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Many proposals for physics beyond the Standard Model give rise to a dark sector containing many degrees
of freedom. In this work, we explore the cosmological implications of the nontrivial dynamics which may
arise within such dark sectors, focusing on decay processes which take place entirely among the dark
constituents. First, we demonstrate that such decays can leave dramatic imprints on the resulting dark-matter
phase-space distribution. In particular, this distribution need not be thermal—it can even be multimodal,
exhibiting a nontrivial pattern of peaks and troughs as a function of momentum. We then proceed to show
how these features can induce modifications to the matter power spectrum. Finally, we assess the extent to
which one can approach the archaeological “inverse” problem of deciphering the properties of an underlying
dark sector from the matter power spectrum. Indeed, one of the main results of this paper is a remarkably
simple conjectured analytic expression which permits the reconstruction of many of the important features of
the dark-matter phase-space distribution directly from the matter power spectrum. Our results therefore
provide an interesting toolbox of methods for learning about, and potentially constraining, the features of
nonminimal dark sectors and their dynamics in the early universe.

DOI: 10.1103/PhysRevD.101.123511

I. INTRODUCTION

Dark matter remains one of the great mysteries of modern
physics. We know that it exists, and through its gravitational
interactions we know how much of it there has been at
different epochs during the evolution of the universe. We
also know that it is approximately pressureless (with
equation of state w ≈ 0), and that it is relatively cold.
However, our knowledge of the dark sector is extremely
limited. We do not know how many species of particles
comprise the dark sector, nor do we know their masses or
spins or whether they are fundamental or composite. We
likewise do not know whether the dark matter interacts
nongravitationally with the visible sector, nor do we know
much about these interactions if they do occur. We do not
even know if the dark-sector constituents interact nongravita-
tionally with each other. As a result, the dark sector remains
one of the most compelling enigmas facing physics today.

We likewise do not understand the origins of the dark
sector. We have no idea what production mechanism
originally populates this sector, or whether this mechanism
is even thermal. Likewise, we do not know what kinds of
nontrivial dynamics might be involved in establishing the
dark matter that we observe today.
Tackling these problems would not be so urgent if the

dark sector were not so important. However, the total
energy density of the dark sector is approximately five
times that of the visible sector. As a result, it is primarily the
dark physics which drives the evolution of the universe
through much of cosmological history. Likewise, dark
matter seeds structure formation and thereby gives rise
to the structure-filled universe that we observe today.
This then leads to two critical questions:
(i) What imprints might nontrivial early-universe dark-

sector dynamics leave in present-day observables?
(ii) To what extent can we decipher this archaeological

record, exploiting information about the present-day
universe in order to learn about or constrain the
properties of the dark sector?

These are clearly very broad questions, and in this paper
we shall attempt to take a step towards addressing these
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questions. In particular, we shall concentrate on the linear
matter power spectrum PðkÞ, which describes the spatial
distribution of matter. As such, this quantity carries an
immense amount of information regarding how structure

was formed in the early universe, as sketched below: the
matter power spectrum PðkÞ depends on the net dark-matter
phase-space distribution fðpÞ, and this in turn is highly
sensitive to the early-universe dynamicswewish to constrain.

early-universe

dynamics
⟶

dark-matter

phase-space

distribution

fðpÞ

⟶

matter

power spectrum

PðkÞ
ð1:1Þ

Clearly, a given early-universe dynamics leads to a specific
fðpÞ and then to a specificPðkÞ. However, this process is not
invertible; in fact, themappings sketched abovemay not even
be one-to-one. Nevertheless, we can ask: To what extent can
we find signatures or patterns in fðpÞ andPðkÞwhich might
give us at least partial information about the early-universe
dynamics that produced the dark matter?
Answering this question is the primary goal of this paper.

Note that we see this exercise as having two primary
motivations beyond those outlined above. First, it is only
the matter power spectrum PðkÞ which is ultimately observ-
able; by contrast, fðpÞ and the early-universe dynamics
which produces it are not observationally accessible. Thus,
learning how to approach this “inverse” problem—even in a
rough, approximate way—will ultimately become increas-
ingly urgent as further observational data is accumulated.
But perhaps even more critically, it is possible that the dark
matter interacts with the visible sector only gravitationally.
This would be unfortunate, as presumed nongravitational
interactions between the dark and visible sectors are the
underpinnings of all collider-based, direct-detection, and
indirect-detection dark-matter search experiments. Thus, if
the dark sector interacts with the visible sector too weakly, it
may ultimately only be through studies of quantities such as
the matter power spectrum that we will ever learn about the
dark sector and its early-universe dynamics.
This paper is organized in two parts. The first part,

consisting of Secs. II and III, is primarily concerned with
explorations of the two connections sketched in Eq. (1.1)
above, with Sec. II devoted to explorations of how we
might uncover aspects of the early-universe dynamics by
studying the dark-matter phase-space distribution fðpÞ,
and Sec. III devoted to explorations of how we might
uncover aspects of fðpÞ given a particular matter power
spectrum PðkÞ. As discussed above, our goals are merely to
observe and interpret certain patterns and signatures.
Although a complete inverse map is not possible, we shall
nevertheless demonstrate there are many ways in which we
can “invert” certain aspects of the mappings in Eq. (1.1),
and indeed in Sec. III we shall conjecture a remarkably

simple closed-form expression which will enable us to
reconstruct many of the salient features of the underlying
dark-matter phase-space distribution fðpÞ, given a particu-
lar matter power spectrum PðkÞ.
By contrast, the second part of this paper, consisting

of Sec. IV, presents the detailed analysis of an explicit
example model which illustrates all of our main points. In
particular, we shall begin with an explicit Lagrangian
describing a hypothetical nonminimal dark sector at early
times, and we shall then demonstrate that the dynamics
implied by this Lagrangian indeed leaves the predicted
imprints in fðpÞ and PðkÞ. As such, this model will permit
us to perform a complete “end-to-end” analysis of the
connections sketched in Eq. (1.1). We shall also take the
opportunity to utilize our conjectured relation from Sec. III
in order to test our ability to reconstruct many features of
fðpÞ from PðkÞ, and thereby demonstrate that our con-
jecture is indeed remarkably accurate for this purpose.
Finally, we conclude in Sec. V with a discussion of our
main results and possible future research directions.
This paper also contains four appendixes. Appendix A

discusses certain aspects of the Boltzmann equations
which underlie the physics of this paper, and also presents
the specific Boltzmann equations that are used in our
analysis of the model in Sec. IV. In Appendix B we then
use these Boltzmann equations in order to provide a full
numerical example of certain results quoted in Sec. II.
By contrast, Appendix C contains a short derivation of
the adiabatic sound speed associated with dark matter of a
given momentum, as background for a technical point to be
discussed in Sec. III. Finally, Appendix D provides details
concerning the time evolution of the dark sector in our model
in Sec. IV—details which are likely to have relevance for the
behavior of nonminimal dark sectors more broadly, even
beyond the specific model studied in this paper.
There are, of course, many different theoretical possibil-

ities for early-universe cosmology, each giving rise to
different dynamical patterns and different resulting behav-
iors for fðpÞ and PðkÞ. For this reason, we stress that it is
not our goal in this paper to advocate for a particular model
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of the early universe, or even to attempt a complete survey
of all logical possibilities. Rather, our goal is to develop
tools which can be exploited quite generally—not only to
recognize and interpret the observational signatures of
various dark sectors, but also to ultimately constrain their
properties. Of course, we shall find that the particular
dark-matter phase-space distributions fðpÞ which interest
us the most are those which exhibit nonstandard features
such as multimodality, with many identifiable peaks and
troughs. As we shall demonstrate, such distributions emerge
quite naturally from nonminimal dark sectors—sectors
which transcend the typical WIMP paradigm. As such,
many of our results will be particularly useful in such cases.
Our results, however, will be completely general, and will
hold even for more minimal theories of the early universe.

II. PACKETS TO PACKETS, DUST TO DUST:
FROM EARLY-UNIVERSE DYNAMICS TO

DARK-MATTER PHASE-SPACE DISTRIBUTIONS

In this section we shall discuss a variety of issues
pertaining to the first connection sketched in Eq. (1.1),
and the degree to which this connection might be inverted.

A. The cosmological conveyor belt

Once dark matter has been produced in the early universe,
its properties can be described through its phase-space
distribution fðx⃗; p⃗; tÞ. The assumption of spatial homo-
geneity to first order simplifies this quantity to fðp⃗; tÞ. Given
fðp⃗; tÞ, we can calculate the corresponding number density
nðtÞ, energy density ρðtÞ, and pressure PðtÞ via

nðtÞ≡ gint

Z
d3p⃗
ð2πÞ3 fðp⃗; tÞ;

ρðtÞ≡ gint

Z
d3p⃗
ð2πÞ3 EðpÞfðp⃗; tÞ;

PðtÞ≡ gint

Z
d3p⃗
ð2πÞ3

p2

3EðpÞ fðp⃗; tÞ; ð2:1Þ

where EðpÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
with p≡ jp⃗j and where

gint is the number of internal degrees of freedom. We can
even calculate the corresponding equation of state
wðtÞ≡ PðtÞ=ρðtÞ. The dark-matter distribution fðp⃗; tÞ is
therefore a central quantity in understanding the cosmologi-
cal properties of the dark sector, telling us whether the dark
matter is cold or hot, thermal or nonthermal, and so forth.
Indeed, for nonrelativistic (“cold”) dark matter we have
EðpÞ ∼m ≫ p and therefore w ≈ 0, while for relativistic
(“hot”) dark matter we have EðpÞ ∼ p ≫ m and therefore
w ≈ 1=3. Likewise, if the dark matter is thermal (i.e.,
produced while in thermal equilibrium with a heat bath),
we expect fðp⃗; tÞ to follow a Bose-Einstein or Fermi-Dirac
distribution, while all other fðp⃗; tÞ are necessarily non-
thermal. Of course, we are assuming here that the dark

matter consists of only a single species. If the dark matter
consists of multiple species i ¼ 0; 1;…; N, the dark sector
would be described through a separate phase-space distri-
bution fiðp⃗; tÞ for each species.
In this section, we shall begin our study by exploring the

manner in which early-universe dynamics affects fðp⃗; tÞ.
This is the first connection sketched in Eq. (1.1). Towards
this end, we shall start by studying how the distribution
function fðp⃗; tÞ evolves with time.
In the standard Friedmann-Robertson-Walker (FRW)

cosmology, the physical distance xðtÞ between two other-
wise stationary points at time t as the universe expands is
related to that at time t0 by xðtÞ ¼ xðt0ÞaðtÞ=aðt0Þ, where
aðtÞ is the scale factor. In order to maintain the Poisson
bracket fx; pg ¼ 1, the momentum p of a given free
particle therefore has to evolve inversely with respect to
the coordinate x, implying pðtÞ ¼ pðt0Þaðt0Þ=aðtÞ, or
d logp=dt ¼ −HðtÞ, where H ≡ _a=a is the Hubble param-
eter. This describes the gravitational redshift of momentum
due to the expansion of the universe. From this we see that
time evolution corresponds to additive p-independent shifts
in the value of logp, which makes logp a particularly
convenient variable for studying the time evolution of any
dark-matter phase-space distribution. Assuming isotropy of
the phase-space distribution, quantities such as the physical
number density in Eq. (2.1) can therefore be rewritten as

nðtÞ ¼ gint
2π2

Z
∞

0

dpp2fðp; tÞ

¼ gint
2π2

Z
∞

−∞
d logpp3fðp; tÞ; ð2:2Þ

whereupon we see that the comoving number density
NðtÞ≡ na3 is given as

NðtÞ ¼ gint
2π2

Z
∞

−∞
d logpgðp; tÞ≡ gint

2π2
N ðtÞ; ð2:3Þ

where we have defined

gðp; tÞ≡ ðapÞ3fðp; tÞ ð2:4Þ

and where N ðtÞ is the total area under the curve of gðp; tÞ
plotted versus logp.
Particle interactions can of course change the value of the

comoving number density NðtÞ. However, barring such
interactions, this quantity should remain time-independent.
Likewise, we have already seen that logp merely accrues
additive p-independent shifts under time evolution, which
implies that the measure d logp in Eq. (2.3) is also
unaffected. Given the relation in Eq. (2.3), this implies
that the value of gðp; tÞ should also be invariant under time
evolution, in the sense that

gðpðt0Þ; t0Þ ¼ gðpðtÞ; tÞ ð2:5Þ
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for any times t, t0. This implies that under time evolution
(and barring any further dark-matter creation or decay), the
curve for gðpÞ merely slides towards smaller values of
logp without distortion, as if carried along on a “conveyor
belt” moving with velocity HðtÞ. Indeed, N ðtÞ—the area
under this curve—will also be invariant. For these reasons,
we shall often concentrate on gðpÞ rather than fðpÞ in this
paper when discussing the dark-matter phase-space distri-
bution. This situation is sketched in Fig. 1.
In this paper, we shall refer to this as the cosmological

conveyor belt. This conveyor belt will ultimately play an
important role in our thinking. Of course, we have already
seen that it provides a useful way of conceptualizing the

time evolution of the dark-matter phase-space distribution
gðpÞ. However, as we shall now discuss, it also allows us to
understand how different phase-space distributions gðpÞ
may arise as the result of physical processes that occur
during cosmological evolution.
As an example, let us consider the case of a minimal dark

sector consisting of a single dark-matter species subject to a
specific dark-matter production mechanism. Accordingly,
this dark-matter species is produced with a corresponding
phase-space distribution gðpÞ which we may regard as
coming into existence on the cosmological conveyor belt at
the time of production, with the particular shape of gðpÞ
depending on the details of the production mechanism.
This distribution then simply redshifts towards smaller
values of logp for all subsequent times prior to the decay of
the dark matter, if any.
However, things can be very different for a nonminimal

dark sector containing an entire ensemble of particle species
instead of a single dark-matter component. In such cases, the
phenomenology of the dark sector is not determined by the
properties of any individual constituent alone, but is instead
determined collectively across all components.However, for
such nonminimal dark sectors, it is possible that the dark-
matter production may be more complicated, with different
“deposits” onto the cosmological conveyor belt occurring at
different moments in cosmological history.
For example, let us consider the situation sketched in

Fig. 2. In this scenario, an initial dark-matter constituent

FIG. 1. The cosmological conveyor belt. A given dark-matter
phase-space distribution gðpÞ≡ ðapÞ3fðpÞ is rigidly carried
towards smaller values of logp with velocityHðtÞ as the universe
expands. The area N under the curve is proportional to the
corresponding (fixed) comoving number density NðtÞ≡ N, as
given in Eq. (2.3).

FIG. 2. Sketch of the cosmological conveyor belt at three different times: an early time tA (blue) at which packet A is deposited, a later
time tB (red) at which packets B1 and B2 are deposited, and a final time (black). During the time interval between tA and tB, packet A has
redshifted to position A0, where it overlaps with the newly deposited packet B1. After time tB, both the combined packet B1=A0 and the
packet B2 continue to redshift into their final positionsB0

1=A
00 and B0

2. Thus, the resulting dark-matter phase-space distribution consists of
two disjoint contributions (black): a warmer unimodal distribution B0

2 and a colder multimodal distribution B0
1=A

00. However, in the
absence of further information, knowledge of this final distribution allows us to resurrect only certain aspects of this cosmological history.
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A is produced at time tA (blue), with a corresponding
phase-space distribution (sketched as packet A in Fig. 2)
deposited onto the conveyor belt at that time. However, at a
later time tB (red), two further contributions are produced,
corresponding to a colder packet B1 and a warmer packet
B2, both of which are also deposited onto the conveyor
belt with appropriate momenta. Of course, during the
time interval between tA and tB, our original packet A
has redshifted into a new location A0, where it partially
overlaps with B1. These then superpose to form a nontrivial
combined packet B1=A0. At all later times beyond tB (such
as that sketched in black in Fig. 2), the resulting phase-
space distribution consists of two disjoint contributions: a
warmer distribution (labeled B0

2) which is unimodal and a
colder distribution (labeled B0

1=A
00) which exhibits a com-

plex, bimodal shape. Thus, we see that the final resulting
dark-matter distribution can be fairly complicated and even
multimodal. However, without further information, it
would be possible to resurrect only certain aspects of this
cosmological history.
We may quantify this sort of analysis as follows. In

general, for any dark sector, the final dark-matter distri-
bution gðpÞ is realized as the accumulation of all previous
deposits occurring at all previous times during cosmologi-
cal history. Towards this end, let Δðp; tÞ denote the profile
of the dark-matter deposit rate at time t. Then, at any time t,
we have

gðp; tÞ ¼
Z

t
dt0Δ

�
p
aðtÞ
aðt0Þ ; t

0
�
: ð2:6Þ

Of course, if the deposits occur at discrete times ti, then

Δðp; tÞ ¼
X
i

ΔiðpÞδðt − tiÞ: ð2:7Þ

Inserting this into Eq. (2.6) then yields

gðp; tÞ ¼
X
i

Δi

�
p
aðtÞ
aðtiÞ

�
; ð2:8Þ

demonstrating that gðp; tÞ reflects a particular cosmological
history. Indeed, the situation sketched in Fig. 2 is nothing
but the special case with

Δðp; tÞ ¼ ΔAδðt − tAÞ þ ðΔB1
þ ΔB2

Þδðt − tBÞ: ð2:9Þ

Of course, the important archaeological question is to
determine the extent to which knowledge of gðp; tÞ at a
given time t can be used to resurrect the cosmological
history. The mathematical answer is provided by Eq. (2.6)
or Eq. (2.8): for each value of p, we can constrain only the
corresponding sum or integral in these equations such that
this sum or integral has the value gðp; tÞ. Note that this is
an independent constraint for each value of p. However, for

any given time t, it is clearly impossible to resurrect a
unique historical deposit profile Δðp; t0Þ for all times t0 < t
given only the information contained within gðp; tÞ. To see
this, let us write Eq. (2.6) in the suggestive form

gðp; tÞ ¼
Z

∞

−∞
dt0

Z
∞

−∞
dp0

Δðp0; t0Þδ
�
p0 − p

aðtÞ
aðt0Þ

�
Θðt − t0Þ ð2:10Þ

and treat Δðp0; t0Þ as the “source” which produces the
“response” gðp; tÞ. Indeed, the factors in the integrand of
this expression (particularly the argument of the Dirac
δ-function in conjunction with the Heaviside Θ-function)
make clear that gðpÞ in some sense tallies the separate
contributions along what we may call the “backwards FRW
momentum light cone,” in the same way as δðx − ctÞwould
have indicated a spatial light cone in flat space. Moreover,
given the form of Eq. (2.10), we can identify

Gðp; p0; t; t0Þ≡ δ

�
p0 − p

aðtÞ
aðt0Þ

�
Θðt − t0Þ ð2:11Þ

as a Green’s function connecting the source to the response.
We can thereby convert Eq. (2.10) into the differential form

∂g
∂t −Hp

∂g
∂p ¼ Δðp; tÞ; ð2:12Þ

where we have recognized ∂=∂t −Hp∂=∂p as the differ-
ential operator corresponding to the Green’s function in
Eq. (2.11). Indeed, the result in Eq. (2.12) is nothing but the
Boltzmann equation describing the evolution of the phase-
space distribution gðp; tÞ in the presence of the source term
Δðp; tÞ, here functioning as an effective collision term. This
demonstrates that our conveyor-belt/deposit picture is
ultimately a physical representation of the integral form
of the Boltzmann equation.
However, the result in Eq. (2.12) also illustrates math-

ematically why we cannot solve for the complete cosmo-
logical history of deposits Δðp; t0Þ for all times t0 < t. We
could certainly use this relation to solve for Δðp; t0Þ if we
had information about gðp; t0Þ at all such times. However,
we presumably only have access to gðp; tÞ at a fixed late
time t, long after the final deposits onto the conveyor belt
have occurred. This then prevents us from resurrecting the
desired profile history Δðp; t0Þ.
We have already seen in Fig. 2 that multimodality of the

phase-space distribution suggests that separate deposits
occurred at different moments in cosmological history.
However, this immediately begs the question as to whether
such a pattern of deposits can arise naturally. In particular, it
is important to determine what kinds of nonminimal dark
sectors can give rise to such deposit patterns. However, as
we shall now demonstrate, such deposit patterns can easily
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emerge if our nonminimal dark sector contains an
ensemble of states with different masses, lifetimes, and
cosmological abundances. In such cases, it is the intra-
ensemble decays (i.e., decays from heavier to lighter dark-
sector components) which will naturally give rise to such
deposit patterns.

B. From parents to daughters: Decays and their effects
on dark-matter phase-space distributions

As an initial step towards explaining how this occurs, let
us first study the fundamental process in which a parent
packet decays, producing a daughter packet. As we shall
see, this process is surprisingly subtle within an expanding
universe because of the relativistic effects which emerge if
the momenta involved are large compared to the mass of the
parent. We shall therefore proceed to discuss this process in
several steps.
In general, a parent packet describes the momentum

distribution of a collection of parent particles. Such
particles ultimately decay at different times and with
different momenta. However, we can group these parent
particles into subsets depending on when they decay and
the momenta they have when they decay, so that each ðp; tÞ
subset consists of the particles which decay at a given
common time t with a given common momentum p. The
decays of the particles within each ðp; tÞ subset then
collectively produce a deposit onto the daughter conveyor
belt, and integrating these deposits with those from all other
relevant ðp; tÞ subsets (while accounting for appropriate
redshifting effects) then yields the final daughter packet
gðpÞ. It is in this way that we shall organize our discussion
of the decay process through which a daughter packet
emerges through the decay of a parent packet. Of course,
the idea that we can view our daughter packet as the
ðp; tÞ-integral of a deposit profileΔðp; tÞ is already familiar
from Eq. (2.6). The only difference here is that we are
reorganizing our deposits in terms of the momenta of the
decaying parents rather than the momenta of the resulting
daughters—a reorganization which proves particularly
useful when the dark matter is produced through decays.
We shall therefore begin our discussion of the decay

process by studying the properties of the daughter
deposit that emerges from a single ðp; tÞ subset of parent
particles—i.e., from a population of parent particles which
share a common momentum and decay at a common time.
Although we shall ultimately refrain from specifying a
particular decay process, for simplicity we shall initially
assume that each parent particle X undergoes a two-body
decay of the form X → YY with parent and daughter
masses mX and mY respectively, where mY < mX=2. In
this case, the energy of each daughter in the rest frame of
the parent is simply mX=2, and likewise the magnitude
of the momentum of each daughter in the rest frame of
the parent is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmX=2Þ2 −m2

Y

p
. Indeed, this is the

nonzero momentum that is imparted to the daughters in the

cosmological background frame (i.e., the “lab frame”)
when the parent is at rest. However, if the parent has
momentum pX in the lab frame at the time of its decay, then
the energy of each daughter in the lab frame is given by

EY ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

X þ p2
X

q
þ pX

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

Y=m
2
X

q
cos θ; ð2:13Þ

where θ is the angle between the daughter momentum in
the parent rest frame and the parent momentum. Given that
the angle θ is unfixed by the kinematics of the decay
(implying that all values of cos θ arise with equal proba-
bility), these daughter energies EY will therefore vary
uniformly within a total range of magnitude

ΔEY ¼ EðmaxÞ
Y − EðminÞ

Y ¼ pX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

Y=m
2
X

q
: ð2:14Þ

Likewise, for any daughter with energy EY within this
range, the corresponding daughter momentum in the lab
frame is simply given by pY ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
Y −m2

Y

p
. Thus, the

existence of a range of possible daughter energies ΔEY
implies the existence of a corresponding range of daughter
momenta ΔpY , all of which are populated through the
decays of the parent particles in the given subset. Indeed,
we observe that daughter energy range ΔEY—and indeed
the corresponding daughter momentum range ΔpY—both
increase as functions of pX.
In this context, we remark that this kinematic analysis

actually allows us to draw an even stronger conclusion
if mY ≈ 0: our deposits will be rectangular in shape even
in pY-space (and not only in EY-space), and will actually
be logarithmically centered around a pX-independent
“anchor” momentum

panchor
Y ≈ Eanchor

Y ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðminÞ
Y EðmaxÞ

Y

q
≈
mX

2
: ð2:15Þ

Every deposit, regardless of pX, will then include this
anchor momentum, even though hpYi and ΔpY will
continue to grow with pX.
Our main interest, of course, is not in the kinematic

details of this specific decay process. Rather, we are
interested in certain features which are exemplified above
but which are generic across many different decay proc-
esses. These include processes such as X → YZ where the
daughter masses mY and mZ do not have a large hierarchy
between them. These also include three-body decays such
as X → YZW… where the number of daughter particles
remainsOð1Þ, where the daughter masses do not have large
hierarchies between them, and where we assume “typical”
decays within the Dalitz plot which are characterized by
genericOð1Þ angles between the decay products, so that no
hierarchies emerge amongst the momenta of the daughters
when measured in the rest frame of the decaying parent.
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In all such cases, although the precise shapes of these
deposits depend on the detailed kinematics associated with
the specific decay process, certain general conclusions
about the corresponding daughter deposits from each
ðp; tÞ parent subset can nevertheless be drawn. For exam-
ple, because the sum of the masses of the daughters is
always less than the mass of the parent, each daughter is
produced with a nonzero momentum in the rest frame of the
parent. The magnitude of this momentum is uniquely
determined for two-body decays, and is also determined
to within an order of magnitude for the “typical” three-body
decays discussed above. Likewise, because the direction of
the daughter momentum in the parent rest frame is
uncorrelated with the direction of the momentum of the
parent in the lab frame, the magnitude of the momentum of
each daughter is broadened by the boost of the parent into a
range of momentum magnitudes as measured in the lab
frame. Thus, the corresponding daughter deposit will
stretch across a range of momenta whose width generally
grows as a function of the momentum of the parent at the
time of decay. Indeed, such considerations are generic, and
should hold within the classes of decay processes dis-
cussed above.
Many other properties of the possible daughter deposits

can be similarly deduced from general considerations such
as these. As a result, given the properties of a particular
daughter deposit, it is often possible to “reconstruct” certain
generic properties of the parent particles within the corre-
sponding ðp; tÞ subset as well as certain generic properties
of the corresponding decay process. Our results are shown
in Table I, where the relevant properties of possible
daughter deposits are listed on the left and the correspond-
ing parent and decay properties are listed on the right.
In Table I, column headings are defined as follows.

