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Gravitational waves from binary black holes that are gravitationally lensed can be distorted by small
microlenses along the line of sight. Microlenses with masses of a few tens of solar masses, and that are
close to a critical curve in the lens plane, can introduce a time delay of a few milliseconds. Such a time
delay would result in distinctive interference patterns in the gravitational wave that can be measured with
current experiments such as LIGO/Virgo. We consider the particular case of primordial black holes with
masses between 5 and 50 solar masses acting as microlenses. We study the effect of a population of
primordial black holes constituting a fraction of the dark matter, and contained in a macrolens (galaxy or
cluster), over gravitational waves that are being lensed by the combined effect of the macrolens plus
microlenses. We find that, at the typical magnifications expected for observed gravitational wave events,
the fraction of dark matter in the form of compact microlenses, such as primordial black holes, can be
constrained to the percent level. Similarly, if a small percentage of the dark matter is in the form of
microlenses with a few tens of solar masses, at sufficiently large magnification factors, all gravitational
waves will show interference effects. These effects could have an impact on the inferred parameters. The
effect is more important for macroimages with negative parity, which usually arrive after the macroimages
with positive parity.
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I. INTRODUCTION

Gravitational waves (GWs hereafter) open new oppor-
tunities to study the Universe. GW detectors have very wide
beams and are sensitive to most of the sky. The sensitivity
as a function of the sky position is modulated by the
geometric factor, that depends on the relative orientation of
the GW detector with the line of sight of the event. For one
detector with a maximum response of 1 at the zenith/nadir,
the fraction of the sky with a response above 0.5 is 64%.
This fraction increases to ≈90% for beam responses greater
than 30% of the maximum response. That is, at any given
time, a GW detector is seeing 90% of the sky with a
sensitivity greater than 30% its maximum sensitivity. Rare
events can then be observed, provided their amplitude is
large enough. Strong gravitational lensing of distant back-
ground objects can be considered as a rare event, since the
probability that a distant source (z > 1) is strongly lensed is
less than 0.1%. Observations of transients (like supernovae)
that are strongly lensed are extremely rare, since detecting
transients has traditionally required one to be observing that
particular region of the sky at the time of the transient, and
only a small fraction of these transients are expected to be
strongly lensed. In the case of GWs, one does not need to

be pointing a telescope to a particular region in the sky.
Then, if a distant GW is being strongly lensed, it does not
fall in the relatively small blind-spot regions in the sky of
the detector, and is magnified above the detection threshold
of the detector, it will be observed independently of its sky
position, since the GW detector has a wide beam extending
over the entire sky (but modulated by the geometric factor).
As the number of available detectors grows, the over-
lapping beams will result in a more uniform sensitivity
across the sky, removing blind spots and making detect-
ability even more likely.
If the rate of GWs is sufficiently high at z > 1, the

number of GWs per redshift interval at large redshifts (that
scales to first order as z3) may be large enough to
compensate for the small probability of lensing. Then,
some of the events that could not be observed at z > 1,
because they are too distant, could be promoted beyond the
sensitivity threshold of the detector if they are magnified by
some factor. Strong lensing of GWs is different than
standard lensing of galaxies in different ways. Owing to
the very low frequency of the GWs, and depending on the
mass of the lens, diffraction effects may be important. This
will be studied in more detail in the sections below. On the
other hand, due to the very small size of the volume
emitting GWs (basically, the volume containing the com-
pact binary), magnification factors of many thousands are*jdiego@ifca.unican.es
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possible. This is not true in the case of strongly lensed
galaxies, where magnification factors above a few tens are
rare. This is due to the fact that the maximummagnification
is proportional to

ffiffiffiffi
R

p −1, where R is the radius of the object
being lensed. Allowing for magnification factors larger
than a few hundred has important implications on the
detectability of distant objects. GWs that are emitted at a
redshift z ≈ 3, if magnified by a factor of ≈300, can
compensate the increase in the luminosity distance and
appear as luminous as a similar event at z ≈ 0.3. On the
contrary, the galaxy hosting this GW would have its total
flux magnified only by a factor of a few tens at most.
A high rate of events at high redshift may require the

existence of an exotic compact object candidate for dark
matter: the primordial black holes (or PBHs hereafter).
PBHs have been hypothesized as a possible candidate for
dark matter [1–6]. Rates of events (with masses ≈30 M⊙)
as high as 104 events per Gpc3 and year (at z ≈ 1–2) are
possible if the fraction of dark matter in the form of a PBH
is of the order of 10% [7]. If a fraction of the dark matter is
composed of PBHs, they will not only have an impact on
the rate of merger events, but can also act as microlenses
and split an incoming GW into multiple images with a time
delay between them. If the mass of the microlens is in a
certain range, diffraction effects may take place on the GW
[8,9]. The GW may interfere with itself if the time delay
between the lensed microimages is of the order of the
period of the GW. Lensing of GWs by compact astro-
physical bodies has been considered in the past, although
normally earlier work considers masses above 100 M⊙
[10–14]. In Ref. [15], the authors consider lensing by PBHs
with masses between ∼10 and ∼105 M⊙. In that work, the
lensing probability is computed assuming a simple model
in which all microlenses are isolated; that is, the halo
(galaxy, group, or cluster) hosting the microlens is being
ignored. As shown by Ref. [16], the role of the macrolens
cannot be ignored, since it can modify significantly the time
delays and, consequently, the detectability of the micro-
lensing event. The calculation of the optical depth of
lensing is also affected by the macrolens. This is particu-
larly important for the most distant detected GWs, most of
which will be strongly lensed. At large magnification
factors, the probability of microlensing grows as the
magnification of the macrolens [17]. As discussed in
Ref. [16], at sufficiently large magnifications, all strongly
lensed GWs will be affected by microlensing. This happens
when the effective optical depth is ≈1.
In this work, we focus on lensed binary black holes

(BBHs), although the results presented in this paper are also
relevant for other GWs at higher frequencies like binary
neutron stars (BNSs) or neutros star black hole. However,
since these alternative candidates have a smaller chirp
mass, the probabilities of observing these events at higher
redshifts is smaller. As demonstrated in earlier work, and
also shown in the sections below, the probability of strong

lensing is sufficiently high only at redshifts above 0.5.
BBHs are luminous enough that, after being magnified by
some factor, they can be observed even if they are produced
at z > 1.
Under the hypothesis that dark matter is composed of

PBHs with masses around 30 solar masses, GWs that are
being strongly lensed by massive halos are useful probes of
dark matter. Events that are strongly lensed necessarily
must travel through areas with a relatively large surface
mass density. As strong lensing events must take place near
the critical curves of halos, the surface mass density near
critical curves is close to the critical surface mass density
for lensing, which typically is in the range of a few
thousand solar masses per parsec square. This means that,
in projection, a parsec square must contain dozens of PBHs
in the intervening macrolens alone (and more when one
accounts for additional matter along the line of sight).
We adopt a cosmological model with Ωm ¼ 0.3,

Λ ¼ 0.7, and h ¼ 0.7. A few terms will be used throughout
the paper. We refer to the massive halos (galaxies, groups,
and clusters) as macrolenses. The stars, remnants, and
PBHs in these macrolenses that perturb the macrolens on
the small scale are referred to as microlenses. The images
produced by the macrolens are referred to as macroimages.
In the presence of microlenses in the lens plane, macro-
images of small sources can break up into smaller micro-
images around the positions of the microlenses. The source
frame is the reference frame where the GW is originated,
while the observer frame is Earth. The structure of this
paper is as follows. In Sec. II, we give a brief introduction
to lensing of GWs in the regime of geometric optics. This
regime is the appropriate one to address the probability of
lensing of a GW by a macrolens, since the Schwarzschild
radius of the lens is in this case much larger than the
wavelength of the GW (this is the criterion that is normally
used to separate between geometric and wave optics).
Section III introduces the chirp mass function of GWs.
Section IV discusses the probability of lensing by macro-
lenses. In Sec. V, we describe two models for the evolution
of the rate of GWs as a function of time. Section VI
estimates the expected number of strongly lensed events for
the two models assumed. In Sec. VII, we discuss the effects
that microlenses have on GWs, including wave effects that,
at LIGO frequencies, become relevant for microlenses with
masses below a few hundred M⊙. In Sec. VIII, we describe
the simulation used to test the sensitivity of microlensing of
GWs to the abundance of PBHs. Finally, in Sec. IX, we
present the main results of this work and discuss its
implications.

