only
the usual 8πG

c4 term that is present in the GR case.
We can obtain our desired result for the vector potential

by taking the pure vector part of the cubic Galileon
contribution to the 0i equation, which will contribute to
the constraint equation for the vector potential. Knowing
the order of α3, we define α3 ¼ c2α�3 in order to make the
order of the extra terms explicit. From Eq. (5.12b), the
additional terms are

9Taking the different Vainshtein limits is a simplification that
allows a solution to be obtained for the scalar field. We do not
require this in the present work as we wish the equations to be
valid at all locations, irrespective of proximity to the Vainshtein
radius.
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α�3 _ϕ0

8c3ϕ2
0

�
_a
a
_ϕ0ϕ1;i − _ϕ0ϕ1;0i − ϕ̈0ϕ1;i þ

ϕ0ϕ1;i∇2ϕ1

a2

�
:

ð5:13Þ

We can see that these additional terms are of order 1
c3, so

they will contribute to the leading order 0i equation.The
first three terms are exactly as anticipated earlier, and have
no divergence-free part. However, consider the fourth term:
∇ × ðA∇BÞ contains ∇A ×∇B, so the curl will not vanish.
Instead we will have a term of the form∇∇2ϕ1 ×∇ϕ1. The
full vector constraint equation thus deviates from the Brans-
Dicke form,10

1

c3
∇2BN

i ¼−
16πGρ̄a2

ϕ0c3
½ð1þδÞvi�jv−

α�3 _ϕ0

8c3a2ϕ0

½ϕ1;i∇2ϕ1�jv:

ð5:14Þ

This equation can be used to extract the vector potential
from cubic Galileon N-body simulations. This quantity has
several uses: first, it is a consistency check of the approx-
imations used in this approach and is part of the algorithm
described above for determining whether the cubic
Galileon fits into the modified gravity framework described
here, which we will use in the next section. In addition, this
vector potential should be taken into account when ray-
tracing through N-body simulations [31] and can generate
unique lensing signals [31,73]. We leave it to future work to
perform this extraction.
We remind the reader that the vector potential equation is

not required to have the Brans-Dicke (or GR) form in order
for the theory to fit into the modified gravity approach
described here. However, as we will describe in the next
section, for theories where the equation matches that in
Brans-Dicke, it is possible to construct a plausibility
argument for determining whether these theories fit into
the framework described here that does not require running
N-body simulations. For theories where the vector equation
does not match Brans-Dicke (or GR), no such shortcut can
be made.

3. Applying the algorithm

Having applied the post-Friedmann formalism to these
theories, we can now start examining them using the
algorithm in Sec. VA. We note that points 1 and 2 of
the algorithm naturally come out of the extensive work on
linear perturbation theory in scalar tensor theories, see
e.g., [2,58,74].

Steps 3–4 require us to compare the equations in the
perturbative limit with the linearized equations from the
Newtonian limit. From the equations in the literature, or
applying perturbation theory to the equations above, we can
see that there are additional terms present in the perturba-
tion equations. Even for Brans-Dicke theory, there are a
substantial number of extra terms [2,74], and there are even
more for the cubic Galileon [58]. However, the weak-field
description that applies in both limits strongly shapes the
form of these extra terms: since the metric potentials and
the inhomogeneities in the scalar field are all order one,
there can be no structurally nonlinear terms, and all of the
additional terms will involve time derivatives, either
because of prefactors such as _a

a or _ϕ0, or because they
contain time derivatives of the perturbations themselves.
For example, some of the additional Brans-Dicke contri-
butions to the 00 equation have forms such as [2]

_a
a
_ϕ1; ωϕ1

�
_ϕ0

ϕ0

�2

: ð5:15Þ

These additional terms are of course exactly the terms that
are neglected in the QSA, as discussed in Sec. IV B. This
simplifies step 4 of the algorithm considerably, due to the
substantial effort that has gone into examining the QSA
(see Sec. IV B above, or e.g., [75] for a recent summary): as
long as the terms that are missing in the linearized
Newtonian equations are those associated with the QSA
(as they are in this case), then step 4 simply reduces to
checking the QSA, which is known to be fine for the
theories considered here (see e.g., [58]). So these theories
satisfy steps 1–4 of the algorithm.
We now move on to considering steps 5–6 of the

algorithm. These tests involve checking the smallness of
the vector potential on nonlinear scales, and comparing it to
the scalar quantities in order to determine the validity of the
Newtonian approximation, and whether the vector potential
can be ignored for the purposes of calculating observables
such as cosmic shear.
For Brans-Dicke, we note that the expression for the

vector potential is the same as in general relativity, except
for the change to Newton’s constant from the background
field. We know from e.g., [56] that this background field
cannot be changing quickly in time if the QSA is valid, so
we expect that this time dependent change to Newton’s
constant will not significantly change the value of the
vector potential. We know that the vector potential is small
in ΛCDM, which means that the amplitude of the source
term (composed of the density and velocity fields) must
differ substantially from that in ΛCDM for the vector
potential to be large in Brans-Dicke. These fields are
typically within a factor of 2 of the ΛCDM values for
observationally viable theories [49], so any Brans-Dicke
theory with a vector potential much larger than in ΛCDM is
unlikely to be a good fit to observations, and we can expect

