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Phantom dark energy (w < −1) can produce amplified cosmic acceleration at late times, thus increasing
the value of H0 favored by CMB data and releasing the tension with local measurements of H0. We show
that the best fit value of H0 in the context of the CMB power spectrum is degenerate with a constant
equation-of-state parameter w, in accordance with the approximate effective linear equation H0 þ
30.93w − 36.47 ¼ 0 (H0 in km sec−1 Mpc−1). This equation is derived by assuming that both Ω0mh2

and dA ¼ R zrec
0

dz
HðzÞ remain constant (for an invariant CMB spectrum) and equal to their best fit Planck/

ΛCDM values as H0, Ω0m, and w vary. For w ¼ −1, this linear degeneracy equation leads to the best fit
H0 ¼ 67.4 km sec−1 Mpc−1 as expected. Forw ¼ −1.22, the corresponding predicted CMB best fit Hubble
constant is H0 ¼ 74 km sec−1 Mpc−1, which is identical with the value obtained by local-distance ladder
measurements, while the best fit matter density parameter is predicted to decrease, sinceΩ0mh2 is fixed. We
verify the above H0 − w degeneracy equation by fitting a wCDM model with fixed values of w to the
Planck TT spectrum, showing also that the quality of fit (χ2) is similar to that of ΛCDM. However, when
including SnIa, baryon acoustic oscillation, or growth data, the quality of fit becomes worse than ΛCDM
when w < −1. Finally, we generalize the H0 − wðzÞ degeneracy equation for the parametrization wðzÞ ¼
w0 þ w1z=ð1þ zÞ and identify analytically the full w0 − w1 parameter region (straight line) that leads to a
best fit H0 ¼ 74 km sec−1 Mpc−1 in the context of the Planck CMB spectrum. This exploitation of H0 −
wðzÞ degeneracy can lead to immediate identification of all parameter values of a given wðzÞ para-
metrization that can potentially resolve the H0 tension.

DOI: 10.1103/PhysRevD.101.123516

I. INTRODUCTION

The discrepancy in the value of the Hubble parameter
as obtained from the cosmic microwave background
(CMB) and baryon acoustic oscillation (BAO) data
(67.4� 0.5 km sec−1Mpc−1) [1,2] and local-distance lad-
der measurements (H0 ¼ 74.03� 1.42 km sec−1 Mpc−1)
[3] has reached a level close to 6σ [4–8] and is becoming
a problem of the standard ΛCDM model. A similar issue,
with a lower significance level, appears when measuring
the growth rate of cosmological perturbations using pecu-
liar velocities (redshift space distortions) [9–14] and weak
lensing [15–19] cosmological data. Such measurements
find a weaker growth rate of perturbations than antici-
pated in the context of the standard ΛCDM model
[9,13,14,17,18,20]. This weaker growth is expressed in
the context ofΛCDM parameters as a lower best fit value of
the matter density parameter Ω0m ≈ 0.28� 0.03 [18,21]
than the one anticipated in the context of geometric probes
including the CMB spectrum peak locations [1,2] and the
BAO data [22–24] in the context of a flat ΛCDM
model (Ω0m ¼ 0.315� 0.007Þ.

Other independent groups studying local expansion
[25–30] find a lower value of H0 compared to Ref. [3]
with larger error bars, reducing the effect of the tension to
approximately 2σ. Moreover, independent measurements
of the Hubble constant using HðzÞ measurements [31–35],
γ rays [36,37], BAO measurements [38], as well as various
combinations of data [39–45] report a value for H0 that is
lower than the one provided by the local measurements and
in consistency with the CMB measurement.
Awide range of models have been used to explain these