II. LENSING OF GRAVITATIONAL WAVES

Lensing of GWs has been studied in detail in earlier
work [10–12] and more recently in Refs. [15,18–24]. In
general, wave optics is the appropriate regime for studying
the lensing of GWs when the Schwarzschild radius of the
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lens is comparable to the wavelength of the GW [9,11,25].
For the frequencies probed by experiments such as LIGO/
Virgo, wave optics is relevant when the lens has a mass
smaller than a few thousand solar masses. For lenses with
masses above 104 solar masses, one can rely on geometric
optics. We discuss the regime of wave optics in Sec. VII.
This section presents only a brief discussion of lensing of
GWs in the regime of geometric optics.
The most basic quantity that can be measured from a GW

is the observed (redshifted) chirp mass

M ¼ ð1þ zÞMchirp ¼ ð1þ zÞ ðm1m2Þ3=5
ðm1 þm2Þ1=5

; ð1Þ

where m1 and m2 are masses of the two objects before
coalescence (in the source frame) and Mchirp is the chirp
mass in the source frame.
Only GWs that are above the detection threshold of the

detector can be observed. This threshold is determined by
the signal-to-noise ratio ρ of the GW. To first order, the
value of ρ depends on the luminosity distance of the GW,
DlðzÞ, and the observed (i.e., detector-frame) chirp mass
M. More specifically, ρ is obtained after integrating the
square of the Fourier transform of the observed signal over
a frequency range and weighted by the inverse of the power
spectral density of the detector (see, for instance, [26,27]):

ρ ¼ ffiffiffi
μ

p M5=6

DlðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðΘ; s; p; θÞζðfmaxÞ

p
: ð2Þ

The term F ðΘ; s; p; θÞ accounts for the geometric con-
figuration, including the angular position in the sky,
orientation of the detector, spin, polarization, and orbital
inclination of the binary. The term ζ encapsulates the
detector response through the noise spectral density and the
maximum frequency of the GW, fmax. This maximum
frequency (twice the frequency of the last orbit) is deter-
mined by the innermost stable circular orbit (ISCO). The
ISCO frequency scales as the inverse of the total mass of
the binary system [27–29]. Larger chirp masses correspond
to smaller fmax and, consequently, to smaller ζ, partially
compensating the dependency of ρ with M5=6. More
specifically, the term ζ scales as

R fmax
fmin

dff−7=3=SðfÞ
[27], where SðfÞ is the power spectral density of the
detector. For the range of frequencies and sensitivity in
LIGO, one can use the published SðfÞ for the observed
LIGO events to estimate ζ. For the typical BBH events
detected by LIGO, ζ has a mild dependency with fmax. In
particular, for the published SðfÞ curves in LIGO, ζ scales
roughly as f0.1max (or as M−0.1) for fmax between 300 and
700 Hz, which is the typical range of the observed BBHs in
LIGO. This modest dependency with fmax is due to the fact
that most of the power of the signal is contained in the
lower frequencies, so, above 200 Hz, the contribution to ρ
is relatively small. The focus of this paper is on the often

neglected first term in Eq. (2). This is the square root of the
magnification, μ, which is usually assumed to be μ ¼ 1,
and hence ignored [30]. If a GW is being amplified by
strong lensing, by ignoring μ, the inferred luminosity
distance will be smaller than the true distance by a factor
of

ffiffiffi
μ

p
and the inferred chirp mass (in the rest frame) larger

in order to maintainM constant. This mechanism has been
invoked in the past to explain the unusually high chirp
masses observed for some of the events detected in LIGO/
Virgo [19].

III. CHIRP MASS DISTRIBUTION OF THE
BACKGROUND POPULATION

A fundamental ingredient in this work is the distribution
of chirp masses. Little is known about this distribution. The
observed events by LIGO/Virgo are consistent with stan-
dard power-law models (M−2.3) but also with a bimodal
function having a peak at high masses (at ≈40 M⊙) [31]. In
Ref. [19], the authors make the interesting suggestion that
the peak in the bimodal mass function could be the
consequence of lensing of the GWs. Since a lensed GW
can be misinterpreted (if lensing is ignored) as a closer GW
with a larger chirp mass, lensed GWs could naturally
produce observed shallow or even bimodal mass functions.
In this work, we assume a simple model for the chirp mass
function. We start from a standard stellar model where
heavy stars follow the standard power law M−2.3, appro-
priate for masses above 1 M⊙ [32], and assume that the
remnants (BHs) left by these massive stars have a mass that
is proportional to the parent star. Individual masses [m1 and
m2 in Eq. (1)] are drawn from this distribution (withm1 and
m2 in the range 5 M⊙ < m1, m2 < 50 M⊙), and the chirp
mass is computed from the randomly generatedm1 andm2.
This approach ignores possible correlations between m1

and m2. The lack of correlation between m1 and m2 is
expected in the capture scenario where two BHs that form
far away from each other form a binary pair, as opposed to
common envelope formation scenarios where correlations
between m1 and m2 are possible. Another possibility for
correlated masses can take place in the center of globular
clusters, where mass segregation may result in heavier BHs
sinking toward the center of the cluster and forming
binaries with correlated masses [33]. The resulting distri-
bution is shown in Fig. 1 as a solid line. The dashed line is
the model we use in this work, which is built from a log-
normal function fðMÞ ∝ M−1 expððlnðMÞ − ηÞ2=ð2σ2ÞÞ,
where ðη ¼ 1.68; σ ¼ 0.12Þ for masses below 5.5 M⊙,
ðη ¼ 1.7; σ ¼ 0.3Þ for masses between 5.5 and 8 M⊙,
and ðη ¼ 1.68; σ ¼ 0.12Þ for masses above 8 M⊙. Since
M is dominated by the lightest component (between m1

and m2), the resulting distribution peaks at low chirp
masses and falls faster with mass than the original mass
function. The minimum chirp mass is 4.35 M⊙ (when
m1 ¼ m2 ¼ 5 M⊙). The resulting mass function resembles
the low-mass peak of model C considered in Ref. [31],
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although with a lower mean mass (see Fig. 1 in that
reference). It is important to note that, as demonstrated
below (and originally proposed by Ref. [19]), the high-
mass peak of model C in Ref. [31] can be naturally
produced by lensing, provided the rate of events at high
redshift is sufficiently high. Note also that model C
considered in Ref. [31] allows for some correlation between
m1 and m2, while we ignore this correlation. However, in
the model proposed by Ref. [19], lensed events would
appear redshifted. In this case, both the intrinsic (i.e.,
source frame) m1 and m2 would be uncorrelated, but the
observed m1 and m2 would be affected by the same factor
(1þ z). For z > 1, the observedm1 andm2 would appear to
have a clear correlation due to the common, and relatively
large, (1þ z) factor. This is explored in more detail in
Ref. [34], where the authors explain the observed corre-
lation between m1 and m2 in terms of lensing.

IV. PROBABILITYOFOBSERVINGALENSEDGW

The probability of lensing is referred to as the optical
depth of lensing, τ, and in its most basic form depends on
the magnification μ and the redshift of the source, zs, i.e.,
τðμ; zsÞ. Different authors have estimated τðμ; zsÞ adopting
different assumptions. Most estimates of τ are based on
analytic models which have the advantage of flexibility,
speed, and achieving high spatial resolution (needed to
resolve small areas with larger magnifications). On the
negative side, analytic calculations do not account for
corrections such as projection effects or substructure that
can increase the optical depth. N-body simulations can
account for both projection effects and substructure but at
the expense of resolution. In this work, we follow Ref. [35]
and use an analytic model based on the mass function of
Ref. [36] and an elliptical halo model to compute τðμ; zsÞ.
We improve on the work of Ref. [35] and modify the
elliptical profile by adding a steeper component in the

central region. This component accounts for the baryonic
contribution that is important in smaller halos and was
neglected in Ref. [35]. We also extend the mass range down
to 1011 M⊙ from the minimum mass of 1012 M⊙ consid-
ered in Ref. [35]. The baryonic contribution makes smaller
halos more relevant, and, even though their contribution to
τ is still subdominant, they cannot be ignored. An addi-
tional improvement involves computing the optical depth in
the image plane rather than in the source plane. In Ref. [35],
the author used the optical depth computed in the source
plane and later corrected for the multiplicity of lensed
images. The optical depth computed in the source plane
accounts for the total magnification, and it is the best choice
when estimating rates of unresolved images. Since GWs
can be resolved in time (two counterimages from the same
event will arrive separated by a time interval that can range
between a few hours to a few days), the optical depth
computed in the source plane has the advantage that no
corrections are needed to account for multiple images. It
also has the advantage of achieving higher spatial resolution
(since there is noneed tomap the image plane into the smaller
source plane). The improvement in spatial resolution trans-
lates into an improvement into the maximum magnification
that can be computed before limited resolution affects the
computation.Our calculation can reachmagnification factors
of 100 before being affected by resolution effects (even for
the smallest halos). Abovemagnification 100, one can safely
extrapolate the optical depth with the standard μ−3 law
as τðμ>100; zsÞ ¼ τðμ100; zsÞð100=μÞ3.
A caution note is needed here. The optical depth depends

on many variables. One of them is the assumed profile for
the lenses. Changes in the profile can easily result in
differences of a factor of 2 in the optical depth. Much of the
literature in optical depth of lensing is based on the
spherical isothermal sphere profiles, which are known to
increase the optical depth of low-mass halos compared with
the Navarro-Frenk-White halos used in this work (see, e.g.,
Figs. 9–11 in Ref. [37], Fig. 2 in Ref. [38], or Fig. 9 in
Ref. [39]). For large-mass halos (which are relevant for

FIG. 1. Mass function for the chirp mass. The solid line shows
the result of a simulation where the chirp mass is computed from
individual masses following the standard power-law model with
exponent −2.3. The dashed line is a (log-normal) model that
reproduces well the simulation as described in the text.