For the daughter deposit, “rel (hpi)” at the top of the first
column indicates whether the daughter momenta within the
deposit—as represented by the average momentum hpi—
are relativistic. Likewise, the second and third columns
indicate whether the width Δp of the daughter deposit is
large, order-one, or small (“wide,” “Oð1Þ”, or “narrow,”
respectively) when compared with either the daughter mass
m or the mean deposit momentum hpi. For the parent
subset, “rel at decay” indicates whether the parent momen-
tum is relativistic or nonrelativistic at the time of decay,
with “rel∼ and “rel≫” further specifying situations with
pP ∼mP and pP ≫ mP respectively, where mP and pP are
the corresponding parent mass and momentum. By con-
trast, the final two columns of the table indicate the degree
to which the decay process is near marginality. In rough
terms, this refers to the degree to which the decay process
endows the daughters with additional kinetic energy
beyond that which is directly inherited from the parent.
More precisely, “absolute marginality” and “relative mar-
ginality” are respectively assessed in terms of the fractions
prest
D =mP and prest

D =pP, where prest
D is the magnitude of the

daughter momentum in the rest frame of the parent. In the
case of relative marginality, decays for which prest

D =pP is
much less than 1, much greater than 1, or Oð1Þ are
respectively considered “near” marginal, “far” from mar-
ginal, orOð1Þmarginal. By contrast, in the case of absolute
marginality, there is a maximum value of prest

D =mP which
can ever kinematically arise. This maximum value depends
on the details of the particular decay process, and corre-
sponds to the limit in which all of the daughter masses
vanish. (For example, this maximum value is 1=2 for
decays of the form X → YY.) We then consider the
corresponding decay to be respectively “near” absolute
marginality, “far” from absolute marginality, or exhibiting
Oð1Þ absolute marginality depending on whether prest

D =mP
is respectively much less than 1, very close to its maximum
value, or somewhere in between.
Note that this table is designed to indicate only those

fundamental trends that emerge in limiting hierarchical cases
involving only rough orders of magnitude. In other words, in
this table we only consider cases in which we can cleanly
identify our daughter particles as either very nonrelativistic
(p ≪ m), moderately relativistic (p ∼m), or ultrarelativistic
(p ≫ m), with an implied hierarchy of momenta between
these three situations. Likewise we only consider cases in
which our daughter widths Δp are either much less than, of
approximately the same size as, or much bigger than m or
hpi, with hierarchically large separations between these
different cases. It is because we are only considering such
limiting cases with large hierarchies that we do not provide
any further information of a more specific nature within this
table. Likewise, in constructing this table, we have made
certain assumptions which are consistent with this general
purpose. For example, as already stated above, these results
assume that each decay produces Oð1Þ daughters whose
masses are all of the same overall scale OðmDÞ. These
results likewise assume the order-of-magnitude estimate that
mP ∼OðmDÞ (respectively,mP ≫ mD) for decays which are
near (respectively, far from) absolute marginality.
Despite these assumptions and restrictions, this table

contains a wealth of information about the possible
daughter deposits that can emerge from the simultaneous
decays of parents with a given momentum. As an example,
within the limits discussed above, we learn that there is
only one way to produce a nonrelativistic daughter deposit
for which the width Δp is extremely small compared to
both the daughter mass as well as the mean deposit
momentum: we must begin with nonrelativistic parents
experiencing a decay which is near absolute marginality
and yet far from relative marginality (Case A). Indeed, for a
two-body decay of the form X → YY, this would corre-
spond to a situation in which 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

Y=m
2
X

p
is much

smaller than 1 but much larger than pX=mX. Conversely,
we see that highly relativistic daughter deposits with
Δp ≪ m and Δp ≪ hpi can only emerge from extremely
nonrelativistic parents experiencing decays which are far
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from both absolute and relative marginality, so long as the
parent momentum is significantly smaller than the daughter
mass (Case F). Similarly, we learn from this table that there
are only twoways of producing a highly relativistic daughter
deposit for which Δp ∼m but Δp ≪ hpi: the parents must
either be nonrelativistic when experiencing a decay which is
far from both absolute and relative marginality (Case G) or
highly relativistic when experiencing a decay which is near
both absolute and relative marginality (Case H). Indeed, in
the former case, we can further conclude that the parent
momentum must be of the same order as the daughter
mass—otherwise our decay would no longer produce
daughter deposits for which Δp ∼m. The results in this
table thus provide a useful guide towards archaeological
reconstruction, at least at the level of the individual daughter
deposits that emerge from ðp; tÞ parent subsets.
The results in this table are also significantly influenced

by the relativistic effects connected with the boosting
associated with highly relativistic parents. For example,
were it not for such relativistic effects, highly relativistic
parents experiencing decays which are far from absolute
marginality but close to relative marginality (such as would
arise for two-body decays of the form X → YY when pX ≫
mX=2 andmY ≪ mX) would have yielded daughter deposits
with Δp ≫ m but Δp ≪ hpi. However, it is the relativistic
effects associated with this boosting that actually broaden the
width Δp of the resulting daughter deposits and force Δp ∼
hpi (as indicated within Case K). Thus, even though the dark
matter may be nonrelativistic today as the result of the
gravitational redshifting that has occurred since the

conclusion of the decay process, such relativistic effects
may nevertheless be forever imprinted within the deposits
that ultimately comprise the daughter packets.
Of course, as we transition across different parent subsets

within any physical decay process, the parent and daughter
masses are fixed—indeed, only the parent momentum at
the time of decay varies. Thus the absolute marginality of
the decay process is fixed for all parent subsets in any given
decay process, and varying the parent momentum induces
transitions between only certain cases within Table I. For
example, if the parent and daughter masses correspond to a
decay process close to absolute marginality, then we can
only transition from Case A to Case B to Case D to Case H
as the parentmomentum increases. In such caseswe find that
the corresponding daughter deposits likewise shift from
nonrelativistic to relativistic (as expected for a decay process
near absolutemarginality), but thatΔp ≪ m until the parent
momentum becomes highly relativistic. Interestingly, how-
ever, we see from Table I that Δp ≪ hpi except near a
“resonance” that occurswhenprest

D (the daughtermomentum
in the rest frame of the parent) becomes approximately
equal to the parentmomentum.At that point, as illustrated in
Case B, we find Δp ≈ hpi.
It is also possible to understand certain general aspects of

the shapes of these deposits. As long as the decay process
produces a unique magnitude for the momentum of the
daughter in the rest frame of the parent, the boost due to
the momentum of the parent will cause the energy of the
daughter to have the general form ED ¼ E1 þ E2 cos θ.
Indeed, we have already seen an example of this for the

TABLE I. The various daughter deposits that can arise from the simultaneous decays of a population of parent particles of fixed
momentum. Given the properties of the daughter deposit, we can therefore reconstruct the extent to which the parents were relativistic
and the extent to which the corresponding decay process was near marginality. In some cases this reconstruction is unique, while in other
cases several possibilities exist. This table nevertheless exhibits a rich pattern of correlations between daughter deposits, parents, and
associated decay properties. The quantities at the top of each column of this table are discussed in the text, along with associated
definitions and underlying assumptions.

Daughter deposit Parent Decay

Case rel? hpi
width
Δp=m

relative width
Δp=hpi

rel at
decay?

near absolute
marginality?

near relative
marginality?

A
p ≪ m

narrow

narrow

nonrel
near

far

B Oð1Þ Oð1Þ
C

p ∼m
narrow

Oð1Þ far

D
rel∼

near near

E Oð1Þ Oð1Þ Oð1Þ Oð1Þ
F

p ≫ m

narrow

narrow

nonrel far
far (pparent ≪ mdaughter)

G
Oð1Þ far (pparent ∼mdaughter)

H rel≫ near near

I

wide

nonrel far far (pparent ≫ mdaughter)

J
Oð1Þ rel∼ far Oð1Þ

K rel≫ Oð1Þ or far near
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X → YY decay process in Eq. (2.13). Isotropy implies that
all values of cos θ are equally likely to occur, and thus the
resulting deposit has a flat profile when plotted in E-space.
In otherwords,when plotted inE-space the resulting deposit
is “brick”-shaped. We will discuss this further below.
However, changing variables to p-space then converts this
flat profile into one that rises as a function of p—an effect
which is negligible for highly relativistic deposits (for which
E ≈ p) but otherwise sizable. This effect is even more
dramatic when the deposit is plotted versus logp.
Having discussed the individual daughter deposits that

emerge from each ðp; tÞ subset of parent particles, we now
must combine these deposits in order to construct the final,
total daughter packet. Indeed, this is the only way in which
we can properly discuss the manner in which the decays of
all of the parent particles within a complete parent packet
produce a complete daughter packet. However, in order to
combine these deposits correctly, there are a number of
additional effects that must be taken into account:

(i) First, the different parent particles within the parent
packet do not all decay at the same time. The decay
process is a probabilistic exponential one, with a
survival probability scaling with time as e−t=τ where
τ ¼ 1=Γ is the proper decay lifetime and Γ the decay
width. Thus we can never determine precisely when
a given parent particle will decay.

(ii) Second, as the result of time-dilation effects, the
different parent particles do not even share a
common effective lifetime. Indeed, parent particles
with larger momenta within the parent packet will
have longer effective lifetimes, thereby delaying
their decays relative to the decays of those particles
with smaller momenta.

(iii) Finally, we must account for the continual pull of
gravitational redshifting which persists throughout
this entire process. This affects the parent particles,
as their momenta continually redshift until the
moment of decay. However, this also affects the
daughter deposits, as each deposit also immediately
begins to redshift while waiting for subsequent
deposits to appear. The final daughter packet is then
determined only after each deposit has arrived.

All of these effects combine to render the transition from
parent packet to daughter packet a fairly complicated affair.
In order to determine the extent to which the features

described in Table I for the individual daughter deposits
might eventually survive for the full daughter packets—
and also to determine what additional features might
accumulate for these daughter packets as the result of
the effects itemized above—we shall proceed in several
steps. First, it will prove instructive to analyze the decay
process while incorporating the second and third features
above, but disregarding the first. Then, we shall consider
the opposite situation in which we incorporate the first and
third features but disregard the second. Each of these

approaches will provide useful, complementary informa-
tion concerning the final daughter packets that emerge.
Finally, we shall analyze the full decays, taking all three
features into account simultaneously.

1. Instantaneous-decay approximation with
time-dilation and redshifting effects

We begin, therefore, by considering the decay process
from parent packet to daughter packet under the so-called
instantaneous-decay approximation in which each parent
particle is assumed to decay precisely at its lifetime
τ≡ 1=Γ, as measured in its rest frame. We will also assume
that the parent species has mass m and is produced at
some time t ¼ t0 with a simple, unimodal phase-space
distribution gPðpÞ. The resulting decay process is sketched
in Fig. 3.
Because the parent packet gPðpÞ stretches across a

nonzero range of momenta, each momentum slice of the
parent packet will experience a different time-dilation
factor. This then increases the effective lifetime of each
slice prior to decay, causing slices with larger momenta to
decay later than those with smaller momenta. However,
during the time interval prior to decay, each momentum
slice also experiences a cosmological redshift. This redshift
decreases the momentum of each slice and thereby partially
mitigates the time-dilation effect. Indeed, combining both
effects, we see that each momentum slice with initial
momentum p0 at t ¼ t0 decays at

tdecayðp0Þ ¼ t0 þ
Z

t0þτ

t0

dt0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0ðt0=t0Þ4=½3ð1þwÞ� þm2

q
m

;

ð2:16Þ

where we have assumed an FRW cosmology with the
Hubble factor scaling as H ∼ 2=½3ð1þ wÞt� where w is the
equation-of-state parameter. Likewise, the momentum of
this slice at the time of its decay is given by

pdecayðp0Þ ¼ p0

�
t0

tdecayðp0Þ
�
2=½3ð1þwÞ�

; ð2:17Þ

where tdecayðp0Þ is given in Eq. (2.16). Indeed, these results
are completely general within the instantaneous-decay
approximation.
As we move upwards within the parent packet towards

momentum slices with increasing values of p0, the time-
dilation factor increases—but this also provides a longer
time interval during which cosmological redshifting occurs.
It is therefore important to understand the extent to which
this extra redshifting might compensate for the greater
original momentum of the momentum slice. Indeed, at first
glance it might even seem that momentum slices with
greater initial momenta p0 could ultimately be redshifted to
smaller final momenta pdecay when they actually decay,
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with pdecayðp0
0Þ<pdecayðp0Þ even when p0

0 > p0. However,
it is straightforward to verify that dpdecayðp0Þ=dp0 > 0

for all p0, ensuring that pdecayðp0
0Þ > pdecayðp0Þ for all

p0
0 > p0. Thus, momentum slices with greater initial

momenta p0 continue to have greater momenta when they
each decay. However, it is also straightforward to verify that
dpdecayðp0Þ=dp0 < 1 for all p0. Thus, any two momentum
slices whose original momenta p0 differ by an amount Δp0

will have decay momenta pdecay differing by an amount
Δpdecay < Δp0. Unless p0 ≫ pdecay, this further implies
that Δ logpdecay < Δ logp0. This “momentum compres-
sion” is illustrated along the top portion of Fig. 3, where the
relative horizontal spacings between the original (blue)
momentum slices labeled A, B, and C are larger than the
relative horizontal spacings between the corresponding
redshifted (red/pink) momentum slices which are sketched
at the (different) times of their decays.
The decay of each momentum slice of the parent then

yields a contribution to the emerging phase-space distri-
bution gDðpÞ of the daughters. Indeed, these contributions
are nothing but the deposits already discussed in Table I.
These individual deposits contributions are sketched as the

red/pink “bricks” within the lower portion of Fig. 3. As
already noted above, the precise shapes of these deposits
onto the daughter conveyor belt depend on the detailed
kinematics associated with the decay process, and thus our
representation of these contributions in Fig. 3 as rectangular
bricks whose height does not vary with momentum should
at this stage be understood merely as an approximate
abstraction adopted for visual simplicity (albeit an abstrac-
tion which becomes increasingly accurate for relativistic
daughter packets). However, a number of features asso-
ciated with these bricks are rather important and are
incorporated into this sketch. First, we observe that the
total area associated with each brick is proportional to
the total area of the original decaying momentum slice of
the parent, with the proportionality constant signifying the
number of daughters (in this case, two) produced through
the decay of each parent. Thus, the vertical normalization
of the lower portion of this figure need not be assumed to be
the same as that of the upper portion. Second, because our
original parent packet gPðpÞ has a profile which first rises
and then falls as a function of momentum, the total areas of
the bricks that are deposited first grow and then shrink as

FIG. 3. The process through which a parent packet gPðpÞ (blue) decays into a daughter packet gDðpÞ (green) in an expanding FRW
cosmology, with intermediate steps indicated (red/pink). Each momentum slice of the parent packet experiences a different time-dilation
factor which not only extends the lifetimes of the parent particles associated with that slice but also increases the total accumulated
cosmological redshift experienced by that momentum slice prior to decay. The sequential decays of these redshifted momentum slices
then make sequential contributions to the daughter packet, with each contribution extending over an increasingly broad range of
momenta and experiencing its own cosmological redshift immediately upon production until further contributions arrive. This process
ends with the decay of the last momentum slice of the parent, thereby completely depleting the parent packet (blue) and yielding the total
daughter packet (green). Note that this illustration assumes the instantaneous-decay approximation in which the decay of each parent
particle is treated as occurring promptly once its lifetime τ ¼ 1=Γ is reached.
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the decay process proceeds. Third, in making this sketch we
have assumed that the mass of the parent greatly exceeds
the combined masses of the daughters. It is for this reason
that we have sketched our bricks as having momenta which
exceed pdecay. Indeed, as indicated in Table I, these brick
momenta will greatly exceed pdecay if the parent momen-
tum slice is sufficiently nonrelativistic at the time of its
decay, and if the decay process itself is relatively far from
absolute marginality. In such cases, the bulk of the brick
momentum comes from the energy liberated during the
decay process itself. Finally, as discussed above, the width
of each deposited brick grows as a function of pdecay (and
therefore grows as a function of p0). Likewise, if the
daughter is sufficiently relativistic as well, each deposited
brick will be “anchored” around a common anchor
momentum panchor. These features are also illustrated for
the red/pink bricks shown in Fig. 3, with the black vertical
dashed line indicating panchor.
The final stage of the evolution from parent to daughter

packet once again involves cosmological redshifting.
Because the narrowest bricks are deposited first, they begin
redshifting towards smaller momenta before the sub-
sequent, wider bricks have even been deposited. Thus,
as shown in Fig. 3, the narrowest bricks experience the
largest redshifts—an effect which causes the upper portion
of the emerging daughter packet gDðpÞ to experience an
effective “pull” to the left relative to the lower portion when
plotted versus momentum. This effect will be discussed
further below.
Ultimately, the final shape of the daughter packet gDðtÞ

is then given by the sum of these different bricks at the
time when the final (bottom) brick is deposited. Indeed,
we shall take the deposit of the final daughter brick (or
equivalently the decay of the highest parent momentum
slice) as marking the completion of the decay process.
The daughter packet at this moment is sketched in green
in Fig. 3. It is important to realize that because the
bottom brick within the green daughter packet has not
experienced any redshift at the completion time, it will
still be anchored around the dashed black vertical anchor
line. In other words, in such cases, the base of the final
green daughter packet technically extends all the way to
(and well beyond) the anchor line, even if this behavior is
not directly visible in Fig. 3 because the bricks below
brick C have increasingly small heights. Of course, after
the decay completion time, the shape of the daughter
green packet is fully determined; the packet then redshifts
rigidly along the momentum conveyor belt towards
smaller momenta.
We have already noted that relativistic time-dilation

effects cause the narrowest daughter bricks to experience
larger redshifts than those experienced by the wider
daughter bricks. This relativistic effect therefore provides
a leftward contribution to the overall “tilt” (or skewness) of
the daughter packet. In general, the skewness S of a given

gðpÞ packet can be quantified as the third moment of the
gðpÞ distribution in logp-space:

S≡ 1

σ3
hðlogp − hlogpiÞ3i; ð2:18Þ

where

σ2 ≡ hðlogp − hlogpiÞ2i ð2:19Þ

and where all averaging is done with respect to the gðpÞ
distribution. Thus, any effect which provides a leftward
contribution to the overall tilt of the gðpÞ packet is one
which tends to increase the skewness S of the packet.
Indeed, this effect is particularly pronounced when the
parent particles are highly relativistic when produced. By
contrast, when the parent is nonrelativistic at production,
there are no significant time-dilation effects within the
decay process. Thus the upper portion of the daughter
packet no longer experiences extra redshifting relative to
the lower portion, and the corresponding extra leftward
contribution to the overall tilt of the daughter packet is
eliminated.
This is important because there is already a strong

tendency towards rightward tilting (negative skewness)
for gðpÞ packets simply because such packets are plotted
versus logp. Of course, we have already seen that each of
our individual deposits has the shape of a flat “brick” when
plotted versus the daughter energy E, and thus has no
intrinsic skewness. However, the change of variables from
E to p already introduces a rightward tilt (one which
disappears in the relativistic limit), and the further change
from p to logp introduces an additional rightward tilt.
Thus, even a distribution which is completely symmetric in
E-space around a mean value hEi will nevertheless exhibit
a pronounced rightward tilt (or negative skewness) when
plotted versus logp. Rightward tilts thus tend to be the
“norm” for most daughter gðpÞ packets. In fact, as shown in
Fig. 4 for comparison purposes, even “standard” distribu-
tions such as a thermal distribution exhibit a pronounced
negative skewness. Because of this strong tendency
towards rightward tilting, a parent packet will often have
to be exceedingly relativistic before the relativistic left-
ward-tilt contribution due to time dilation is able to over-
come the pre-existing contributions towards rightward
tilting and produce a daughter packet exhibiting an overall
leftward tilt, with S > 0.
Looking over the entire process shown in Fig. 3, we see

that each vertical momentum slice in the original parent
packet gPðpÞ ultimately gives rise to a horizontal slice in
the daughter packet gDðpÞ. Thus, while the resulting shape
of the daughter packet is ultimately sensitive to many
kinematic details associated with the decay process, certain
general conclusions can be drawn. Each of these can
therefore play an “archaeological” role in helping us to

DECIPHERING THE ARCHAEOLOGICAL RECORD: … PHYS. REV. D 101, 123511 (2020)

123511-11



determine the properties of the parent, given only the shape
of the daughter.

(i) First, for example, we see that the widths of the
daughter packet are correlated with the redshifted
momenta of the individual slices of the parent at the
times when they decay. Indeed, the maximum width
along the base of the daughter packet corresponds to
the greatest momentum within the parent packet,
while the narrowest width (which governs the shape
of the peak of the daughter packet, i.e., its “cuspi-
ness”) corresponds to the smallest momentum
within the parent packet. In technical terms, these
two features together characterize the “kurtosis” of
the daughter packet.

(ii) Second, in a similar fashion, the ascending and
descending slopes of the daughter packet are corre-
lated with the vertical heights of the corresponding
deposited bricks. However, the height of each brick
is correlated with its area, and this area is in turn
correlated with the area of the originally decaying
parent momentum slice and thus with the corre-
sponding value of gPðpÞ.

(iii) Finally, as discussed above, the relative tilt of the
daughter packet can provide information about the
relativistic nature of the parent at the time when it
was initially produced:

relativistic parent

⇔

�
leftward contribution

to daughter tilt:
ð2:20Þ

Indeed, such relativistic effects tend to increase the
skewness of the daughter packet, thereby either

providing the packet with an outright leftward tilt
or decreasing the extent to which the packet would
otherwise tilt to the right.

Using such pieces of information, many gross features of
the daughter packet can be exploited in order to learn about
the parent—even independently of the detailed kinematics
of the particular decay process. Indeed, one could even
proceed beyond skewness and kurtosis to consider higher
moments of the daughter phase-space distribution. Of
course, the results outlined above have been obtained
under the instantaneous-decay approximation. However,
we nevertheless expect these features to continue to hold in
a rough, average sense even for a full-fledged exponen-
tial decay.
Within the instantaneous-decay approximation, it is easy

to estimate the conditions under which the relativistic
leftward contribution to the tilt of the daughter packet will
be significant in size. As discussed above, this contribution
arises when the parent is relativistic, and results from the
fact that the different momentum slices of the parent packet
decay at different times. This in turn implies that the upper
portion of the daughter packet experiences a redshift
relative to the lower portion, thereby pulling the daughter
packet to the left and increasing its skewness. The fact that
the parent is relativistic implies that hpiP=mP ≫ 1, where
hpiP denotes a central momentum value of the parent
packet and where mP is the parent mass. Likewise, we can
roughly approximate the time interval between the earliest
and latest decays of the parent momentum slices, or
equivalently between the deposit times of the narrowest
and widest daughter bricks, as Δt ≈ ðΔpÞP=ðmPΓÞ, where
ðΔpÞP is the width of the parent packet in momentum
space. However, during this interval, the top of the daughter
packet redshifts in ðlogpÞ-space by an approximate dis-
tance HΔt, where H represents an average value of the
Hubble parameter during this interval. Relative to the rest
of the daughter packet, this redshift will induce a significant
contribution towards leftward tilt if HΔt≳ ΔðlogpÞD
where ΔðlogpÞD ≈ logð1þ ðΔpÞD=hpDiÞ is the width of
the daughter packet in ðlogpÞ-space and where ðΔpÞD and
hpiD are respectively the width and mean value of the
daughter packet in momentum space. Combining these
expressions, we thus find that the resulting leftward
contribution to the daughter tilt will be significant if

ðΔpÞP
mP

≳ Γ
H
log

�
1þ ðΔpÞD

hpiD

�
: ð2:21Þ

For the sake of later comparison, it is also instructive to
understand the limit of the decay process sketched in
Fig. 3 when the parent packet is nonrelativistic at the time
it is produced. In such cases, the entire parent packet
redshifts a uniform amount before decaying, with the
momentum slices maintaining their relative distances along
the logp axis. Likewise, under the instantaneous-decay

FIG. 4. Many dark-matter phase-space distributions tend to
have pronounced rightward tilts (negative skewness S) when
plotted versus logp. Here we plot the skewness S of a thermal
distribution as a function of the temperature T for a species of
mass m obeying Maxwell-Boltzmann, Bose-Einstein, or Fermi-
Dirac statistics.
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approximation, the momentum slices all decay at the
same time, simultaneously depositing daughter bricks of
exceedingly narrow widths directly on top of each other.
(More precisely, their horizontal displacements, if any, are
relatively small compared with their total widths.) Thus,
within the instantaneous-decay approximation, we expect
that nonrelativistic parent packets will ultimately give rise
to extremely sharp (δ-function-like) daughter packets.
Moreover, we expect that this will remain true regardless
of the shape of the parent packet. Of course, at this stage it
remains to determine how these two observations fare when
we go beyond the instantaneous-decay approximation. This
will be discussed below.