tensions and properly extend ΛCDM using specific new
degrees of freedom (for a quantitative measure of tensions,
see Refs. [46–48]). For the Hubble tension, these models
include mechanisms that modify the scale of the sound
horizon at last scattering using early dark energy [49–54] or
other types of early species [55–57], interacting dark
energy with matter [58–63], screened fifth forces on the
cosmic distance ladder [64,65], modified gravity [66–70],
local matter underdensities [71], and new properties of late
dark energy including new types of dark energy equation-
of-state parameters [72–74]. For the growth tension,
modified gravity [13,14,75–78], running vacuum models
[79,80], nonzero spatial curvature [81,82], and modifica-
tion of dark energy properties [80,83–90] have also been
considered.
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In both types of tension, it has become clear that new
properties of dark energy may constitute the required
missing degree of freedom. In particular, it has been shown
that a mildly phantom dark energy with an equation of state
parameter evolving slightly below w ¼ −1 has the potential
to resolve the Hubble tension by amplifying late-time
acceleration, which leads to an increased best value of
the Hubble parameter H0 in the context of the CMB data,
thus bringing it close to the value obtained by local-distance
ladder measurements [72,74,74,91–95]. Most previous
analyses along the above lines utilize evolving equation-
of-state parameters that in many cases have sophisticated
functional forms. Even though such functional forms of
wðzÞ usually involve at most one new parameter, these
approaches have two drawbacks: complexity of the wðzÞ
considered forms and a worse fit than ΛCDM to the Planck
CMB TT power spectrum and other cosmological data
(Δχ2 > 0). Thus, these models are usually not favored [96]
compared to ΛCDM in the context of information criteria
that penalize models with additional parameters if they do
not improve the quality of fit to data. It would therefore
be desirable to construct models/parametrizations with
no new parameters that can potentially resolve both the
Hubble and growth tensions by modifying the dark energy
properties.
In particular, the following questions need to be

addressed:
(1) What are the properties of the new phantom degree

of freedom required in order to increase the best fit
value of H0 in the context of CMB data to the level
required for consistency with local measurements
and resolution of the H0 tension?

(2) What are the corresponding best fit values of
cosmological parameters that emerge in the context
of this type of phantom dark energy, and to what
extent do they lead to improvement of the resolution
of the growth tension?

(3) What is the quality of fit of these extended models to
the CMB Planck and other cosmological data, and
how does it compare with the corresponding quality
of fit of ΛCDM?

The goal of the present analysis is to address these
questions using an approximate analytical method utilizing
the degeneracies of cosmological parameters with respect
to the form of the CMB power spectrum. In addition, we
utilize more accurate numerical estimates of best fit
cosmological parameters using Boltzmann and Markov
chain–Monte Carlo (MCMC) codes. In the context of the
analytical approximation, we exploit the degeneracies of
the CMB power spectrum among different cosmological
parameter combinations and explore the consequences of
variations of the dark energy equation-of-state parameter
wðzÞ on other cosmological parameters, and in particular on
the Hubble parameter H0 and the matter density param-
eter Ω0m.

The structure of this paper is the following: In Sec. II, we
review the well-known degeneracies of the CMB TT power
spectrum and identify the five cosmological parameter
combinations that to a great extent uniquely determine
the form of the spectrum. By demanding that these five
combinations remain fixed to their Planck/ΛCDM values,
we identify the expected change of the best fit values of
specific parameters including the Hubble parameterH0 and
the matter density parameterΩ0m when the form of the dark
energy equation-of-state parameter wðzÞ changes. Thus, we
identify the forms of wðzÞ leading to a value of H0

consistent with local-distance ladder measurements. In
Sec. III, we fix wðzÞ to the forms predicted analytically
for the resolution of the H0 tension and identify numeri-
cally the best fit cosmological parameters using Boltzmann
and MCMC codes with Planck CMB data. We also
compare the numerically obtained best fit cosmological
parameter values with the corresponding values obtained in
the context of the analytical approximation of Sec. II for the
same form of wðzÞ. Finally, in Sec. IV, we summarize and
discuss possible extensions of this analysis.