FIG. 2. Optical depth of lensing as a function of the redshift of
the background source (zs) for different values of the magnifi-
cation (indicated by numbers next to each curve).
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large magnification factors), earlier work based on the
velocity dispersion of galaxies fails at capturing the most
massive halos (groups and clusters), hence underestimating
the optical depth at large magnifications (μ > 100). Finally,
the role of baryons is very important, especially for low-
mass halos that could be subcritical without baryons but
may become supercritical after baryonic collapse. The
effect of baryons is not fully accounted for either in
analytical models or in N-body simulation calculations.
The reader should be wary of these issues and consider the
optical depth in this (and other) work(s) as an estimation,
subject to an uncertainty of at least a factor of 2. In Fig. 2,
we show examples of the optical depth as a function of zs
and for different values of the magnification factor. Note
how between μ ¼ 10 and μ ¼ 100 the optical depth has
decreased by 2 orders of magnitude, as expected from the
scaling PðμÞ ∝ μ−3 in strong lensing. This result is similar
to the one derived from N-body simulations and ray
tracing [40,41].
For magnification values μ > 1010, and for redshifts

zs > 1, the probability of lensing is ≈10−4. This number
can be confronted with the number of observed strongly
lensed quasars (QSOs) (few dozens) out of the total number
of known QSOs (>105). Between z ¼ 1 and z ¼ 2, one
expects that one in ≈4 × 105 events will be magnified with
factors μ > 30. Since the volume in this redshift interval is
≈450 Gpc3, if the rate of GWs above z ¼ 1 is above 1000
events per Gpc3 and year, one would expect to observe at
least one strongly lensed event above z ¼ 1 per year and
with μ > 30. The rate of events as a function of redshift is
discussed in Sec. V.

V. RATE EVOLUTION OF BBH

The rate of GWs as a function of the redshift is unknown
and depends on the formation mechanism of the BBH. The
simplest models rely on the assumption that the rate of GW
events traces the star formation rate. We adopt the model of
Ref. [42] as a conservative one [and we denote it as the star
formation rate (SFR) case]. This model predicts that the
evolution of the rate of GWs is mild in redshift and peaks at
z ≈ 2. We normalize this model at redshift z ¼ 0 to a rate of
a few tens of events per year and Gpc3, consistent with the
inferred rate from the LIGO Collaboration ([31], under the
assumption of no lensing). This model is shown as a dashed
line in Fig. 3. As an alternative case [inspired by Ref. [19]
and that we refer to as the Broadhurst-Diego-Smoot (BDS)
model], we consider also a model in which lensed GWs
occur more frequently at high redshift and has the attractive
feature of explaining the apparent observed bimodality of
the mass function of BHs, as well as the unexpectedly high
number density of very massive events (with chirp masses
of 30 M⊙ or above). In this model, the rate of events at high
redshift (where the lensing probability is highest) is
increased by ≈2 orders of magnitude (but still comfortably

below the rate of SNe at all redshifts) in order to
compensate for the low probability of lensing. To keep
the observed rate of events comparable to the ones
predicted by the conservative model, the rate at the lowest
redshifts must be smaller. We attain this by allowing the
rate to decay exponentially between the maximum of the
star formation rate at z ≈ 2 and z ¼ 0. Using a half-life time
of 1.5 Gyr results in a similar predicted number of observed
events for both models, so we adopt this value. The fast
decline in the rate can be justified by the rapid evolution of
BBHs if these are formed in dense environments like
globular clusters (see, e.g., [33]). In this case, the BHs are
formed after the SN explosion of the parent star (typically a
short-lived massive star), and through mass segregation
they sink toward the center of the cluster (since, after the
massive stars undergo SN, the most massive objects in the
globular cluster are still their remnants). Typical relaxation
times are 1 Gyr or less [43–45]. The duration of the phase
between the BBH formation and the final coalescence is
more uncertain and depends on mechanisms like dynamical
friction and three-body interactions. Most models agree
that, once the binary is formed, only a small fraction of the
binaries will merge within a Hubble time due to radiation of
GWs (see, for instance, [46]). Other mechanisms may need
to be invoked to explain a rapid evolution in the merger rate
between the peak of star formation and redshift z ¼ 0.
Also, it is important to consider the fact that massive BHs

are typically produced from massive stars with low met-
allicity [47]. Below z ≈ 2, massive stars with low metal-
licity are expected to be exceedingly rare. Hence, one may
expect that BBHs with elevated chirp masses are mostly
produced at high redshifts and, if the time of BBH
formation and coalescence is relatively short, a rapid

FIG. 3. Rate of events as a function of (lookback) time. The
solid line represents a model that grows as the star formation rate
at high redshift, but below redshift z ≈ 1.8 it falls off exponen-
tially with a half-life time of 1 Gyr (in the main text, we refer to
this model as the BDS model). The dashed line is a model that
traces the star formation rate history. For comparison, the
volumetric rate of SNe (of all types) at z ≈ 2 is approximately
106 per year and Gpc3.
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evolution between redshift 2 and redshift 0 is expected.
Above z ≈ 2, the rate decays with the redshift in a similar
fashion as in the SFR model.
The BDS model is shown as a solid line in Fig. 3. Note

that we choose to express the rate as a function of
the lookback time in order to accentuate the extended
period up to the epoch of maximum star formation rate.
Interestingly, the LIGO Collaboration finds some evidence
for a rapid evolution in the rate [R ∝ ð1þ zÞ6.5 [31] ] when
GW170729 is included in their analysis. On the contrary, if
GW170729 is excluded, the rate is consistent with a
nonevolving law. However, when the 90% confidence
regions are accounted for, the rapid evolution model is
also consistent with no evolution, reflecting the large
degree of uncertainty on the redshift dependency of the
merger rate. Note that the BDS model is consistent with
model C in the above reference when the ten BBHs from
O1 and O2 are included in the analysis (see the redshift
evolution model in Fig. 6 in Ref. [31]). On the other hand, it
is worth noticing that the relatively high rate of events at
high redshift of this model may be in tension with upper
limits on the stochastic background of GWs [48]. However,
the sensitivity of LIGO to the stochastic background is still
≈2 orders of magnitude above the current estimate of this
background [49], so a model such as BDS is still marginally
consistent with the lack of detection of this background.
Moreover, since GWs at low redshift (with a lower rate in
the BDS model at z < 2) contribute more to the stochastic
background, a model such as the BDS model is expected to
produce a background less than 2 orders of magnitude
above the model used in Ref. [49].

VI. EXPECTED NUMBER OF
STRONGLY LENSED EVENTS

With the ingredients presented in the previous sections,
we can now compute the expected number of strongly
lensed events. This number is basically given by the
integral

dN
dVdz

¼ RðzÞ
Z

Mb

Ma

dN
dM

dM
Z

PðΘÞτð> μmin; zÞdΘ; ð3Þ

where RðzÞ is the rate of events discussed in Sec. V and
dN =dM is the chirp mass function discussed in Sec. III
(that to first order we assume it does not evolve with
redshift). The integration mass limits in the integral are
fixed to Ma ¼ 5 M⊙ and Mb ¼ 50 M⊙. PðΘÞ is the
probability distribution for the geometric factor, encoding
all possible orientations of the detector and GW. For this
term, we follow Ref. [27]. Finally, μmin is the minimum
magnification required for a GW at redshift z, with chirp
mass M and geometric factor Θ to be above the detection
threshold of the experiment [see Eq. (2)]. We set a threshold
in the signal-to-noise ratio of ρ ¼ 8 for noise properties
similar to those in O1 and O2 runs in LIGO/Virgo (see

Sec. II). By setting μmin ¼ 1, we compute also the number
of events that are not being lensed. The resulting number of
observed events is shown in Fig. 4 as a function of the
redshift of the GWand for the two rate models discussed in
Sec. V. The dashed line (SFR model) shows results
consistent with earlier estimates that predict that a small
probability of lensed events is expected. The peak in lensed
events at z ≈ 0.3 corresponds to events with a mild
magnification of ≈2 for which the optical depth of lensing
is higher (see Fig. 5). On the contrary, the BDS model
(solid line) predicts similar numbers of lensed and not-
lensed events. The lensed events originate mostly at z > 1.
As in the SFR model, a peak of low magnification can be

FIG. 4. Number of events above the detection threshold for a
LIGO-like experiment with sensitivities comparable to those in
the O1 and O2 runs. The dashed line is for the SFR model, and
the solid line for the BDS model. Lensed events are given by the
red curves. In the BDS model, most of the lensed events are all
originating at redshifts zs > 1, while for the nonlensed events
most of the observed events occur at z < 0.3. The peak in lensed
events at z ≈ 0.3–0.5 are weakly lensed events.