2. Exponential decay in the nonrelativistic limit:
A universal dark-matter distribution

Thus far, we have analyzed the decay process from
parent packet to daughter packet while taking into account
the effects of time dilation as well as cosmological red-
shifting. However, it is also instructive to consider the
complementary situation in which we disregard time-
dilation effects and instead properly treat the decay of
each parent particle as a probabilistic process following an
exponential profile e−t=τ where τ≡ 1=Γ is the proper
lifetime of the species. Indeed, such a treatment describing
the decay from parent packet to daughter packet will
actually be exact in the limit that the parent packet is
nonrelativistic.
Under these assumptions, it proves possible to proceed

completely analytically. We assume the existence of a
parent packet of total number density NPðt0Þ at some initial
time t0. Ignoring the time-dilation effects associated with
the different particles within the parent packet is tanta-
mount to assuming that the parent particles are extremely
nonrelativistic. Thus all of the parent particles have the
same effective lifetime, so that the actual shape of the
parent packet is irrelevant. Given that the parent particles all
share the same effective lifetime τ, at any future time t
beyond t0 we have

NPðtÞ ¼ NPðt0Þ exp½−Γðt − t0Þ�Θðt − t0Þ; ð2:22Þ

or equivalently

dNpðtÞ
dt

¼ −ΓNPðtÞ: ð2:23Þ

We have explicitly inserted the Heaviside Θ-function into
Eq. (2.22) simply as a way of enforcing our condition that
t ≥ t0. Although we shall never seek to understand what
might have happened at earlier times, this Θ-function will
soon play an important role.
For concreteness, let us assume that our parent decays

into two identical daughters. (Other cases pose no special
difficulties and would proceed analogously.) The daughter
number density therefore grows with time as

dNDðtÞ
dt

¼ þ2ΓNPðtÞ: ð2:24Þ

Indeed, this growth in the daughter number density is
realized as the result of a continuous stream of deposits
onto the daughter conveyor belt. In the nonrelativistic
limit, these deposits are infinitely narrow and have fixed
momentum p�, where p� is merely a property of the
decay kinematics, depending on the parent and daughter
masses alone. Indeed, p� is nothing but the momentum
of the daughters in the rest frame of the parent (which is
of course equivalent to the cosmological background lab
frame for extremely nonrelativistic parents), and thus
serves as the fixed deposit location in momentum-space
throughout the decay process. However, although the
deposits at any time t have momentum p�, each deposit
redshifts while subsequent deposits continue to arrive.
We shall let tf denote the “final” time at which our
decay process has essentially concluded. We then find
that any deposit which occurs at time t will redshift to a
final momentum given by

pðtÞ ¼ p�

�
aðtÞ
aðtfÞ

�
¼ p�

�
t
tf

�
κ=3

; ð2:25Þ

where aðtÞ ∼ tκ=3 is the FRW scale factor, with κ ¼ 3=2
for a radiation-dominated universe and κ ¼ 2 for a
matter-dominated universe. In writing Eq. (2.25) we
are of course assuming that the entire decay process
occurs within a time interval during which the value
of κ is constant. Note that this final momentum pðtÞ of
the deposit depends on the time t at which this deposit
occurs, and is thus a function of t. Using Eq. (2.25), we
can therefore change variables from t to pðtÞ, reflecting
the fact that the cosmological redshifting has induced
the spread in decay times to become a spread in final
daughter momenta. Indeed, from Eq. (2.25) we find that
d logpðtÞ=dt ¼ HðtÞ, whereupon Eq. (2.24) becomes

dNDðtÞ
d logp

¼ 2Γ
HðtÞNPðtÞ

¼ 2Γ
HðtÞNPðt0Þ exp½−Γðt − t0Þ�Θðt − t0Þ: ð2:26Þ

However, from Eq. (2.3) we see that

dNDðtÞ
d logp

¼ gint
2π2

gðpÞ ð2:27Þ

where gðpÞ is the phase-space distribution of the daughter
particles. Using the relations HðtÞ ¼ HðtfÞðp�=pÞ3=κ and
t=tf ¼ ðp=p�Þ3=κ we therefore obtain our final result for the
daughter phase-space distribution at time tf:
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gðpÞ¼ 4π2NPðt0Þ
gint

Γ
HðtfÞ

�
p
p�

�
3=κ

×exp

�
−Γ

�
tf

�
p
p�

�
3=κ

− t0

��
Θðp−pminÞ; ð2:28Þ

where pmin ≡ p�ðt0=tfÞκ=3. Within Eq. (2.28), the
Heaviside Θ-function now simply indicates that there
exists a minimummomentumpmin reached by the daughter
packet. This is the momentum to which the very first
daughter deposit is redshifted when the decay process
concludes. Indeed, there are no daughter particles with
p < pmin because no parent particles decay prior to t0.
As the above derivation demonstrates, our result in

Eq. (2.28) is a universal functional form—a universal
phase-space distribution to which any phase-space distri-
bution resulting from a decay must tend in the limit
that the parent is extremely nonrelativistic. Indeed, the
only assumption that entered into this derivation is the
assumption that the magnitudes of the daughter momenta
are all equal to a unique value p�. This assumption is true
for two-body decays and is also largely valid for higher-
body decays that are “typical” in the sense described earlier.
Consequently, the only features within this functional form
that are sensitive to the particular decay process are the
value of p� which enters into Eq. (2.28)—thereby merely
serving as a reference momentum—and an overall numeri-
cal factor describing the daughter multiplicity. Moreover, in
the nonrelativistic limit, this result is wholly independent of
the shape of the parent packet. Although this result has
appeared previously in a variety of specific contexts (see,
e.g., Ref. [1]), our derivation of this result is completely
general and proceeds rather simply and directly from our
conveyor-belt picture. This universal form for gðpÞ in
Eq. (2.28) is plotted in Fig. 5 for different values of Γ.
One notable feature of this functional form for gðpÞ is

that it is not continuous at p ¼ pmin. Indeed, gðpÞ ¼ 0 for
all p < pmin, while

lim
ðp→pminÞþ

gðpÞ ¼ 4π2NPðt0Þ
gint

Γ
Hðt0Þ

: ð2:29Þ

At first glance, this might seem disturbing, as we are used
to phase-space packets which rise smoothly from zero at
small momenta and fall smoothly to zero at high momenta.
However, we must recall that gðpÞ is a distribution
function—specifically, a particle-number logp-space den-
sity. Just as with a Dirac δ-function, there is nothing
inconsistent about discontinuous densities because the
physical quantities of interest (such as the actual numbers
of physical particles, or their total energies, pressures, etc.)
are integrals over these densities, as in Eq. (2.1). Indeed,
the discontinuity in gðpÞ at p ¼ pmin ultimately stems from
the discontinuity in the slope dNP=dt at the initial time t0—
a feature which is endemic to all decay processes which are

modeled through exponentials as in Eq. (2.22). Despite this
discontinuity, the actual number of daughter particles
NDðtÞ rises continuously from zero at t ¼ t0, as required.
It is interesting to consider our expression in Eq. (2.28)

in the formal Γ=Hðt0Þ → ∞ limit. In this limit, the decay
timescale is so rapid compared with the redshifting time-
scale that all decay deposits essentially occur at t ¼ t0 and
then redshift together from p� at t ¼ t0 to pmin at t ¼ tf. It
then follows that gðpÞ → δðp − p�Þ as Γ=Hðt0Þ → ∞.
Thus in such cases the Dirac δ-function even emerges as
a limiting case for gðpÞ. However, we hasten to point out
that numerous other effects enter into the game when
Γ=Hðt0Þ ≫ 1. For example, as Γ=Hðt0Þ grows large, we
can no longer ignore the inverse-decay process in which
daughter particles recombine to form the parent. The
presence of both processes tends to thermalize the parent
and daughter packets to each other. Likewise, as Γ=Hðt0Þ
grows large, the resulting phase-space distribution fðpÞ no
longer satisfies the condition fðpÞ ≪ 1 for all momenta.
Quantum statistical effects will therefore also become
important.

FIG. 5. The universal form gðpÞ for all decay daughters in the
limit that the parent momentum is extremely nonrelativistic. This
universal form is given in Eq. (2.28) and plotted at a fixed final
time tf for different values of Γ, with all other quantities held
fixed. For this plot we have chosen the reference values κ ¼ 3=2
and NPðt0Þ ¼ gint ¼ 1. Note, in particular, that we have held t0
fixed and taken tf ¼ 20Γ−1

min, where Γmin is the smallest of the
decay widths for which the corresponding gðpÞ distributions are
shown in this figure. Thus tf represents the time at which the
decay process concludes for the case with the smallest Γ. For all
other cases in this figure with larger decay widths, we retain this
value of tf: thus the corresponding daughter packets are already
fully produced prior to tf and then redshift rigidly until t ¼ tf.
Moreover, in the formal Γ=Hðt0Þ ≫ 1 limit, the decay timescale
is so rapid compared with the redshifting timescale that all
decay deposits occur essentially simultaneously at p ¼ p� and
then redshift together to p ¼ pmin. Thus, in this limit, we find
gðpÞ → δðp − pminÞ.
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Another notable feature associated with this universal
asymptotic form for gðpÞ in Eq. (2.28) is its skewness
S. This skewness S is plotted as a function of Γ=Hðt0Þ
in Fig. 6. For Γ=Hðt0Þ ≪ 1, we see that gðpÞ is highly
rightward-tilted, with S < 0. However, as Γ=Hðt0Þ
increases, we see that S also begins to increase, with
gðpÞ actually becoming leftward-tilted for Γ=Hðt0Þ ≳ 1.
This increasing tendency towards leftward tilting is largely
due to the Heaviside cutoff in Eq. (2.28), as this cutoff plays
an increasingly dominant role in eliminating the low-
momentum tail of the gðpÞ distribution. Ultimately, for
Γ=Hðt0Þ ≫ 1, we see that S → 2. Given that this is the limit
in which gðpÞ → δðp − pminÞ, it may seem strange at first
glance that S does not return to zero in this limit (even if this
limit is unphysical because of the effects described above).
However, strictly speaking, the Dirac δ-function lacks a
width and therefore does not have a well-defined skewness;
like the longitude of the North Pole, this quantity depends
on the precise route through which the limit is approached.
Even though the discontinuity in Eq. (2.29) is a true

physical effect—one which becomes increasingly promi-
nent for large Γ=Hðt0Þ—the existence of this discontinuity
does signal a certain internal stress within our original
assumption of a truly exponential decay beginning promptly
at t ¼ t0. As discussed above, this discontinuity ultimately
stems from our decision to model our decay process through
an exponential as in Eq. (2.22), thereby intrinsically intro-
ducing a discontinuity in the slope dNP=dt at the initial time
t0. However, the validity of an exponential-decay process
implicitly rests upon the assumption that the parent came
into existence sharply at t ¼ t0. This, of course, cannot be
strictly true, since the parent itself must be produced through

some process involving its own internal timescale. There is
thus a tension between our exponential-decay assumption
and the timescale associated with the production of the
parent—a tension which becomes increasingly severe as
Γ=Hðt0Þ becomes increasingly large and as the size of the
discontinuity in Eq. (2.29) grows. Indeed, for sufficiently
large Γ=Hðt0Þ, the decays of the parent will begin even
before the parent itself is fully produced. Such effects can
therefore be expected to soften this discontinuity.
When performing our analyses in the rest of this paper, it

will often be convenient to assume the existence of an
initial time t0 at which we may presume the validity of
initial conditions involving the prior existence of certain
parent particles. In such cases, we shall therefore either
incorporate the existence of such discontinuities into our
analysis or restrict ourselves to regions of parameter space
for which

Γ=Hðt0Þ ≪ 1; ð2:30Þ

where Γ is the decay width of the parent. In such regions
of parameter space, the resulting discontinuities in the
resulting daughter packet will be relatively small and the
daughter packets will have essentially smooth tails at both
low and high momenta. However, none of the main results
of this paper will depend on this assumption. Thus our
results will not depend on the existence or removal of these
discontinuities.

3. Full numerical analysis, and the interplay between
decay kinematics and cosmological expansion

Finally, we marshall our forces and examine the process
of a parent packet decaying to a daughter packet including
all relativistic, redshifting, and exponential-decay effects.
It is most efficient to analyze this case numerically, time-
evolving our system according to the full Boltzmann
equations, and in this way we have extracted general
results for our final daughter packets along the lines of
the general results we previously obtained for the individual
daughter deposits in Table I. For concreteness, in perform-
ing this analysis we have restricted our attention to the case
of two-body decays with identical daughters, and we have
likewise assumed a relatively narrow parent packet, with
ΔpP ≪ mP. Other than these restrictions, we have exam-
ined the full range of possibilities in this class, focusing on
the fundamental trends that emerge in limiting hierarchical
cases involving only rough orders of magnitude, as in
Table I. Our results are shown in Table II, where the column
headings have the same definitions as in Table I. Note that
an explicit numerical example which may help to further
elucidate these general results appears in Appendix B.
This table describing the daughter packets exhibits many

of the same sorts of correlations that we already saw in
Table I for the individual deposits. For example, under the
assumptions inherent in this table, we see that there is only

FIG. 6. The skewness S of the universal functional form for
gðpÞ in Eq. (2.28), plotted as a function of Γ=Hðt0Þ for κ ¼ 3=2
and κ ¼ 2 [corresponding to radiation-domination (RD) and
matter-domination (MD) respectively]. We see that this skewness
is negative (signifying rightward tilt) for Γ=Hðt0Þ ≪ 1, but then
rises to positive values (leftward tilt) as Γ=Hðt0Þ → ∞, ultimately
asymptoting at S ¼ 2.
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one way to achieve an ultrarelativistic daughter packet with
Δp ∼m and Δp ≪ hpi: our parent must also have been
ultrarelativistic and experienced decays which are near both
absolute and relative marginality (Case H). Likewise, we
see that there are only two ways of producing a relativistic
daughter packet for which hpi ∼ Δp ∼m: we can have
either a nonrelativistic parent packet experiencing a decay
which is far from relative marginality [but exhibiting
Oð1Þ absolute marginality] (Case C), or a relativistic parent
packet experiencingOð1Þ absolute and relative marginality
(Case E). Finally, and perhaps most interestingly, we see
that under the assumptions inherent in this table, it is not
possible to realize an ultrarelativistic daughter packet
with Δp ≪ m.
It is instructive to compare the results of Table II for the

final daughter packetswith those of Table I for the individual
deposits. In CasesB,D, E,H, J, andK,we see that thewidths
Δp of the final daughter packets are not significantly
different from those of the individual daughter deposits.
By contrast, in Cases A, C, F, G, and I, we see that our final
daughter packets are significantly broader than the individ-
ual deposits from which they were constructed. Indeed,
comparing Tables I and II, we see that the most significant
broadening of all occurs for Case F, in which “narrow”
individual daughter deposits with Δp ≪ m actually com-
bine to produce a “wide” daughter packet with Δp ≫ m.
At first glance, comparing Tables I and II, we see that

broadening feature appears to be perfectly correlated with
the degree to which the daughter momentum in the rest

frame of the parent exceeds the parent momentum at the
time of decay, or equivalently the degree to which the decay
process is far from relative marginality: Cases A, C, F, G,
and I correspond to cases which are all far from relative
marginality, while Cases B, D, E, H, J, and K correspond
to cases which either are near relative marginality or
experience Oð1Þ relative marginality. Indeed, as we might
expect, Case F is actually the farthest from relative margin-
ality. It is also natural to speculate that for Cases B, D, E, H,
J, and K, broadening fails to occur because the daughter
deposits all essentially accrue on top of each other
throughout the decay process. By contrast, for Cases A,
C, F, G, and I, it is natural to speculate that each daughter
deposit tends to be horizontally displaced relative to the
previous one, so that they land side by side.
While these expectations are mostly correct, the full

story is actually more subtle. It turns out that the manner in
which successive decay deposits are stacked throughout
the decay process is ultimately a function of not only the
relative marginality prest

D =pP of the decay process, but also
the degree to which the parent is relativistic at the time of its
decay. Moreover, the resulting deposit stacking patterns are
actually more complex than mere “on top of each other” or
“side by side.”
In Table III, we describe the actual stacking patterns that

result for a two-body decay of a relatively narrow parent
packet of massmP into two identical daughters of massmD.
For ease of visualization, we describe these stacking
patterns within the comoving frame (i.e., as if we are riding

TABLE II. The full daughter phase-space distributions gðpÞ that can arise from the decays of a relatively narrow parent distribution,
assuming a rigorous exponential decay with all relativistic time-dilation and redshifting effects included. For concreteness in this
analysis we have assumed a two-body decay with identical daughters. Given the properties of the daughter distribution, we can therefore
reconstruct the extent to which the parent population was relativistic and the extent to which the corresponding decay process was near
marginality. In some cases this reconstruction is unique, while in other cases several possibilities exist. The quantities at the top of each
column of this table are the same as for Table I.

Daughter distribution Parent Decay

Case rel? hpi
width
Δp=m

relative width
Δp=hpi

rel at
decay?

near absolute
marginality?

near relative
marginality?

A
p ≪ m narrow

Oð1Þ nonrel
near

far

B Oð1Þ
C

p ∼m

Oð1Þ Oð1Þ far

D narrow narrow
rel∼

near near

E Oð1Þ
Oð1Þ

Oð1Þ Oð1Þ
F

p ≫ m

wide nonrel far
far (pparent ≪ mdaughter)

G far (pparent ∼mdaughter)

H Oð1Þ narrow rel≫ near near

I

wide Oð1Þ
nonrel far far (pparent ≫ mdaughter)

J rel∼ far Oð1Þ
K rel≫ Oð1Þ or far near
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along our cosmological momentum-space conveyor belt).
As the decay process unfolds, the momentum of the parent
continually redshifts; we shall nevertheless identify a
“typical” momentum pP as the central momentum of the
(narrow) parent packet at t ¼ 1=Γ where Γ is the decay
width. In general, the momentum of each deposit stretches
between minimum and maximum values pmin and pmax,
and our stacking patterns are determined by examining how
these two quantities independently evolve with time in the
comoving frame. For the purposes of Table III, we strictly
define deposits “landing on top of each other” as the
situation in which both pmin and pmax remain constant in
the comoving frame (implying that the deposits not only
stack directly on top of each other but also share a common
width). By contrast, we define deposits “landing side by
side” as the situation in which both pmin and pmax increase

with time in the comoving frame, while again holding the
deposit width pmax − pmin fixed. For ease of comparison
we have also indicated which of the cases within Table II
corresponds to which stacking pattern, with K1 and K2
indicating to the two possibilities for Case K within Table II
with absolute marginalities which are either Oð1Þ or far,
respectively.
As evident from Table III, several different stacking

patterns are possible. These stacking patterns then allow us
to assess the degree to which significant broadening might
occur when the individual daughter deposits are combined
to form the final daughter packet. As anticipated, Cases A,
C, F, G, and I all experience “side-by-side” stacking. As
such, these cases experience the strongest degree of
broadening—a broadening which is sufficiently large that
it can be seen in comparing the results of Tables I and II.

TABLE III. Stacking dark-matter deposits: the interplay between decay kinematics and cosmological expansion. This table describes
how successive dark-matter deposits are stacked in order to build a complete daughter phase-space distribution, as seen in the comoving
frame and assuming the two-body decay of a parent of massmP with a very narrow phase-space distribution into two identical daughters
of mass mD. Here pP is the momentum of the parent at the decay time τ ¼ 1=Γ. As the decay process unfolds, the manner in which
successive decay deposits are stacked is ultimately a function of not only the degree to which the parent is relativistic at the time of its
decay but also the relative marginality prest

D =pP of the decay process itself. Note that we can equivalently express the relationships
between prest

D =pP andmD=mP along the left-most column as relationships between prest
D =mD and pP=mP—i.e., as relationships between

the degree to which the daughter is relativistic within the rest frame of the parent and the degree to which the parent is relativistic within
the background frame. The information in this table explains how the data in Table I ultimately leads to the data in Table II, and outlines
the cases in which cosmological expansion has a particularly significant impact on the resulting dark-matter phase-space distribution.

Decay relative
marginality Parent relativistic at decay?

prest
D =pP pP ≪ mP pP ∼mP pP ≫ mP

prest
D

pP
≪

mD

mP

Weak broadening:
Deposits are initially very

narrow, with pmin decreasing
and pmax increasing slightly
throughout decay process.
Resulting daughter packet is
narrow with sharp cusp,

reflecting small phase space for
decay.

Weak broadening:
Deposits initially land on top of
each other, then transition to

behavior in which pmin decreases
while pmax increases.

(Case D)

No broadening:
Deposits land on top of each other

throughout decay process.
Resulting daughter packet has
sharp left and right edges.

(Cases H,K1)

prest
D

pP
∼
mD

mP

Weak broadening:
Deposits initially land on top of
each other, then transition to

landing side by side.
(Case B)

Weak broadening:
Deposits initially land on top of
each other, then transition to

landing side by side.
(Case E)

Weak broadening:
Deposits initially land on top of
each other, then transition to

behavior in which pmax remains
constant while pmin drops to zero
and then begins to grow. Decay
ends before pmin reaches pmax.
Resulting daughter packet has

sharp right edge.
(Case K2)

prest
D

pP
≫

mD

mP

Strong broadening:
Deposits land

side by side throughout the
decay process.

(Cases A,C,F,G,I)

Weak broadening:
Deposits initially land with pmin
increasing and pmax remaining
constant, but then transition to

landing side by side.
(Case J)

No broadening:
Deposits land on top of each other

throughout decay process.
Resulting daughter packet has
sharp left and right edges.
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Likewise, for Cases H and K1 the deposits are stacked “on
top of each other.” Thus in these cases there is literally no
broadening in transitioning from the width of the individual
deposits to the width of the resulting packet. Finally,
however, in Cases B, D, E, J, and K2, we see that
broadening does occur. However, it is evident from the
stacking patterns described in Table III that this broadening
is much weaker than that experienced for true side-by-side
stacking. This broadening is therefore too small to appear in
the comparison between Tables I and II.
Ultimately, the results in Table III describe a subtle

interplay between the kinematics of the decay process
and the cosmological expansion of the universe in which
the decay is embedded. In some cases, we see that the
cosmological expansion has little overall effect on the
shape of the resulting daughter packet—indeed, in such
cases a packet of similar shape would have emerged even if
the universe were not expanding. Moreover, as indicated in
Table III, these packets tend to have relatively sharp edges
(ultimately stemming from our assumption of a very narrow
parent packet). In other cases, by contrast, we see that
the cosmological expansion plays a significant role in
shaping the resulting daughter packet. In such cases the
resulting packets tend not to have such sharp edges, even
when the parent packet is extremely narrow.
Finally, when combined with previous observations, the

results in Table III even occasionally allow us to predict the
full functional form for the resulting daughter packet. For
example, under the assumption of a two-body decay into
identical daughters, we have already seen that our deposits
have flat profiles when plotted as functions of the daughter
energy E. In other words, when plotted in E-space, each
deposit is “brick”-shaped. However, we now see from
Table III that Cases H and K1 have the unique property that
all of the deposits land directly on top of each other while
sharing the same comoving edge momenta pmin and pmax
throughout the decay process. Furthermore, we see from
Table II that the daughters for Cases H and K1 are both
highly relativistic, which means that a flat profile in
E-space is equivalently a flat profile in p-space. Such a
profile therefore grows linearly with p when plotted versus
logp. This results in the daughter packet shown Fig. 7.

We can also determine the extent to which our previous
expectation from Eq. (2.20) concerning the tilt of the
daughter packet actually survives a full Boltzmann
analysis, with all relativistic, redshifting, and exponential-
decay effects included. In Fig. 8 we plot the skewness S
of the daughter packet that emerges from the decay of a
log-Gaussian parent packet (i.e., a parent packet which
has a Gaussian shape when plotted on a logarithmic
axis) as a function of the average parent momentum at
the time the parent is produced, holding the width of the
parent packet fixed and taking the reference value
Γ=Hðt0Þ ¼ 10−3. We see that this skewness indeed shows
a strong dependence on the average momentum of the
parent at production, rising from S ≈ −1.06 in the non-
relativistic limit [in agreement with Fig. 6 for this value of
Γ=Hðt0Þ] towards S ≈ 0 as the parent becomes increas-
ingly relativistic at production. Thus we see that our
observations regarding skewness survive a full Boltzmann
analysis. Indeed, the maximum value of S in the ultra-
relativistic limit depends on the skewness of the original
parent packet.
These observations concerning skewness provide

another tool which can help us determine the properties
of the parent from the properties of the daughter. For
example, we have already seen in Table II that a relativistic
daughter packet which is narrow, with Δp ≪ m as well as
Δp ≪ hpi, could in general be the result of either a
relativistic parent experiencing a near-marginal decay

FIG. 7. The universal form for the dark-matter phase-space
distribution gðpÞ corresponding to Cases H and K1, under the
assumptions inherent in Table III. This distribution exhibits sharp
left and right edges at pmin and pmax, respectively, and exhibits
growth scaling linearly with p for pmin ≤ p ≤ pmax.

FIG. 8. The skewness S of the daughter packet resulting from
the decay of a (skewless) log-Gaussian parent packet, plotted as a
function of the central momentum pprod of the parent at
production. In all cases the width of the parent packet is
held constant, stretching across two orders of magnitude in
momentum, and we have assumed a two-body decay with
identical daughters for which mD=mP ≈ 0.4. We have also taken
Γ=Hðt0Þ ¼ 10−3 and κ ¼ 3=2. As the parent becomes increas-
ingly relativistic, we see that the skewness of the daughter
increases dramatically from the universal asymptotic nonrelativ-
istic limit S ≈ −1.06 (in agreement with the results in Fig. 6)
towards S ≈ 0. This confirms that our expectations from
Eq. (2.20) survive a full Boltzmann analysis.
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(Case E) or a nonrelativistic parent experiencing a decay
which is farther from marginality (Case C). The skewness
of the daughter packet may therefore be a useful tool in
helping to distinguish between these two cases.
It is interesting that the curve in Fig. 8 is nonmonotonic.

Indeed, even though the skewness S generally increases as
the parent becomes increasingly relativistic at production,
we see that there is a region pprod=mP ∼Oð50–500Þ for the
parent momentum at production within which the skewness
S experiences a slight dip. Given the parameters chosen for
this plot, this is the region in which the average parent
momentum pP at decay is approximately equal to the
momentum prest

D of the daughters in the rest frame of the
parent. Indeed, in the language of Tables I and II, this is
the region in which our decay process transitions from
being near relative marginality to being far therefrom.
When the decay process is near relative marginality, the
widthΔp of the daughter packet is largely set by prest

D while
its average momentum hpi is set by pP. By contrast, when
the decay process is far from relative marginality, the
reverse is true. Thus the region with prest

D =pdecay ≈Oð1Þ
[which for this figure translates to the region pprod=mP∼
Oð50–500Þ] marks the transition between these two behav-
iors, with the slight dip in the skewness emerging as a
transitional effect.

C. Nonminimal dark sectors: Overlapping
decay chains and multimodal dark-matter

distributions

Having understood the individual parent-to-daughter
decay process, let us now examine how intra-ensemble
decays within a nonminimal, multicomponent dark sector
can yield a multimodal dark-matter phase-space distribu-
tion. To frame our discussion, let us consider the three-state
system illustrated in Fig. 9. Here the three states are labeled
l ¼ 0, 1, 2 in order of increasing mass, and we shall
assume that only the heaviest state is initially populated.
For simplicity, we shall assume that this state corresponds
to a single nonrelativistic unimodal packet (sketched in
blue in Fig. 9)—indeed, this packet can even be thermal.
This packet then redshifts until it decays. For simplicity, let
us assume that each decay is a two-body decay, and in this
case we shall assume that the l ¼ 2 state undergoes a decay
of the form 2 → 1þ 0 in order to produce two non-
relativistic daughters (green), one with l ¼ 1 and the other
with l ¼ 0. Each of these new daughter packets then
redshifts until the l ¼ 1 daughter undergoes its own
decay into two kinematically identical nonrelativistic
l ¼ 0 granddaughters (orange). As shown in Fig. 9, these
granddaughters happen to have a non-negligible overlap
with the redshifted l ¼ 0 daughter (dashed green). They
therefore superpose, and the resulting distributions con-
tinue to redshift, ultimately producing a final gðpÞ distri-
bution (black).

Note that each decay, whether from parent to daughter or
from daughter to granddaughter, exhibits the characteristics
discussed above. In particular, because all of our packets
are assumed nonrelativistic, each decay produces offspring
packets whose widths in momentum space are larger than
those of the packet from the preceding generation. These
offspring packets also have higher momenta than those of
the corresponding parent packet, as discussed above. Each
of the offspring packets nevertheless has the same total area
as the parent packet from which it emerged, since each
daughter is descended from a single parent. Indeed, all of
the other daughter properties discussed in Sec. II B also
continue to apply.