II. CMB SPECTRUM DEGENERACIES
AND THE H0(w) DEPENDENCE

It is well known [97,98] that the form of the CMB
temperature power spectrum is almost uniquely determined
if the following parameter combinations are fixed:
(1) The matter density parameter combination ωm ≡

Ω0mh2, where H0 ¼ 100 km sec−1Mpc−1.
(2) The baryon density parameter combination ωb ≡

Ω0bh2, where Ω0b is the present-day baryon density
parameter.

(3) The radiation density parameter combination ωr ≡
Ω0rh2, where Ω0r is the present-day radiation
density parameter.

(4) The primordial fluctuation spectrum.
(5) The curvature parameter ωk ¼ Ω0kh2.
(6) The flat-universe comoving angular diameter dis-

tance to the recombination surface,

dAðωm;ωr;ωb; h; wðzÞÞ ¼
Z

zr

0

dz
HðzÞ ; ð2:1Þ

where zr ≃ 1100 is the redshift of recombination
provided to better accuracy as [99]

zr ¼ 1048ð1þ 0.00124ω−0.738
b Þð1þ g1ω

g2
m Þ;

g1 ¼ 0.0783ω−0.238
b =ð1þ 39.5ω0.763

b Þ;
g2 ¼ 0.560=ð1þ 21.1ω1.81

b Þ; ð2:2Þ

and HðzÞ is the Hubble parameter at redshift z. The
Hubble parameter takes the form
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Hðz;ωm;ωr;ωb; h; wðzÞÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0mð1þ zÞ3 þΩ0rð1þ zÞ4 þ Ω0dee

3
R

z

0
dz0ð1þwðz0ÞÞ=ð1þz0Þ

q
; ð2:3Þ

where wðzÞ is the dark energy equation-of-state param-
eter at redshift z and Ω0de ¼ 1 −Ω0m −Ω0r is the
present-day value of the dark energy density parameter.
The product

ffiffiffiffiffiffiffi
ωm

p
· dA is independent of H0 and con-

stitutes the well-known shift parameter defined as
[97,100]

R ¼ ffiffiffiffiffiffiffi
ωm

p Z
zr

0

dz
HðzÞ : ð2:4Þ

The observed values of the above parameter combina-
tions as determined by the Planck/ΛCDM CMB temper-
ature power spectrum are the following [2]:

ω̄m ¼ 0.1430� 0.0011; ð2:5Þ

ω̄b ¼ 0.02237� 0.00015; ð2:6Þ

ω̄r ¼ð4.64� 0.3Þ10−5; ð2:7Þ

ω̄k ¼ −0.0047� 0.0029; ð2:8Þ

d̄A ¼ð100 km sec−1 Mpc−1Þ−1ð4.62� 0.08Þ; ð2:9Þ

where for the radiation density we have assumed three
relativistic neutrino species.
These parameter combinations also express the approxi-

mate degeneracy of the CMB with respect to various
specific cosmological parameters. For example, if the first
four parameter combinations are fixed [Eqs. (2.5)–(2.8)],
the fifth constraint [Eq. (2.9)] provides the analytically
predicted best fit value of the Hubble parameter H0 (or h)
given the dark energy equation-of-state parameter
wðw0; w1;…; zÞ, where w0; w1;… are the parameters enter-
ing the wðzÞ parametrization.1 Thus, it is straightforward to
use Eqs. (2.1), (2.3), (2.5), and (2.9) to construct the
function hðw0; w1;…Þ that gives semianalytically the
predicted best fit value of h given a specific form of
wðzÞ. This function is derived by solving the following
equation with respect to h:

dAðω̄m; ω̄r; ω̄b; h ¼ 0.674; w ¼ −1Þ ¼ dAðω̄m; ω̄r; ω̄b; h; wðzÞÞ: ð2:10Þ

In the context of a simple one-parameter parametrization where wðzÞ remains constant in time and redshift (wCDM
model), Eq. (2.3) takes the simple form