FIG. 5. Distribution of observed events as a function of the
magnification. The peak at low magnifications are events that are
being magnified by modest factors, including weak lensing
events. For strongly lensed events (μ > 5), the distribution peaks
at magnification factors of ≈30 for the exponential (BDS) model
with a long tail toward larger magnification factors. This tail falls
like ≈μ−3 for μ > 200.
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appreciated also at z ≈ 0.3. Figure 5 shows the distribution
of magnifications that result in observed events. For the
SFR model, most of the events are magnified by moderate
factors, which makes them difficult to be recognized as
lensed events. However, for the BDS model, most of the
lensed events have magnifications of a few tens, and a non-
negligible fraction can have magnifications above 100.
Also interesting is the distribution of inferred chirp

masses. Figure 6 shows the chirp masses inferred for the
not-lensed and lensed events. As expected, the inferred
masses for the not-lensed events resembles the underlying
chirp mass (with a bias toward higher masses, because
lower masses are less likely to exceed the detection
threshold). However, for the lensed events (for which the
mass has been inferred assuming the wrong magnification
μ ¼ 1), the peak of the distribution is around masses of 20
or 30 solar masses, in striking resemblance to the current
observed LIGO masses. Reference [19] originally sug-
gested that this mechanism was responsible for the appa-
rently high chirp masses of most of the LIGO events.

VII. LENSING BY A MACROLENS PLUS
MICROLENSES

This section briefly reviews the lensing formalism for
microlenses in a macrolens. This topic has been extensively
covered in the literature [50–53]. Our model involves a
macrolens and a population of microlenses. The micro-
lenses include stellar microlenses (stars and remnants) and
a population of PBHs. The PBHs account for a fraction f of
the total dark matter, where f ¼ 1would imply that all dark
matter is made of PBHs. Since in the range of ≈5–50 M⊙
the fraction f ¼ 1 is already excluded by other observa-
tions, we consider only values consistent with current
constraints. The surface mass density of dark matter is

given by the convergence κ of the macrolens. Then, the
surface mass density of PBHs is simply fκ.
For the macrolens, we follow Ref. [16] and define the

macrolens with just two parameters, the magnification
factors in the radial and tangential directions, or μr and μt,
respectively. This is a valid approach for themacrolens, since
we are dealing with very small regions of the sky. Without
loss of generality, we assume that μt ≫ μr and that the main
direction of the shear, γ, is oriented in the horizontal
direction, that is, γ2 ¼ 0 and γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ21 þ γ22

p
¼ γ1. Given

μt and μr, the corresponding values of κ (convergence) and γ
(shear) can be found from the relation between κ, γ, μr, and
μt. For a given choice of κ and γ, the lens equation
[β⃗ ¼ θ⃗ − α⃗ðθ⃗Þ] of the macrolens can be expressed as

β⃗ ¼ θ⃗ − α⃗ðθ⃗Þ ¼
�
1 − κ − γ1 −γ2

−γ2 1 − κ þ γ1

�
θ⃗; ð4Þ

where the positions in the source plane are given by the
coordinates β ¼ ðβx; βyÞ and the positions in the image plane
are given by the coordinates θ ¼ ðθx; θyÞ.
The lensing potential of the macrolens, ψ , is given by

ψ ¼ κ

2
ðθ2x þ θ2yÞ þ

γ1
2
ðθ2x − θ2yÞ − γ2θxθy; ð5Þ

where we remind the reader that we adopt a reference
system where γ2 ¼ 0, θx and θy are given in radians, and we
ignore a constant additive term (i.e., the potential is
identically zero at the origin of coordinates of θ).
Since both the deflection field and lensing potential are

linear with the addition of new masses, if a population of N
point masses are present, the deflection α⃗PSðθ⃗Þ and poten-
tial ψPSðθ⃗Þ from the distribution of point masses can be
simply added to the above equations with

α⃗PSðθ⃗Þ ¼
XN
i

4GMiDiðzl; zsÞ
c2

δθ⃗i

jδθ⃗ij2
ð6Þ

and,

ψPSðθ⃗Þ ¼
XN
i

4GMiDiðzl; zsÞ
c2

lnðjδθ⃗ijÞ; ð7Þ

where δθ⃗i ¼ θ⃗ − θ⃗i is the distance to the point mass i at θ⃗i
and with mass Mi, Diðzl; zsÞ is the geometric factor
Diðzl; zsÞ ¼ Dlsðzl; zsÞ=ðDlðzlÞDsðzsÞÞ with Dlsðzl; zsÞ,
DlðzlÞ, and DsðzsÞ the angular diameter distances between
the lens and the source, between the observer and the lens,
and between the observer and the source, respectively.
A quantity of interest, that will be relevant in Secs. VIII

and IX, is the effective optical depth τeff introduced by
Ref. [17]:

FIG. 6. Inferred observed chirp masses in the source frame
assuming there is no magnification for the two types of models
considered, SFR (dashed lines) and BDS (solid lines). Lensed
events are shown in red and not-lensed events in blue. Note how
in the BDS model (solid lines) the lensed events appear to have a
higher chirp mass and how the observed chirp mass function
appears bimodal.
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τeff ¼ ð4.2 × 10−4Þ Σ
M⊙ pc−2

μ

μr
; ð8Þ

where the total magnification (μ) is the product of the
tangential and radial magnifications (i.e., μ ¼ μt × μr) and
Σ (expressed in units of M⊙= pc2 in the expression above)
is the microlens surface mass density. When τeff ≈ 1, the
saturation regime is reached. In this regime, caustics always
overlap in the source plane, and any source moving across a
field with τeff > 1 will be constantly experiencing micro-
lensing [17,35]. Since typical values for ΣðM⊙=pc2Þ range
between a few to a few tens, and assuming a typical value
for μr ∼ 1, it is clear from the expression above that the
saturation regime is reached when the macrolens magni-
fication is in the range of a few hundred to a few thousand.
Similar values for the macrolens magnification have been
observed already at the position of the microlensing events
of the Icarus and Warhol high-redshift stars [54,55]. Given
the fact that GW experiments have access to the entire sky
at any given moment (as opposed to the aforementioned
examples of Icarus and Warhol, where a significant luck
factor had to be involved), events with similar, or even more
extreme, macrolens magnifications are expected (see [35]
for a detailed estimation of the probability of these events).
In those scenarios, we expect microlensing to play a
significant role.
Finally, the time delay is given by

ΔT ¼ 1þ zl
cDðzl; zsÞ

�
1

2
jθ⃗ − β⃗j2 − ψ

�
; ð9Þ

where we have assumed that all point masses are at the
same redshift in the lens plane, so the factors Diðzl; zsÞ are
the same for all of them.
The time delay can be expressed in dimensionless units

by rescaling both the angular positions and potential by the
Einstein radius: θ2E ¼ ð4GM=c2ÞDðzl; zsÞ. This redefini-
tion of the time delay expression makes most sense when
one is dealing with a single microlens, since in this case the
Einstein radius can be defined without ambiguity, but, in
general, one can still set the Einstein radius to any arbitrary
mass, or scale, and still redefine the time delay equation:

ΔT ¼ 2RsðzlÞ
c

�
1

2
jx⃗ − y⃗j2 − ψ̃

�
; ð10Þ

where x⃗ ¼ θ⃗=θE, y⃗ ¼ β⃗=θE, ψ̃ ¼ ψ=θ2E, and RsðzlÞ is the
redshifted Schwarzschild radius of the lens. The first term
sets the scale of the time delay for a given lens mass:
2RsðzlÞ=c ¼ 1.97 × 10−5ð1þ zlÞðM=M⊙Þ s. This simple
scaling shows that, for a GW with frequencies
ν ∼ 100 Hz, interference and diffraction effects are
expected for isolated microlenses with masses > 500=
ð1þ zlÞ M⊙ [8,11]. Below this mass, the Schwarzschild
radius of the lens is smaller than the wavelength of the GW

(with ν ∼ 100 Hz), and diffraction effects are not important,
resulting in the GW not seeing the microlens. However, as
discussed in the section below, this minimum mass can be
lowered substantially when the microlens is near a macro-
lens critical curve.