FIG. 9. One possible scenario leading to a nontrivial phase-
space distribution gðpÞ at late times through a sequence of
successive “deposits” of the sort sketched in Fig. 2. An excited
state is initially created with a simple unimodal (and possibly
even thermal) distribution at level l ¼ 2 (blue) and redshifts
towards smaller momenta before undergoing a two-body decay
2 → 1þ 0. Each of these daughter distributions then redshifts
until the l ¼ 1 daughter undergoes its own decay 1 → 0þ 0. The
resulting distributions combine and continue to redshift, ulti-
mately producing a final phase-space distribution (black). Thus,
even though we began with a simple unimodal distribution, a
complex bimodal distribution eventually emerges as the result of
a superposition of results from two competing decay chains.
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As anticipated, this system furnishes us with an explicit
example in which the deposits onto the l ¼ 0 conveyor belt
exactly mirror those of packets A and B1 in Fig. 2. It is for
this reason that both processes produce the same sort of
bimodal distribution. Thus, we see from this example that
the A=B1 portion of the deposit pattern in Fig. 2 can indeed
emerge naturally—these deposits can simply arise as the
end-products of separate decay chains from a single heavy
source. (Likewise, the B2 portion of Fig. 2 can also emerge
through an additional independent decay chain.) We there-
fore conclude that a complex, multimodal dark-matter
distribution function can easily be produced, even when
our original parent state is unimodal (and potentially even
thermal).
We may also study the deposit rate functions Δðp; tÞ

arising from such scenarios. To do this, we shall work
backwards and begin by focusing on those states whose
decays directly produce ground-state daughter particles. In
particular, we begin by considering the set of parent packets
labeled by l which decay at times tl and produce daughter
packets directly on the l ¼ 0 dark-matter conveyor belt.
Equation (2.7) then becomes

Δðp; tÞ ¼
X
l

ΔlðpÞδðt − tlÞ; ð2:31Þ

where ΔlðpÞ is the profile of the dark-matter phase-space
contribution coming from the decay of parent l. Moreover,
we can further write

ΔlðpÞ ¼
Z

dp0glðp0ÞPl→0ðp0; pÞ; ð2:32Þ

where glðp0Þ is the phase-space distribution of the parent l
and where Pl→0 denotes the probability per unit momen-
tum that a parent l with momentum p0 produces an l ¼ 0
daughter with momentum p, normalized by the multiplicity
of the decay. Indeed, it is within these probability functions
that much of the kinematic information embedded in
Table II resides. Substituting Eqs. (2.31) and (2.32) into
Eq. (2.6) then yields

gðpÞ ¼
X
l

Z
dp0glðp0ÞPl→0

�
p0; p

aðtÞ
aðtlÞ

�
: ð2:33Þ

This result is complete as is. However, we could push
this further by recognizing that the parents l are most likely
to be descendants of grandparents k, which in turn are
likely to be descendants of great-grandparents j, and so
forth. We can therefore write the parent distribution glðp0Þ
in Eq. (2.33) in terms of deposits from grandparent decays,
and recursively iterate this process back to a primordial
initial state a. We then obtain

gðpÞ¼
X

fa;b;…;k;lg

Z
dpl

Z
dpk…

Z
dpb

Z
dpagaðpaÞ

×Pa→b

�
pa;pb

aðtbÞ
aðtaÞ

�
Pb→c

�
pb;pc

aðtcÞ
aðtbÞ

�
� � �

×Pk→l

�
pk;pl

aðtlÞ
aðtkÞ

�
Pl→0

�
pl;p

aðtÞ
aðtlÞ

�
: ð2:34Þ

Here the summation over fa; b;…; k;lg represents the
summation over all possible decay chains that start from the
primordial state a; note, in this context, that not all decay
chains are of equal length, as this depends on how many
intermediate steps are taken during the decay process.
Likewise, each ti (i ¼ a; b;…;l) denotes the time at which
the state i decays, where we are implicitly assuming that
each state decays instantaneously once its lifetime τi is

reached. Thus we are implicitly taking ti≡tðaÞ0 þτaþ
τbþ���þτi, where tðaÞ0 is the time at which the primordial
ancestor a is produced.
Thus far, we have studied the manner in which a final

phase-space distribution gðpÞ is constructed from the results
of individual decay chains, and we have seen that multi-
modality can emerge naturally through the superposition of
the results from separate chains. However, even the analyses
we have performed miss certain features. For example, we
have been assuming in our discussions until this point that all
decays happen instantaneously at t ¼ 1=Γ, where Γ is the
associated decay width. In reality, however, decays occur
continuously both before and after 1=Γ. In a similar vein, we
also implicitly assumed that each momentum slice of a given
parent is created at the same time and therefore feels the
same “clock.” However, this also is not necessarily true. For
example, we assumed that the l ¼ 1 state in Fig. 9 is
produced, redshifts, and then decays. However, because of
the continuous nature of the decay process, some parts of the
l ¼ 1 packet might still remain to be created while other
parts of the packet might have already begun to decay. This
is a continuous process in which the l ¼ 1 state is
essentially an intermediate resonance.
For accurate results, features such as these must also be

taken into account. It is then natural ask whether effects such
as these might “wash out” the features (such as multi-
modality) that we have been discussing—thereby restoring a
traditional packet shape—or whether such features survive.
To study this, we shall perform a full numerical analysis

of the Boltzmann equations corresponding to a physical
system involving multiple independent decay chains.
(The Boltzmann equations for a general multistate system
are presented in Appendix A.) In particular, we shall
begin with the same setup as in Fig. 9, namely a three-
state system which begins with only the heaviest state
populated. For concreteness we shall even imagine that this
state has a nonrelativistic thermal distribution g2 ∼
p3 expð−p2=2m2TÞ where T ¼ m0=20 is chosen as a
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reference value. We shall also take the masses in the ratio
m2=7 ¼ m1=3 ¼ m0, and let Γl

ij denote the width for the
decay l → iþ j. For simplicity, we shall restrict our
attention to symmetric decays with i ¼ j.
Once the highest level is populated, a decay cascade is

initiated and proceeds until the total resulting abundance
eventually collects in the ground state. However, the ground-
state phase-space distribution that results depends on the
specific choice of decay widths Γl

ij, as each choice corre-
sponds to a different decay pattern. In Fig. 10 we plot the
resulting phase-space distributions of the ground state for
five different combinations of values for fΓ2

00;Γ2
11;Γ1

00g,
with each value expressed in Fig. 10 as a fraction of the
Hubble parameter H at the time when the phase space
distribution g2ðpÞ is initially established. In each case, we
show this final distribution at the moment when the intra-
ensemble decay processes has concluded (defined as the
moment at which this distribution has accumulated 99.5% of
its final asymptotic expected abundance).
Each of the cases shown in Fig. 10 has a direct physical

interpretation.
(i) fΓ2

00;Γ2
11;Γ1

00g=Hðt0Þ ¼ f10−3; 0; 0g (blue): In this
case, the heaviest state decays directly into the
ground state. This is therefore effectively a two-
component system. Because the rest mass of the
daughters is significantly less than the rest mass of
the parent, the daughter packets emerge with
considerable average momentum and are in fact
relativistic.

(ii) fΓ2
00;Γ2

11;Γ1
00g=Hðt0Þ¼ f0;10−3;10−5g (orange): In

this case, the direct decay into the ground state is
forbidden. Instead, in order to reach the ground state,
the decays must go through two steps, 2 → 1þ 1
followed by 1 → 0þ 0. However, as compared with
the first step, the second step has a much smaller
decay rate. As a result, the intermediate state l ¼ 1
is able to fully develop and carry significant abun-
dance before it begins decaying to the ground state.

(iii) fΓ2
00; Γ2

11; Γ1
00g=Hðt0Þ ¼ f0; 10−3; 10−3g (purple):

This case is similar to the previous case, but the
decay rate from l ¼ 1 to l ¼ 0 is the same as that
from l ¼ 2 to l ¼ 1. Therefore, the intermediate
state begins decaying while is still forming, thereby
putting an effective upper limit on the abundance
this state can carry.

(iv) fΓ2
00;Γ2

11;Γ1
00g=Hðt0Þ¼ f0;10−3;10−2g (jade): This

case is similar to the previous two cases, but with a
much faster second step. Therefore, as soon as any
portion of the intermediate state begins to form, it
almost immediately decays into the ground state. As
a result this state never accumulates appreciable
abundance.

(v) fΓ2
00;Γ2

11;Γ1
00g=Hðt0Þ ¼ f10−3; 10−3; 10−5g (red):

Here the l ¼ 2 state has an equal probability
(branching ratio) to decay into the l ¼ 1 state or

the l ¼ 0 state, with the former then eventually
decaying into the l ¼ 0 state. Thus, unlike each of
the previous cases, this case exhibits two indepen-
dent decay chains. Indeed, this case represents a
superposition of the blue and orange cases listed
above, and one may easily verify that the (red) curve
for this case is nothing but a weighted combination
of the orange and (redshifted) blue curves.

We see, then, that even though the initial phase-
space distribution of the parent state is the same for all
cases (and is even chosen to be thermal), the resulting
phase-space distributions that emerge for the ground state
differ rather substantially from each other. For example,
they differ in their total areas (comoving number densities),

FIG. 10. Decays within a three-state system with mass ratios
7∶3∶1. We begin with an initial thermal distribution (top panel,
black curve) and for each of five different combinations of decay
widths fΓ2

00;Γ2
11;Γ1

00g, we calculate the resulting phase-space
distribution of the ground state (bottom panel, colored curves) at
the moment when all decays are complete. This final time can
therefore be different for each curve. Note that our chosen decay
widths are expressed as fractions of the Hubble parameter Hðt0Þ
at the time t0 when the initial distribution is established. We have
also taken κ ¼ 3=2. Within these plots the vertical axes are
normalized such that the parent packet has unit area.
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with the parent distribution and our five different
ground-state distributions having total areas in the ratios
1∶2∶4∶4∶4∶3. This is precisely in accordance with our
expectations, given that each decay produces two daughters
and that the final case involves two independent decay
chains, each occurring with 50% probability. However, these
curves also differ in their overall shapes, yielding results
which are either unimodal or bimodal, the latter occurring in
the single case that exhibits two independent decay chains.
Indeed, the case shown in red in Fig. 10 is essentially the
same as that sketched in Fig. 9, except that in Fig. 10 so
much time elapses between the two deposits onto the ground
state that the first deposit has had time to redshift beyond the
eventual location of the second deposit. The fact that the red
curve in Fig. 10 is nothing but a weighted sum of the orange
and (redshifted) blue curves ultimately rests on the approxi-
mate linearity of the underlying Boltzmann equations, a
feature which allows us to treat each decay chain independ-
ently and then simply add the results. It is in this final
addition process that the multimodality emerges, and thus
we see that multimodality is a robust phenomenon, even
when a full numerical Boltzmann analysis is performed.
Moreover, each “mode” of the resulting distribution will
individually exhibit the properties already described in
Sec. II B for individual daughters.
Note that the Boltzmann equations are generally non-

linear. However, these equations are approximately linear
under certain assumptions. One necessary assumption is
that the phase-space distribution fiðp; tÞ for each species be
relatively small, i.e., fiðp; tÞ ≪ 1, so that any Bose
enhancement (or Pauli blocking in the case of a fermionic
species) can be safely neglected. However, the Boltzmann
equations will also be nonlinear if there exist any signifi-
cant processes amongst the different species for which the
initial state includes two or more species. For example, if
our system includes two-body decay processes of the form
ϕl → ϕiϕj, then our system necessarily also includes the
inverse-decay processes ϕiϕj → ϕl as well as scattering
processes of the form ϕiϕj → ϕl → ϕi0ϕj0 . Both kinds of
processes will render the Boltzmann equations nonlinear,
and consequently have the power to weaken or even
potentially eliminate the multimodality (or even the non-
thermality) that would have otherwise arisen from inde-
pendent decay chains. However, as we shall see in Sec. IV,
it is often the case that the amplitudes for two-body decays
can be significant while the amplitudes for the correspond-
ing inverse-decay and scattering processes remain small. In
such cases, we expect our multimodality to be robust.

III. NO LONGER VOID AND WITHOUT FORM:
FROM DARK-MATTER PHASE-SPACE

DISTRIBUTIONS TO MATTER
POWER SPECTRA

We now turn to the second connection indicated in
Eq. (1.1), namely that between the dark-matter phase-space

distribution fðpÞ—or equivalently gðpÞ—and the matter
power spectrum PðkÞ. As in Sec. II, our goal is to develop
intuition for how different gðpÞ distributions affect the
ultimate shape of PðkÞ. In this way we can potentially begin
to address the “inverse” question of reconstructing certain
rough characteristics of gðpÞ given only the information
associated with PðkÞ. Indeed, we shall ultimately present a
closed-form conjecture which will enable us to “resurrect”
many features of gðpÞ, given only the information in PðkÞ.
This is important because it is ultimately only through
quantities such as PðkÞ that the dark-matter phase-space
distribution fðpÞ makes contact with observational data.

A. Nonminimal dark sectors and the
matter power spectrum

The basic idea underpinning the connection between fðpÞ
and PðkÞ is that dark matter helps to promote the growth of
structure in the early universe. According to the inflationary
paradigm, inflation gives rise to a spectrum of primordial
curvature perturbations in the early universe. These pertur-
bations serve as seeds for cosmological structure, allowing
overdense and underdense regions to develop across a
spectrum of physical scales. However, the manner in which
this structure evolves is sensitive to the equation of state of
the different species present. For example, in a universe
composed entirely of cold dark matter (CDM), the primor-
dial perturbations grow linearly with the scale factor, gen-
erating significant structure on even the smallest scales. By
contrast, if some of the dark matter is not purely cold (i.e., if
the dark matter has some nonzero pressure due a nonzero
momentum), thendark-matter particleswith a sufficient speed
may escape the developing gravitational wells, thereby
smoothing out the structure over the corresponding scales.
As a result, one finds that only perturbations of a certain
minimumsize are able to remain stable and/orgrowwith time.
All of this information is encoded within the matter

power spectrum PðkÞ. To define this quantity, we consider
the spatial perturbations of the energy density ρðx⃗; tÞ
relative to the zeroth order, unperturbed, spatially homo-
geneous energy density ρ̄ðtÞ:

δðx⃗; tÞ≡ δρðx⃗; tÞ
ρ̄ðtÞ ¼ ρðx⃗; tÞ − ρ̄ðtÞ

ρ̄ðtÞ ; ð3:1Þ

where

ρðx⃗; tÞ≡ 1

ð2πÞ3
X
i

gi

Z
d3pEiðpÞfiðx⃗; p⃗; tÞ ð3:2Þ

and where

ρ̄ðtÞ≡ 1

V

Z
V
d3xρðx⃗; tÞ ð3:3Þ

for a suitably large fiducial volume V. Note that in Eq. (3.2)
we are explicitly summing over all species that contribute
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to the total energy density of the universe, including the
dark matter. Our main interest is then in the two-point
correlation function ξðx⃗; tÞ≡ hδðx⃗þ y⃗; tÞδðy⃗; tÞi, which,
under the assumptions of homogeneity and isotropy, can
be Fourier-decomposed in the form

ξðx⃗; tÞ≡ 1

ð2πÞ3
Z

d3kPðk; tÞe−ik⃗·x⃗; ð3:4Þ

where k≡ jk⃗j and where Pðk; tÞ is the time-dependent
matter power spectrum. Since ξðx⃗; tÞ depends only on
r≡ jx⃗j, we can invert Eq. (3.4) and perform the angular
integration to obtain

Pðk; tÞ ¼ 4π

Z
∞

0

drr2
sin kr
kr

ξðr; tÞ: ð3:5Þ

This quantity therefore describes the degree to which the
two-point correlation function of energy-density fluctua-
tions shows power at the scale k, and for convenience we
shall henceforth define PðkÞ≡ Pðk; tnowÞ. Moreover, in
this work we shall mostly be interested in the so-called
transfer function TðkÞ, defined as

TðkÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðkÞ

PCDMðkÞ

s
; ð3:6Þ

where PCDMðkÞ is the matter power spectrum that would
emerge in the CDM limit in which all of the dark matter is
assumed cold. Thus, for any fðpÞ, the transfer function
TðkÞ indicates the degree to which the corresponding
matter power spectrum PðkÞ deviates from our CDM-based
expectations as a function of the scale k. Conveniently,
TðkÞ is independent of the particular choice of normaliza-
tions for PðkÞ, many of which exist in the literature.
As a dominant contributor to this process, dark matter

plays a leading role in structure formation. In order to
determine which scales k within the matter power spectrum
PðkÞ might be affected by dark matter of a given momen-
tum p, we can perform a straightforward horizon calcu-
lation. Given that dark matter of momentum p has a
velocity v ¼ p=E ¼ p=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, the corresponding

horizon size dhor in a static flat universe would simply
be vt, whereupon we could identify a corresponding wave
number khor ∼ 1=dhor. However, in an expanding universe,
the momentum is continually redshifting towards lower
values. Thus we must actually integrate over the cosmo-
logical history between the time of dark-matter production
and today. This then yields the result

khorðpÞ≡ ξ

�Z
tnow

tprod

p=aðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2=aðtÞ2 þm2

p dt
aðtÞ

�
−1

¼ ξ

�Z
1

aprod

da
Ha2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2a2

p �
−1
; ð3:7Þ

where the quantity p in this expression signifies the dark-
matter momentum today. We emphasize that this expres-
sion for khor is merely an order-of-magnitude estimate, one
which holds only up to an multiplicative factor of order
Oð1Þ. Indeed, while the horizon length within the square
brackets in Eq. (3.7) is a precisely defined quantity, there
are many different ways of extracting a corresponding wave
number, depending on the particular conventions adopted
and on the particular system under study. The quantity ξ in
our definition of khorðpÞ in Eq. (3.7) is therefore inserted
in order to represent this Oð1Þ factor. Note that the integral
in Eq. (3.7) generally receives contributions from the
radiation-dominated era as well as later matter-dominated
era, and these scale differently with time. For this reason it
is convenient to treat these separately, leading to the
approximate total result

khorðpÞ ≈ ξ

2
64 p
mða2HÞMRE

8<
:2þ tanh−1

�
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2
MRE

p �

− tanh−1

0
B@ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2
prod

q
1
CA
9=
;
3
75
−1

; ð3:8Þ

where “MRE” indicates the time of matter-radiation equal-
ity and where pX indicates the value of the momentum
redshifted back to time tX.
Any dark matter with momentum p today has the

potential to suppress structure at all scales k ≥ khorðpÞ.
In other words, for any p, the quantity khorðpÞ defines the
minimum value of k for which the matter power spectrum
PðkÞ could be affected. However, our interest is not merely
in situations involving a single momentum slice—we are
interested in understanding situations involving an entire
nontrivial distribution fðpÞ. It is here that subtleties arise.
One standard approach that is commonly employed in

the literature is to average over the different momenta
within the distribution, essentially defining a free-streaming
horizon scale kFSH in terms of an average packet velocity
hvðtÞi via a relation of the form

kFSH ∼
�Z

tnow

tprod

dt
aðtÞ hvðtÞi

�
−1
: ð3:9Þ

However, while such an analysis is robust for most thermal
or unimodal momentum distributions in which averaged
quantities faithfully represent the full distribution, this is
not generally the case for nonthermal and/or multimodal
distributions [2]. Indeed, there are implicit assumptions
buried within the definition in Eq. (3.9) that may cause it to
fail for more general momentum distributions of the sort we
have discussed in Sec. II. For example, if we have a
bimodal fðpÞ, it is not necessarily even the case that the
average velocity hvðtÞi represents the speed of any particle
that populates the distribution.
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In order to understand these complications at a more
fundamental level, one can consider the Jeans equation
which governs the time evolution of energy-density per-
turbations on different length scales. For dark matter with a
given sound speed cs, the form of this equation typically
allows one to read off a characteristic Jeans wave number
kJeans which separates gravitationally stable (i.e., growing)
and unstable (i.e., nongrowing) modes. This wave number
thereby signals the onset of suppression for the matter
power spectrum PðkÞ. Essentially kJeans indicates the
critical perturbation size at which the tendency towards
gravitational collapse is precisely balanced against the
increased dark-matter pressure resisting collapse.
However, this analysis assumes that the pressure per-

turbations propagate through the dark matter with a single
well-defined sound speed cs, much as we would expect for
dark matter of a single species. For dark-matter particles of
mass m with a single momentum p, a well-defined sound
speed cs always exists. However, it is easy to see that cs
depends on p. For example, we know that cs ¼ 0 for p ¼ 0
(signifying the case of infinitely cold dark matter), while
cs ¼ 1=

ffiffiffi
3

p
for p ≫ m (signifying the case of highly

relativistic matter). Indeed, an explicit expression for cs
as a function of p is derived in Appendix C. Thus, dark
matter with a nontrivial distribution fðpÞ does not have a
single well-defined sound speed. From the perspective of
the Jeans equation, such dark matter therefore behaves as if
it were composed of different “species” with different
sound speeds, one for each momentum slice.
If the dark-matter phase-space distribution fðpÞ is highly

peaked around a central averaged momentum hpi, it may of
course be possible to work with a single averaged sound
speed hcsi and thereby extract a single Jeans scale, in the
same spirit as Eq. (3.9). However, for more complicated
distributions, this need no longer be the case. In general, the
presence of multiple “species” is problematic in the
presence of gravity because gravity feels all species
simultaneously, thereby causing the evolution of the
density perturbations for each species to be affected by
the density perturbations for all of the other species. In
other words, the existence of dark matter across a nontrivial
momentum distribution fðpÞ leads to important cross-
correlations that eliminate the existence of critical Jeans
scales that cleanly separate growing from nongrowing
(suppressed) perturbation modes. This is true even if the
dark matter exhibits only two distinct momenta.
In addition to these difficulties, we are not merely

interested in the range of k-values for which the matter
power spectrum PðkÞ might be affected—we also wish to
evaluate PðkÞ itself. Though relatively straightforward, the
calculation of PðkÞ is also highly nontrivial. One begins
with certain initial conditions for the primordial perturba-
tions arising from inflation. One then propagates these
forward in time through the linearized Einstein equations,
assuming a dark-matter component with a given phase-

space distribution fðp; tÞ. This also requires taking into
account the evolution of the background cosmology.
Evolving to the present time and explicitly calculating
the two-point correlation function, one thereby obtains the
matter power spectrum PðkÞ corresponding to a given
fðp; tÞ at t ¼ tnow.
In this work, we shall perform these calculations numeri-

cally using the CLASS software package [3–6]. However, for
all the reasons discussed above, we do not expect any
simple relationship to exist between a given fðpÞ distri-
bution and the corresponding matter power spectrum PðkÞ.
That said, we nevertheless wish to develop a rough,
phenomenological way of understanding how the phase-
space distribution fðpÞ affects the matter power spectrum
PðkÞ. Even more ambitiously, we wish to have a way of
“inverting” this mapping from fðpÞ to PðkÞ, so that we can
use our knowledge of PðkÞ in order to “resurrect” the most
important features of fðpÞ.

B. Defining a k-space dark-matter profile g̃ðkÞ
Our approach to this problem is somewhat unorthodox.

First, we shall consider momentum slices through our
dark-matter distribution packet gðpÞ, relating each slice of
momentum p to a corresponding value khorðpÞ. Indeed, we
shall do this without any assumptions concerning the
overall shape of gðpÞ. Normally, as indicated above, khor
would be interpreted as defining the minimum value of k
within PðkÞ which could potentially be affected by dark
matter in that slice. However, we shall instead take the
defining relation for khorðpÞ in Eq. (3.7) as defining a
mapping between the p-variable of gðpÞ and the k-variable
of PðkÞ. In other words, we shall identify khor with k and
thereby consider gðpÞ as having a corresponding profile in
k-space:

g̃ðkÞ≡ gðk−1horðkÞÞjJ ðkÞj: ð3:10Þ

Here k−1hor denotes the inverse function which relates k back
to p [i.e., the inverse of the mapping in Eq. (3.7)], while
J ðkÞ≡ d logp=d log k is the Jacobian for the change of
variables from logp to log k [again as defined through the
khorðpÞ function in Eq. (3.7)]. It then follows that

N ðtÞ ¼
Z

d logp gðpÞ ¼
Z

d log k g̃ðkÞ: ð3:11Þ

Thus, just as the p-profile gðpÞ describes the dark-matter
distribution in p-space, the k-profile g̃ðkÞ describes the
dark-matter distribution in k-space. Moreover, because g̃ðkÞ
lives in the same space as PðkÞ, these two functions can
even be plotted together along the same axis. We shall
therefore approach the question of understanding the
relationship between gðpÞ and PðkÞ by instead seeking
to understand the relationship between g̃ðkÞ and PðkÞ.
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Strictly speaking, our identification of khor with k is
potentially subject to the same sorts of Oð1Þ ambiguities
which entered into our original definition of khor, as
represented by the Oð1Þ prefactor ξ in Eq. (3.7).
However, for our purposes in this paper, any further
Oð1Þ factor involved in relating khor to k can be absorbed
into an effective change in the value of ξ. Thus, for
simplicity, we shall consider ξ to incorporate all such
Oð1Þ effects. We shall therefore identify khor directly with
k, as stated above, and proceed to investigate the relation-
ship between g̃ðkÞ and PðkÞ.

C. Connecting g̃ðkÞ to PðkÞ: General
phenomenological observations

In order to develop an intuition regarding this relation-
ship, we shall examine the response of PðkÞ to a series of
idealized forms for gðpÞ and g̃ðkÞ. For concreteness and
simplicity, each of these idealized forms for gðpÞ will be
taken to consist of one or more log-normal distributions
of the form

gðpÞ ¼ Affiffiffiffiffiffi
2π

p
σ
exp

�
−

1

2σ2

�
log

�
p
hpi

�
þ 1

2
σ2
�
2
�
; ð3:12Þ

where σ and hpi are respectively the width and average
momentum of the distribution and where A is an overall
normalization (or dark-matter abundance). These distribu-
tion functions are essentially Gaussians in ðlogpÞ-
space. Indeed, with this form, we can easily verify thatR
gðpÞd logp ¼ A and

R
pgðpÞd logp ¼ hpi, as claimed.