Hðz;ωm;ωr;ωb; h; wðzÞÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0mð1þ zÞ3 þ Ω0rð1þ zÞ4 þ ð1 −Ω0m −Ω0rÞð1þ zÞ3ð1þwÞ

q
; ð2:11Þ

and using the above described approach, by solving
Eq. (2.10), it is straightforward to derive the degeneracy
function hðwÞ shown in Fig. 1 (continuous orange line). In
the range w ∈ ½−1.5;−1�, hðwÞ is approximated as a
straight line (dashed blue line in Fig. 1):

hðwÞ ≈ −0.3093wþ 0.3647: ð2:12Þ

The points with the error bars were obtained by fitting to
the Planck/CMB power spectrum using the corresponding
wCDM models with fixed w. This analysis is discussed in
more detail in the next section. In Fig. 2, we show the
predicted form of the CMB TT anisotropy spectrum for
w ¼ −1 (h ¼ 0.67, Ω0m ¼ 0.314) and w ¼ −1.2

(h ¼ 0.74, Ω0m ¼ 0.263), demonstrating the invariance
of the CMB power spectrum when the cosmological
parameters are varied along the above described degen-
eracy directions.
The dark energy equation-of-state parameter value lead-

ing to hðwÞ ¼ 0.74 is w ≈ −1.217, which is the predicted
value of w required to alleviate the H0 tension, a result
consistent with previous studies [91,92]. In particular, a
related analysis has been performed in Ref. [91], where the
author points out that fixing the dark energy equation of
statew ≈ −1.3 or the effective number of relativistic species
Neff ≈ 3.95 may lead to the relaxation of the H0 tension.
The novel feature of our work is the use of analytical
methods to identify the qualitative features required for any
form of wðzÞ to relax the H0 tension.
This method for deriving the predicted dark energy

properties required to resolve the H0 tension may be

1In the present analysis, we assume a flat universe and fix
ω̄k ¼ 0.
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extended to more parametrizations of wðzÞ. For example, in the case of the two-parameter CPL parametrization [101,102]
expansion of wðzÞ,

w ¼ w0 þ w1ð1 − aÞ ¼ w0 þ w1z=ð1þ zÞ; ð2:13Þ

Eq. (2.3) is written as

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0mð1þ zÞ3 þΩ0rð1þ zÞ4 þ ð1 − Ω0m −Ω0rÞð1þ zÞ3ð1þw0þw1Þe−3

w1z
1þz

q
: ð2:14Þ

ΛCDM: CMB in tension with Local Measurements

wCDM: CMB consistent with Local Measurements

– 1.4 – 1.2 – 1.0 – 0.8 – 0.6

0.55

0.60

0.65

0.70

0.75

0.80

0.85

w

h

FIG. 1. The predicted value of h as a function of the fixed w for the one-parameter dark energy (wCDM) model. The orange line
corresponds to the theoretically predicted best fit values of h for different values of w in the case of the wCDM model, whereas the
dashed blue line corresponds to the linear fitting that has been made. The red points display the actual best fit values, including the error
bars, of h for specific values of w obtained by fitting these models to the CMB TT anisotropy via the MGCosmoMC (see Table II).

FIG. 2. The CMB power spectrum for ΛCDM (blue line) and w ¼ −1.2 (green line). We also show the binned high-l and low-l Planck
data (red points).
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Using now Eqs. (2.1), (2.5), (2.9), and (2.12) in the
context of the above described method, it is straightforward
to derive the degeneracy function hðw0; w1Þ, by solving
Eq. (2.10). This is shown in Fig. 3. The dashed lines
correspond to the parameter values that satisfy hðw0; w1Þ ¼
0.674 [the ΛCDM value, which as expected goes through
the point ðw0; w1Þ ¼ ð−1; 0Þ] and hðw0; w1Þ ¼ 0.74 [the
local-distance ladder measurements value]. The constant h
lines shown in Fig. 3 are approximately straight lines in the
range of the w0 − w1 parameter space shown in Fig. 3. In
particular, for the case of the value h ¼ 0.74, which
alleviates the H0 tension, this line is approximated by
the equation