A. The impact of microlenses on gravitational waves

In earlier work, Ref. [17] discussed how a microlens with
mass M embedded in a region of a macrolens where the
macrolens magnification is μ behaves as a microlens with
an effective mass μM. Also, at larger magnifications, an
area A in the lens plane maps into a smaller area A=μ in the
source plane. Hence, the density of microcaustics increases
by a factor of μ. Since the surface mass density of
microlenses is roughly a constant fraction of the conver-
gence (which is of the order of 1 near the critical curves of
macrolenses), it is then easy to realize that a GW that is
being magnified by a macrolens with a factor μ will
inevitably be affected by microlensing (and its associated
wave effects), if the magnification factor of the macrolens is
large enough.
When the wavelength of a GW is comparable to the

Schwarzschild radius of the microlens, one needs to
consider wave optics instead of geometric optics. The
magnification factor in wave optics is given by the
diffraction integral (see, for instance, [56]):

Fðw; βÞ ¼ Ao
ν

2πi

Z
d2θei2πνΔTðθ;βÞ; ð11Þ

where ν is the frequency of the GW in hertz and the
normalization Ao guarantees that at very high frequencies
one recovers the geometric optics magnification when
averaged over a frequency range. ΔT is the time delay
between lensed images expressed in seconds. The total
magnification μ and phase shift ϕ are given, respectively,
by (see, for instance, [25])

μ ¼ jFðw; βÞj2; ð12Þ

ϕ ¼ −i ln
�
Fðw; βÞ
jFðw; βÞj

�
: ð13Þ

For isolated microlenses and simple macrolenses, analytic
solutions can be found for the magnification. The magni-
fication depends on the frequency and that at low frequen-
cies the magnification tends to 1 (i.e., the microlens has a
negligible effect over the GW). In realistic situations, where
a GW is strongly lensed, it may intersect not only one
microlens but different microlenses. In this case, the
integral in Eq. (11) can be solved numerically as described
in Refs. [9,16,57], basically by inverse Fourier transform-
ing the probability function of the time delays, FðΔtÞ. This
numerical method can be applied to any situation, inde-
pendently of its complexity, provided one computes the
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time delay surface with enough resolution to resolve the
peaks in FðtÞ. The case of a pair of overlapping microlenses
was studied in Ref. [35]. In this paper, we study the more
realistic situation where a distribution of microlenses
intersects the GW. The probability that a GW intersects
a microlens and suffers a distortion in its waveform
depends on the density of microlenses and the size of
the caustic region. As discussed at the beginning of this
section, this probability increases with μ. Hence, GWs with
large magnification factors are more likely to suffer
interference than GWs with modest magnification factors.
We consider two scenarios, the first one where the macro-
lens magnification is 30 and a second scenario where the
macrolens magnification is 5 times larger (that is, 150). As
shown in Sec. VI, the most likely magnification factor for
models such as the BDS one is μ ≈ 30. Despite the rapid
decline of the optical depth with magnification, observed
events with μ ¼ 150 are only ≈5 times less likely than
observed events with μ ¼ 30 (for the BDS model), since
the reduction in lensing probability is partially compen-
sated by the increase in the accessible volume. For the SFR
model, the rate of probabilities is similar, but the proba-
bility of observing events with μ ¼ 30 is 2 orders of
magnitude smaller, so events like the ones described in
this work would be observed only after the sensitivity of the
detectors improves.

VIII. PRIMORDIAL BLACK HOLES AS
DARK MATTER

In the previous sections, we discussed the lensing
probability for the SFR and the BDS models. In both
cases, lensing events are expected to take place, although,
in the case of the BDS model, these events are ≈2 orders of
magnitude more likely, and should have already been
observed by LIGO. As mentioned above, the BDS model
is appealing, because it predicts a bimodal mass function in
the observed chirp mass, consistent with the observed
distribution of chirp masses, where the data cluster pref-
erably around two peaks, one at masses ≈15 M⊙ and one at
≈30 M⊙. On the contrary, if the BDS model is correct,
lensed events with inferred large chirp masses should come
in pairs with time delays between a few hours to several
days and from the same location in the sky. To date, no
clear multiply lensed GW has been observed [58,59],
although several candidates have been proposed [60].
More recently, two events during the O3 run were observed
on August 28, 2019, which are separated in time by
≈19 min and seem to originate from similar luminosity
distances and positions in the sky. These positions are
separated by only ≈10°. To first order, the probability of
having two events so close in time and space is comparable
to the probability of having a strongly lensed event.
However, based on the sky location of these two events,
Ref. [61] concluded that the two events cannot be inter-
preted as a pair of strongly lensed images. As shown below,

if GWs are strongly lensed and microlenses are present, the
observed strains can be perturbed, especially at the largest
frequencies. The impact of this perturbationon the estimation
of the parameters of the GW is something that needs to be
addressed carefully. Moreover, repeated events arriving at
different times (due to time delay lag)maybe confusedwith a
bursting signal. Searches for unmodeled, or GW burst,
signals in GW have resulted in no burst detections so far
(note that burst searches can also return nonbursting signals
[62]), although these searches restricted themselves to
Gaussian pulses, sine-Gaussian wavelets, and white-noise
bursts [63]. Interestingly, if these burst searches resulted in
any result, the sky localization of the signal would be less
constrained, given a reduced precision in arrival times [64].
In this section, we assume that strongly lensed GWs have

been observed already (as suggested by the BDS model) or
that they will be observed in the near future and investigate
the possibility of constraining the abundance of PBHs. We
take advantage of the magnifying power of the macrolens
hosting the PBHs, which increase the concentration of
caustics in the source plane, resulting in complex time
delay distributions and interference patterns of the lensed
GWs. We create a set of simulations where we vary the
fraction of dark matter contained in PBHs and compute the
distortion in the magnification as a function of the
frequency for different positions of the GWs in the source
plane. Sampling the source plane allows us to perform a
statistical analysis, where we estimate the probability that a
GW is distorted by some fraction at a given frequency. The
simulations involve three components, a macrolens (galaxy
or cluster), stellar microlenses from the macrolens, and
PBHs that constitute a fraction f of the dark matter of the
macrolens. By construction, f < 1, and we consider
fractions f that are consistent with current upper limits.
We neglect projection effects and consider only deflectors
that are in the macrolens plane. Projection effects are
expected to contribute at the percent level, since the
adopted value for the convergence of the macrolens is of
the order of 1. For the macrolens, we follow Ref. [16] and
model the macrolens with just two parameters, the con-
vergence κ and the shear γ. The specific values of κ and γ
are derived from predetermined values of the magnification
in the tangential (μt) and radial (μr) directions. We consider
two scenarios for the magnification μ of the macrolens. In
the first scenario, we adopt a relatively modest magnifica-
tion of 30, resulting from the product of a tangential
magnification of 10 and a radial magnification of 3, that
is, μ ¼ μtμr ¼ 10 × 3 ¼ 30. In the second scenario, we
consider a more extreme value of the magnification
μ ¼ μtμr ¼ 50 × 3 ¼ 150. The two scenarios can be con-
sidered as two nearby positions in the image (or source)
plane, where the second scenario corresponds to the
position that is closest to the critical curve (or caustic).
For typical macrolenses with the mass of a massive galaxy,
the magnification can change from 30 to 150 in image
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plane distances smaller than one arcsec. In addition to the
two considered values for the macrolens magnification, we
also consider the two possible parities of the macroimages.
A source located near a caustic produces typically two
bright macroimages (in general, additional macroimages
are also formed, but with significantly less magnification
and time delays much larger than the duration of a GW
event, so they can be neglected). One of the two macro-
images has positive parity (i.e., it has the same orientation
of the orbital momentum as the source), and the other has
negative parity (i.e., it resembles a mirror image of the
source). Other than the change in symmetry, in the presence
of microlenses in the lens plane, the parity of the macro-
image is important when dealing with very small sources.
As shown in earlier work (see, for instance, [16] for a
discussion in the context of GWs), macroimages of very
small sources with negative parity are significantly more
likely to have smaller magnifications than the correspond-
ing macroimage with positive parity, if microlenses inter-
sect the line of sight. The effect is even more dramatic for
GWs, since the microlenses introduce a time delay that can
be more pronounced between microimages forming around
a macroimage with negative parity. The time delay between
microimages results in constructive and destructive inter-
ference patterns affecting the GW. This effect depends on
the frequency of the GW and can resemble (and could, in
principle, be confused with) spin misalignment. However,
as opposed to the case of spin misalignment, when micro-
lensing is taking place and the time delay is larger than the
inverse of the frequency of the wave, the last bright peak
before the merger can be observed multiple times (see, for
instance, Fig. 2 in Ref. [65]). As a function of time, the
observed signal would resemble echoes (or bursts), since
the wave carrying the last bright peak arrives multiple
times. The first echo will be affected by interference more
than the last one, which will be almost unaffected by
interference (assuming the ringdown phase is shorter than
the time delay between the last and second-to-last echoes).
Since the results depend on the parity of the macroimage,

this allows one to confirm that a GW is being strongly
lensed, since one would expect (on average) that the image
with positive parity arrives first and a few hours (or days)
later the second image with negative parity would arrive.
This second image is expected to show stronger distortions
with frequency, on average, if microlensing is involved. If μ
is sufficiently large (μ > larger than a few hundred), this
type of behavior is always expected, since, even in the
absence of PBHs, microlenses from the intergalactic or
intracluster medium can saturate the source plane with
microcaustics. Events with extreme magnification can be
recognized, because they may originate at very high red-
shifts (z > 2) and be misinterpreted (if lensing is ignored)
as events with unusually high massesm1 andm2, that could
even fall within the mass gap above 50 M⊙.
In all simulations, we include the stellar component