10This difference to Brans-Dicke and fðRÞ gravity can be
understood in terms of the phenomenology of the theory. The
dimensionful coupling constant results in a theory that clusters
much more strongly.
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the vector potential to be small for observationally sensible
Brans-Dicke theories.
This argument showing that Brans-Dicke theories satisfy

the requirements on the vector potential is approximate,
but does not require N-body simulations to be run.
Unfortunately, because the equation for the vector potential
in the cubic Galileon case is more complicated than just
being sourced as in GR, it is difficult to construct a similar
argument for the cubic Galileon. In this case, it is required
to run N-body simulations (such as [50]) and extract the
vector potential using Eq. (5.14). Carrying this out involves
calculating the elements on the right-hand side of Eq. (5.14)
from snapshots that represent the N-body simulation at a
particular moment in time. In GR and fðRÞ this just
requires extracting the GR term, and this has been done
by using tesselations [76] to extract the momentum field ρv⃗
[30,32,33], from which the pure vector part can be
calculated. In practice, this can be done to reasonable
accuracy using standard cloud in cells [33,77] type meth-
ods. The power spectrum of the vector potential can then be
compared to that of the scalar potentials. The additional
terms in Eq. (5.14) will require additional quantities to be
outputted from the N-body simulation, in particular

∇⃗ϕ∇2ϕ. Terms like this require more care to be calculated
because, due to the window function, the term ideally needs
to be calculated on a grid as a single quantity (rather than
extracting the two fields separately and multiplying them
together).
If the vector potential calculated from the N-body

simulations is found to be large, then the premise on which
these simulations are run needs to be investigated more
carefully, so this check should be done irrespective of
determining whether the cubic Galileon fits into the
modified gravity framework described here. However,
we expect that steps 1–4, and the similarity of the density
and velocity fields to those in ΛCDM, mean that the vector
potential will be found to be small enough to justify the
Newtonian approximation.
Although steps 1–4 look very promising, we cannot be

sure that the cubic Galileon fits into this approach until this
final test in step 5 has been done. The advantage of
performing the test for step 5 is that we get the test in
step 6 at the same time. While it looks plausible that the
vector potential will be found to be small enough to justify
the Newtonian approximation, it could still be large enough
to contribute to observables, and thus provide an observa-
tional discriminant between the cubic Galileon and
ΛCDM [31].

C. Different functional forms for the parameters

While on linear scales the parameters Geff and η can be
analytically calculated for specific theories or classes of
models, on nonlinear scales they are best thought of as
emergent prescriptions for the complicated nonlinear
dynamics within particular theories. Here we mention a

few sensible choices for the functional forms of the
parameters in the simple 1PF equations, including some
known cases and some possible functional dependencies
that are worth investigating.

1. Linear scales

In the linear perturbation limit, the parameters in the
simple 1PF equations will reduce to the known functional
forms in linear theory.

2. Inclusion of specific scales

In [27], building on earlier work [78], the authors
propose specific functional forms for the parametrized
Poisson equation, and show that specific choices for some
of the parameters can recreate the phenomenology of
particular theories that have been studied. These particular
forms are based around detailed studies of spherical
collapse in theories with screening mechanisms. The
modifications to the Poisson equation take the form

b
k
k0

a
��

1þ
�
k0
k

�
a
�
1=b

− 1

�
; ð5:16Þ

where a and b are time varying constants, and k0 is a
particular scale associated to the modifications (which is
also expected to be time dependent).
An alternative approach was suggested in [3], where the

authors use k3

2π2
Pða; kÞ ¼ Δða; kÞ to measure the degree of

nonlinearity at a particular scale. This defines the scale of
nonlinearity kNLðaÞ through Δða; kNLÞ ¼ 1. The validity of
this form for predicting the power spectrum has been tested
(e.g., [79]; see [78] for a nice summary) and found to be
good for weakly nonlinear scales. It would be interesting to
investigate functional forms for the modifications to the
Poisson equation as a function of kNLðaÞ: these functions
would naturally incorporate time dependence and return to
the linear forms on the appropriate scales.