w1 ≈ −4.17w0 − 5.08: ð2:15Þ

Clearly, the preference for a phantom-like behavior wðzÞ <
−1 in the context of the local measurement value of h, at
least for some redshift range, is apparent in Fig. 3. This is
also demonstrated in Fig. 4, where we show four forms of
wðzÞ based on the CPL parametrization that can resolve the
H0 tension by providing a best fit value of h ¼ 0.74 from
the CMB data. The corresponding wCDM value of w ¼
−1.22 is also shown. Clearly, all degenerate forms of CPL
wðzÞ that relax the H0 tension go through the same point at
z ¼ 0.31, crossing the w ¼ −1.22 line. This type of
degeneracy in particular redshifts for cosmological param-
eters has been discussed in Ref. [103]. Also, degenerate
wðzÞ curves with w0 < 1.22 are increasing functions of z,
while those with w0 > 1.22 are decreasing functions of z.
This appears to be a general feature of all wðzÞ para-
metrizations that can relax theH0 tension. For example, the
PEDE parametrization [74] and the late dark energy
transition hypothesis [104] with wðz ≃ 0Þ > −1.22 are
decreasing functions of the redshift z as predicted by the
above degeneracy analysis. The identification of these

properties opens up the possibility of a very late phase-
type transition at z ≃ 0.01 from a phantom phase to a
ΛCDM phase with a sharply increasing rather than
decreasing function of wðzÞ.
Even though the approximate parameter degeneracy

exploited in this section is useful for the derivation of
the forms of wðzÞ that can alleviate the H0 tension, an
important fact that needs to be considered is the quality of
fit of the preferred degenerate forms of wðzÞ to other
cosmological data like SnIa, BAO, and growth of pertur-
bations data [redshift space distortion fσ8ðzÞ and weak
lensing data], as well as to actual CMB power spectrum
data which may not fully respect the above exploited
approximate degeneracy (especially at low l). Such a fit
to cosmological data beyond the CMB is expected to break
the above degeneracy obtained from the CMB spectrum.
Even if particular forms of wðzÞ can lead to apparent
alleviation of the H0 tension, such a solution would not be
preferable if the quality of fit to the actual CMB spectrum
and to other cosmological data is significantly degraded
compared to ΛCDM (w ¼ −1). Thus, in the next section,
we address the following questions:
(1) What is the quality of fit of the forms of wðzÞ that are

predicted to resolve theH0 tension, on cosmological
data involving SnIa, BAO, growth redshift space
distortion data, and the actual Planck CMB TT
power spectrum data? Is this quality of fit ðχ2Þ
similar to the corresponding quality for ΛCDM?

(2) Is the H0 tension actually alleviated when the full
CMB spectrum data are used in the context of a
model with fixed wðzÞ to its predicted form (e.g.,
w ¼ −1.22 in the context of a constant w)?

(3) Is the growth tension partially relaxed in the context
of the above preferred wðzÞ found?

FIG. 3. The degeneracy with respect to the CMB spectrum in
the parameter space ðw0 − w1Þ. The dashed lines correspond to
h ¼ 0.674 (ΛCDM value) and to h ¼ 0.74 (the value of Ref. [3]).

FIG. 4. The evolution of wðzÞ for various values of ðw0; w1Þ
along the degeneracy h ¼ 0.74 line of Fig. 3. All these parameter
values lead to a best fit value h ¼ 0.74 in the context of the CMB
power spectrum. However, they do not have the same quality of
fit to other cosmological data which can be used to break this
model degeneracy. The common ðz; wÞ point of intersection of all
the wðzÞ plots is ð0.31;−1.22Þ.
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These questions will be addressed mainly in the context of
a redshift-independent w, but it is straightforward to
generalize the analysis for more general forms of wðzÞ.