using the same model described in Ref. [16]. For the two

macrolens magnifications considered (30 and 150), we
simulate a circular area in the image plane of 3 milliarcsec
(mas) in diameter but consider only the central horizontal
rectangular area of 3 × 0.5 mas2. The resolution is 100
nanoarcsec per pixel, sufficient to properly resolve the
caustic regions around microlenses with stellar masses. The
area in the source plane is reduced by the corresponding
magnification factor of the macrolens. The contribution of
the stellar component is modest, and only the (rare) most
massive stars and remnants are expected to produce a
significant effect on the GWs. The contribution to κ of the
stars and remnants is typically at the ∼1% level, and most
of the mass is contained in objects with masses ∼1 M⊙ or
less. At masses above ∼5 M⊙, where the interference
effects are more prominent, stars and remnants contribute
to the total mass a fraction much smaller than the
contribution of the PBHs considered in this work.
Because of this, the impact of the particular modeling of
the stellar component is expected to be minor in our
conclusions. Nevertheless, they are included assuming a
surface mass density of 11.7 M⊙ pc−2, which is the same
value used in Ref. [16] and a typical value found around the
critical curves of macrolenses for background sources with
z > 1 [54,66].
For the mass function of the PBHs, we assume that their

mass function is not necessarily the same as the one
assumed for the sources (see Sec. III). Instead, we assume
two different models. First, we consider a Gaussian dis-
tribution. This is a simple extension to the monochromatic
model with a fixed mass that allows for a broadening of the
mass function. A log-normal mass function could be used
instead, but we expect negligible differences in our con-
clusions, provided both Gaussian and log-normal have
comparable dispersion. Similar models have been consid-
ered in the past to describe a possible population of PBHs
with masses comparable to those found by LIGO. This type
of model is already constrained by current observations,
which rule out fractions larger than f ≈ 0.1. In this work,
we consider fractions that do not violate these limits. In
particular, we consider values of f ¼ 0.033, 0.01, and
0.003, that is, 3.3%, 1%, and 0.3% the amount of dark
matter, respectively. We refer to these three models as
Gaussian models, and more specific details about these
models are provided below. Interestingly, a fraction of ≈1%
may be sufficient to explain the rate of mergers observed by
LIGO [7,67–69].
As a second model for the population of PBHs, we

consider a much broader mass function, which is still
consistent with current constraints [70] but can allow for a
larger fraction of the dark matter to be explained by PBHs.
This is possible as long as the PBHs span a wide range of
masses and the fraction of mass contained in each range
does not violate current limits [70–72]. We model this
second model as a power law between Mmin and Mmax and
refer to this type of model as the power-law model:
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f ¼
RMmax
Mmin

dMMΨðMÞ
κ � Σcrit

; ð14Þ

where κ is the convergence, Σcrit is the critical surface mass
density, and ΨðMÞ is the mass function of the PBH per unit
area. We assume that it follows a power law:
ΨðMÞ ¼ dN=dM ∝ Mγp−1. The index γp is a free param-
eter, and we consider two values, γp ¼ 0 and γp ¼ 1. When
γp ¼ 0, f is a constant as a function of the mass. When
γp ¼ 1, the number of PBHs per mass interval is constant,
and, hence, more massive PBHs contribute more to f than
lower-mass PBHs.
This mass function was also considered in Ref. [73], that

argues that “a mass function of this form arises naturally if
the PBHs form from scale-invariant density fluctuations or
from the collapse of cosmic strings.” For the limits of the
integral, we consider Mmin ¼ 5 M⊙ and Mmax ¼ 50 M⊙.
This range is justified, because wave effects are not very
important for masses below 5 M⊙. On the other extreme,
above 50 M⊙, the fraction of PBH is heavily constrained.
Outside this mass range, there may still be PBHs that
contribute to f. To account for this possibility, we consider
values of f smaller than 1 but still larger than the values of
f adopted for the Gaussian model. Note, however, that in
Ref. [74] the authors propose a mass function that (they
claim) is consistent with current microlensing observations
and can explain all dark matter as PBHs. In particular, in
this model the mass function of PBHs is multimodal, with
the peaks of the mass function concentrated around 10−6, 1,
30, and 106 M⊙.
For a given choice of the mass function, the number of

PBHs per unit area inserted in the simulation is determined
by the specific values of f and κ. The convergence is
determined by the values of μt and μr as described
in Ref. [17].

A. Gaussian model

First, we consider the case of the Gaussian model. We
assume a Gaussian mass function for the PBHs with mean
30 M⊙ and dispersion 5 M⊙. This model is inspired by the
high-mass peak found in the bimodal mass function in
Ref. [31]. Since the dispersion is relatively small, the results
presented in this section would be close to those obtained
with a monochromatic mass function with masses equal to
the mean value of the Gaussian. In Fig. 7, we show the
magnification in the image plane for the simulations in the
Gaussian model case and for the case with μ ¼ 150. The
magnification diverges at the critical curves (white lines).
The top three panels show the magnification on the side of
the image plane where the parity is positive and for the
three values of f that are consistent with current constraints
[75]. From top to bottom, f ¼ 0.3%, f ¼ 1%, and
f ¼ 3.3%. The bottom three panels are the corresponding
magnification maps in the image plane for the side of the

image plane with negative parity and the same values of f.
In both cases (positive and negative parities), the dark-gray
areas have magnification factors of a few. The largest
critical curves are around the PBHs. Smaller critical curves
correspond to stars and remnants in the macrolens. Note
how the orientation (and shape) of the critical curves
depends on the sign of the parity. The case with μ ¼ 30
is not shown but would look similar with the exception that
the critical curves around the microlenses would be smaller
by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
150=30

p
. By using the lens equation, we

map the magnification in the image plane into the mag-
nification in the source plane, where the critical curves map
into caustics. Since the image plane gets compressed by a
factor of μ in the source plane, it is often the case that, at
large macrolens magnifications, the caustics overlap. In this
scenario, images can form around critical curves that are
separated by relatively large distances in the image plane.
For these images, the geometric time delay can be larger
than the time delay that would be observed if the caustics
did not overlap, resulting in interference effects at even
lower frequencies. This overlapping effect in the source
plane is shown in Fig. 8, where the three top panels are for
the case with positive parity and the three panels in the
bottom are for the case with negative parity. In this case, the

FIG. 7. Magnification in the image plane showing the
critical curves (white lines) for a macrolens magnification
μ ¼ μtμr ¼ 50 × 3 ¼ 150. The top three panels correspond to
three simulations (with different contributions to the dark matter
content) on the side of the image plane with positive parity. The
bottom panels are the corresponding simulations at the same
macrolens magnification in the side with negative parity. The
relatively small critical curves are due to stars in the macromodel,
and the larger critical curves correspond to the PBHs.
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caustics look very different depending on the sign of the
parity. On the side with positive parity, the minimum
magnification (dark-gray areas) is of the order of the
macrolens magnification (i.e., μmin ≈ 150), while on the
side with negative parity the dark-gray areas have a
magnification of just a few. For both parities, at fractions
f above a few percent and at this macrolens magnification,
caustics start to overlap across the source plane. At even
larger macrolens magnification factors, the overlap start to
take place at smaller values of f.
We use the simulated source planes to estimate the

probability that a GW is distorted by some amount at a
given frequency. We place 300 GWs at random positions in
the source plane shown in Fig. 8 and compute the
magnification of the GW (relative to the macrolens mag-
nification that does not depend on the frequency) as a
function of the frequency following Ref. [16] for each
position. Each of the 300 random positions [β in Eq. (11)]
results in a distortion curve of relative magnification as a
function of the frequency [w in Eq. (11)]. In Fig. 9, we
show the first 50 curves, out of the 300 examples for a
particular choice of the PBH (that is described below in
Sec. VIII B). Let us remind the reader that these curves
represent the relative magnification with respect to the
macromodel and that the macromodel magnification is
expected to be independent of the frequency. For clarity
purposes, we highlight the first three curves as colored solid

lines (blue, orange, and red). As shown in the figure, some
of the curves show significant deviations from unity at
frequencies as low as 100 Hz. For instance, the dark-blue
solid curve shows a large decrement between ≈80 and
≈150 Hz. The same curve shows an increase in the
magnification (relative to the macrolens) at ≈400 Hz,
followed by a large reduction in the relative magnification
at ≈500 Hz. All curves tend to 1 at lower frequencies, as
expected, since at these frequencies the GWs become
insensitive to microlenses with the masses considered in
this work. The corresponding distorted strains are discussed
in Sec. IX below. Note that this plot is in frequency space,
and matched filters are usually smooth in this space. At the
positions of spikes in the power spectral density of the
detector (like the harmonics of the detector which happen at
well-known frequencies), the features produced by inter-
ference will be harder to detect.
With the 300 magnification curves, we compute the

probability that the microlensing distortion of a GW is
larger than some amount as a function of the frequency. For
this goal, we compute the envelopes of the curves at
different percentage levels (50%, 90%, and 97%) and as
a function of the frequency. The envelopes at the 50% level
indicate the minimum distortion (at a given frequency) in
the magnification of 50% of the curves; that is, one in two
GWs will have a distortion at least as large as the one
shown by the envelope at 50% at that frequency. The
envelopes at the 90% level indicate the minimum distortion
in the magnification of 10% of the cases. That is, one in ten
GWs will have a distortion in the magnification at a given
frequency that is at least as large as the one shown by the
envelope. Similarly, for the envelope at 97%, approxi-
mately one in 30 GWs will have a distortion at a given
frequency at least as large as the one shown by the
envelope. Figure 10 shows the envelopes (or probabilities)

FIG. 8. Corresponding caustics in the subregion used to
compute the time delay statistics. The images have been com-
pressed by a factor of ≈2 in the vertical direction in order to show
a larger area. The maximum magnification is similar for both
parities, but the minimum magnification is significantly smaller
in the case of negative parity.