Thus either σ or hpimay be altered independently. However,
it is important to note that hlogpi≡ R

logp gðpÞd logp ¼
loghpi − σ2=2. In other words, this Gaussian is centered
(with maximum height) at loghpi − σ2=2 in ðlogpÞ-space,
and thus any change in the value of σ will cause the location
of themaximumheight to shift even though hpi is kept fixed.
Let us consider the case in which gðpÞ consists of a

single Gaussian peak in ðlogpÞ-space, and let us study the
effects of changing the overall dark-matter abundance A
associated with this peak, keeping hpi and σ fixed. Such
distributions are shown in the upper panel of Fig. 11, where
we have chosen values of A such that the total abundance
associated with this peak in each case is given by Ω ¼
rΩDM where ΩDM is the total dark-matter abundance and
where the ratio r ranges over the set of values specified
within Fig. 11. For each value of r < 1, we are of course
implicitly assuming the existence of an additional infinitely
cold dark-matter component (not shown) with abundance
Ωcold ¼ ð1 − rÞΩDM such that the total dark-matter abun-
dance remains fixed at ΩDM. For each value of r, the
corresponding k-space distributions g̃ðkÞ and transfer
functions T2ðkÞ≡ PðkÞ=PCDMðkÞ are shown together in
the lower panel of Fig. 11. For concreteness in defining
g̃ðkÞ, we have taken ξ ¼ 5=3 within Eq. (3.7), as this value
tends to horizontally align the peaks g̃ðkÞ with the onset of

the suppression of structure within T2ðkÞ, as shown in
Fig. 11. Indeed, we will find that taking ξ ≈ 5=3 has a
similar alignment effect for every case to be considered in
this paper, not only here but also for the highly nontrivial
cases to be examined in Sec. IV. We shall therefore adopt
ξ ¼ 5=3 as a universal reference value for the rest of
this paper.
For values of k below the location of g̃ðkÞ, we see that

the transfer function remains close to 1, indicating that the

FIG. 11. Dark-matter distributions gðpÞ which differ only in
their overall normalizations (i.e., their associated abundances Ω),
and their corresponding transfer functions T2ðkÞ≡ PðkÞ=
PCDMðkÞ. Upper panel: A variety of dark-matter distributions
gðpÞwhich share a common width σ and average momentum hpi.
In each case we imagine the existence of an additional cold dark-
matter component (not shown) such that the total dark-matter
abundance is held fixed at ΩDM. Lower panel: The corresponding
k-space dark-matter distributions g̃ðkÞ, calculated for ξ ¼ 5=3,
and the corresponding transfer functions T2ðkÞ, calculated via the
CLASS software package [3–6]. We see that the greater the total
dark-matter abundance associated with gðpÞ, the stronger the
suppression for T2ðkÞ and the steeper the slope d logT2ðkÞ=
d log k at large values of k.
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development of structure at these scales is insensitive to the
fact that a fraction r of the dark matter is no longer being
treated as infinitely cold. In other words, for the large
length scales corresponding to such values of k, even the
dark matter carrying the nonzero momenta within gðpÞ is
effectively cold. However, as k increases and approaches
the scales associated with nonzero g̃ðkÞ, our transfer
function begins to peel away from unity and fall rather
dramatically. This signifies the onset of the suppression of
structure at these scales, as anticipated. In the case with the
greatest suppression, we see from Fig. 11 that the curve for
T2ðkÞ actually begins to exhibit sharp wiggles as a function
of k. These are ultimately the effects of dark-matter
acoustic oscillations; such effects are generally subleading,
appearing within the transfer function only when the
formation of structure is significantly suppressed, and they
shall not be our focus in this paper. We shall therefore
disregard such wiggles in our subsequent discussion.
However, we also note the degree of suppression is greater
when g̃ðkÞ carries greater abundance. This immediately
tells us, as expected, that there is a correlation between the
abundance associated with g̃ðkÞ and the degree of structure
suppression induced at larger values of k. Likewise, we also
note from Fig. 11 that as k passes beyond the range with
nonzero g̃ðkÞ, the evolution of our transfer function T2ðkÞ
on this log-log plot in each case ultimately seems to
develop a negative slope which remains essentially constant
for the values of k shown. This slope also appears to be
correlated with the abundance associated with g̃ðkÞ, with
steeper (more negative) slopes corresponding to larger
abundances. Thus, at this stage, we conclude that a greater
abundance for g̃ðkÞ appears to correspond not only to a
stronger suppression for T2ðkÞ at larger values of k, but also
to a steeper slope for T2ðkÞ.
In order to disentangle these two effects, we now

consider the case of a single peak where we now vary
the width σ of the peak, holding A and hpi constant. This
situation is shown in Fig. 12. First, we confirm from the
upper panel of Fig. 12 that holding hpi fixed and increasing
σ indeed causes the maximum of the peak to shift towards
smaller values of logp, as discussed above. Second, as we
progress from smaller to larger values of k within the lower
panel of Fig. 12, we observe that increasing the width σ of
the dark-matter distribution induces a more gradual sup-
pression of T2ðkÞ as a function of k, ultimately resulting in
less net suppression at large values of k.
Even more importantly, however, we also observe

that increasing the width of g̃ðkÞ appears to have no
effect on the logarithmic slope of the transfer function
d logT2=d log k at large k beyond g̃ðkÞ. Indeed, the
logarithmic slope of the transfer function appears to be
fixed, even though the overall suppression clearly varies
with the width of gðpÞ. Of course, even though we are
varying the width of gðpÞ in Fig. 12, we are holding the
overall abundance associated with gðpÞ fixed. This then

suggests that the total dark-matter abundance associated
with gðpÞ correlates with the eventual logarithmic slope of
the transfer function rather than with the net amount by
which T2ðkÞ is suppressed.
This behavior actually holds throughout the range of

k-values plotted in Fig. 12, and not merely at large k.
Indeed, as we sweep a reference value k� from left to right
in k-space and pass through the g̃ðkÞ distribution, we
accumulate an increasing abundance of dark matter for
which k < k�. Likewise, as we sweep from left to right in
k-space, we see that the logarithmic slope of the transfer
function at k ¼ k� simultaneously becomes increasingly
steep. Indeed, it is only for the values of k shown in Fig. 12

FIG. 12. Similar to Fig. 11, but for dark-matter distributions in
which only the width σ is varied while the total abundance and
average momentum hpi are held fixed. We see that varying the
width affects the net suppression of the transfer function, but does
not affect its eventual slope d logT2=d log k at large k beyond
g̃ðkÞ. As discussed in the text, this suggests that the accumulated
abundance correlates not with the net suppression of the transfer
function, but with its logarithmic slope.
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beyond g̃ðkÞ that we stop accumulating abundance and the
logarithmic slope of the transfer function becomes effec-
tively constant. This observation thus allows us to refine
our previous conclusions from Fig. 11 and suggests that the
accumulated abundance correlates not with the net sup-
pression of the transfer function, but with its logarithmic
slope d logT2=d log k.
To see if this behavior survives for more complex gðpÞ

distributions, in Fig. 13 we consider the case of two disjoint
peaks, one corresponding to colder dark matter with
smaller hpi and the other to warmer dark matter with
larger hpi. (Note that we refer to these peaks as colder and
warmer even though they need not be thermal.) In each case

we hold the width and average momentum hpi of each peak
fixed, but we vary the manner in which the total dark-matter
abundance ΩDM is apportioned between them. We never-
theless find that the above behavior persists even in such
cases. Indeed, as we sweep from smaller to larger values
of k in the regions within the peaks, we see that the
logarithmic slope of the transfer function becomes increas-
ingly steep as our accumulated abundance increases—
indeed, as the relative abundance of the warmer peak
increases, the slope of the transfer function between the
peaks also increases. However, as we sweep from smaller to
larger values of k in the region between the peaks, we are no
longer accumulating abundance. Likewise, the logarithmic
slope of the transfer function in this region is approximately
constant. Thus, we continue to find that accumulated
abundance remains correlated with the logarithmic slope
d logT2=d log k of the transfer function.

D. From PðkÞ back to f ðpÞ: The hot fraction function
FðkÞ and a reconstruction conjecture

We could, of course, continue to examine further cases
with more nontrivial gðpÞ distributions. However, at this
stage, we are actually able to formulate a conjecture which
will incorporate all of our observations and which we
believe holds quite generally. Moreover, as we shall see,
this conjecture will not only allow us to correlate features of
the dark-matter distribution gðpÞ with those of the transfer
function T2ðkÞ, but also allow us to invert the process and
resurrect the salient features of gðpÞ directly from T2ðkÞ.
In order to phrase our conjecture mathematically, we first

note that at any value of k, the total abundance of dark
matter accumulated from even smaller k-values is given by

FðkÞ≡
R
log k
−∞ g̃ðk0Þd log k0Rþ∞
−∞ g̃ðk0Þd log k0 : ð3:13Þ

Note that this can be equivalently written in terms of gðpÞ
rather than g̃ðkÞ as

FðkÞ≡
R
∞
logpðkÞ gðp0Þd logp0R∞
−∞ gðp0Þd logp0 ð3:14Þ

where the pðkÞ function within the lower limit of the
integral in the numerator is the inverse of the khorðpÞ
function in Eq. (3.7). Thus, for any value of k, we see that
FðkÞ may be interpreted physically as that fraction of the
dark matter which may effectively be considered as free-
streaming (or “hot”) relative to the corresponding value of
p ¼ k−1horðkÞ. We shall therefore refer to FðkÞ as the hot
fraction function. Note that the denominators in Eqs. (3.13)
and (3.14) are nothing but the overall normalizations N
associated with the phase-space distribution, as defined
in Eq. (2.3).

FIG. 13. Similar to Figs. 11 and 12, but for dark-matter
distributions gðpÞ consisting of two log-Gaussian peaks whose
widths and average momenta are held fixed but amongst which
the apportionment of the total dark-matter abundance ΩDM is
varied. As we sweep from smaller to larger values of k in each
case, we see that d logT2=d log k becomes increasingly steep as
our accumulated abundance increases—precisely as anticipated
from the results of Fig. 12.
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Our conjecture, then, is that there is a direct approximate
relationship between the hot fraction function FðkÞ and
the logarithmic slope d logT2=d log k of the transfer
function. We shall write this in terms of an as-yet unknown
function η:

FðkÞ ≈ η

�				 d logT2

d log k

				
�
: ð3:15Þ

Equivalently, taking the ðlog k)-derivative of both sides, we
conjecture that

g̃ðkÞ
N

≈ η0
�				 d logT2

d log k

				
�				 d2 logT2

ðd log kÞ2
				; ð3:16Þ

where the prime on the η-function indicates a derivative
with respect to its argument. Thus, if the first derivative of
logT2 with respect to log k is related to the hot fraction
function FðkÞ, then it is a combination of the first and
second derivatives that is related to the phase-space dis-
tribution g̃ðkÞ.
This conjecture is quite significant, correlating the hot

fraction function FðkÞ not with the transfer function T2ðkÞ
but with its slope. However, we can even push this one
step further. In Fig. 11, we observed that the slopes
d logT2=d log k that emerge at the large values of k shown
in this plot are correlated with the abundances Ω associated
with the distributions g̃ðkÞ shown. However, within these
large-k regions beyond g̃ðkÞ, the accumulated hot fraction
functions FðkÞ are nothing but the fractions r≡Ω=ΩDM
that relate these abundances Ω to the total dark-matter
abundance ΩDM. Thus, given these ratios and the corre-
sponding logarithmic slopes within Fig. 11, we can inves-
tigate whether there might exist a simple empirical relation
between these two quantities, and indeed we find that
the relation 				 d logT2

d log k

				 ≈ ½FðkÞ�2 þ 3

2
FðkÞ ð3:17Þ

holds to rather high precision. This then fixes our unknown
function η in Eq. (3.15), whereupon Eq. (3.16) takes
the form

g̃ðkÞ
N

≈
1

2

�
9

16
þ
				 d logT2

d log k

				
�−1=2				 d2 logT2

ðd log kÞ2
				: ð3:18Þ

This, then, is the final form of our conjecture. Indeed, if
accurate, this relationship would allow us to “resurrect”
g̃ðkÞ from the transfer function T2ðkÞ and thereby deduce
the dark-matter distribution gðpÞ that produced it.
In Sec. IV, starting from an explicit Lagrangian

describing a complex nonminimal dark sector, we shall
explicitly test the observations we have developed thus far
in this paper, including our reconstruction conjecture in

Eq. (3.18). As we shall find, in each case our conjecture
(3.18) is indeed remarkably successful in reproducing the
salient features of the dark-matter distribution, even when
this distribution highly nontrivial and/or multimodal. Our
conjecture can therefore serve as a powerful tool in the
archaeology toolbox, enabling a reconstruction of many
features of the early universe starting from a present-day
observable such as the matter power spectrum.
Two important caveats must be borne in mind regarding

our conjecture in Eq. (3.18). First, we emphasize that our
conjecture is not meant to be a precise mathematical
statement. Indeed, given the rather complicated nature of
the Einstein evolution equations which connect gðpÞ to
T2ðkÞ, we do not expect a relation of the simple form in
Eq. (3.18) to provide a precise archaeological inverse
(except perhaps under some limiting approximations and
simplifications). Rather, this conjecture is intended merely
as an approximate practical guide—a way of reproducing
the rough characteristics of gðpÞ given a particular transfer
function T2ðkÞ.
But second—and perhaps more importantly—we stress

that our conjecture implicitly assumes/requires that
logT2 has a negative-semidefinite second derivative with
respect to log k, so that it either has a constant slope or is
concave-down when plotted versus log k. Generally, this
tends to occur in situations in which our dark-matter
momentum distributions—no matter how complex in
shape—are relatively “clustered” in k-space. By contrast,
if there are widely separated clusters in the dark-matter
phase-space distribution, the transfer function can cross an
inflection point and become concave-up, potentially even
leading to a plateau [7]. Indeed, this is precisely what
would happen if we were to plot, e.g., the transfer functions
in Fig. 11 out to even larger values of k. In such cases, our
conjecture is expected to hold only within each cluster
individually (just as it indeed holds for the “clustered”
region of Fig. 11 shown). As we shall see in Sec. IV, this
restriction to clusters is not severe, and still allows us to
resurrect the salient features of the dark-matter phase-space
distribution gðpÞ for a wide variety of dynamical histories.
Finally, our conjecture in Eq. (3.18) also allows us to

understand the limitations of certain proposed functional
forms for T2ðkÞ which have appeared in the literature.
For example, in Ref. [8] it was shown that the functional
form [9–11]

TðkÞ ¼ ½1þ ðαkÞβ�γ with α; β > 0; γ < 0 ð3:19Þ

is remarkably successful in fitting the results from a
relatively large number of underlying models of early-
universe dynamics. (Note that more complex functional
forms are also discussed in Ref. [8].) However, using our
conjecture in Eq. (3.18), we can reconstruct the corre-
sponding g̃ðkÞ, obtaining
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g̃ðkÞ ¼ Ax

ð1þ xÞ3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ Bx

p ; ð3:20Þ

where x≡ ðαkÞβ, A≡ 4β2jγj > 0, and B≡ 9þ 32βjγj > 9.
As expected, this functional form corresponds to a local-
ized packet, with g̃ðkÞ∼Ak=3 as k→0 and g̃ðkÞ ∼ A=ð ffiffiffiffi

B
p

kÞ
as k → ∞. Moreover, it is also straightforward to verify that
this packet is always unimodal, with a unique maximum
located at

xmax ¼
B − 9þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB − 9Þ2 þ 144B

p
4B

: ð3:21Þ

Thus we learn that the generic functional form in Eq. (3.19),
although quite flexible, is ultimately limited to dark-matter
phase-space distributionswhich are unimodal. Indeed, aswe
have seen (and aswe shall explicitly verify in Sec. IV), this is
only a small part of what is possible.

IV. DECIPHERING THE ARCHAEOLOGICAL
RECORD: AN ILLUSTRATIVE END-TO-END

EXAMPLE

In Sec. II, we examined the manner in which decays
within the dark sector can give rise to a nontrivial and often
multimodal phase-space distribution fðpÞ for the lightest
particle within this sector, i.e., for the particle which
constitutes the dark matter at the present time. Likewise,
in Sec. III, we studied the relationship between a given
phase-space distribution fðpÞ and the corresponding linear
matter power spectrum PðkÞ, ultimately proposing a con-
jecture in Eq. (3.18) which would allow us to approx-
imately reconstruct fðpÞ from knowledge of PðkÞ.
However, our analysis thus far has been primarily con-
ceptual and limited to examples involving only a small
number of dark-sector states. Likewise, we have only
examined each step within Eq. (1.1) independently, without
performing a complete end-to-end analysis.
In this section, we shall examine how these ideas play out

within a more complex framework—one involving a rela-
tively large number of dark-sector states and decay path-
ways. In this way, we seek to determine the extent to which
our general observations from Secs. II and III are robust,
remaining more or less intact as the dark sector grows in
complexity, even under a full numerical Boltzmann analysis.
We also wish to see how the different steps of the process
within Eq. (1.1) actually connect to each other, starting with
a particular model of early-universe dynamics and ending
with a predicted matter power spectrum PðkÞ.
Towards this end, in this section we shall construct a

phenomenologically rich illustrative model within which
our calculations will take place. In particular, we shall
begin with an explicit Lagrangian describing a relatively
large number of dark-sector states. From this we shall then
proceed to study the various decay amplitudes, the patterns
of possible allowed decay chains, the resulting dark-matter

phase-space distributions fðpÞ, and the corresponding
matter power spectra PðkÞ. This will ultimately enable
us to determine the extent to which the phenomena
discussed in Secs. II and III are realized within a relatively
complex dark sector. This will also afford us the oppor-
tunity of explicitly testing our reconstruction conjecture in
Eq. (3.18). We emphasize, however, that the illustrative
model we shall consider is not meant to be a UV-complete
description of an actual fully realized dark sector. Rather,
our purpose here is merely to establish a framework in
which to study the rich set of possible phenomenologies
associated with intra-ensemble decays and to verify that the
basic expectations we have discussed in Secs. II and III are
indeed realized, including the potential for archaeological
reconstruction.

A. The model

Our model consist of an ensemble of N þ 1 real scalar
fields ϕl, where the index l ¼ 0; 1;…; N labels these
fields in order of increasing mass. We take these scalars to
be singlets under the Standard-Model (SM) gauge group
and assume that they couple only negligibly to the fields of
the visible sector. Likewise, we shall assume that the
behavior of these fields is governed by the Lagrangian

L ¼
XN
l¼0

�
1

2
∂μϕl∂μϕl −

1

2
m2

lϕ
2
l

�
þ Lint; ð4:1Þ

where ml denotes the mass of ϕl and where the interaction
Lagrangian Lint consists of terms involving the fields ϕl
alone. For simplicity, we shall consider a form for Lint in
which two-body intra-ensemble decays of the form ϕl →
ϕiϕj dominate the decay width of each unstable ϕl. In
particular, we consider an interaction Lagrangian which
includes trilinear terms of the form

Lint ∋ −
XN
l¼0

Xl
i¼0

Xi

j¼0

clijϕlϕiϕj; ð4:2Þ

where the clij are coupling coefficients with dimensions of
mass. We emphasize that in addition to the trilinear terms in
Eq. (4.2), Lint will in general include additional quartic
terms involving the ϕl. Such terms play an important role
in stabilizing the scalar potential; moreover, they may also
play a role in establishing the primordial abundances of
these fields at early times. However, due to phase-space
considerations, they typically play only a subleading role in
the decay phenomenology of the ϕl at times well after
those abundances have been established. In what follows,
we shall therefore assume that the coupling coefficients
associated with such terms are sufficiently small that these
terms have negligible impact on particle dynamics within
the dark sector at late times, and focus on the consequences
of the trilinear terms in Eq. (4.2).
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The different masses ml and couplings clij associated
with our individual ensemble constituents will not be
considered to be independent parameters of our model.
Rather, both the masses and couplings will be assumed to
scale across the ensemble according to a set of scaling
relations involving only a small number of free parameters.
In particular, we shall assume that the ml scale across the
ensemble according to the scaling relation

ml ¼ m0 þ lδΔm; ð4:3Þ
where m0 denotes the mass of the lightest ensemble
constituent, where Δm is a parameter with dimensions
of mass, and where δ is a dimensionless scaling exponent
which controls how the density of states scales across the
ensemble.
A variety of scaling relations are in principle possible for

the coupling coefficients clij. Given that our primary aim in
this paper is to investigate the extent to which information
about the decay history of the dark sector can be gleaned
from the phase-space distribution of a single, stable particle
species which plays the role of the dark matter today, we
shall adopt a scaling relation for the clij which is amenable
to such a study. First, we shall assume that the coupling
structure of our model is such that only the lightest
ensemble constituent ϕ0 is stable and that a contribution
to the decay width of each constituent ϕl with l > 0 arises
from the interaction Lagrangian in Eq. (4.2). Moreover, we
alsowish to examine how the interplay between the coupling
structure of the dark sector, the decay kinematics within the
ensemble, and the cosmological background ultimately
gives rise to the phase-space distribution g0ðp; tnowÞ for
this lightest ensemble constituent at present time.
There are two salient kinematic quantities which are of

particular interest in characterizing two-body decays of the
form ϕl → ϕiϕj. The first of these quantities is the total
energy released in the decay—i.e., the difference between
the mass of the decaying particle and the sum of the masses
of the two daughter particles. The second is the difference
in mass between the two daughter particles. Motivated by
these considerations, we shall therefore adopt a paramet-
rization for the clij in which

clij ¼ μRlij

�
ml −mi −mj

Δm

�
r
�
1þ jmi −mjj

Δm

�−s

× Θðml −mi −mjÞ: ð4:4Þ
Here μ is a parameter with dimensions of mass which sets
the overall scale of the couplings, while Θðml −mi −mjÞ
is a Heaviside theta function, r and s are dimensionless free
parameters, and the combinatoric factor

Rlij ≡
8<
:

6 all indices different

3 only two indices equal

1 all indices equal

ð4:5Þ

is defined such that

XN
l¼0

Xl
i¼0

Xi

j¼0

Rlijϕlϕiϕj ¼
XN

m;n;p¼0

ϕmϕnϕp: ð4:6Þ

Note that even though i ≥ j in Eq. (4.2), the absolute-value
signs in Eq. (4.4) ensure that clij ¼ clji. This property will
be useful later.
The parameters r and s appearing in Eq. (4.4) have a

straightforward interpretation and will be critical for our
analysis. The parameter r governs the manner in which clij
scales with the overall kinetic energy released during the
decay process ϕl → ϕiϕj. Taking r > 0 establishes a
preference for highly exothermic decays involving a large
conversion of mass energy into kinetic energy—in other
words, decays from heavy parents directly into relatively
light daughters which therefore behave more like radiation.
By contrast, taking r < 0 establishes a preference for
minimally exothermic decays in which relatively little
kinetic energy is released and the daughter particles behave
more like matter. Likewise, the parameter s governs the
extent to which the daughter particles are close in mass to
each other. Taking s > 0 establishes a preference for decays
in which there is a high degree of symmetry between the
masses of the daughter particles. By contrast, taking s < 0
disfavors such decays relative to those in which such a
symmetry between the daughters is significantly broken.
Thus, while positive r favors decays producing radiation,
positive s favors decays whose daughters are symmetric.
Examining the phenomenology that results from differ-

ent values of r and s therefore allows us to survey many
different kinds of decay chains and their corresponding
dark-matter phase-space distributions. Of course, a fully
realistic model of the dark sector is unlikely to exhibit a
coupling structure of the specific form in Eq. (4.4).
However, as we shall see, this structure is capable of
realizing many if not most of the different decay phenom-
enologies that could emerge within a fully realistic multi-
component dark sector, and our goal in this section is to
study the implications of these different decay phenome-
nologies rather than their specific realization within a UV-
complete theory. Adopting the coupling structure in
Eq. (4.4) will therefore be sufficient for our purposes.
Given the number of free parameters which govern our

model and the variety of possible initial conditions for the
glðp; tIÞ, it will prove useful for us to adopt a fewbenchmark
assumptions as we proceed. In particular, for concreteness,
we shall focus on the case of an ensemble withN ¼ 9—i.e.,
an ensemble comprising ten constituent particles with ten
distinct masses. Such a value ofN is sufficiently large that a
highly nontrivial pattern of intra-ensemble decays can arise,
yet sufficiently small that the evolution of the Boltzmann
system is not computationally onerous. We shall also fix
δ ¼ 1, Δm ¼ 2m0, and μ ¼ m0=10 in what follows. Given
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these benchmark assumptions, there remains one free
parameter m0 on which the mass spectrum of our model
depends, aswell as two free parameters r and swhich govern
the coupling structure of the model.
For simplicity, we shall consider the case in which only

the most massive constituent ϕ9 in the ensemble is initially
populated at tI , while the energy density in all other
ensemble constituents is negligible. For sake of generality,
we shall remain largely agnostic about the precise nature of
the mechanism which establishes the initial energy density
ρ9ðtIÞ for this field. Rather, we shall simply assume that this
occurs during a production-time window ΔtP and effec-
tively ceases acting by some cosmological time tP ≤ tI .
Note that in order to ensure that the change in ρ9ðtÞ due to
decays is not significant during the production-time win-
dow, it is sufficient to require that

�
tI − tPl

≪ τ9

ΔtPl
≪ τ9;

ð4:7Þ

where τ9 ≡ 1=Γ9 is the lifetime of ϕ9. Indeed, the con-
ditions in Eq. (4.7) are equivalent to the condition already
mentioned in Eq. (2.30) which ensures effectively con-
tinuous daughter packets, even for extremely nonrelativistic
parents. We emphasize that a production mechanism for
which τ9 ≤ tI is not in conflict with these conditions,
provided that ΔtP is small and provided that the time tI at
which we begin our numerical Boltzmann evolution is
sufficiently close to tP.
Depending on the nature of the production mechanism

through which ρ9ðtIÞ is established, the initial phase-space
distribution g9ðp; tIÞ for ϕ9 can take a variety of forms. In
what follows, we shall assume that the initial population of
ϕ9 is sufficiently cold that the detailed shape of g9ðp; tIÞ
has essentially no impact on the subsequent evolution of the
phase-space distributions of all particles produced through
the decay chains initiated by ϕ9 decay. Indeed, in the
regime in which g9ðp; tÞ effectively only receives support at
very small p, the phase-space packet for each daughter
particle produced directly by the decay process ϕ9 → ϕiϕj

will be sharply peaked around p ≈ 1
2
ðm9 −mi −mjÞ. Thus,

within this regime, the profiles of the phase-space packets
generated for the two daughter particles ϕi and ϕj are not
particularly sensitive to the shape of g9ðp; tIÞ, nor are the
profiles of the packets for the particles produced via
subsequent decays. Indeed, we have verified numerically
that varying the shape of g9ðp; tIÞ while holding the initial
number density n9ðtIÞ fixed does not significantly impact
our results for either g0ðp; tnowÞ or PðkÞ, provided that the
condition f9ðp; tÞ ≪ 1 is satisfied for all t ≥ tI .
Given these assumptions, only two initial conditions

for our example scenario remain to be specified. These
are the initial time tI itself and the overall normalization
of g9ðp; tIÞ at this initial time. The system then evolves
dynamically according the Boltzmann equations outlined

in Appendix A. However, as briefly noted in Sec. II, the
Boltzmann equations are greatly simplified and possess
several attractive properties if they can be approximated
as linear. We can make such an approximation if the
phase-space distributions are sufficiently small (i.e., if
flðp;tÞ≪ 1, so that Pauli-blocking and Bose-enhancement
effects are negligible) and if scattering and inverse-decay
processes amongst the scalars are also negligible. As
discussed in Appendix A, these conditions are in turn both
satisfied as long as the normalization of g9ðp; tIÞ remains
sufficiently small. Thus, the Boltzmann evolution in our
ensemble is effectively linear, and rescaling the initial
normalization of g9ðp; tIÞ within this limit simply has
the effect of rescaling the other phase-space distributions
by the same constant factor. Furthermore, we have shown
that our system of Boltzmann equations is also invariant
under a particular set of transformations of the dimensionful
parameters in our model. Thus, for the sake of generality, in
what follows we shall refrain from specifying particular
values for these quantities until we examine the conse-
quences of our model for the matter power spectrum and
thereby make contact with observational constraints. Of
course, due to phenomenological considerations, we shall
ultimately require that these parameters be chosen such
that the energy density carried by each ϕn with n > 1 is
negligible by the time of big-bang nucleosynthesis (BBN).