III. NUMERICAL ANALYSIS OF
DARK ENERGY MODELS

In order to test the resolution of the H0 tension and test
the quality of fit to the CMB and other cosmological data of
the models discussed in the previous section, we use the
MGCosmoMC numerical package [105–107] with the
Planck dataset. In particular, we use the Planck TT and
lowP dataset, i.e., the TT likelihood for high-l multipoles
ðl > 30Þ as well as the Planck temperature and polarization
data for low multipoles (l < 30). The priors that have been
used as input can be seen in Table I.
We fix w to the values of the points shown in Fig. 1

(w ¼ −1.0;−1.1;−1.2;−1.3) and construct the likelihood
contours for the cosmological parameters of these four
models. The resulting best fit values of h are shown in
Table II (see also Fig. 1) and are in excellent agreement
with the expectations based on the parameter degeneracy
analysis of the previous section (orange continuous line in
Fig. 1). The corresponding likelihood contours are shown
in Fig. 5.
Clearly, the likelihood contours for the Hubble parameter

shift to higher best fit values as w decreases in the phantom
regime (w < −1). At the same time, the best fit values of
the matter density parameter Ω0m decrease in accordance
with the degenerate parameter combination Ω0mh2.
This reduced value of the best fit Ω0m would naively

imply reduced growth of cosmological perturbations and
thus resolution of the growth tension. However, the reduced

best fit value of the matter density parameter Ω0m is not
enough to soften the growth tension, since the best fit value
of the parameter σ8 (the present-day rms matter fluctuations
variance on scales of 8h−1 Mpc) appears to increase more
rapidly, as w decreases in the phantom regime. Since this
parameter is proportional to the initial amplitude of the
matter perturbation power spectrum, its increase amplifies
the growth of perturbations and tends to cancel the effect of
the decrease of the best fit Ω0m in the context of perturba-
tion growth. This is demonstrated in Fig. 6, where we show
the σ8 likelihood contours obtained by fitting the models
w ¼ −1 (ΛCDM) and w ¼ −1.2 to the growth fσ8 data (we
have used the conservative robust dataset of Table 2 of
Ref. [108], a subset of an up-to-date compilation presented
in Ref. [109]). Superimposed, we also show the corre-
sponding likelihood contours obtained from the Planck
CMB TT power spectrum obtained for each value of fixed
w. Clearly, the tension between the RSD fσ8 data and the
Planck data increases in the context of the phantom model
w ¼ −1.2 compared to ΛCDM (w ¼ −1).
In addition to the growth data, we also fit the models

w ¼ −1 and w ¼ −1.2 to a cosmological data combination
including the Pantheon SnIa [110], BAO data [23,111,112],
and CMB data [1], as well as the prior of the Hubble
constant published by Riess et al. [3], and obtain for
ΛCDM χ2 ¼ 12319.2, while for w ¼ −1.2 we obtain
χ2 ¼ 12332.7. We thus find Δχ2 ¼ 13.5. This difference
of Δχ2 ¼ 13.5 for the phantom model indicates a signifi-
cantly reduced quality of fit compared to ΛCDM in
agreement with previous studies [113]. The corresponding
likelihood contours are shown in Fig. 7. It is therefore clear
that the particular fixed-w models considered here lead to
an apparent resolution of the Hubble tension, since they
increase the best fit value of H0 in the context of the CMB
data, but the resolution is not viable, since the growth
tension gets worse while the quality of fit of these models to
the SnIa and BAO data is not as good as for ΛCDM. This
result is consistent with previous studies [92], where it has
been demonstrated that non-CMB data such as BAO and
SNIa favor lower values of H0 which are more consistent
with the CMB value, while also disfavoring w < −1 in the
context of flat and nonflat untilted inflation models [42]. It
is, however, worth mentioning that for the combination of
the CMB Planck data and the Riess Hubble constant prior,

TABLE I. The MGCosmoMC priors that have been used in
Figs. 5 and 7. We also set Alens ¼ 1 and Ωk ¼ 0.