FIG. 9. Examples of the relative magnification induced by
microlensing as a function of the GW frequency for the case of
negative parity and the power-law model with γ ¼ 1. The colored
lines are the first three curves from the randomly selected
positions. The light-blue dotted lines show the first 50 curves
from the random positions. Note how at low frequencies,
ν < 60 Hz, all simulated cases show relatively small distortions
in the relative magnification.
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for the case with macrolens magnification μ ¼ 30. The
cases where the macrolens parity is negative are shown in
the left column, while the cases where the parity is positive
are in the right column. From top to bottom, we show the
cases with f ¼ 0.033, 0.01, and 0.003 and f ¼ 0. The case
with f ¼ 0 has only the stellar microlenses (stars and
remnants with a surface mass density of 11.7 M⊙=pc2

following the model of Ref. [76]) and no PBHs. The
serrated pattern observed in the envelopes with negative
parity at low frequencies is an artifact due to numerical
limitations (and related to the limited size of the simulation)
when solving numerically the integral in Eq. (11). The
envelope at these low frequencies is supposed to be a
smooth version of the curves. As expected, the distortions
are larger at higher frequencies. If one considers the case
with f ¼ 0.01 (or 1% of the dark matter in the form of
PBHs) and positive parity (i.e., right column, second panel
starting from the top) at 500 Hz, then 10% (90% envelope)
of the strongly lensed GWs with μ ¼ 30 are expected to
show a strong distortion in the magnification where
destructive interference demagnifies the GW by a factor
of ≈3 (relative magnification of ≈0.3). Since the strain goes
as the square root of the magnification, this translates into a
reduction of a factor of ≈2 in the amplitude of the strain
at 500 Hz.
If the fraction of dark matter in PBHs increases, at

f ¼ 3.3%, destructive interference with even greater inten-
sity is evident at frequencies as low as ≈200 Hz, well
within the range of detectors such as LIGO. The distortion
is even more apparent for the counterimages with negative
parity (that we remind the reader should arrive between a
few hours to a few days after the GW with positive parity)
as shown by the left column. In this case, at least one in ten
GWs with magnification above μ ¼ 30 should show a

reduction in the strain by a factor of ≈2 at frequencies of
200 Hz. We should note that the envelope accounts only for
the most extreme distortion at that frequency. This means
that the event mentioned above with a reduction of a factor
of ≈2 at frequencies of 200 Hz at higher frequencies may
show a smaller distortion (or even no distortion at all in a
given frequency range).
The above result shows the potential of strongly lensed

GWs to probe the abundance of PBHs, but it requires
observing several events in order for one of them to show
significant distortions in the observed strain. However, if
we focus on events with even larger macrolens magnifi-
cation factors, the caustics will overlap even more, and
individual microlenses will behave as microlenses with
larger masses (with an effective mass that scales as μM). In
Fig. 11, we show the case for a macrolens magnification
μ ¼ 150. Note that, although the probability of an event
with μ > 150 is 52 times smaller than the probability with
μ > 30, the probability of observing such an event is
actually only a few times smaller, since at μ > 150 one
is probing a larger volume than at μ > 30 (see, for instance,
Fig. 5). For lensed events with μ > 150, and if one
considers the case where 1% of the dark matter is in the
form of PBHs, the 50% envelope is already at magnifica-
tion factors 0.3 at frequencies of ≈300 Hz. That is, a
reduction in the strain of a factor of ≈2 at 300 Hz is
expected in 50% of the lensed events with μ > 150. One in
ten of these events (90% envelope) would have a similar
reduction of a factor of 2 in the strain at frequencies as low
as ≈130 Hz. The same fraction would show reductions of a
factor of 5 in the strain at 400 Hz.

B. Power-law model

The second scenario we consider is the case where the
mass function of PBHs between 5 M⊙ and 50 M⊙ is

FIG. 11. As in Fig. 10 but for a position in the image plane
where the macrolens has magnification μ ¼ μtμr ¼ 50 × 3 ¼
150. In this case, the larger macromodel magnification results in a
stronger effect for the same number of PBHs.

FIG. 10. Probability of magnification as a function of the GW
frequency for a macrolens with magnification μ ¼ μtμr ¼
10 × 3 ¼ 30. The light-blue, red, and dark-blue curves bracket
the regions with the 50%, 90%, and 97%, respectively, of the
distortion at a given frequency. The side with negative parity
shows, in general, a stronger distortion.
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described by a power law. Given the current constraints,
PBHs can make up to ≈10% of the dark matter [70]. If one
relaxes the constraints at very low masses (asteroids) from
PBH evaporation into gamma rays and at masses above
50 M⊙ from the cosmic microwave background (Planck),
PBHs can make up to 100% of the dark matter. In Ref. [73],
the authors explicitly consider extended mass functions with
power laws similar to the ones considered in this work and
find that, in themass regimewe are interested in, a fraction as
high as 10% is consistent with current constraints. We
consider this value of f ¼ 0.1 in the case of the power
law and make a set of simulations similar to the ones in
Sec. VIII A (μ ¼ 30, μ ¼ 150, positive, and negative par-
ities) for the two power laws considered, γp ¼ 0 and γp ¼ 1.
The result is shown in Fig. 12. In this case, and for

simplicity, we consider only two envelopes at 50% and
90%. Not surprisingly, since there are more PBHs per unit
area, the effect is larger than for the Gaussian model
described in Sec. VIII A. As a general trend, we observe
again that images with negative parity are more likely to
show interference effects. The differences between the two
power-law models is relatively small. The difference is also
small when comparing the μ ¼ 30 and μ ¼ 150 cases,
except at low frequencies, where interference effects in the
case with μ ¼ 150 are more evident. This can be explained
because at fractions f ¼ 0.1, and for magnifications
μ > 30, the saturation level is reached in the source plane
(see [17] for a discussion of the saturation level), where
microcaustics overlap over the entire source plane, and the
statistical properties of the magnification are very similar at
μ ¼ 30 and μ ¼ 150. Only at smaller fractions f does the

probability of interference become sensitive to the macro-
lens magnification for magnification factors μ > 30, as
shown in Fig. 13. For smaller magnification factors, the
saturation regime is not reached, and the probability of
intersecting a caustic becomes sensitive to the masses of the
microlenses.
An interesting trend is observed in all cases with negative

parity (left column in Figs. 12 and 13), where in more than
50% of the cases the magnification decreases with an
increasing frequency. In the 90% envelope, for the images
with both positive and negative parity, GWs are heavily
suppressed above 100 Hz. For the images with negative
parity, this happens at even lower frequencies. In particular,
10% of the GWs with magnification μ ¼ 150 would be
heavily suppressed below 60 Hz. Since most of the signal to
noise in the events observed by LIGO is concentrated
below 100 Hz, this means that these events would basically
be unobserved. In 50% of the cases, at μ ¼ 150 the
suppression factor is typically a factor >2 at frequencies
>100 Hz for images with negative parity and a bit smaller
than 2 for the images with positive parity and at the same
frequencies.

IX. DISCUSSION AND CONCLUSIONS

The results in the previous sections show how, if a
fraction of the dark matter is composed of microlenses with
masses above a few M⊙, a strongly lensed GW may reveal
this population of microlenses through interference effects.
In general, the distortion is larger the larger is the fraction of
dark matter in the form of compact microlenses, but at
sufficiently high magnifications, the saturation level is
reached [when τeff ≈ 1; see Eq. (8)] and the microcaustics
overlap in the source plane. Once this saturation level is
reached, the results are less sensitive to the number and
masses of the microlenses, but the point where the

FIG. 12. Envelopes at 50% and 90% showing the probability of
distortion as a function of the frequency for the two power-law
models γp ¼ 0 and γp ¼ 1, the two macromodel magnifications
considered (μ ¼ 30 and μ ¼ 150), and for a fixed fraction
f ¼ 10%. The case with stronger macromodel magnification,
μ ¼ 150, shows significant departures in 10% of the realizations
(dark-blue curves) above ≈50 Hz for the power-law model with
γp ¼ 1 and above ≈80 Hz for the model with γp ¼ 0.