3. Environmental dependence

Rather than explicitly including specific scales, theories
with screening mechanisms can be understood by allowing
the modifications to the Poisson equation to have additional
environmental dependence. This was used in [80] and
tested in [64] in the form

∇2Ψ ¼ 4πGa2ρ̄δð1þ ΔðδÞÞ; ð5:17Þ

where the modification ΔðδÞ is explicitly dependent on the
local density, which naturally occurs in the Vainshtein
screening mechanism. This form of ΔðδÞ was constructed
to represent DGP, and included the “crossover scale” rc
explicitly, and an approximate form was found to be given
by ΔðδÞ ¼ 2

3βðtÞ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.3δ

p
− 1Þ [where βðtÞ is a time

dependent function of the background cosmology].
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Another form of environmental dependence that would
be interesting to explore is a dependence on the local
acceleration, which links to MONDian [81] theories,
although an examination of how the post-Friedmann
approach applies to such theories is beyond the scope of
this paper.

4. Maximally phenomological pixels

As described in the Introduction, a standard approach to
exploring constraints on parameters whose functional
forms are not known, in a maximally model independent
fashion, is to express the parameters as piecewise constant
functions in a set of bins, or pixels, in time and space. This
technique has been successfully used for modified gravity,
[16–18] and has also been used to constrain the dark matter
equation of state in a model-independent fashion [82].
As well as being the most model-independent way to

analyze observational data, pixelized functions can be
useful to understand the phenomenology of different
theories, by isolating the ranges in scale and time where
changes to the gravitational law result in specific effects.
Similarly, when used in combination with a specific dataset
(or forecasted dataset), a pixelized approach can determine
at which times and scales that dataset is most sensitive to
the modifications.

5. Hybrid pixels

Since the functional forms of the parameters are well
known on linear scales, a hybrid scheme can be defined,
where the pixel boundaries are defined with respect to
kNLðaÞ rather than k. This reduces the number of pixels
required by making the time dependence implicit, and
naturally returning to known forms on linear scales.
Schematically, such hybrid pixels would have the form

Geff ¼ Geff;linear; k < A0kNLðaÞ; ð5:18Þ

Geff ¼ Geff;1; A0kNLðaÞ < k < A1kNLðaÞ; ð5:19Þ

Geff ¼ Geff;2; A1kNLðaÞ < k < A2kNLðaÞ; ð5:20Þ

Geff ¼ Geff;3; A2kNLðaÞ < k; ð5:21Þ

for a set of constants fA0; A1; A2; Geff;1; Geff;2; Geff;3g with
no time dependence. It would be interesting to see whether
this approach more easily captures the phenomenology of
existing theories.

6. Dark energy models

One approach to generalizing modified gravity is to
examine scalar field dark energy models in increasingly
general or phenomenological ways, which culminates in
the effective field theory of dark energy approach
(EFTofDE; see e.g., [83] for a review). In this approach,

the distinction between dark energy and modified gravity
essentially vanishes, meaning that similar considerations
are relevant for these models and the approach taken here.
In particular, for any scalar field where a weak field
expansion is appropriate, then in the two limits one will
naturally arrive at a Poisson equation with extra terms, as
discussed above. As a result, as these scalar field models
are included in simulations with increasing generality (see
e.g., [84–86]), these simulations typically incorporate a
phenomenologically modified Poisson equation; therefore,
these simulations will be similar to an implementation of
the framework discussed here.
In principle, these phenomenological Poisson equations

could be used to inform the choice of functional form for
Geff ; however care should be taken for several reasons.
First, we note that in many of the dark energy scalar field
models that are studied with these codes, the background
evolution must also be modified and is usually of similar or
greater importance than the modified Poisson equation.
Second, to date these works typically include some form of
“linear extrapolation” at some point, where nonlinear terms
in the equations are neglected, or linear theory results are
used to inform the form of the modifications or parameters.
Of course, one could trivially extend the framework in this
paper to include an arbitrary phenomenological expansion
history, but there is no model-independent way to relate the
expansion history to Geff and η, so we prefer to deal solely
with the inhomogeneities for the reasons discussed
earlier.11

Due to the similarities, we expect that in any of these
scalar field models where a weak field expansion is
appropriate, the Newtonian approximation is good, and
there is no intermediate regime, then one will naturally
arrive at equations for the inhomogeneities that fit into the
framework developed in this work. It would be interesting
to study these dark energy models in detail with the
formalism and philosophy used in this paper; in particular,
it may be possible to construct a “small scale EFTofDE”
using a post-Friedmann type expansion.

VI. DISCUSSION

We have presented a simplified set of equations that
describe structure formation on all cosmological scales and
that do not require the density contrast to be small,
Eqs. (3.16). This set of equations depends on the validity
of the Newtonian approximation in a given cosmology, and
requires that there is no “intermediate regime” (where both
the Newtonian limit and perturbation theory fail). This is
the case for a matter dominated ΛCDM cosmology.