Parameters Priors

Ωbh2 [0.005, 0.1]
Ωch2 [0.001, 0.99]
100θMC [0.5, 10]
τ [0.06, 0.8]
ln ð1010AsÞ [1.61, 3.91]
ns [0.8, 1.2]

TABLE II. The analytically predicted CMB best fit values of h andΩ0m for fixed w, obtained by using the CMB parameter degeneracy
arguments, as well as the ones obtained by the actual fit of the corresponding w model to the Planck TT CMB anisotropy power
spectrum. The quality of fit for each model compared to ΛCDM is also indicated by the value of Δχ2.

w Ωth
0m hth Ωobs

0m hobs χ2CMB Δχ2CMB

−1.0 0.316 0.674 0.315� 0.013 0.673� 0.010 11266.516 � � �
−1.1 0.289 0.704 0.288� 0.013 0.704� 0.011 11266.530 0.014
−1.2 0.265 0.735 0.263þ0.012

−0.014 0.736� 0.013 11267.132 0.616
−1.3 0.244 0.766 0.242þ0.012

−0.013 0.768� 0.014 11266.520 0.004
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FIG. 6. The 1σ–4σ contours in the parametric space Ω0m − σ8. The blue contours correspond to the best fit growth compilation of
Ref. [108], while the red contours correspond to the 1σ–4σ confidence contours for w ¼ −1 (left panel) and w ¼ −1.2 (right panel)
obtained from the Planck data.

FIG. 5. The contour plots constructed with MGCosmoMC using the Planck TT and lowP likelihoods for ΛCDM and wCDM models.
The gray contours correspond to the ΛCDMmodel. The green contours correspond to w ¼ −1.1, the red ones to w ¼ −1.2, and the blue
to w ¼ −1.3. For w ¼ −1.1, the best fit value of H0 is close to that of the Planck/ΛCDM measurement [1], while the w ¼ −1.2 and
w ¼ −1.3 values shift h closer to the local-distance ladder measurements [3].
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the quality of the fit improves drastically for w ¼ −1.2,
with Δχ2 ¼ −10.7 in respect to w ¼ −1. The exploitation
of the CMB spectrum degeneracy of more complicated
forms of wðzÞ, however, may lead to better fits to growth,
SnIa, and BAO cosmological data.

IV. CONCLUSION—DISCUSSION—OUTLOOK

We have used analytical degeneracy relations among
cosmological parameters and numerical fits to cosmologi-
cal data to identify the qualitative and quantitative features
of dark energy models that have the potential to relax the
H0 tension of theΛCDMmodel. We have found that mildly
phantom models with mean equation-of-state parameter
w ≃ −1.2 have the potential to alleviate this tension. The
models may be constructed in such a way that there are no
extra parameters compared to ΛCDM by using fixed
parametrizations of wðzÞ. In practice, however, these
models involve more fine-tuning compared to ΛCDM
and are clearly less natural than the standard model.

In addition, the quality of fit of the simplest of such models
to cosmological data beyond the CMB is not as good as the
corresponding quality of fit of ΛCDM. However, it is
straightforward to construct physical models involving
either a phantom scalar field with noncanonical kinetic
terms or modified gravity models that naturally produce the
required phantom behavior of dark energy. Despite the
usual stability issues of such models, it is possible to
construct ghost-free versions [114]. For example, physical
models described by scalar field Lagrangians can reproduce
an effective dark energy with a constant equation-of-state
parameter w in the context of both quintessence (w > −1)
[115–117] and phantom dark energy (w < −1) [118].
In particular, a dynamical dark energy scalar field with

an inverse power-law potential of the form VðϕÞ ¼
Mð4þαÞϕ−α (where M and α > 0 are free parameters)
corresponds to a physically interesting model where the
dark energy equation-of-state parameter w is constant and
takes the form [117]