FIG. 13. As in Fig. 12 but for a smaller fraction f ¼ 3.3%. Note
that the scale in the y axis is different than in Fig. 12. As expected,
the distortion is smaller in these cases than in the cases shown
in Fig. 12.
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saturation level is reached depends on the surface mass
density of microlenses. Since the critical surface mass
density for typical redshifts of lenses and background
sources is Σcrit ≈ 2000 M⊙ pc−2 and near the critical curves
κ ≈ 1, if the fraction of dark matter in microlenses is ≈3%,
then τeff ≈ 1 when the magnification of the macrolens is
μ ∼ 100 (assuming the radial magnification factor is ≈2).
At smaller magnification factors, such as μ ≈ 30, one
expects it to be more sensitive to the particular mass
function of microlenses but at the expense of having fewer
GWs with a significant distortion in the magnification,
since the area in the source plane which is not close to a
microcaustic is larger in this case.
In Sec. VIII B, the envelope curves shown in Figs. 10–12

account for the probability of distortion of a certain
magnitude at a given frequency. Alternatively, it is inter-
esting to ask the question of what the probability is of
having a magnification of at least a factor of μ� (a strain
distortion of a factor of

ffiffiffiffiffi
μ�

p
) below some frequency ν�. In

Fig. 14, we show the case for μ� ¼ 4 and ν� ¼ 200 Hz.
Below this frequency, one can expect that a distortion in the
strain of a factor > 2 at some frequency ν < 200 Hz could
be picked by optimally filtering the raw data. Each curve
represents all the models discussed in Sec. VIII B. The
Gaussian models are one the left side of the x axis, while
the power-law models are on the right side. Dashed lines
are for macroimages with negative curvature, and solid
lines are for macroimages with positive curvature. In
general, and as expected, it can be appreciated how models

with a larger fraction f are more likely to produce
distortions in the strain. The exception is model C in the
blue solid line, which has fewer cases than model B in the
same curve, but this is purely a fluctuation due to small
number statistics. The power-law models are also more
likely to produce distortions than the Gaussian models
except when comparing models D (Gaussian with 3.3%
dark matter) and E (power law with 3.3% dark matter and
γ ¼ 0), which predict almost identical results, although
with the Gaussian model predicting a few more cases with
this magnitude in the distortion. Note how models G and H
are close to the saturation regime and produce virtually
identical results. The plot also shows the gain in probability
of distortion when one considers events magnified by larger
factors (red curves). If one considers, for instance, the
Gaussian model with 1% dark matter at μ ¼ 150 (red
curves, model C), between ≈20% and ≈30% of the cases
show distortions in the magnification of at least a factor of 4
below 200 Hz. At even larger magnification factors, PBH
models with smaller fractions of dark matter would show
similar results. Note how the Gaussian model with 0.3%
dark matter as PBHs (model B) is clearly more sensitive
than model A (only stars and remnants) despite the fact that
model A has a larger surface mass density than model B.
However, most of the mass in model A is contained in low-
mass stars, for which diffraction effects are small below
200 Hz. It is important to stress that the mass function of the
PBHs assumed in this work is not the same as the one
assumed for the two components producing the GWs (see
Sec. III). In other words, we assume that the merger rate of
BBHs is fixed and independent of the PBHs. For the GWs,
we assumed a chirp mass that results from drawing m1 and
m2 from a power law which in our notation would have an
exponent γp ¼ −1.3. If the GWs considered in this work
are sourced by the same PBHs (as already considered by
some authors), such a steep mass function would produce,
on average, diffraction effects which are smaller than the
ones presented in this work for γp ¼ 0, 1, since most of the
microlens masses would correspond to smaller objects. On
the other hand, smaller masses for the BBHs would result in
larger maximum frequencies, where the interference effects
are greatest.
Although all the information of the distortion due to

microlensing is encapsulated in the relative magnification
as a function of the frequency shown in the previous
section, it is interesting to show the effect over the observed
strain. In Fig. 15, we show examples for the case with
magnification μ ¼ 150, negative parity, and for the power-
law mass function model with γ ¼ 1. The plot shows the
original signal of an undisturbed strain derived in the post-
Newtonian approximation as a black solid line. For this
strain, we have assumed thatm1 ¼ m2 ¼ 8 M⊙ and that the
GW originated at z ¼ 1.5. The dotted lines show 50
examples of 50 GWs placed at random positions in the
source plane. The first three of these 50 examples are

FIG. 14. Probability of having a distortion in the magnification
larger than a factor of 4 at frequencies below 200 Hz. The circles
are for images with positive parity, while the diamonds are for
images with negative parity. Blue symbols are for macroimages
with magnification 30, and red symbols are for macroimages with
magnification 150. Model A is the one with no PBHs (i.e., only
stars and remnants with Σ ¼ 11.7 M⊙ pc−2). For model A, the
percentage falls below 1% and is not shown. Models B, C, and D
are the three Gaussian models with f ¼ 0.3%, 1%, and 3.3%,
respectively. Models E and F are power-law models with f ¼
3.3% and with γ ¼ 0 (E) and γ ¼ 1 (F). Models G and H are
power-law models with f ¼ 10% and with γ ¼ 0 (G) and
γ ¼ 1 (H).

CONSTRAINING THE ABUNDANCE OF PRIMORDIAL BLACK … PHYS. REV. D 101, 123512 (2020)

123512-15



shown as colored solid lines (blue, orange, and red). These
50 curves (and the colored lines) are the same cases shown
in Fig. 9 in Sec. VIII A. The time of coalescence takes place
at t ¼ to. Note how, in some cases, the amplitude in the last
cycles is affected substantially or even suppressed almost
completely. Also, it is interesting to see how on average
(black dashed line) the amplitude in the last cycles is
reduced by some factor that increases with the frequency.
This trend was already observed in Figs. 12 and 13, but it is
observed more clearly in this plot. The suppression of the
last cycles is more prominent in the macroimages with
negative parity than in macroimages with positive parity
(see [35], where it is also shown how the mean of the
magnification remains unchanged when microlenses are
present). This follows the expected behavior of lensing in
the wave optics regime, where at low frequencies one is
expected to be insensitive to the presence of microlenses
(i.e., one recovers the mean of the magnification), while, at
high frequencies, the GWs can see the microlenses (i.e., the
typical magnification tends toward the median of the
magnification). If microlensing is predominant in strongly
lensed GWs, and as shown by Fig. 15, the last cycle before
the ringdown is more likely to be damped (especially in
macroimages with negative parity), it is possible that the
estimated parameters of the GW (especially the one with
negative parity) are biased if microlensing effects are
ignored.
We should note that Fig. 15 corresponds to the inter-

ference produced in the signal that arrives first and by all
multiple images. Since microlensing produces multiple
microimages, if the time delay between the first and last
microimage is larger than, but comparable to, the inverse of
fmax, then multiple mergers and ringdowns are expected to

be observed. In the simplest case where only two micro-
images are produced, the GW from the microimage that
arrives first would show interference, but, once the ring-
down phase of this GW is over, one may still observe the
merger and ringdown of the GW from the second micro-
image, only this time without any interference.
If one assumes that the BDS model is correct (i.e., all the

low-frequency events detected by LIGO are strongly lensed
with magnification factors up to several hundreds), this
would imply that the fraction of dark matter in the form of
PBHs between 5 M⊙ and 50 M⊙ must be below the 10%
level. Otherwise, about half of the observed lensed GWs
would show clear signs of microlensing in the strains.
Similarly, if the fraction of dark matter in the form of PBHs
in the same mass regime is of the order of, or above, 10%,
this would imply that the BDS model cannot be correct and
that the observed low-frequency (or high chirp mass) GWs
are not strongly lensed. More data and with higher
sensitivity (especially at high frequencies) are needed to
settle this question.
Future detectors of GWs, such as the Einstein Telescope,

will soon increase the sensitivity and extend the range in
frequencies where events can be observed. Extending the
range toward lower frequencies is interesting, not only for
early warning reasons (events can be detected hundreds of
seconds before the merger takes place [77]) but also
because, at these low frequencies, microlensing effects
are expected to be very small, and the parameters estimated
at low frequencies can be later used to unveil signs of
microlensing at high frequencies. Increasing the sensitivity
at high frequencies would allow one to measure, with
higher significance, the ringdown (very sensitive to micro-
lensing) and also detect events with smaller chirp masses at
cosmological distances. BNSs are expected to be more
common than BBHs (the inferred volumetric rate of BNSs
at z ¼ 0 is ≈103 per year and Gpc3 [78]). However, since
the chirp mass is smaller, the signal-to-noise ratio is also
smaller than for BBHs, and, hence, they can be observed
only at smaller distances (where the optical depth of lensing
is small). Once the sensitivity of future GW detectors
increases, it will allow one to observe BNSs at larger
cosmological distances. If magnified by factors of a few
tens to a few hundreds, future observations can reveal
lensed GWs from a distant BNS at z > 1. At higher
redshifts, this rate could be even higher, offering a chance
of observing these events through lensing. Interestingly,
these events, when redshifted (assuming z ∼ 1–2), would
appear to be falling within the forbidden mass gap at low
mass. Also, the relatively smaller chirp mass results in a
larger fmax, and it is at these higher frequencies where wave
effects are more prominent.
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