11In essence this highlights the difference between a phenom-
enological code being used for a model-independent exploration,
and being used as a computationally cheap and easy way to run
simulations for specific models.
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We have used these equations to create a simple
framework for modified gravity [Eqs. (4.8)] that is valid
on all cosmological scales, and which is known to include
currently popular models such as fðRÞ. This set of
equations is important for upcoming cosmological surveys
such as Euclid [12], as it allows them to constrain model-
independent modified gravity by simultaneously using the
data from all scales, not just linear scales. This maximizes
the constraints on model-independent modified gravity that
are achievable by these surveys.
In Sec. VAwe present an algorithm for investigating the

validity of our approximations for a given modified gravity
theory, in particular whether there is an intermediate
regime. This algorithm determines whether a theory of
gravity is subsumed under this approach, and therefore
whether constraints determined using this parametrized
approach are applicable to that theory of gravity. We have
illustrated this algorithm by applying the post-Friedmann
approach to the cubic Galileon, and calculating the equa-
tion for the vector potential that is required for the
algorithm. We note that throughout this work, we are
primarily focused on modified gravity theories that replace
dark energy, and thus on cosmologies that still contain dark
matter. We will investigate the application of the post-
Friedmann formalism to modified gravity theories without
dark matter in future work.
An important corollary of the equations and framework

developed here is that it is theoretically consistent to
perform phenomenological N-body simulations based on
a modified Poisson equation, including work that was
performed (but not justified) in [20–22]. In particular, the
derivation outlined here (and used to construct the algo-
rithm in Sec. VA) elucidates the conditions required for a

parametrization of the Poisson and slip equations to be a
sensible and sufficient description of the gravitational
dynamics.
We have presented some functional forms for the

parameters that could be used in simulations, including
the possibility of exploring the modified gravity parameter
space by binning these parameters into time and space
dependent “pixels,” and examining the resulting phenom-
enology. This pixel approach enables forecasts (and data
analysis) to understand which scales and redshifts different
surveys (and types of surveys) are sensitive to.
The set of equations in this work is the starting point for

bringing the full constraining power of future surveys to
bear on modified gravity theories in a model-independent
way. This will provide a significant null test of the ΛCDM
paradigm and enable general conclusions about gravity to
be drawn from the data, rather than statements about
specific models or areas of parameter space.
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APPENDIX A: 1PF EQUATIONS

For brevity in Sec. II we present a subset of the 1PF
equations. Here we present the additional equations that are
required for Sec. III. 1PF Continuity equation,

dδ
dt

þ vi;i
a

ðδþ 1Þ þ 1

c2

�
ðδþ 1Þ

�
1

a
vjUN;j −

_a
a
v2 þ 3

dVN

dt

��
¼ 0: ðA1Þ

1PF Euler equation,
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dt
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1PF 0i Einstein equation,
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APPENDIX B: THE LEADING ORDER POST-
FRIEDMANN CUBIC GALILEON EQUATIONS

For posterity, we present here the complete leading order
gravitational and scalar field equations for the cubic
Galileon. According to the post-Friedmann approach, these
are the equations that should be implemented in N-body
simulations in order for the nonrelativistic truncation of the
equations to be consistent:

1

c2
∇2VN þ α�3 _ϕ

2
0∇2ϕ1

16c2ϕ2
0

¼ 4πG
ϕ0c2

a2ρ̄δþ 1

2c2
∇2ϕ1; ðB1Þ

1

c2
∇2ðVN −UNÞ þ

α�3 _ϕ
2
0

16c2ϕ2
0

∇2ϕ1 ¼
1

2c2
∇2ϕ1; ðB2Þ

1

c3
∇2BN

i ¼−
16πGρ̄a2

ϕ0c3
½ð1þδÞvi�jv−

α�3 _ϕ0

8c3a2ϕ0

½ϕ1;i∇2ϕ1�jv;

ðB3Þ

1

c2
ð3þ 2wÞ∇2ϕ1 þ

α�3
4ϕ3

0

�
_ϕ2
0

2a2c2
∇2ϕ1 þ

ϕ2
0

c2a4
ðϕ1;kiϕ1;ikÞ −

1

c2a4
ϕ2
0ð∇2ϕ1Þ2 þ

2

c2a2
ϕ0ϕ̈0∇2ϕ1

�
¼ 8πG

ϕ0c2
ρ̄δ: ðB4Þ

We note these equations may not be consistent with those used in [50]. We leave a detailed comparison between the two
approximation schemes, and resulting sets of equations, to future work.
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