FIG. 7. The likelihood contours constructed with MGCosmoMC using the cosmological data combination of Pantheon SnIa [110],
BAO data [23,111,112], and CMB data [1], as well as the prior of the Hubble constant [3] for ΛCDM (gray contours) and wCDM with
w ¼ −1.2 (red contours).
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w ¼
α
2
wB − 1

1þ α
2

ð4:1Þ

where wB is the equation-of-state parameter of the dom-
inant background. Clearly, for a matter-dominated epoch
ðwB ¼ 0Þ, and α > 0, we can obtain a constant w and a
quintessence-like behavior ðw > −1Þ.
Similarly, a phantom-like behavior ðw < −1Þ with con-

stant wmay be obtained [118] in the context of a scalar field
with noncanonical kinetic terms with an action of the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
Rþ pðϕ;∇ϕÞ

�
þ SB; ð4:2Þ

where κ2 ¼ 8πG and SB is the action of the background.
The Lagrangian may be assumed to depend only on the
scalar field ϕ and its derivative squared, X ¼ − 1

2
∇μϕ∇μϕ.

In the case of a slowly varying field X, the pressure p and
energy density ρ of the field take the form [118]

p ¼ fðϕÞð−X þ X2Þ; ð4:3Þ

ρ ¼ 2X
∂p
∂X − p ¼ fðϕÞð−X þ 3X2Þ: ð4:4Þ

For fðϕÞ ∝ ϕ−α, Eqs. (4.3) and (4.4) lead to an equation-of-
state parameter of the form

w ¼ ð1þ wBÞα
2

− 1: ð4:5Þ

For a matter-dominated epoch (wB ¼ 0), an appropriate
value of α can lead to either a quintessence or a phantom
behavior. In particular, for α < 2 we obtain w > −1
(quintessence behavior), while for a < 0 we obtain a
physical model with w < −1 (phantom equation of state).
However, the constant-w behavior of both of the above

physical models described by Eqs. (4.1) and (4.5) is a good
approximation only in the context of a dominant background
fluidwith constant equation of statewB. In ourUniverse, this
would occur, for example, onlywell in thematter-dominated
epoch. These equation-of-state parameters would cease to
have a constant form near the end of the matter era and in the
present transition cosmological era. Thus, the constancy of
w in the context of these physical models is a good
approximation only on high redshifts (z > 2).

Interesting extensions of the present analysis include the
following:
(1) A comparative analysis of phantom models identi-

fied using the degeneracy analytical method pro-
posed here, involving also the redshift dependence
of wðzÞ. Such an analysis would rank these models
according to their quality of fit on cosmological data.

(2) The construction of physical models that can re-
produce the forms of wðzÞ required to relax the H0

and possibly the growth tension as well, while
providing a better fit to the cosmological data than
the fit of ΛCDM. The construction of stable theories
with phantom behavior is possible in the context of
modified gravity theories. In many such theories,
however, including fðRÞ and scalar-tensor theories,
it is not possible to combine stability with the weaker
gravity and phantom behavior [119,120] required for
the resolution of the H0 and growth tensions.

The analytical approach for the H0 − wðzÞ degeneracy
pointed out in the present analysis offers a new method to
systematically search and design wðzÞ forms that can
combine the proper features required to consistently relax
the tension while keeping a good fit to other cosmological
data. Our goal here was only to introduce the method and
apply it to the simplest cases while also pointing out the
difficulties in resolving the tension. In a subsequent full
application and extension of the method, we plan to exploit
its full potential in identifying possible forms of wðzÞ that
can actually resolve the tension while keeping a good fit to
other cosmological data.
Numerical Analysis Files: The numerical files for the

reproduction of the figures can be found in Ref. [121].
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