B. Partial widths and decay chains

Given the interaction Lagrangian in Eq. (4.2) and the
mass spectrum and coupling structure in Eqs. (4.3) and
(4.4), it is straightforward to determine the partial decay
widths Γl

ij for all kinematically allowed intra-ensemble
decay processes of the form ϕl → ϕi þ ϕj arising in our
model. The partial widths are given by

Γl
ij ¼

1

1þ δij

jp⃗CMj
8πm2

l
jclijj2; ð4:8Þ

where the momentum of either daughter particle in the rest
frame of ϕl is given by

jp⃗CMj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

l − ðmi þmjÞ2�½m2
l − ðmi −mjÞ2�

q
2ml

: ð4:9Þ

Note that Γl
ij ¼ Γl

ji. Since no additional decay processes
with non-negligible partial widths exist for any of the
ensemble constituents, the total width Γl of ϕl is merely

Γl ≡
Xl−1
i¼0

Xi

j¼0

Γl
ij; ð4:10Þ

where the summation is over all configurations of daugh-
ters ði; jÞ with j ≤ i such that mi þmj ≤ ml.
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In Fig. 14, we show how the partial widths Γ9
ij for the

decays ϕ9 → ϕiϕj which initiate these decay chains depend
on the parameters r and s introduced in Eq. (4.4). Each
individual panel of the figure corresponds to a particular
choice of the parameters r and s, with r increasing from top
to bottom and s increasing from left to right. Within a given
panel, the color of a particular square in the grid indicates
the value of Γ9

ij for the corresponding assignment of r and s,
normalized to the partial width Γ9

00 obtained for the
parameter assignments r ¼ s ¼ 0.
It is evident from Fig. 14 that a variety of scaling

behaviors for the Γ9
ij as a function of the indices i and j can

arise as a result of the interplay between the parameters r
and s. For example, for r < 0 and s < 0 (top left panel),
decays to daughters ϕi and ϕj with vastly different values
of i and j are preferred, as are decays with small mass gaps
m9 −mi −mj. As a result, the partial widths are largest for
final states such as ϕ9 → ϕ8ϕ0 and ϕ9 → ϕ7ϕ1. By con-
trast, for r > 0 and s < 0 (bottom left panel), the same
preference for daughters with with vastly different values of
i and j persists, but is now combined with a preference for
highly exothermic decays. This leads to a situation in which
the largest partial widths are those to final states such
as ϕ9→ϕ5ϕ1 and ϕ9→ϕ4ϕ0. For r < 0 and s > 0 (top right
panel), a strong preference for symmetry between the
daughter-particle masses, combined with a preference
against strongly exothermic decays, leads to a situation
in which the single decay channel ϕ9 → ϕ4ϕ4 dominates.
For the case in which r ¼ s ¼ 0, the Γ9

ij for all possible
decay channels are quite similar. However, we emphasize
that they are not precisely identical, due to the dependence
of jp⃗CMj in Eq. (4.9). The scaling behaviors for the Γ9

ij

displayed in the remaining panels of the figure can be also
understood based on these same considerations.
We also see from Fig. 14 that the values of Γ9

ij for the
processes which dominate the total width Γ9 of ϕ9 are
significantly larger for certain combinations of r and s than
others. In particular, we see that Γ9 is largest when r and s
are positive and negative, respectively, and smallest when r
and s are respectively negative and positive. Thus, we see
that Γ9 itself varies significantly as a function of r and s.
We now proceed to examine the decay chains which

ultimately determine the structure of g0ðp; tnowÞ. Indeed,
while an examination of the partial widths Γ9

ij provides
some insight into how the decay phenomenology of our
model depends on the choice of our model parameters r and
s, we must consider the full set of possible decay pathways
through which the energy density initially stored in ϕ9 is
ultimately transferred to ϕ0 in order to characterize how the
coupling structure of our model impacts the present-day
phase-space distribution g0ðp; tnowÞ of the lightest ensem-
ble constituent ϕ0.
Because we are considering two-body decays of the form

ϕl → ϕiϕj (each with a different branching fraction), and

because each of these daughters then produces two grand-
daughters (whose identities are determined according to
another set of branching fractions), the collection of
particles produced from a single ancestor proliferates
quickly through each generation, as does the full set of
potential decay chains and their associated net branching

FIG. 14. Partial widths for the various decay processes of the
form ϕ9 → ϕiϕj with i ≥ j through which the heaviest constitu-
ent ϕ9 in our particle ensemble decays. Each panel of this figure
corresponds to a particular choice of r and s, with r increasing
from top to bottom and s increasing from left to right. Within a
given panel, the color of a particular square in the grid indicates
the value of Γ9

ij for the corresponding assignment of r and s,
normalized to the partial width Γ9

00 obtained for the parameter
assignments r ¼ s ¼ 0.
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FIG. 15. The dominant reduced decay chains that arise within our model, starting from the heaviest field ϕ9. The different panels of
this figure correspond to the same choices of r and s as in Fig. 14. The vertical axis in each panel indicates the index l associated with a
particular particle produced along the decay chain, while the horizontal axis indicates the number nh of individual steps or “hops” that
have occurred along the reduced decay chain in order to produce that particle. Each line segment from parameters ðl1; nhÞ to parameters
ðl2; nh þ 1Þ thus corresponds to the production of a daughter particle ϕl2 directly from the decay of a parent particle ϕl1

, with an

associated production rate Γl1
l2
. For visual simplicity, we have indicated only those “dominant” parent-to-daughter segments for which

Γl1
l2

exceeds 5% of the total production rate 2Γl1 stemming from ϕl1 , with the corresponding colors indicating the value of Γl1
l2

normalized to Γ9
0 in each panel.
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fractions. In this paper we have nevertheless performed this
analysis exactly, and all of the results that we shall show in
this paper have traced all of the possible decay chains in
this way. However, in order to interpret our results
physically and illustrate them graphically, it will suffice
to simplify our discussion somewhat by considering what
we shall call reduced decay chains. Essentially, for any
given parent ϕl, we can ask which of all possible daughters
ϕi with masses mi ≤ ml is most likely to be produced
regardless of the identity of the other sibling. Indeed, the
total rate for producing a given daughter ϕi from a parent
ϕl is given by

Γl
i ≡

XN
j¼0

N ijΓl
ij; ð4:11Þ

where N ij ¼ 1þ δij is the multiplicity of ϕi in the final
state of any individual process ϕl → ϕiϕj. We shall then
construct our reduced decay chains by stitching together
sequences of such l → i parent-to-daughter transitions.
In Fig. 15, we show the dominant reduced decay chains

which arise within the context of our model, given our
choice of initial conditions. Each line segment shown in the
figure corresponds to the production of a daughter particle
ϕi directly from the decay of a parent particle ϕl, while the
color of the segment provides a measure of the rate Γl

i at
which daughters ϕi are produced directly from the decays
of ϕl. Thus the segments whose colors tend towards red in
each panel indicate a more rapid production of daughters
than those in the same panel whose colors tend towards
blue. In order to maintain visual clarity, for each parent ϕl
we have indicated only those segments whose daughters ϕi
have the highest net probabilities for being produced. These
are defined as those processes for which the corresponding
production rate Γl

i exceeds 5% of the total particle-
production rate stemming from ϕl decay—i.e., processes
for which Γl

i =ð2ΓlÞ ≥ 0.05.
It is straightforward to interpret the results shown in

Fig. 15 in terms of deposits onto the cosmological conveyor
belt associated with the lowest state ϕ0, as discussed in
Sec. II. Of course, each decay chain shown within the
different panels of Fig. 15 ultimately terminates when ϕ0 is
produced. This then is the time of the deposit onto the ϕ0

conveyor belt. However, it is evident from the different
colors associated with these decay chains that they can
potentially proceed with very different overall rates. In
general, we may associate a characteristic timescale asso-
ciated with a given reduced decay chain by considering the
sum of the inverses of the aggregate production rates Γl

i for
all of the decay processes occurring within that decay
chain. Thus, a rough estimate of this timescale can be
obtained from the timescale associated with the slowest
individual decay step within the chain. In Fig. 15, these are
segments whose colors tend towards the blue end of the
color spectrum rather than the red.

In the four panels of the figure for which r ≤ 0 and
s ≥ 0—i.e., the four panels constituting the upper right
corner of the figure—the timescales for all decay chains
which contribute significantly to the production of ϕ0 are
quite similar. In other words, each of these decay chains in
these panels tends to make its deposit onto the g0 conveyor
belt at roughly the same time. As discussed in Sec. II, we
therefore expect the corresponding g0ðp; tnowÞ to be essen-
tially unimodal for such combinations of r and s. By
contrast, we observe that in the remaining figures in the
plot—i.e., those for which r > 0 and/or s < 0—many of
the decay chains which contribute significantly to the
production of ϕ0 have vastly different timescales, as
indicated in Fig. 15 through their significantly different
colors. Consequently, in such cases we expect that a
nontrivial, multimodal phase-space distribution will be
generated for ϕ0.
Our understanding of the conveyor-belt dynamics from

Sec. II also enables us to form comparative expectations
regarding g0ðp; tnowÞ across the different panels. For
example, we have already seen that in Fig. 14 that the
decay widths involved for r < 0 and s > 0 are significantly
smaller than those involved for r > 0 and s < 0. Thus, even
though all of the decay chains within the first case arise
might make their deposits at approximately the same time
as each other, this time of deposit is much later than the
time of the first deposits that occur in the second case.
Thus we expect the unimodal dark-matter phase-space
distribution g0ðp; tnowÞ in the first case to have less time
to redshift than the contributions from the first mode of the
phase-space distribution in the second case, implying that
g0ðp; tnowÞ should be situated at higher momenta than the
lowest-momentum peak within the distribution g0ðp; tnowÞ
in the second case.

C. Dark-matter phase-space distributions
and matter power spectra

In order to determine the extent to which these expect-
ations are realized within our model, we have calculated the
actual dark-matter phase-space distributions g0ðp; tnowÞ
that result in each case at the present time, long after all
of the decays within each decay chain have terminated. We
stress that this calculation has been performed through a
full Boltzmann analysis, as outlined in Appendix A, with
all source and decay terms included. Indeed, as the decay
process unfolds towards the ground state, there is consid-
erable variety in the intermediate stages through which our
dark sector passes. This nontrivial time evolution of the
dark sector is outlined in Appendix D. However, in this
section, our main interest concerns the final results that
emerge after all of the decays are concluded.
Our results for the dark-matter phase-space distributions

g0ðp; tnowÞ are shown in Fig. 16. Once again, the different
panels of Fig. 16 correspond to the same choices of r and s
as in Figs. 14 and 15. In order to facilitate comparison
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between the results obtained for different values of r and s,
we have chosen the initial conditions in each case such
that all of our final distributions g0ðp; tnowÞ share not only a
common overall normalization but also a common value
for the ratio hpinow=m0, where hpinow is the average
present-day momentum of the distribution. The overall
normalization for g0ðp; tnowÞ is chosen to correspond
to the observed present-day dark-matter energy density

ρDM ≈ 10−5 h2GeV cm−3. Likewise, for all of the plots in
Fig. 16 we have chosen the value

hpinow
m0

¼ TCMB

100 eV
≈ 2.3 × 10−6; ð4:12Þ

where TCMB ≈ 0.23 × 10−3 eV is the present-day temper-
ature of the cosmic microwave background (CMB)

FIG. 16. The phase-space distributions g0ðp; tnowÞ in our model for the lightest ensemble constituent ϕ0 at the present time. The
different panels correspond to the same choices of r and s as in Figs. 14 and 15. The initial conditions in each case have been chosen
such that these distributions share not only a common overall normalization but also a common value for the ratio hpinow=m0, where
hpinow is the average momentum of the distribution at present time.
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radiation. This value is motivated as follows. In general, we
are interested in situations in which a significant portion of
the total dark matter exhibits speeds lying within the rough
window v ≈ p=m0 ∼Oð10−8 − 10−5Þ. Indeed, if a signifi-
cant fraction of the dark matter has speeds above this

window, the resulting dark matter will be too “hot” to
accord with observation. On the other hand, the free-
streaming of dark matter with speeds below this window
will eventually have effects on PðkÞ which are evident only
at large values of k which are beyond the range at which

FIG. 17. The k-space distributions g̃ðkÞ defined in Eq. (3.10) and squared transfer functions T2ðkÞ≡ PðkÞ=PCDMðkÞ corresponding to
each of the phase-space distributions g0ðp; tnowÞ shown in Fig. 14. As we sweep from smaller to larger values of k within the k-space
distributions g̃ðkÞ (outlined in solid black curves), we have shaded the area inside the g̃ðkÞ distributions according to the accumulated hot
fraction function FðkÞ defined in Eq. (3.13). These same colors are then used for plotting the corresponding transfer functions T2ðkÞ as
functions of k. The tick marks along the bottom, top, left, and right axes of each panel correspond respectively to the wave number k, the
corresponding velocity v, the transfer function T2ðkÞ, and the k-space distribution g̃ðkÞ.
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they can reliably be probed observationally. Motivated by
these considerations, we have therefore chosen to anchor
the overall scale of the present-day momentum hpi for
our g0ðp; tnowÞ distribution as in Eq. (4.12) such that the
speed of a typical dark-matter particle lies within our
window of interest.
In this connection, we observe that the Boltzmann

equations which give rise to g0ðp; tÞ are invariant under
the rescalings specified in Eq. (A12). Likewise, our eventual
power spectrum PðkÞ depends only on the velocities v ≈
p=m0 of ϕ0 rather than on p and m0 independently. This
result of course assumes that the conditions fiðp; tÞ ≪ 1 are
likewise satisfied for all of the ϕi distributions in our
ensemble during all times t ≥ tI during which our
Boltzmann evolution takes place. In particular this must
be true for f9ðp; tIÞ—corresponding to the heaviest state the
ensemble—prior to the decay process. We have verified
numerically that even for m0 as small as 20 keV, which
corresponds to a present-day average momentum hpinow¼
200TCMB, these consistency criteria are satisfied. Indeed, the
required normalization for g9ðp; tIÞ is such that fiðp; tÞ ≪ 1
for all ϕi in the ensemble at all t ≥ tI for all combinations of
r and s considered in Fig. 16.
We see from the results in Fig. 16 that all of our expec-

tations from Sec. II are indeed borne out. For example, as
anticipated, the phase-space distributions g0ðp; tnowÞ
obtained for r ≤ 0 and s ≤ 0 are essentially unimodal,
while the distributions which arise either for r > 0 or
for s < 0 exhibit a complicated, multimodal structure.
Likewise, we see that single peaks within the unimodal
distributions sit at higher momenta than the lowest-momen-
tum peaks within the multimodal distributions, again in line
with our expectations above.
These results also demonstrate one of our main themes

of this paper, namely that fairly complex and even multi-
modal dark-matter phase-space distributions can easily
arise, even when the full details of the Boltzmann evolution
are incorporated into the analysis. Indeed, the existence
of many independent levels and the proliferation of
overlapping decay chains do not wash out the nontrivial
structures for g0ðpÞ that we anticipated in Sec. II. Instead,
they only serve to enhance these structures.
We now turn to examine the k-space distributions g̃ðkÞ

and squared transfer functions T2ðkÞ≡ PðkÞ=PCDMðkÞ
corresponding to each of the phase-space distributions
g0ðp; tnowÞ shown in Fig. 16. Our results are shown in
Fig. 17. For each phase-space distribution g0ðp; tnowÞ, the
corresponding k-space distribution g̃ðkÞ is defined in
Eq. (3.10). Likewise, we have calculated each correspond-
ing transfer function T2ðkÞ using the CLASS [3–6] software
package. As we sweep from smaller to larger values
of k within the k-space distributions g̃ðkÞ in Fig. 17,
we have shaded the area inside the g̃ðkÞ distributions
according to the accumulated hot fraction function FðkÞ
defined in Eq. (3.13). These same colors are then used for

plotting the corresponding transfer functions T2ðkÞ as
functions of k.
The results in Fig. 17 are once again in complete

accordance with our expectations from Sec. III. In particu-
lar, we see that the logarithmic slope d logT2ðkÞ=d log k of
the transfer function indeed appears to correlate with the
hot fraction function FðkÞ. Indeed, this slope holds steady
in regions where the hot fraction function is relatively
constant (with relatively little change of color), while this
slope changes more rapidly in regions where the hot
fraction function (and thus the corresponding color) is also
changing rapidly. This is precisely the behavior anticipated
in Sec. III. However, we now see that this behavior survives
robustly even for dark-matter phase-space distributions
which are fairly complicated, potentially even exhibiting
many different peaks and troughs as functions of k.

D. An explicit test of our reconstruction conjecture

Finally, given the transfer functions in Fig. 17, we can
now perform a test of our conjectured relation in Eq. (3.18).
In particular, we can now determine the extent to which this
relation allows us to reconstruct the dark-matter phase-
space distribution g̃ðkÞ directly from the transfer function
T2ðkÞ. Our results are shown in Fig. 18. In each panel of
this figure, the black curve shows the transfer function
T2ðkÞ from Fig. 17, while the blue outline shows the
original underlying k-space dark-matter phase-space dis-
tribution g̃ðkÞ from which it was derived, also from Fig. 17.
By contrast, the pink shaded regions show the recon-
structed phase-space distributions g̃ðkÞ that follow directly
from the transfer function T2ðkÞ via our conjectured
“inverse” relationship in Eq. (3.18).
Although the reconstructed phase-space distributions

do not match the original phase-space distributions
exactly, they nevertheless do faithfully capture the most
salient features of these distributions. Indeed, this is true
not only for the unimodal distributions that emerge
for r ≤ 0 and s ≤ 0, but also for the multimodal dis-
tributions that emerge otherwise. Likewise, this remains
true even in cases for which our distributions are
relatively extended, with no sharp peaks at all, such as
those which emerge for s < 0. We thus conclude that our
conjectured relationship holds remarkably well across a
variety of possible dark-matter distribution shapes (ther-
mal, nonthermal, unimodal, multimodal, and so forth).
A priori, the relationship between the phase-space dis-
tribution gðpÞ and the resulting power spectrum PðkÞ is
complex, involving rather nontrivial initial conditions
incorporating primordial perturbations of the inflaton and
other fields which are then propagated forward in time
using the linearized Einstein equations in the presence of
these noncold dark-matter species. Given this situation,
we find this degree of agreement for what is essentially a
relatively simple analytic “inversion” formula to be rather
stunning.
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The results of this section thus illustrate that many
features of the early-universe dynamics associated with
the nonminimal dark sector of our illustrative model are
indeed imprinted on the resulting matter power spectrum,
and that an “archaeological” study of the matter power
spectrum is indeed capable of reconstructing many aspects
of this cosmological history. Indeed, we have seen that
many features of the dark-matter phase-space distribution
can be reconstructed from the transfer function via our
conjecture in Eq. (3.18). Likewise, the specific pattern of

peaks and valleys within this reconstructed phase-space
distribution reflects the integrated deposit history onto the
dark-matter conveyor belt, and through the particular
properties of the peaks involved we may even use results
from Sec. II—such as those in Table II—in order to
elucidate many aspects of the particular decay phenom-
enology involved. Thus, while no archaeological study can
reconstruct every aspect of the cosmological past, we have
seen there is much that we can indeed learn through these
sorts of analyses.

FIG. 18. An explicit test of our reconstruction conjecture in Eq. (3.18). In each panel, we show three curves: the original dark-matter
phase-space distribution (blue), the corresponding transfer function (black) to which it gives rise, and the phase-space distribution (red/
pink) which has been “reconstructed” from the transfer function via Eq. (3.18). We see that in all cases—including those with unimodal,
bimodal, and even trimodal distributions, with peaks of assorted heights and widths—our conjecture reproduces many of the critical
features of the original phase-space distribution with remarkable accuracy.
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V. CONCLUSIONS AND DISCUSSION

Throughout this paper, our goal has been to develop a
toolbox of methods for learning about, and potentially
constraining, the features of nonminimal dark sectors and
their dynamics in the early universe. By necessity this quest
has been fundamentally “archaeological”—we seek to
exploit present-day data in order to learn about the past.
In this paper our approach to this question has been
centered around two somewhat independent linkages, as
first outlined in Eq. (1.1): the first connects early-universe
dynamics (such as that associated with a nonminimal dark
sector) to a resulting dark-matter phase-space distribution
fðpÞ, and the second connects this phase-space distribution
to a corresponding matter-power spectrum PðkÞ. In prin-
ciple, this latter quantity is observable—an assertion which
we shall discuss further below—and thus our overarching
goal has been to examine the extent to which we can
“invert” the flow chart in Eq. (1.1) and thereby constrain
not only the corresponding dark-matter distribution fðpÞ
but also the possible early-universe dynamics from which
this fðpÞ distribution might have arisen—all while starting
from a given matter power spectrum PðkÞ.
Needless to say, a complete inversion is not possible, and

we have seen numerous examples in this paper in which
several different cosmological histories give rise to the
same (or similar) present-day data. Yet, there have also
been instances in which we can draw fairly robust con-
clusions regarding the inverse map with only a handful of
reasonable assumptions. Collectively, such results may be
of critical importance if the dark sector turns out to interact
with the visible sector exceedingly weakly, or perhaps even
only gravitationally. Studies focusing on inverting such
quantities as the matter power spectrum may then be the
only ways of ever learning about the dark sector and its
early-universe dynamics.
In this paper, we have examined each of the linkages

within Eq. (1.1) from a number of different directions,
always with an eye towards assessing the extent to which
the mappings they represent might be inverted. Along the
way, we have generated what we believe to be a number of
interesting and potentially useful results.
In Sec. II B, we began by studying the decay process from

a given parent phase-space distribution (or “packet”) to a
corresponding daughter packet. We found that this process is
highly complex, as illustrated in Fig. 3, involving a mixture
of effects due to time dilation, cosmological redshifting, and
the exponential nature of the decay process itself. Under
certain assumptions that are discussed in the text, we believe
that our chief results in this direction include the following:

(i) First, under certain assumptions, we found that the
width and average momentum of a given daughter
packet allow us to greatly constrain the properties
of the parent from which it arose as well as the
marginality of the corresponding decay process.

These results are shown in Table II. Indeed, we
found that in some cases this reconstruction is unique,
while in other cases several possibilities exist.

(ii) Second, in some cases we were able to obtain
universal functional forms which describe the re-
sulting daughter packets. For example, in the limit
that the parent is highly nonrelativistic, we found
that the daughter packet always approaches the
universal functional form shown in Eq. (2.28) and
illustrated in Fig. 5. By contrast, for certain highly
relativistic decays, we found that the daughter packet
will instead have the very different universal func-
tional form shown in Fig. 7.

(iii) Third, by comparing the results of Tables I and II, we
were able to explore the interplay between decay
kinematics and cosmological expansion. This resulted
inourobservations, as outlined inTable III, concerning
themanner inwhich individual decaydeposits onto the
daughter conveyor belt accrue as time evolves. These
generalobservationsallowedus todetermine theextent
to which cosmological expansion causes the daughter
packets to bewider thanwould have been predicted on
the basis of decay kinematics alone. In some cases, we
found that cosmological expansion has little overall
effect on the shape of the resulting daughter packet—
indeed, in such cases a packet of similar shape would
have emerged even if the universe had not been
expanding. As indicated in Table III, these packets
tend to have relatively sharp edges. In other cases, by
contrast,we found that cosmological expansionplaysa
significant role in shaping the resulting daughter
packet. In these cases the resulting packets tend not
to have such sharp edges.

(iv) Finally, we demonstrated that the overall tilt or
skewness of the daughter packet also carries infor-
mation concerning the parent from which the daugh-
ter emerged. For example, as anticipated in Eq. (2.20)
and verified explicitly in Fig. 8, we found that there is
a close relationship between the skewness of the
daughter packet and the degree to which the parent
was relativistic at the time it was produced. In
Eq. (2.21) we even determined the conditions under
which such relativistic skewness effects will be
significant. Moreover, in a similar way, we were also
able to demonstrate an entirely different skewness
relationship: one between the skewness of the daugh-
ter packet and the decay rate Γ experienced by the
parent [as expressed in units of the Hubble parameter
Hðt0Þ at the time t0 when the parent was established].
These results are illustrated in Fig. 6. Together, these
results imply that the skewness of the daughter packet
can also serve as a useful tool in reconstructing the
properties of the parent.

Next, in Sec. II C, we enlarged our discussion beyond the
case of a single parent to examine the full set of decays that
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can occur within a nonminimal dark sector containing
many different constituents. Within this context, our
primary observations are as follows:
(v) We explicitly demonstrated that such a nonminimal

dark sector can leave dramatic imprints on the phase-
space distribution associated with the dark-sector
ground state (presumed to be the dark matter that
survives to the present time). We found that the
resulting dark-matter phase-space distribution need
no longer be thermal—in fact, it may even be
multimodal, exhibiting a nontrivial pattern of peaks
and troughs as a function of momentum. Such
results therefore carry us beyond the sorts of thermal
phase-space distributions that are traditionally as-
sumed for dark-matter particles. In fact, we found
that multimodal phase-space distributions emerge
quite generically as the result of overlapping decay
chains, even if we start from a single ancestor with a
simple, unimodal phase-space distribution. This
remains true even if our ancestor was produced
thermally. Thus we see that our final dark-matter
phase-space distribution can be nonthermal (and
potentially even multimodal)—even if the dark sector
was initially populated through thermal means.

In Sec. III, we turned to examine the second linkage in
Eq. (1.1)—that connecting the dark-matter phase-space dis-
tribution gðpÞ to the matter power spectrum PðkÞ. Given our
results from Sec. II C, we allowed our analysis to remain
completely general and we did not assume any particular
form for the dark-matter phase-space distribution. In this
context, we regard our main results to be the following:
(vi) First, given an arbitrary phase-space distribution

gðpÞ, we introduced a corresponding new quantity,
a “dual” k-space distribution function g̃ðkÞ. We
view this as an important conceptual step since the
p and k variables are not dual to each other in any
“Fourier” sense. Rather, we utilized the defining
relation for the horizon wave number khorðpÞ in
Eq. (3.7) in order to define a mapping between the
p-variable of gðpÞ and the k-variable of PðkÞ,
implicitly identifying khor with k itself. We stress
that this treatment is completely unorthodox, since
khorðpÞ is technically the minimum value of k for
which PðkÞ could potentially be affected by dark
matter of momentum p. As such, there is therefore no
direct relation between khor and the k-variable of
PðkÞ. Nevertheless, by choosing to identify these two
variables with each other, it becomes possible
to consider the dark-matter phase-space distribu-
tion gðpÞ in the same k-space as the matter power
spectrum PðkÞ. This ultimately proved to be a critical
step in reconstructing the former from the latter.

(vii) Second, prompted by our phenomenological obser-
vations in Sec. III C, we also defined a so-called “hot
fraction function” FðkÞ. Once again, this is a fairly
nontrivial step because it too rests again on our

unorthodox mapping between the p-variable of gðpÞ
and the k-variable of PðkÞ. Indeed, the hot fraction
function FðkÞ is the total accumulated dark-matter
abundance from all momenta p greater than k−1horðkÞ.

(viii) Finally, given these two new quantities g̃ðkÞ and
FðkÞ, we were able to put forth what may prove to be
one of the most important results of this paper: our
“reconstruction” conjecture in Eq. (3.18). In this
context, it is important to emphasize that we regard
this conjecture as having two fairly independent
components. The first component of our conjecture
is the assertion that the hot fraction function FðkÞ is
directly correlated not with the transfer function
T2ðkÞ≡ PðkÞ=PCDMðkÞ itself, but rather with its
logarithmic slope d logT2=d log k. This assertion is
written explicitly in Eq. (3.15) in terms of an
unknown correlation function η, and thus stands
independently of any particular correlation function
η. Given this, the second component of our con-
jecture asserts a particular empirical form for this
correlation between FðkÞ and the logarithmic
slope d logT2=d log k. This correlation is given in
Eq. (3.17). This result then implicitly furnishes us
with an explicit form for the η-function described
above, and thereby leads directly to our final
conjecture in Eq. (3.18).

One remarkable feature of our conjecture is that it relates
PðkÞ to g̃ðkÞ point by point in k-space. Indeed, as long as
we know the transfer function T2ðkÞ and its derivatives at a
specific value of k, our conjecture allows us to reconstruct
g̃ðkÞ at that value of k. In this sense our reconstruction is
local, mapping each portion of the matter power spectrum
curve to a corresponding portion of the dark-matter phase-
space distribution. This is a very useful feature because
each portion of the g̃ðkÞ curve directly maps back to a
corresponding portion of the original gðpÞ phase-space
distribution, and this in turn maps back to a sum of deposits
along a particular “backwards FRW momentum lightcone”
[here borrowing the language below Eq. (2.10)]. Thus we
can trace our inverse map point by point along these curves,
and thereby potentially correlate specific features in the
matter power spectrum with specific deposit profiles
stemming from early-universe dynamics.
In Sec. IV, we then proceeded to test all of these ideas

within the context of an actual illustrative model. We began
by specifying a particular Lagrangian governing early-
universe dynamics and proceeded all the way to a calcu-
lation of the corresponding matter power-spectrum. As
expected, this model was able to give rise to dark-matter
phase-space distributions of great variety, including some
which are unimodal, some which are bimodal or trimodal,
and even some which have fairly nontrivial patterns of
peaks and troughs—all arising as a consequence of the
large number of dark-sector states and a corresponding
multiplicity of decay pathways involving different charac-
teristic timescales. These distributions are shown in Fig. 16.
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Within this model we were also able to perform a rigorous
test of our reconstruction conjecture in Eq. (3.18). In all of
the cases explored, we obtained results for the recon-
structed distributions g̃ðkÞ which, though not exact, suc-
cessfully captured all of their salient phenomenological
features. This is illustrated explicitly in Fig. 18. Likewise,
in Appendix D, we traced the time development of this
model during the intra-ensemble decay process and dem-
onstrated how the total energy density and equation of state
of the dark sector evolved nontrivially as the decay process
unfolded. All of these results confirmed our main con-
clusions as highlighted above.
Finally, last but not least, we would be remiss not to

mention one further unique feature of our work:
(ix) Within this paper, we developed a very intuitive

picture for viewing the cosmological time develop-
ment of a given dark-matter phase-space distribution
gðpÞ in terms of a cosmological “conveyor belt” and
deposits onto it. Of course, as we discussed, this
picture is nothing but a physical representation of the
integral form of the standard Boltzmann equations,
and as such it is not necessarily “new.” Nevertheless,
throughout this paper, we repeatedly found this
physical picture to be a particularly useful one,
especially for nonminimal dark sectors and the
decays that can arise amongst their constituents.
Indeed, this intuitive picture of deposits onto a
cosmological conveyor belt has served as the back-
bone of much of the discussion in this paper.

Needless to say, this paper has spanned considerable
territory. As such, a number of comments are in order,
concerning not only the work we have done but also
possible directions for future investigation.
First and foremost, our ability to perform the kind of

archaeological reconstruction we have described in this
paper is predicated on our ability to measure PðkÞ at large
k. Understanding the extent to which we are currently able
to probe the matter power spectrum is therefore critical for
our work. It is also important to assess the future prospects
for probing PðkÞ at even higher k.
Measurements of the linear matter power spectrum based

on data obtained at low redshifts are currently reliable for
k≲ 0.05–0.1 Mpc−1. However, observations of the Lyman-
α forest at higher redshifts up to z ∼ 5 can provide addi-
tional information about the linear matter power spectrum
at wave numbers up to k ∼ 1 Mpc−1. At higher z, the
density of neutral hydrogen is so large that the hydrogen
emission spectrum becomes difficult to measure. However,
observations of the 21-cm spectral line of neutral hydrogen
at redshifts up to z ∼ 30 could potentially yield information
about the linear matter power spectrum at much higher k.
There are of course certain practical considerations which
would render such a measurement challenging. For exam-
ple, any instrument capable of attaining the requisite
sensitivity would need to have an enormous collection

area, and ionospheric effects on radio signals with frequen-
cies below 100 MHz would likely render a terrestrial
telescope unsuitable for this purpose. Such a measurement
is nevertheless possible in principle.
Another strategy forprobing thedynamics of anonminimal

dark sector during the early universe would be to perform a
reconstruction of the dark-matter phase-space distribution
similar to theonewehave discussed in this paper, but basedon
the nonlinearmatter power spectrum. For example, informa-
tion about the clustering of matter on very small scales can be
obtained when light emitted by quasars and other distant
astrophysical objects is gravitationally lensed by small fore-
ground objects with masses down to ∼106 M⊙, producing
arcs and other similar observable features.
The challenges involved in extracting meaningful infor-

mation concerning the underlying dark sector from the
nonlinear matter power spectrum are not only observatio-
nal, but also theoretical and computational. A detailed
analysis of how structure evolves in the nonlinear regime
generally requires computationally expensive N-body sim-
ulations such as GADGET-2 [12]. That said, less computa-
tionally intensive tools and approximation methods exist
which can provide insight into how dark-matter velocity
distributions affect the power spectrum on small scales.
Approaches along these lines include the application of
fitting procedures such as HALOFIT [13] and approxima-
tions concerning the collapse of dark-matter halos [14].
While these approaches have been applied to warm-dark-
matter scenarios [15], any results obtained from the highly
nonthermal and multimodal distributions we have dis-
cussed here would likely be considerably different.
Despite the complications involved in extending our

analysis to the nonlinear regime, there are compelling
motivations for studies along these lines. It has been
suggested [16] that single-component dark-matter scenar-
ios with a thermal-like distribution are not capable of
successfully addressing small-scale structure anomalies
such as the “too-big-to-fail” problem [17] while at the
same time satisfying Lyman-α constraints. This incompat-
ibility is ultimately due to the steepness of the suppression
in the power spectra associated with thermal-like distribu-
tions. Likewise, standard warm-dark-matter models have
been proposed as a way to reproduce the observed density
profiles of dark-matter halos, but suffer from the so-called
“Catch-22” problem [18]. By contrast, the highly non-
thermal phase-space distributions we have studied here
may be able to address these issues with more success.
Indeed, the linear power spectra which arise from such
distributions often do not fall as steeply with k, primarily
because g̃ðkÞ can span a broader range of scales. Moreover,
even in the simplest such scenarios—e.g., dark matter
produced through the decay of a single unstable species—
constraints are easier to satisfy and structure on small scales
differs appreciably from the predictions of thermal dark-
matter models [1,19].
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Weemphasize that small-scale structure in the theorieswe
have studied here is also likely to differ in other ways from
that expected in theories of thermal warm dark matter. For
example, in thermal warm-dark-matter scenarios, a mini-
mum mass Mmin ∝ k−3FSH (ultimately dictated by the free-
streaming horizon kFSH) exists below which dark-matter
halos do not form. Such a cutoff in the associated halo-mass
function is corroborated by N-body simulations [20]. By
contrast, as we have seen, the free-streaming horizon is
generally not a reliable indicator of the dark-matter phase-
space distribution for nonminimal dark sectors.
As our conjecture makes clear, some features of non-

minimal dark sectors may be more easily reconstructed
than others. As noted above, our conjecture relates each
point in the matter power spectrum to a corresponding point
in the dark-matter phase-space distribution. Thus, our
conjecture gives us information about the dark-matter
phase-space distribution only for the specific momentum
scales which correspond, via Eq. (3.7), to the wave number
scales at which we can observe the matter power spectrum.
If, as discussed above, one can eventually extend the linear
regime towards even higher values of k, our conjecture may
then allow us to reconstruct portions of the dark-matter
phase-space distribution at even lower velocity. Further
details might also be accessible depending on the precision
with which such observations can be made and perhaps
even the extent to which our theoretical conjecture might be
refined. This provides additional motivation for extending
the reach of the linear regime.
There are many possible dark-matter scenarios for which

our reconstruction techniques could be useful. Of course, in
this paper we have demonstrated the utility of these
techniques within the context of an explicit model pre-
sented in Sec. IV. This model also demonstrated how
competing decay chains in particular yield highly non-
thermal dark-matter momentum distributions. As already
noted, this model was chosen for its illustrative power and
was not meant to describe a UV-complete description of the
dark sector. However, models with many of the same
qualitative features emerge naturally within a number of
UV-complete scenarios for new physics.
For example, such features generically arise in theories

involving extra spacetime dimensions. Indeed, in scenarios
where the SM is localized on a brane within the higher-
dimensional bulk, the Kaluza-Klein (KK) excitations
of bulk fields are necessarily neutral under the SM
gauge group. From a four-dimensional perspective, such
excitations therefore manifest themselves as towers of
“dark” particles. The self-interactions of bulk fields can
therefore give rise to intra-ensemble decays among the
corresponding KK modes, as can interactions between
bulk fields and fields on the brane [21–23]. In either
case, the decay properties of the KK modes are determined
both by the couplings involved and by the geometry of
the extra dimensions. For example, in scenarios involving

warped extra dimensions, the pattern of decays—and
therefore the shape of the resulting dark-matter phase-
space distributions—depends sensitively on the degree of
warping [24].
Clockwork scenarios [25–27] also involve large numbers

of dark particles. The structure of the dark sector in
clockwork models effectively consists of a single light
weakly coupled state, along with a compressed mass
spectrum of heavier states. In a manner similar to dimen-
sional deconstruction [28], these models can be constructed
as discretizations of extra-dimensional theories which are
similar to the linear-dilaton model [27,29–32], an approxi-
mate holographic dual to little string theory [33]. The
interactions among the fields which drive the clockwork
mechanism can naturally involve intra-ensemble decays
among these states. The particular spectrum of masses and
couplings in clockwork models implies a pattern of intra-
ensemble decays that would differ from those in the other
scenarios described above.
There also exist other frameworks in which the dark

sector generally comprises large numbers of dark particles.
For example, such dark particles may emerge as the
“hadrons” associated with the confining phase of a strongly
coupled dark sector [24,34]. Likewise, the dark particles
may also arise naturally as the gauge-neutral bulk states of
type I string theories [34]. Such frameworks are likely to
have very different phenomenologies from those discussed
above, since the density of dark states in such theories
grows exponentiallywith mass and the states themselves lie
along linear Regge trajectories. It would be interesting to
explore the phenomenology of the intra-ensemble decays
and resulting dark-matter phase-space distributions that
might emerge in such scenarios.
There also exist many possible generalizations and

extensions of our work. One aspect of our work that
may be broadly extended is the production mechanism
for our dark sector. To a large extent, the production
mechanism is dependent on how our ensemble couples
to external fields. In this work, we have generally assumed
that our ensemble has only gravitational couplings to the
visible sector. Additionally, within our example model in
Sec. IV, we assumed that our ensemble has “top-heavy”
initial conditions—i.e., conditions in which the heavier
states acquire larger initial energy densities.
Although the latter assumption was not critical for our

main results, there exist many production mechanisms that
yield such initial conditions. Perhaps the most obvious of
these is gravitational production. For example, dark par-
ticles can be generated due to the changing spacetime
metric at the end of inflation [35]. Indeed, this process
is often invoked as a potential abundance-generation
mechanism for ultraheavy dark-matter candidates [36,37].
Furthermore, as shown in Refs. [38–45], oscillations of
background quantities induced by inflaton dynamics can
also contribute to particle production in the early universe.
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This also constitutes an abundance-generation mechanism
for dark matter. In general, depending on the details of
the inflationary model and how the dark-sector particles
interact with one another, gravitational production can
make substantial contributions to the cosmological abun-
dances of particles with a potentially broad range of mass
scales. Moreover, in many cases the energy density
bestowed upon a given dark-sector species in such
scenarios generally increases as a function of its mass.
Thus, we see that gravitational production often furnishes
a “top-heavy” distribution of energy densities. Indeed,
gravitational production is particularly appealing within
the context of this paper because it is not predicated on the
presence of any nongravitational interactions between the
fields of the dark and visible sectors.
Beyond gravitational production, our dark sector can

also be populated through interactions with the inflaton
field. For example, the initial population could simply be
produced through the perturbative decay of the inflaton as
part of the reheating process. As with gravitational pro-
duction, this production mechanism can also yield a “top-
heavy” distribution of energy densities, provided that the
branching ratios for inflaton decays are larger for the more
massive states in our ensemble. Furthermore, the distribu-
tion of dark-sector energy densities can also be sensitive to
the shape of the inflaton potential during reheating,
particularly if the curvature of this potential changes
significantly over the range of field values through which
the inflaton oscillates [46].
Interactions with the inflaton can also populate our

ensemble through nonperturbative processes. In particular,
once the inflaton begins oscillating coherently, parametric
instabilities develop which lead to the explosive production
of bosonic dark-sector particles within certain momentum
bands [47–50]. The resulting dark-sector energy densities
and momentum distributions depend on a variety of factors,
including their couplings to the inflaton and the shape of the
inflaton potential. Interactions among the ensemble consti-
tuents can have an impact on the outcome as well, since
these affect the modulation of the effective masses of the
dark-sector fields, a possibility we shall discuss in more
detail below. Additionally, we note that the process of
thermalization is generally complicated in these scenarios
—with phases of nonlinear dynamics, turbulence, etc.—and
these could play an important role in establishing the relative
initial abundances of the different dark-sector states.
Additional production mechanisms are also available if

the ensemble couples to other external states. For example,
production can occur through the freeze-in mechanism
[51–54], which is of particular interest in this regard
because the couplings involved need not be large. The
freeze-in production of our ensemble can occur through
interactions with either visible-sector particles, or particles
in some other separate dark sector. Similarly, depending on
the strength of our intra-ensemble couplings, the freeze-in

and freeze-out mechanisms can also occur through intra-
ensemble interactions. In particular, these processes could
play an important role in the thermalization of our phase-
space distributions at early times.
Another possible extension of our work relates to visible-

sector couplings. In this paperwe have assumed for simplicity
that our dark sector is essentially decoupled from the visible
sector. We therefore assumed that the decays of our dark-
sector states do not produce SM particles. While this is
certainly a viable possibility, it would also be interesting to
examine the consequences of relaxing this assumption. For
example, as discussed above, the presence of nongravitational
interactions between these sectors opens up new possible
dark-matter production mechanisms. Moreover, such inter-
actions generically give rise to scattering processes involving
both thedarkandvisible sectors.Theseprocesses,whichbring
the dark-sector states towards kinetic equilibrium, could
potentially distort the phase-space distributions of these states
and thereby wash out the associated imprints in the matter
power spectrum. However, the presence of these interactions
also opens up the possibility that the dark sector could be
probed through other, complementary means. For example,
these interactions can introduce dark-matter decay channels
involving SM particles in the final state. Not only do such
decay channels transfer energy from the dark to the visible
sector, but they can also have other observational conse-
quences. Thus, itmight be possible to simultaneously observe
both a signal of dark-sector dynamicswithin thematter-power
spectrumand a complementary signal of interactions between
the dark and visible sectors. It would be interesting to
investigatehowlarge these couplingscouldbewithouterasing
information which would otherwise have been imprinted
within the matter power spectrum.
Another assumption we have made that can potentially

be relaxed concerns the lifetimes of our dark-sector states.
In particular, we have focused on the regime in which the
lifetimes of all unstable dark-sector states are sufficiently
short that all of their energy density has been transferred to
the lightest species by the beginning of the BBN epoch. We
have made this assumption since the decays of unstable
particles at subsequent times—even decays solely to other,
lighter states within the dark sector—are constrained by
their impact of the cosmic expansion rate and its effect on
various observables [55–58]. These observables include the
spatial distribution of CMB anisotropies, baryon-acoustic-
oscillation data, and the relationship between the redshifts
and luminosity distances of Type Ia supernovae. Moreover,
if these particles can decay into visible-sector states, even
more stringent bounds apply. To allow for dark-matter
decays during or after BBN, one must ensure that obser-
vational limits on the production of such states are satisfied.
The corresponding bounds on the lifetime and abundance
of a single decaying particle species were derived in
Refs. [59–70]. Likewise, the constraints on decays to
electromagnetically interacting final states for an entire
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ensemble of decaying particles have been formulated in a
model-independent way in Ref. [71].
Of course, if one or more of these unstable dark-sector

states is extremely long-lived, with τl ≳ tnow, these states
contribute to the present-day dark-matter abundance. Such
dark-matter scenarios then fall within the purview of the
Dynamical Dark Matter framework [21–23]. The phase-
space distributions associated with all of these dark-matter
components will generically have nonthermal profiles as a
consequence of intra-ensemble decays. As a result, any
such component which retains a non-negligible energy
density into the matter-dominated epoch contributes to the
growth (or suppression) of matter perturbations, rendering
the process of structure formation far more complicated.
Furthermore, these dark-matter components presumably
continue to decay throughout the epoch during which these
perturbations become nonlinear, thereby altering the
dynamics of dark-matter halo formation and modifying
the resulting spatial mass distribution of the halos.
Another assumption that may be relaxed concerns the

effects of Bose enhancement or Pauli blocking. Throughout
this paper, for simplicity we focused exclusively on the
flðp; tÞ ≪ 1 regime for each of our dark-sector species.
However, there are several reasons to extend our analysis
by relaxing this assumption. For example, in scenarios in
which the dark-sector states are scalar fields—e.g., moduli
or axion-like particles—these fields can acquire vacuum
expectation values (VEVs) which are misaligned from the
minimum of the scalar potential. Indeed, such a misaligned
VEV is associated with a zero-momentum condensate,
severely violating the condition flðp; tÞ ≪ 1 [72]. A
complete description of the scalar ensemble then neces-
sarily involves this condensate, in addition to any contri-
butions to flðp; tÞ from other production mechanisms.
There are several considerations that can impact the

dynamics of the ensemble when the criterion flðp; tÞ ≪ 1
does not hold and quantum effects come into play. One of
these is that the contributions to the collision operator C½f�
in Eq. (A2) associated with scattering, decay, and inverse-
decay processes all involve factors of ð1þ flÞ—factors
which cannot be approximated as unity in the presence of a
condensate. The impact of these effects on the phenom-
enology of scalar fields has been investigated, for example,
in the context of asymmetric reheating [73,74]. Other
considerations associated with the VEVs of dark-sector
fields can alter the phenomenology in significant ways. For
example, within the context of the illustrative model
presented in Sec. IV, the presence of a set of VEVs hϕli
for the ϕl implies that each dark-sector species acquires a
field-dependent contribution to its mass as a consequence
of the trilinear coupling in Eq. (4.2). In particular, the
effective mass of each such species in this case is given
by ðm2

lÞeff ¼ m2
l þ 2

P
N
i¼0 cillhϕii.

While this is interesting in and of itself, even more
interesting is the possibility that the hϕli—and therefore

the effective mass of each dark-sector species—could be
time-dependent. This occurs naturally if any of the hϕli
are displaced from the minimum of the scalar potential at
early times. Then, once the Hubble parameter falls to
H ∼ml, the corresponding field VEV will begin to
oscillate coherently. As a result, parametric instabilities
can develop—instabilities which lead to an enhanced
production of scalars within particular momentum bands.
Alternatively, a time dependence for the ðm2

lÞeff can also
arise directly as a consequence of dynamical processes
which do not involve modulation of the VEVs of other
dark-sector fields—e.g., from a cosmological phase tran-
sition. Even considering only the effect on the VEVs,
multiple fields receiving such dynamical mass contribu-
tions exhibit an array of possible behaviors [75–77].
Furthermore, when the ðm2

lÞeff evolve in this way, the
pattern of intra-ensemble decays could be drastically
altered, thereby modifying the ultimate shape of the
resulting dark-matter phase-space distributions.
In this paper we have shown that multimodality of the

dark-matter phase-space distribution can emerge quite
generically within a multicomponent dark sector when
there are overlapping decay chains with different decay
rates. However, strictly speaking, one does not require
independent decay chains in order to produce multimo-
dality. Indeed, even a single decay pathway can produce a
multimodal distribution for the daughter if the parent itself
experiences production while the decay is proceeding.
For example, a grandparent might decay and thereby
replenish the parent after the parent has already decayed.
Alternatively, the parent might be in thermal contact with
an external source (such as might occur if the parent is
experiencing thermal freezeout), and thus its abundance
might be continually replenished as it decays. In fact, a
model exhibiting the latter phenomenon already exists
within the context of sterile-neutrino dark matter [2,78].
In general, as we have discussed in Sec. II, a multimodal

dark-matter phase-space distribution will emerge whenever
there are widely separated dark-matter “deposits” onto the
cosmological conveyor belt. Of course, such deposits need
not all be the results of decays from more massive states—
any sequence of production episodes separated in time and/
or momentum can realize the same end result. An example
of such a phenomenon can be found in Ref. [79].
One of the most important results of our paper is our

reconstruction conjecture in Eq. (3.18). As emphasized
above, we regard this conjecture as having two distinct
components: the first is the assertion that the hot fraction
function FðkÞ is connected to the slope of the transfer
function d logT2=d log k, as indicated in Eq. (3.15), and the
second is the assertion of a particular function η which
describes this connection, as indicated implicitly through
Eq. (3.17). Indeed, these two assertions together yield our
final conjecture in Eq. (3.18). Although our conjecture is
remarkably successful in reproducing the salient features of
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g̃ðkÞ, we regard this conjecture as at best purely empirical.
It is therefore possible that one or both aspects of this
conjecture might be further refined. For example, it is
possible that the hot fraction function FðkÞmight also carry
a weak dependence on other (higher) derivatives of the
transfer function, or on the value of the transfer function
itself. Likewise, even with the assumption given in
Eq. (3.15), it is possible that the η-function might carry
higher-order corrections beyond those in Eq. (3.18).
Although it is not possible to rigorously invert the math-
ematical procedure through which a given dark-matter
phase-space distribution gðpÞ produces a corresponding
matter power spectrum PðkÞ, it may be possible to trace
through such a calculation algebraically to leading order in
order to learn which features of gðpÞ might dominate the
resulting PðkÞ, and vice versa. In this way, one might hope
to eventually derive our conjecture analytically, along with
possible correction terms.
Finally, it is interesting to consider how machine-learning

techniques could be applied to the archaeological inverse
problem of deciphering the properties of an underlying dark
sector from the matter power spectrum. Indeed, there has
recently been considerable interest in how machine-learning
techniques, such as the implementation of neural networks,
can be applied to various aspects of early-universe cosmol-
ogy. For example, emulators trained on Einstein-Boltzmann
solvers have been used to generate estimates for observables
such as the linear matter power spectrum and the CMB
directly from either standard cosmological parameters
[80–84] or the parameters associated with specific models
[85]. Neural networks have also been used to eliminate
computational bottlenecks involving the most time-intensive
or least-parallelizable steps in the calculations performed by
these solvers [86]. There are several ways in which machine
learning might likewise be applied to the work in this paper.
For example, one could potentially employ these techniques
in order to learn solutions to the Boltzmann evolution of our
dark-matter phase-space distributions or the resulting cos-
mological perturbations.
As is abundantly clear from this discussion, the work we

have presented here represents but a first foray in the
general direction of the archaeological reconstruction of the
dark sector based on the matter power spectrum. As such,
many avenues remain open for future research. Some
constitute potential refinements or generalizations of the
work we have presented here, while others extend our
results in a number of new directions. As further observa-
tional data accumulates concerning the properties of the
matter power spectrum, many different ideas along these
lines will be needed in order to exploit this data in pursuit of
our overall archaeological goals. We therefore hope that our
results can play a significant role in this endeavor.
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APPENDIX A: BOLTZMANN EQUATIONS

In this appendix, we describe the Boltzmann equations
which govern the time evolution of the phase-space
distributions flðpl; tÞ for the dark-sector fields ϕl in the
model introduced in Sec. IV. In general, the Boltzmann
equation which governs the evolution of flðpl; tÞ for a
given dark-sector species ϕl may be written in the form

∂flðpl; tÞ
∂t ¼ HðtÞpl

∂flðpl; tÞ
∂pl

þ C½f�
El

; ðA1Þ

where HðtÞ is the Hubble parameter, where

El ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
l þm2

l

q
is the energy of a particle of this species

with momentum pl, and where C½f� is the collision
operator. The collision operator for our model can be
written as a sum of three terms

C½f� ¼ Cð−Þ
D ½f� þ CðþÞ

D ½f� þ CS½f�: ðA2Þ
The first of these terms represents the contribution from
decay processes of the form ϕl → ϕiϕj, which serve as a
sink for ϕl, along with the corresponding inverse-decay
processes. The second represents the contribution from
decay processes of the form ϕi → ϕjϕl, which serve as a
source for ϕl, along with the corresponding inverse-decay
processes. The third term represents the contribution from
2 → 2 scattering processes which involve one or more
particles of species ϕl in the initial state, the final state,
or both.
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The first term on the right side of Eq. (A2) is given by

Cð−Þ
D ½f� ¼ −

X
i;j

Z
dΠidΠj

n
jMl

ijj2

× ð2πÞ4δ4ðpl − pi − pjÞ
×
h
flð1þ fiÞð1þ fjÞ − fifjð1þ flÞ

io
;

ðA3Þ
where the phase-space measure dΠi for the real scalar ϕi is
given by

dΠi ¼
1

ð2πÞ3
d3pi

2Ei
: ðA4Þ

The squared matrix element jMl
ijj2 for the decay process

ϕl → ϕiϕj in our model is simply

jMl
ijj2 ¼

1

N ij
c2lij; ðA5Þ

where N ij ¼ 1þ δij is the multiplicity of ϕi in the final
state of the decay process. We note that jMl

ijj2 is defined
here such that it incorporates the symmetry factor which
arises for combinations of the indices i and j for which
multiple identical particles appear in the final state of the
decay process (or in the initial state of the inverse-decay
process). Likewise, the second term on the right side of
Eq. (A2) is given by

CðþÞ
D ½f� ¼ −

X
i;j

N lj

Z
dΠidΠj

n
jMi

ljj2

× ð2πÞ4δ4ðpi − pj − plÞ
×
h
fið1þ fjÞð1þ flÞ − fjflð1þ fiÞ

io
:

ðA6Þ
The squared matrix element in this case is

jMi
ljj2 ¼

1

N lj
c2ilj; ðA7Þ

where once again the squared matrix element has been
defined such that it incorporates the relevant symmetry
factor. Finally, the third term on the right side of Eq. (A2) is
given by

CS½f� ¼−
X
i;j;k

N li

Z
dΠidΠjdΠk

n
jMli

jkj2

× ð2πÞ4δ4ðplþpi−pj−pkÞ
×
h
flfið1þfjÞð1þfkÞ−fjfkð1þfiÞð1þflÞ

io
:

ðA8Þ

Provided that the coupling coefficients associated with any
quartic terms in the interaction Lagrangian for the ϕl are
sufficiently small that they can be safely neglected, the
squared matrix element for the scattering process ϕlϕi →
ϕjϕk is

jMli
jkj2 ¼

1

N liN jk

				X
n

�
clincnjk

ðpl þ piÞ2 −m2
n þ imnΓn

þ cljncnik
ðpl − pjÞ2 −m2

n þ imnΓn

þ clkncnij
ðpl − pkÞ2 −m2

n þ imnΓn

�				2; ðA9Þ

where once again the squared matrix element has been
defined such that it incorporates the relevant symmetry
factor.
The expressions in Eqs. (A3), (A6), and (A8) are

completely general and applicable across the full param-
eter space of our model. However, within our region of
interest within this parameter space, two conditions are
satisfied which enable us to simplify these equations
considerably. The first of these conditions, which we
explicitly enforce throughout our numerical study, is that
flðpl; tÞ ≪ 1 for all dark-sector species ϕl at all times
t ≥ tI . Within this regime, all Bose-enhancement factors
can be neglected in Eqs. (A3), (A6), and (A8). These
individual contributions to the collision operator therefore
reduce to

Cð−Þ
D ½f� ≈ −

X
i;j

Z
d3pid3pj

4ð2πÞ2EiEj
½jMl

ijj2

× δ4ðpl − pi − pjÞðfl − fifjÞ�

CðþÞ
D ½f� ≈ −

X
i;j

N jl

Z
d3pid3pj

4ð2πÞ2EiEj
½jMi

jlj2

× δ4ðpi − pj − plÞðfi − fjflÞ�

CS½f� ≈ −
X
i;j;k

N il

Z
d3pid3pjd3pk

8ð2πÞ5EiEjEk
½jMli

jkj2

× δ4ðpl þ pi − pj − pkÞðflfi − fjfkÞ�: ðA10Þ

The second condition which is satisfied within our
parameter-space region of interest is that the overall scale
of the couplings among the dark-sector fields ϕl—a scale
set by the value of the parameter μ—be sufficiently small
that the terms in C½f� associated with scattering and
inverse-decay processes have a negligible effect on the
evolution of the phase-space distributions flðpl; tÞ for
these fields. In the regime in which these terms can be
neglected, the expressions in Eq. (A10) reduce to
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Cð−Þ
D ½f� ≈ −

X
i;j

Z
d3pid3pj

4ð2πÞ2EiEj
½jMl

ijj2

× δ4ðpl − pi − pjÞfl�;

CðþÞ
D ½f� ≈ −

X
i;j

N jl

Z
d3pid3pj

4ð2πÞ2EiEj
½jMi

jlj2

× δ4ðpi − pj − plÞfi�;
CS½f� ≈ 0: ðA11Þ

Indeed, we have verified numerically that for the parameter
choices specified in Sec. IV, the interaction rates for these
processes are all much smaller than HðtÞ for all t ≥ tI.
One useful property of the expressions in Eq. (A11) is

that they are linear in the phase-space densities flðpl; tÞ. It
therefore follows that the Boltzmann equations for the ϕl
are linear in the flðpl; tÞ within our parameter-space
region of interest as well. This in turn implies that the
effect of rescaling the initial normalization f9ðp9; tIÞ by an
overall constant factor is simply to rescale the normaliza-
tions of all of the flðpl; tÞ at all subsequent times by the
same factor—provided, of course, that the condition
flðpl; tÞ ≪ 1 continues to be satisfied for all ϕl at all
times t ≥ tI.
Another useful property of the Boltzmann equations

which arises within our parameter-space region of interest
is an invariance under a certain class of transformations
involving an arbitrary dimensionless scaling parameter α.
In particular, for any α > 0, it can be shown that the
Boltzmann equations are invariant under the algebraic
replacements

8>>>>>><
>>>>>>:

m0 → αm0

Δm → αΔm
μ → αμ

flðpl; tÞ → flðpl=α; αtÞ
tI → tI=α

ðA12Þ

for all of the ϕl. Physically speaking, the transformation
listed in Eq. (A12) for the phase-space distribution
flðpl; tÞ represents a uniform shift such that the occupa-
tion density in phase space at momentum pl becomes the
occupation density at momentum αpl.
The invariance of the Boltzmann equations under the

transformations in Eq. (A12) has important implications for
the phenomenology of our model. In particular, the phase-
space distribution flðpl; tÞ for any of our dark-sector fields
ϕl, expressed as a function of the dimensionless ratio
pl=m0, is identical to the phase-space distribution obtained
for any other choice of model parameters for which the
values of the dimensionless quantities Δm=m0, μ=m0, and
m0tI are the same.

APPENDIX B: DECAY FROM PARENT
TO DAUGHTER: AN EXPLICIT

NUMERICAL EXAMPLE

In Table II, we described certain general properties
of the daughter packets which result from relatively narrow
parent packets undergoing two-body decays into identical
daughters. In this appendix, we provide an explicit set of
numerical examples which may further elucidate these
general results.
These examples are shown in Table IV. In particular, the

data in this table was generated through a full numerical
Boltzmann analysis including all relativistic, redshifting,
and exponential-decay effects. For this analysis, we have
assumed Γ=Hðt0Þ ¼ 10−3 where t0 is the time at which the
parent packet is produced, and we have taken κ ¼ 3=2.
Within this table, mP and mD are respectively the parent
and daughter masses; hpprodi is the average momentum of
the parent packet at production; and hpdecayi is the average
momentum of the parent packet when the proper time
elapsed since production reaches τ≡ Γ−1. Likewise prest

D is
the momentum of the daughter in the rest frame of the
parent, a quantity which depends on the masses alone and
which is given in this case by prest

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmP=2Þ2 −m2

D

p
.

Each different case within Table IV can be specified by
choosing values of mP, mD, and either pprod or pdecay (we
shall select pdecay for this purpose); the remaining entries in
this table are then calculated accordingly.
Note that we have chosen the different cases within

Table IV in such a way as to correspond to the different
cases in Table II. These different cases are therefore listed
in Table IV using the same labeling scheme as in Table II,
with K1 and K2 in Table IV corresponding to the two
possibilities for Case K within Table II with absolute
marginalities which are either Oð1Þ or far, respectively.
In this connection, recall that the absolute marginality in
Table II is determined by the ratio prest

D =mP, while the
relative marginality in Table II is determined by the ratio
prest
D =pdecay. The different cases shown in Table IV there-

fore correspond to situations in which prest
D ≪ pdecay,

prest
D ∼ pdecay, or prest

D ≫ pdecay. Likewise, for each choice,
we have then considered only those choices for which
pdecay ≪ mP, pdecay ∼mP, or pdecay ≫ mP. As a result,
Cases A, B, D, and H are near absolute marginality (with
prest
D =mP ≪ 1), while Cases F, G, I, J, and K2 are far from

absolute marginality (with prest
D =mP approaching its maxi-

mum kinematically allowed value, which in this case is
1=2). Likewise, Cases D, H, K1, and K2 are near relative
marginality (with prest

D ≪ pdecayÞ, while Cases A, C, F, G,
and I are far from relative marginality (with prest

D ≫ pdecayÞ.
Indeed, Case F is the farthest from relative marginality, as
already anticipated below Table II.
It is clear from Table IV that our numerical results

conform quite well to our general expectations in Table II.
In making this assessment, we note that the relative
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hierarchies between our input parameters in Table IV have
usually been chosen to be approximately 103 or larger. We
therefore use this same hierarchical scale when deciding,
for example, whether a given daughter width ΔpD is to be
considered much smaller than, of the same order of
magnitude as, or much larger than mD or hpDi. The
agreement between these two tables thus provides further
confirmation of the results in Table II, with Table IV
serving as an explicit example of the physics underlying
Table II.

APPENDIX C: ADIABATIC SOUND SPEED

As background for a technical point discussed in Sec. III,
in this appendix we provide a short derivation of the
adiabatic sound speed cs associated with dark matter of a
given momentum p.
In general, cs describes the response of the pressure P

due to a change in the energy density ρ. Any pressure
perturbation δP can be written in terms of an entropy
perturbation δs and an energy-density perturbation δρ as

δP ¼ ∂P
∂s

				
ρ

δsþ ∂P
∂ρ

				
s
δρ

¼ δPnad þ c2sδρ; ðC1Þ

where Pnad is a nonadiabatic contribution which will not
concern us and where

c2s ≡ ∂P
∂ρ

				
s
: ðC2Þ

As such, the adiabatic sound speed depends only on
background quantities, and these do not vary in space
but only in time. We can therefore reexpress cs in the form

c2s ¼ _̄P= _̄ρ ðC3Þ

where ρ̄ and P̄ are average background values.
Some dark sectors have dark matter exhibiting relatively

simple phase-space distributions fðpÞ. In such cases, as
discussed in Sec. III, one might consider calculating cs
by averaging across all momenta in order to consider the
time variations of a momentum-averaged pressure and a
momentum-averaged energy density. This would then
hopefully provide a characteristic value of the associated
sound speed. In this paper, by contrast, we are interested in
situations in which the dark-matter phase-space distribution
is relatively complex and potentially even multimodal. In
such cases, a momentum average might then fail to capture
all of the relevant information.
For this reason, we shall proceed by viewing each

momentum slice through the fðpÞ distribution as its own
effective “species” having its own sound speed csðpÞ.
Indeed, as we shall demonstrate, the sound speed varies
nontrivially with p, thereby justifying this approach. In
order to calculate csðpÞ, let us assume that np is the
number density of the dark-matter particles with momen-
tum p. We then have

TABLE IV. An explicit numerical example of the decay of a parent packet into a daughter packet, shown for a variety of cases
corresponding to the cases in Table II. In obtaining this data we have assumed a parent of mass mP undergoing a two-body decay into
identical daughters of mass mD, and we have taken Γ=Hðt0Þ ¼ 10−3 and κ ¼ 3=2, where t0 is the time at which the parent is originally
produced. The data in this table was generated through a full numerical Boltzmann analysis including all relativistic, redshifting, and
exponential-decay effects. The different cases in this table are labeled according to the same labeling scheme as in Table II, with K1 and
K2 corresponding to the two possibilities for Case K within Table II with absolute marginalities which are either Oð1Þ or far,
respectively. In all cases we find that the results of this explicit example agree with the general properties outlined in Table II.

Parent Decay Daughter distribution

Case
hpprodi
mP

hpdecayi
mP

mD

mP

hprest
D i
mP

hpDi
mD

ΔpD

mD

ΔpD

hpDi
A 4.6 × 10−5 10−6

1
2
− 10−6 10−3

6.4 × 10−4 3.3 × 10−4 0.52
B 4.5 × 10−2 10−3 7.2 × 10−4 3.3 × 10−4 0.46
D 53 1 0.38 6.7 × 10−4 1.8 × 10−3

H 1.4 × 10þ6 10þ3 405 0.55 1.4 × 10−3

C 4.6 × 10−2 10−3

0.4333 1=4
0.19 0.1 0.52

E 12 1=4 0.22 0.1 0.45
K1 1.4 × 10þ6 10þ3 472 136 0.29

F 4.5 × 10−5 10−6

10−4 1=2

1.6 × 10þ3 832 0.52
G 4.7 × 10−3 10−4 1.6 × 10þ3 831 0.52
I 0.47 10−2 1.5 × 10þ3 803 0.52
J 25 1=2 2.0 × 10þ3 848 0.43
K2 1.5 × 10þ6 10þ3 2.1 × 10þ6 1.2 × 10þ6 0.58
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ρp ¼ ρ̄p ¼ npEp; Pp ¼ P̄p ¼ np
p2

3Ep
; ðC4Þ

where Ep≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
. Given that np ∼ a−3 and p ∼ a−1,

we find that dEp=da ¼ −p2=ðEpaÞ, whereupon it fol-
lows that

dρp
da

¼ −
ρp
a

�
3þ p2

E2
p

�
;

dPp

da
¼ −

Pp

a

�
5 −

p2

E2
p

�
:

ðC5Þ
We therefore find that the sound speed is given by

c2sðpÞ ¼
dPp=da

dρp=da
¼ 1

3

p2

E2
p

�
5 − p2=E2

p

3þ p2=E2
p

�
: ðC6Þ

From this result we easily verify that cs→ 0 for cold
(nonrelativistic) matter with p=Ep → 0, while cs → 1=

ffiffiffi
3

p
for highly relativistic matter (or radiation) with p=Ep→1.
This accords with our usual expectation that cs ¼

ffiffiffiffi
w

p
for

matter with equation-of-state parameter w.

APPENDIX D: TIME EVOLUTION OF THE
DARK SECTOR

In Sec. IV, we introduced an illustrative model involving
a collection of decaying fields ϕl and focused on the
properties of the resulting present-day phase-space distri-
bution g0ðp; tnowÞ associated with the stable, lightest
constituent ϕ0. We also analyzed the impact of this
phase-space distribution on the matter power spectrum
PðkÞ. While the properties of g0ðp; tnowÞ are an important
focus of this paper, it is nevertheless also interesting to
examine how the properties of the dark sector evolve while
the individual constituent fields within the dark sector are
actively evolving and decaying. These properties include
not only the phase-space distributions and energy densities
of the individual ϕl, but also the aggregate equation of state
for the dark sector as a whole.
These quantities are defined and calculated as follows.

Given the particular decay patterns that arise in our model,
solving the associated Boltzmann equations provides us
with the phase-space distribution flðp; tÞ for each species
ϕl as the decays proceed. Using the expressions in
Eq. (2.1) it is then straightforward to calculate the corre-
sponding number densities nlðtÞ, energy densities ρlðtÞ,
and pressures PlðtÞ which are also functions of time as the
decays proceed. Likewise, the total number density ntotðtÞ,
total energy density ρtotðtÞ, and total pressure PtotðtÞ of the
dark sector as a whole are simply sums of these individual
contributions:

XtotðtÞ≡
XN
l¼0

XlðtÞ for X ¼ n; ρ; P: ðD1Þ

We shall also define the individual species equation-of-
state parameters wlðtÞ≡ PlðtÞ=ρlðtÞ as well as an aggre-
gate equation-of-state parameter wtotðtÞ≡ PtotðtÞ=ρtotðtÞ
for the dark sector as a whole. Note that these quantities
are time-dependent as a result of the decays which
occur within the dark sector. It is also important to note
that unlike the aggregate quantities appearing in Eq. (D1),
wtotðtÞ is actually a weighted sum of the individual wlðtÞ
contributions:

wtotðtÞ≡ PtotðtÞ
ρtotðtÞ

¼
XN
l¼0

�
ρlðtÞ
ρtotðtÞ

�
wlðtÞ; ðD2Þ

where the energy-density ratios ρlðtÞ=ρtotðtÞ serve as the
appropriate weighting factors. Finally, we observe that
wtotðtÞ may equivalently be expressed as [21]

wtotðtÞ ¼ −
�

1

3H
d log ρtot

dt
þ 1

�
: ðD3Þ

In general, a relation of this sort which directly connects
wðtÞ to ρðtÞ follows from the fundamental definition
wðtÞ≡ PðtÞ=ρðtÞ under the additional assumption that
the only changes to the total energy density ρðtÞ are
those due to Hubble expansion, so that δρ ¼ PδV where
V ∼ a3. In other words, the expression in Eq. (D3)
assumes that our dark-matter ensemble couples negligibly
to any other nongravitational sector. However, the total
energy density of our dark sector as a whole is unaffected
by decays that occur purely within the dark sector (such as
we are considering in our model). We therefore obtain
Eq. (D3) for wtot. By contrast, a similar equation would not
hold for each wl separately during any time period in
which ϕl particles are being created or lost through
decays.
We begin our analysis of the time evolution of the dark

sector in our model by examining how the energy densities
ρlðtÞ evolve in time. For reasons to be discussed below, we
shall consider the time dependence of the quantities a3ρl
rather than ρl alone. Note that there are generally three
different effects that can cause a given a3ρl to vary with
time. First, this quantity can increase if ϕl particles are
created via the decays of heavier ensemble constituents.
Second, this quantity can decrease if the ϕl particles
themselves decay into lighter ensemble constituents.
Finally, however, a3ρl can also scale nontrivially with
Hubble expansion. In the absence of ϕl production or
decay, a3ρl would be constant only if the ϕl particles were
all nonrelativistic. Indeed, in this case we could even
interpret a3ρl as a comoving energy density. By contrast,
if the ϕl particles carry a significant momentum, this
momentum will experience a gravitational redshift towards
smaller values, and this will also cause a3ρl to drop as a
function of time. For example, if ϕl is highly relativistic
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(e.g., radiation), we know that ϕl scales as a−4 rather than
a−3. Thus a3ϕl will scale as a−1, even if no ϕl particles are
being created or lost through decay.
This last effect also applies to the total energy density

a3ρtot. Because each decay process within the dark sector
necessarily conserves energy, a3ρtot is unaffected by decays
within the dark sector. However, Hubble expansion con-
tinues its inexorable degradation of the overall kinetic
energy associated the dark sector. As a result, if our dark
sector consists of highly relativistic matter, its energy
density a3ρtot will initially scale as a−1. By contrast, at
late times, a3ρtot will become effectively constant as our
dark sector becomes increasingly cold. Thus, a significant
variation of a3ρtot with time indicates that a significant
fraction of the total dark-sector energy density is still
carried by relativistic particles.
In Fig. 19 we plot the time evolution of a3ρl for each

species ϕl in our model, where the different panels in this
figure correspond to the same choices for the parameters r
and s as in Figs. 14 through 18. Note that the ten solid
curves (ranging from red to blue) shown within each panel
correspond to the individual a3ρl for l ¼ 0; 1;…; 9,
respectively, with each normalized to the total a3ρtot
evaluated at the initial time t ¼ tI. Likewise, the black
dashed curve shows the evolution of the total energy
density a3ρtot, similarly normalized to its initial value.
It is straightforward to understand the curves shown in

these panels. Let us first consider the regime in which r ≤ 0

and s ≥ 0—i.e., the four panels in the upper right corner of
Fig. 19. As indicated in Fig. 15, the characteristic time-
scales associated with all relevant decay chains are quite
similar in this regime. As a result, even if the intermediate
states in these decay chains acquire significant energy
densities—as indeed occurs in most of these figure
panels—these individual energies ρl are ultimately trans-
ferred to ϕ0 in each case on essentially the same timescale.
Moreover, within this regime, decays in which a significant
amount of kinetic energy is transferred to the daughter
particles are not preferred—and for r < 0 these decays are
actively suppressed. As a result, the fraction of the initial
energy density ρ9ðtIÞ which is eventually dissipated by the
redshifting of daughter particles is small compared to the
fraction which is converted into the mass energy of ϕ0

particles. This implies that the overall decrease in a3ρtot is
comparatively small within this regime, and markedly
smaller for r ¼ −3 than for r ¼ 0.
By contrast, in the s < 0 and r ≤ 0 regime, the prefer-

ence for decays which are highly asymmetric but yet not
highly exothermic leads to a decay-chain structure involv-
ing multiple subsequent steps of the form ϕl → ϕiϕj, each
of which yields one very light particle ϕi and another
particle ϕj with j only slightly below l. In this regime, the
fraction of the initial mass energy of ϕ9 particles converted
to kinetic energy along any given decay chain is likewise

small—and likewise markedly smaller for r ¼ −3 than for
r ¼ 0. However, the timescales on which the individual
intermediate ϕl acquire significant energy densities are
also quite different in this regime. In particular, succes-
sively lighter states acquire a significant ρl at successively
later times due to an injection of energy density from the
decays of the states just above them. The fact that a
significant population of ϕ0 particles is generated at each
step along these decay chains gives rise to the complex
multimodal phase distributions which appear in the corre-
sponding panels of Fig. 16.
Finally, in the r > 0 regime, the preference for decays

which are highly exothermic leads to a decay-chain
structure in which ϕ9 particles decay directly to final states
comprising much lighter ϕl. Since a considerable fraction
of the initial mass energy of ϕ9 particles is converted into
kinetic energy in the process, the decrease in a3ρtot is
comparatively large within this regime. Moreover, the
timescales on which ϕ0 particles are produced from the
direct decays of ϕ9 are significantly shorter than the
timescales associated with the decays of other light ϕl
particles which might also be produced from the decays of
ϕ9 down to ϕ0. Thus, as we see in the panels along the
bottom row of Fig. 19, the timescales on which the energy
densities ρl associated with these other light species are
transferred to ϕ0 are quite long. The fact that one
population of ϕ0 particles is generated from the direct
decays of ϕ9 while another population of ϕ0 particles is
produced from the decays of these lighter longer-lived
states is ultimately responsible for the multimodal structure
of the phase-space distributions appearing in the corre-
sponding panels of Fig. 16.
A similar analysis can also be performed for our time-

dependent equation-of-state parameters wlðtÞ and wtotðtÞ,
as defined in and above Eqs. (D2) and (D3). In Fig. 20, we
display wlðtÞ for l ¼ 0; 1;…; 9 as functions of the ratio
t=tI, with the same color and panel configurations as in
Fig. 19. We also display the aggregate equation-of-state
parameter wtotðtÞ for the dark sector as a whole (dashed
black curve).
Once again, just as with Fig. 19, the behavior of each

individual equation-of-state parameter wlðtÞ ultimately
reflects the populating and depopulating of the ϕl state
as the decay process unfolds. Moreover, the relation in
Eq. (D3) implies that we may view wtotðtÞ at any given time
as measure of how rapidly ρtotðtÞ is changing with time.
Indeed, we observe that when wtotðtÞ differs significantly
from zero in any given panel of Fig. 20, the slope of the
black dashed curve in the corresponding panel of Fig. 19
also differs significantly from zero. Combinations of r and
s for which there exist multiple decay pathways producing
ϕ0 particles on significantly different characteristic time-
scales therefore typically give rise to wtotðtÞ curves with
multiple peaks. Thus, if the wtotðtÞ curve exhibits such
nonmonotonicities as a function of time, there is a good
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chance that the corresponding g0ðp; tnowÞwill turn out to be
multimodal as a function of p.
Finally, in Fig. 21, we illustrate how the phase-space

distribution g0ðp; tÞ of the lightest state in the dark sector
evolves in time. The curves shown in each panel represent
“snapshots” of g0ðp; tÞ at five different values of t. For
each combination of r and s, these snapshot times are
determined by dividing the time interval between between
tI and the time tf at which the comoving number
density of ϕ0 reaches 99.9% of its late-time asymptotic
value into five time intervals which are evenly spaced
on a logarithmic scale. The red curve in each panel

corresponds to the earliest snapshot, while the blue curve
corresponds final snapshot when essentially the entire
dark-sector abundance has settled into the ground state.
However, we emphasize that since τ9 ≫ tI for many of
the combinations of r and s shown—in particular, for
those combinations with r ≤ 0 and s ≥ 0—a non-negli-
gible population of ϕ0 particles is not generated until late
times. Thus, in the corresponding panels of Fig. 21, the
only curve which deviates considerably from g0ðp; tÞ ≈ 0
is the one corresponding to t ¼ tf.
We have seen in Sec. IV that the present-day phase-

space distribution for ϕ0 is unimodal for r ≤ 0 and s ≥ 0.

FIG. 19. The individual constituent energy densities a3ρl for l ¼ 0;…; 9 (solid colored curves ranging from red to blue, respectively),
each normalized to the total energy density a3ρtot evaluated at the initial time t ¼ tI and plotted as a function of the dimensionless ratio
t=tI . The total energy density a3ρtot, similarly normalized to its initial value, is also plotted (black dashed curve).
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The results shown in the corresponding panels of Fig. 21
provide some additional insight into how such a phase-
space distribution develops. In particular, since all relevant
decay chains through which ϕ9 ultimately decays to the
ground state have similar characteristic timescales, the
deposits from these different decay chains arrive on
the g0ðp; tÞ “conveyor belt” at roughly the same time.
Prior to this time—which for the particular parameter
choices adopted in these panels is quite late in comparison
with tI—we have g0ðp; tÞ ≈ 0. Thus the deposits from all of
these decay chains all arrive together at this late time,

without a significant intervening time interval over which
substantial redshifting can occur. This then generates a
single, narrow peak for g0ðp; tÞ.
By contrast, when r > 0 and/or s > 0, we have seen in

Sec. IV that the present-day phase-space distribution for ϕ0

is highly nontrivial and multimodal. The results shown in
the corresponding panels of Fig. 21 illustrate how this
multimodality arises as a consequence of sequential depos-
its from different decay pathways with different character-
istic timescales. Sizable deposits to g0ðp; tÞ arrive at early
times and experience significant redshifts during the time

FIG. 20. The equation-of-state parameterswlðtÞ for each dark-sector species ϕl, plotted as functions of the dimensionless ratio t=tI for
l ¼ 0;…; 9 (red to blue, respectively). By contrast, the black dashed curve represents the aggregate equation-of-state parameter wtotðtÞ
of the dark sector as a whole.
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interval between tI and tf, while additional deposits arrive
at subsequent times. This is consistent with our general
expectations from Secs. II and IV.
As an example, let us consider the sequence of snapshots

that emerges for the case with ðr; sÞ ¼ ð3; 4Þ, as indicated
in the lower right panel of Fig. 21. At early times, we
essentially have only a single large peak (red curve) which
then simply rides along the momentum conveyor belt
towards smaller momenta at later times. Indeed, by the
time of our final snapshot, this large peak has been

transported to values of p=m0 in the approximate range
10−4 ≲ p=m0 ≲ 10−2 (large bright blue peak). However,
by this time, we see from Fig. 21 that another much
smaller deposit onto the conveyor belt has been made,
corresponding to the small bright blue peak shown within
the approximate range 10−1 ≲ p=m0 ≲ 1. Together, these
deposits result in the final bimodal phase-space distribution
shown in the lower right panel of Fig. 16. Indeed, this
sequence of deposits onto the conveyor belt is also
consistent with the results shown in the lower right

FIG. 21. The evolution of the ground-state phase-space distribution g0ðp; tÞ as the decay process unfolds. For each value of r and s in a
given panel, we show g0ðp; tÞ=N 0 at five different “snapshot” times (ranging from red to blue) which are evenly spaced on a logarithmic
scale between the initial time tI and the final time tf at which g0ðp; tÞ reaches 99.9% of its late-time asymptotic value. Note that for r ≤ 0

and s ≥ 0, there are no deposits into the ground state until relatively late times. Consequently fewer phase-space distributions are shown.
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panel of Fig. 15, in which two dominant reduced decay
chains make deposits onto the conveyor belt at different
times. However, the snapshots in Fig. 21 now allow us to
confirm that the smaller of the two peaks within the final
bimodal distribution was deposited later than than the larger
peak. Thus the dark-sector ϕ0 particles which populate the
larger peak within the ϕ0 phase-space distribution were
produced earlier than thosewhich populate the smaller peak.
Interestingly, if we look even more closely at the lower

right panel of Fig. 21, we observe that there is actually a
very small bump (bright red) within the approximate
range 1≲ p=m0 ≲ 10 which was deposited even before
the larger red peak. (Indeed, the decay chain corresponding
to this deposit is too subdominant to appear in Fig. 15.)
After redshifting, this eventually contributes to the
very small bump shown within the approximate range
10−7 ≲ p=m≲ 10−6 in the lower right panel of Fig. 16. We
thus learn that the ϕ0 particles within this small subdomi-
nant bump were actually the first to be produced from
amongst the entire phase-space distribution.

We conclude, then, that the time evolution of our dark
sector can be highly nontrivial. Although we have focused
in this paper on the rich consequences of the late-time
phase-space distribution g0ðp; tÞ for t ≥ tf and its conse-
quences for the matter power spectrum, we now see that the
internal dynamics within the dark sector can also exhibit its
own richness. For example, we have seen in Fig. 20 that the
equation of state of the dark sector can have a nontrivial
time evolution at early times—a time dependence which
may also leave imprints in the cosmological evolution.
Likewise, although we have assumed in this paper that all
of the dark-sector decays have concluded long before
the present cosmological era, there do exist other interest-
ing cosmological frameworks (such as that associated
with Dynamical Dark Matter [21,22]) in which such
“intra-ensemble” decays within the dark sector are occur-
ring even at the present time. With only minor changes in
the appropriate timescales, the analysis we have performed
here should therefore be relevant for such other scenarios
as well.
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